
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Adaptive Partitioning Schemes for Black-Box Optimization

Raja Sunkara RS5CQ@MST.EDU

Ardhendu Tripathy ARDHENDUTR@GMAIL.COM

Missouri University of Science & Technology

Abstract
Applications such as engineering design and hyperparameter tuning often require us to optimize
a black-box function, i.e., a system whose inner processing is not analytically known and whose
gradients are not available. Practitioners often have a fixed budget for the number of function
evaluations and the performance of an optimization algorithm is measured by its simple regret. In
this paper, we study the class of “Optimistic Optimization” algorithms for black-box optimization
that use a partitioning scheme for the domain. We develop algorithms that learn a good partitioning
scheme and use flexible surrogate models such as neural networks in the optimization procedure.
For multi-index functions on an m-dimensional subspace within d dimensions, our algorithm attains
Õ(n−β/d) regret, where β = 1 + d−m

2m−1 , as opposed to Õ(n−1/d) for SequOOL, a state-of-the-art
optimistic optimization algorithm. In numerical experiments on benchmark functions, our algorithm
converged using 21% to 36% fewer evaluations compared to SequOOL. Our approach improves the
quality of activation aware quantization of the OPT-1.3B large language model.

1. Introduction and motivation

Optimization of black-box functions is often carried out by a class of algorithms called “Optimistic
Optimization” algorithms [18]. These algorithms are preferred due to their mild assumptions;
however, they require a partition scheme to be provided for the search space. The quality of a
partitioning scheme depends on the function being optimized [7]. If information on the function is
lacking, then a default partitioning scheme, i.e., axis-aligned rectangles, is used [1, 11]. But this
default choice might not be a good choice for the function. Additionally, an axis-aligned rectangle
scheme limits the application to low-dimensional search spaces (as the number of rectangles grows
as dh, where d is the dimension and h is the height of the partition tree), or it may fail to exploit
low-dimensional structures in high-dimensional spaces. Thus, there is a need to develop partitioning
schemes that can adapt to the low dimensional structure that may be present in a black-box function.

One of the first global optimization algorithms with provable convergence was obtained for the
class of Lipschitz functions. The DiRect algorithm [10, 11] is a well-known algorithm that can
optimize Lipschitz functions without knowing the Lipschitz constant. It partitions the domain X
into axis-aligned rectangles and refines those rectangles which could potentially be the maximum.
Because of its partitioning scheme, it is typically limited to low-dimensional domains. A different
class of functions studied in the Bayesian Optimization literature is that of the Gaussian Process
(GP) prior for the unknown function f . Combining the observed samples with the prior mean and
covariance kernel, a posterior distribution for f is obtained and used to guide the sampling strategy,
see e.g. GP-UCB [25]. Since its sampling strategy required maximizing the Upper Confidence Bound
obtained from the posterior, its could feasibly be applied only on low-dimensional X . Later works

© R. Sunkara & A. Tripathy.

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

[23, 24] incorporated domain partitioning ideas to reduce the computational cost. However, these
methods require the kernel associated with f as an input.

Unlike the methods described above, which assume a global characteristic for f , the “Optimistic
Optimization” class of algorithms (HOO [2], SOO [17], SequOOL [1]) just assume a local smoothness
condition around the global maximizer. These algorithms require as input a hierarchical partitioning
of X that is well-behaved with respect to a semi-metric on X . Although the semi-metric is not needed
to be known, the performance of these algorithms can be heavily influenced by the choice of the
partitioning scheme. Absent any additional information, the default partitioning is the axis-aligned
rectangles from DiRect, leading to the shortcomings described in the beginning. We propose to
develop an algorithm that adaptively builds a partitioning scheme as new samples are collected.

Main contributions When the function is a low-dimensional multi-index function we theoretically
prove improved regret bounds shown in Table 1. Empirically, we demonstrate the improvement
in optimization error for several benchmark functions including Rastrigin (multi-modal), Branin
(multiple minima), and Sharp Ridge (non-differentiable). We pose Large Language Model (LLM)
quantization as a high-dimensional black-box optimization problem and obtain improved results.

SOO SequOOL Our Method
η = 0 ρ

√
n ρΩ̃(n) ρβΩ̃(n)

η > 0 Õ(n−1/η) Õ(n−1/η) Õ(n−β/η)

Table 1: Regret bounds on a budget of n evaluations for a m-dimensional multi-index function in d
dimensions. β = 1 + d−m

2m−1 and ρ, η are parameters for the default partitioning scheme.

Related works Here we summarize some methods we have compared in our experiments. Perhaps
the closest related work is Random Embedding Simultaneous Optimistic Optimization (RESOO)
[22], which scales SOO to high-dimensional optimization problems by applying SOO in a random
low-dimensional search space. The simple regret of RESOO depends only on the effective dimension
of the problem, rather than the full dimension of the solution space. REMBO (Random EMbedding
Bayesian Optimization) ([29]) uses a random projection matrix to create a lower-dimensional
embedding for high-dimensional optimization problems. It then applies Bayesian optimization on
this low-dimensional space, allowing it to efficiently search for optima in the reduced space. HeSBO
([19]) uses hashing-enhanced embeding subspaces. ALEBO (Adaptive Linear Embedding Bayesian
Optimization) ([12]) builds upon and improves the original REMBO by proposing a new linear-
embedding method. However, these algorithms requires an lower-bound to the low-dimensional
subspace dimension, which is difficult to obtain in real-world problems. Additionally, the Bayesian
Optimization algorithms can be computationally expensive for large budgets.

Latent Action Monte Carlo Tree Search (LA-MCTS) [28] recursively partitions the high-
dimensional search space into regions with high/low function values using nonlinear decision
boundaries. Their boundaries are adaptive to the function f(x). It serves as a meta-algorithm by
using existing black-box optimizers (e.g., BO, TuRBO [4]) as its local model.

Evolutionary algorithms such as CMA-ES [8] and simulated annealing [30] are other popular
approaches for black-box optimization. CMA-ES technique perform well at finding the best solutions
in high-dimensional optimization problems. However, a downside of these methods is that they do
not come with convergence guarantees ([14], [20]).

2

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

2. Problem formulation and adaptive partitioning schemes

We consider the problem of optimizing a function f : X 7→ R using only its evaluations at appro-
priately chosen points in its domain X , which is assumed to be a closed and compact set. Given
a budget of n evaluations, at each t ∈ {1, 2, . . . , n} the algorithm queries the point xt ∈ X and
observes a real number yt = f(xt). After exhausting its budget, the algorithm returns the estimated
maximizer x̂(n). The optimization error is quantified by the simple regret rn, defined as

rn ≜ f∗ − f(x̂(n)), where f∗ ≜ sup
x∈X

f(x), and x∗ ∈ X such that f∗ = f(x∗). (1)

Our focus is on the class of optimistic optimization algorithms [1, 2, 7, 17, 18, 27]. These algorithms
require as input a hierarchical partitioning of the domain X for their search procedure.

Definition 1 Partitioning scheme [1]. Let P denote a tree representation of the domain X . All the
cells at depth h form a partition of X and are denoted as Ph. We index the cells at depth h with an
additional index i, i.e., Ph,i is a cell in the tree at depth h. We use P∗

h to denote a cell at depth h
containing a maximizer x∗ of f . We also use xh,i to denote a representative location within the Ph,i
cell.

A common choice of X is obtained when we have interval constraints on each of its components.
In this case, without loss of generality, we can consider X = [−1, 1]d. And a default choice for the
partitioning scheme that is often used in practice is the axis-aligned trisection scheme [11].

Definition 2 The default partitioning scheme constructs a hierarchical partitioning P = {Ph,i}h,i
of X = [−1, 1]d using an axis-aligned trisection method in a round-robin manner. At depth h = 0,
there is a single cell P0,1 = X . Each cell Ph,i at depth h is split into three children cells {Ph+1,j}j
at depth h+ 1. The trisection occurs along the (h mod d) + 1 axis, i.e., the new cells are created by
introducing (d− 1)-dimensional hyperplanes orthogonal to the chosen axis. The representative xh,i

is the midpoint of the cell Ph,i and {Ph,i}1≤i≤3h partitions X at each depth h.

We also consider partitioning schemes that are not aligned with the standard canonical basis. We can
define such a rotated low-dimensional partitioning scheme using a matrix of orthonormal rows.

Definition 3 Given a matrix A ∈ Rm×d such that AA⊤ = Im and a scalar α > 0, we establish a
partitioning scheme denoted as A. Let the default partitioning scheme (Definition 2) on [−α, α]m be
denoted as T . For any depth h and index i, Ah,i ≜ {A⊤t : t ∈ Th,i} is a cell in the partitioning on
the m-dimensional projection of X onto the subspace spanned by rows of A.

Since the projection of X onto A can result in points outside X , the value of α is chosen to
ensure that the projection is covered by the A partitioning scheme. We characterize the benefit of
using the partitioning scheme A for the class of multi-index functions [5], i.e., if there is a matrix
A ∈ Rm×d with orthonormal rows and a Lipschitz function g such that

f(x) = g(Ax), (2)

then using the partitioning scheme A can decrease rn at a faster rate with n. Formally, we use the
near-optimality dimension from [1] which characterizes the difficulty of optimizing a black-box
function using a partitioning scheme (see Definition 13). Omitted details/proofs are in the Appendix.

The following example demonstrates that the partitioning scheme A has a lower near-optimality
dimension than the default partitioning scheme for a simple function with m = 1, d = 2.

3

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Example 4 Consider the function f(x1, x2) = g(Ax) = 1−|x1|with A = [1, 0] and g(z) = 1−|z|.
Let ηP , ηA be the near-optimality dimensions for the partitioning schemes P,A from Definitions 2
and 3. Then we have that ηP = 1 and ηA = 0.

In addition to identifying the important subspace spanned by m orthonormal directions, an adaptive
partitioning scheme can choose which direction to split at each depth.

Definition 5 Direction selection strategy. For a partitioning A in Definition 3, a direction selection
strategy τh : H → [1 : m] defined for each height h takes as input the historyH of all past function
evaluations till depth h− 1 and outputs the index of the direction to be split at depth h.

In the following example, a direction selection strategy that splits the x1 axis twice as often as
the x2 axis leads to a better regret than the default partitioning scheme P which splits both the axes
in equal proportion.

Example 6 The near-optimality dimension of the default partitioning scheme for the function
f(x1, x2) = 1 − |x1| − x22 is ηP = 0.5. On the other hand, consider the partitioning scheme A
from Definition 5 with A = I2, α = 1 and direction selection strategy τh = 1 if h mod 3 ̸= 0 and
τh = 2 otherwise. Its near-optimality dimension ηA = 0.

3. Proposed algorithms for black-box optimization

We develop two kinds of algorithms: 1. a two-stage algorithm where the first stage learns an adaptive
partitioning scheme and the second stage uses it for optimization, and 2. an interleaved algorithm
where learning and optimization happen iteratively.

Two-stage algorithm. In the first stage, we use a learning algorithm to obtain Â, i.e., the directions
used to define the adaptive partitioning scheme A. If f is a multi-index function satisfying (2), the
quality of this estimate is measured by the subspace distance between Â and the true A. In that case,
the value of α̂ is chosen in Lemma 23 such that f(Â

⊤
t) = f(x⋆) for some t ∈ [−α̂, α̂]m and the

optimization can converge to the maximizer in the low-dimensional subspace.

Algorithm 1: Obtaining directions for an adaptive partitioning scheme
Input: T,m, oracle for f which is a multi-index function defined using A (see (2)).
Sample f at T points chosen as x(i) iid∼ N (0, Id) and fit a single hidden-layer neural network ŷ ;
Â← top m right singular vectors of the hidden layer weight matrix;
u← Upper bound to dist (A, Â) obtained in lemma 31 or theorem 32;
return Â and α̂ =

√
dm/(1− u2) used to specify the partitioning scheme A in Definition 3.

Algorithm 1 learns Â by fitting a single hidden-layer neural network to the function evaluations
at random locations in its domain. A single hidden-layer neural network can model the fact that only
a subspace of the domain explains all the variation in the function values (see Proposition 11). In
practice, we can choose the value of m to explain a desired percentage (such as 95%) of the total
variation in the SVD step calculating Â. Another approach we consider is learning Â from Fornasier
et al. [5, Algorithm 2] which estimates the gradient of the function using finite differences. The
second stage applies SequOOL to the partitioning scheme A returned by Algorithm 1.

4

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Interleaved learning and optimization. Instead of separating the learning and optimization in
two distinct stages, an interleaved algorithm updates the neural network fit at regular intervals. The
updated approximant is used to specify the direction selection strategy in Definition 5.

Algorithm 2: SequOOL on an adaptive partitioning scheme with a direction selection strategy

Input: Total number of openings n, number of samples T for updating f̂ , integer c stating how
often f̂ is updated, number of dimensions m, oracle for f , direction selection strategy τh.

Setup a partitioning scheme Â with Â and α̂ obtained using [5, Algorithm 2];
Obtain f̂ by fitting a neural network on available samples, set hmax ← ⌊n2/

(
nlogn+ Tn

3c

)
⌋ ;

for h← 1 to hmax do
T ∗
h ← the cell with the largest function sample value at height h;

if h mod c = 0 then
Obtain evaluations of f at T uniform random locations in T ∗

h and update f̂ ;
Open ⌊hmax/h⌋ cells at depth h and trisect them along the direction returned by τh(f̂);

return x̂(n)← argmaxall h,i f(xh,i)

Algorithm 2 uses the parameter τh that takes the updated approximation f̂ as input. Our proposed
method for τh is the lookahead direction selection strategy, which is detailed in Algorithm 3 in
Appendix section 3.

Proposition 7 Let n, T, c, hmax be the parameters defined in Algorithm 2 with logn ≜
∑n

t=1
1
t .

Then the total number of function evaluations taken by the algorithm will not exceed 3n.

For the regret upper bound of our Algorithm 1, refer to the theoretical section in Appendix D.

4. Experiments

We evaluate our algorithms against state-of-the-art baselines from various optimization categories.
These include Bayesian Optimization (REMBO [29], HesBO [19]), Evolutionary Algorithms (CMA-
ES [9]), Dual Annealing [21], Optimistic Optimization (SOO, SequOOL, RESOO [22], DiRect),
and Random Search. The optimization functions used in our experiments include Sphere, Rastrigin,
Different Powers, Rosenbrock, Styblinski-Tang, Hartmann-6, Branin, Ellipsoid, Sharp Ridge, and
the CUSTOM function defined as 1 + (x1 − 1)2 +

∑d
i=d−m+2(xi − 1)4.

In our experimental setup, we construct the multi-index function as f(x) = g(Ax), where
x ∈ Rd, g : Rm → R is a standard optimization test function, and A ∈ Rm×d is a randomly
generated matrix satisfying AA⊤ = Im. The Branin and Hartmann-6 functions are defined in 2
and 6 dimensions respectively; thus, we choose m = 2 for Branin and m = 6 for Hartmann-6
when constructing the multi-index function. To further evaluate the efficacy of our algorithm, we
conducted benchmarks on low-dimensional multi-index functions with d = 5 and m = 2. Additional
experimental results are in Appendix G.2.

Our algorithm demonstrates superior performance on the Rastrigin, Sphere and Styblinski-Tang
functions, achieving zero regret with fewer samples compared to other methods. On the different
powers function, we perform comparable to the other methods, however, on the (x1−1)2+(x72−1)4,
Ellipsoid and Sharp Ridge function, our algorithm perform slightly worse than the RESOO. This may

5

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Figure 1: Regret Plots: Algorithm 1 (SequOOL on Â) uses 650 additional samples to learn the
subspace. Regret is plotted for 100 equally spaced budget values between 1 and 2000. For the
randomized algorithms, we took 10 trials and plotted the median curve (thick line) and 0 and 95
percentile curves.

be attributed to the use of several (650) samples for the first stage in a 2000 budgeted experiment.
Experiment on the LLM Quantization are in Appendix G.3.

6

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

References

[1] Peter L. Bartlett, Victor Gabillon, and Michal Valko. A simple parameter-free and adaptive ap-
proach to optimization under a minimal local smoothness assumption. In Aurélien Garivier and
Satyen Kale, editors, Proceedings of the 30th International Conference on Algorithmic Learning
Theory, volume 98 of Proceedings of Machine Learning Research, pages 184–206. PMLR,
22–24 Mar 2019. URL https://proceedings.mlr.press/v98/bartlett19a.
html.

[2] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal
of Machine Learning Research, 12(5), 2011.

[3] Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, et al. Spectral methods for data science: A
statistical perspective. Foundations and Trends® in Machine Learning, 14(5):566–806, 2021.

[4] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. Advances in neural information
processing systems, 32, 2019.

[5] Massimo Fornasier, Karin Schnass, and Jan Vybiral. Learning functions of few arbitrary linear
parameters in high dimensions. Foundations of Computational Mathematics, 12:229–262,
2012.

[6] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[7] Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions
with unknown smoothness. Advances in Neural Information Processing Systems, 28, 2015.

[8] Nikolaus Hansen. The cma evolution strategy: A tutorial, 2023. URL https://arxiv.
org/abs/1604.00772.

[9] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18, 2003.

[10] Donald R Jones and Joaquim RRA Martins. The direct algorithm: 25 years later. Journal of
global optimization, 79(3):521–566, 2021.

[11] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without
the lipschitz constant. Journal of optimization Theory and Applications, 79:157–181, 1993.

[12] Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embed-
dings for high-dimensional bayesian optimization. Advances in neural information processing
systems, 33:1546–1558, 2020.

[13] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024.

7

https://proceedings.mlr.press/v98/bartlett19a.html
https://proceedings.mlr.press/v98/bartlett19a.html
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

[14] Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep neural
networks. arXiv preprint arXiv:1604.07269, 2016.

[15] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[16] Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A
Erdogdu. Neural networks efficiently learn low-dimensional representations with SGD. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=6taykzqcPD.

[17] Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its
smoothness. Advances in neural information processing systems, 24, 2011.

[18] Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to
optimization and planning. Foundations and Trends® in Machine Learning, 7(1):1–129, 2014.
ISSN 1935-8237. doi: 10.1561/2200000038. URL http://dx.doi.org/10.1561/
2200000038.

[19] Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for bayesian
optimization in embedded subspaces. In International Conference on Machine Learning, pages
4752–4761. PMLR, 2019.

[20] Masahiro Nomura, Shuhei Watanabe, Youhei Akimoto, Yoshihiko Ozaki, and Masaki Onishi.
Warm starting cma-es for hyperparameter optimization. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 9188–9196, 2021.

[21] Martin Pincus. A monte carlo method for the approximate solution of certain types of con-
strained optimization problems. Operations research, 18(6):1225–1228, 1970.

[22] Hong Qian and Yang Yu. Scaling simultaneous optimistic optimization for high-dimensional
non-convex functions with low effective dimensions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

[23] Sudeep Salgia, Sattar Vakili, and Qing Zhao. A domain-shrinking based bayesian optimization
algorithm with order-optimal regret performance. Advances in Neural Information Processing
Systems, 34:28836–28847, 2021.

[24] Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization.
Electronic Journal of Statistics, 12(2):3829–3874, 2018.

[25] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-
theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE transac-
tions on information theory, 58(5):3250–3265, 2012.

[26] Vinod Vaikuntanathan. Csc 2414 lattices in computer science. https://people.csail.
mit.edu/vinodv/COURSES/CSC2414-F11/L1.pdf, 2011. [Online; accessed 19-
July-2008].

8

https://openreview.net/forum?id=6taykzqcPD
https://openreview.net/forum?id=6taykzqcPD
http://dx.doi.org/10.1561/2200000038
http://dx.doi.org/10.1561/2200000038
https://people.csail.mit.edu/vinodv/COURSES/CSC2414-F11/L1.pdf
https://people.csail.mit.edu/vinodv/COURSES/CSC2414-F11/L1.pdf

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

[27] Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic
optimization. In International Conference on Machine Learning, pages 19–27. PMLR, 2013.

[28] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-
box optimization using monte carlo tree search. Advances in Neural Information Processing
Systems, 33:19511–19522, 2020.

[29] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

[30] Yang Xiang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. Generalized simulated annealing
for global optimization: the gensa package. R J., 5(1):13, 2013.

[31] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

9

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Appendix A. Notation

Let N0 = N ∪ {0} denote the set of non-negative integers and [d] represents the set {1, 2, . . . , d}.
For vectors and matrices, we use (·)⊤ to denote the transpose. For a d-dimensional vector x =
[x1, . . . , xd]

⊤, we use ∥x∥p and ∥x∥∞ to denote its ℓp and ℓ∞ norm respectively. For any matrix
X = [x1, . . . ,xn], ∥X∥2 and ∥X∥F represent its spectral and Frobenius norms. We use σi(X) for
the ith largest singular value, with σmax(X) and σmin(X) denoting the largest and smallest singular
values. Suppose A ∈ Rm×d, with AA⊤ = Im, then for any vector v ∈ Rd, we denote its orthogonal
projection onto the span of the rows of A as v∥ = A⊤Av, with the orthogonal component given by
v⊥ = v − v∥. For a matrix W ∈ Rp×d, we denote W∥ and W⊥ as the projections applied to each
row, i.e., W∥ = WA⊤A and W⊥ = W −W∥. For a given scalar κ > 0, we denote κX as the set
{κx : x ∈ X}. By a partitioning scheme P with κ, we mean the domain for the partitioning scheme
is the set {κx : x ∈ [−1, 1]d}. By the default partitioning scheme P , we mean partitioning scheme P
with κ = 1. To describe side-length of a hyper-rectangle, we use the notation [3−⌊

h+m−i
m ⌋]mi=1. This

expressions represents a vector of m components, where each component is given by 3−⌊
h+m−i

m ⌋,
with i ranging from 1 to m.

Appendix B. Omitted details for Section 2

Definition 8 Let cj ∈ {−1, 1}d denote the 2d corners, indexed by j, of the default axis-aligned P
partitioning scheme. Given a matrix A with m orthonormal rows denoted as a1,a2, . . . ,am, we
define

αmax ≜ [max
1≤j≤2d

a⊤1 cj , max
1≤j≤2d

a⊤2 cj , · · · max
1≤j≤2d

a⊤mcj]
⊤

as the extent parameter of the A partitioning scheme. Additionally, we define the largest component
of the extent parameter as α ≜ max1≤i≤mmax1≤j≤2d a

⊤
i cj .

Proposition 9 Suppose f : Rd 7→ R is a multi-index function of the form f(x) = g(Ax) and we
want to optimize it over X = [−1, 1]d. If x∗ ∈ X is an optimizer and α is chosen as per definition 8,
then there exists a z∗ ∈ Rm such that f(A⊤z∗) = f(x∗) and ∥z∗∥∞ ≤ α.

The proposition above implies that if we have access to true subspace matrix A, we can compute
α and restrict our optimization to the m dimensional space αHm

1 and perform optimization on
A partitioning scheme. This restriction guarantees that we can still recover the optimal function
value f∗ by optimizing over this lower-dimensional space. We characterize the benefit of using the
partitioning scheme A for the class of multi-index functions, i.e., if f satisfies (2) then using the
partitioning scheme A can decrease rn at a faster rate with n. Formally, we use the near-optimality
dimension from [1] which characterizes the difficulty of optimizing a black-box function using a
partitioning scheme (see Definition 13).

Bartlett et al. [1] make a key assumption about the partitioning scheme that states that the subop-
timality of any point in the P∗

h cell keeps improving as the depth h increases (see Assumption 12).
The rate of this improvement is characterized by a parameter ρ ∈ (0, 1). In the next example, the sub-
space defined by A is not aligned with the canonical axes. In this case, although the near-optimality
dimension for both P and A is 0, we see that the ρA is smaller than the ρ of the default partitioning
scheme, leading to a faster decrease in regret when using A instead of P .

10

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Example 10 Consider the function f(x1, x2) = g(Ax) = 1 − |x1 + x2| with A = [1, 1] and
g(k) = 1 − |k|. Let ηP , ηA be the near-optimality dimensions for the partitioning schemes P,A
respectively. And (ν, ρ), (νA, ρA) be the parameters for the paritioning schemes A,P respectively.
Then, ρ = 1/

√
3 and ρA = 1/3 and ηP = ηA = 0.

Appendix C. Omitted details for Section 3

A single hidden layer neural network with p hidden neurons maps input x ∈ Rd to the scalar

ŷ(x,W,a,b) =

p∑
i=1

aiσ(w
⊤
i x+ bi), (3)

where σ is the non-linear activation function, W is the hidden layer weight matrix consisting of p
weight vectors denoted as wi, bi is the scalar bias for the ith hidden neuron, and ai are the components
of the output layer weight vector. The following proposition shows that the class of single hidden
layer neural networks can represent the important subspace of multi-index functions.

Proposition 11 Consider a function f(x) =
∑p

i=1 viσ(w
⊤
i x + bi), where x ∈ Rd and σ is a

non-linear function. Let x = Px+(I−P)x, where P is the projection matrix that maps any x ∈ Rd

to Span{w1,w2, . . . ,wp}. Then f(x) =
∑p

i=1 viσ(w
⊤
i Px+ bi). And if x,x′ ∈ Rd are such that

(x− x′) ⊥ Span{w1,w2, . . . ,wp}, then f(x) = f(x′).

We use SGD with weight decay to fit the neural network on the function evaluations obtained at
uniform random locations in X . The top m right singular vectors of the learned weight matrix of the
hidden layer is used as the estimated Â for obtaining the partitioning scheme Â.

Algorithm 3 describes our lookahead direction selection strategy τh(f̂).

Algorithm 3: Implementing lookahead direction selection strategy τh(f̂)

Input: Current partition tree T , height h, estimated function f̂
Result: An integer in [1 : m] denoting axis_to_split
x̂∗
h ← argmaxi f(xh,i), representative of cell Th with the largest function value at height h ;
Th ← cell at height h in T whose representative is x̂∗

h, axis_to_split← 0, minimum←∞;
for i← 1 to m do
Th+1 ← child cell of Th after trisecting axis i and having the same representative x̂∗

h;
temp← Compute minimum of f̂ on the domain Th+1;
if temp < minimum then

axis_to_split← i;
minimum← temp;

return axis_to_split;

Querying outside the domain and optimizing f̂ In practice, with our optimization domain set as
X = [−1, 1]d, we may encounter situations during low-dimensional subspace optimization where

t ∈ [−α, α]m results in Â
⊤
t /∈ X . To ensure that f can be evaluated in all cases, we employ a

two-step approach. First, we attempt to solve the optimization problem: argmintc∈Rd−m

∥∥∥Â⊤
c tc

∥∥∥
2

11

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

subject to Â
⊤
t+Â

⊤
c tc ∈ X , where Âc consists of the remaining d−m columns of Â that are not in

Â. If this optimization problem has no feasible solution, we then employ Euclidean projection onto
X : argminx∈X

∥∥∥x− Â
⊤
t
∥∥∥
2
. This projection method is applied whenever Â

⊤
t /∈ X , ensuring that

we always have a valid point within our optimization domain.In practice, we estimate the minimum of
f̂ on the domain Th+1 using random sampling or any of the other black-box optimization algorithms,
since f̂ is cheap to evaluate and gradients are also available.

Appendix D. Theoretical analysis

We use the assumption made by Grill et al. [7] and Bartlett et al. [1] which states that the suboptimality
of any point in a cell containing the global maximizer strictly improves with increasing height.

Assumption 12 [1] For any global optimum x⋆, there is a ν > 0 and ρ ∈ (0, 1) such that for all
h ∈ N0 and all x ∈ P∗

h, we have that f(x) ≥ f(x⋆)− νρh.

Definition 13 Near-optimality dimension from [1]. Consider a partitioning scheme P that satisfies
Assumption 12 for some ν, ρ. For any C > 1, the near-optimality dimension ηP(ν, ρ, C) of f with
respect to the partitioning P is defined as ηP(ν, ρ, C) ≜ inf{η ∈ R+ : ∀h ≥ 0,NP(h) ≤ Cρ−ηh},
where NP(h) is the number of cells Ph,i at depth h for which supx∈Ph,i

f(x) ≥ f(x∗)− 3νρh.

Intuitively, a larger ρ implies that the function is only improving slowly near the maximizer, and
a larger η implies that there are many near-optimal cells which must be ruled out to get the true
maximizer. In both cases, we need a larger budget of evaluations to converge. We show that for the
class of multi-index functions (2), the partitioning A has a lower η and a lower ρ compared to that of
the default partitioning P .

In this section, we establish relationships between three partitioning schemes: the default scheme
P , the scheme A based on the true subspace, and the scheme Â based on the estimated subspace.
Our analysis proceeds in two main stages: We first relate the parameters of the default partitioning
scheme P to those of the scheme A. This includes comparing their SequOOL parameters (ν, ρ),
characterizing their optimal cells, and bounding the number of near-optimal cells. We then extend this
analysis to the estimated scheme Â, relating its properties to those of A. This involves quantifying
the impact of using an estimated subspace and establishing relationships between the SequOOL
parameters of Â and A.

First, we start with relating the default partitioning scheme P with A partitioning scheme. To
establish the relationship between the near-optimality dimensions of the two schemes, we first need
to compare the parameters (ν, ρ) of SequOOL across both partitioning schemes. This requires a
characterization of the cells A∗

hand P∗
h. The following proposition provides this characterization.

Proposition 14 Let κ > 0 and α∗
h ∈ Rm be the representative of the A∗

h cell containing a global
maxima of the function. Using fraction of two vectors to denote component-wise division,

A∗
h = {A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1}. (4)

Similarly, if x∗
h ∈ Rd is the representative of the P∗

h cell containing the same global maxima,

P∗
h = {x : x ∈ Rd,

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ κ with c = [3−⌊

h+d−i
d ⌋]di=1}. (5)

12

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Proposition 9 shows that we can use A partitioning scheme to perform optimization. We now
relate the ν and ρ parameters (see Assumption 12) of the partitioning schemes P and A.

To establish relationships between the parameters of the partitioning schemes A and the default
scheme P , we need to connect the sets P∗

h and A∗
h. The following lemma provides this connection:

Lemma 15 Suppose x∗ ∈ P∗
h is such that x∗ = A⊤Ax∗. If the domain for P is κHd

1 with
κ ≥
√
mα, then ∀i ∈ [1 : m− 1], ∀k ∈ N0 we have that A∗

km+i ⊆ P∗
kd+i.

Having established the relationship between the star cells of the partitioning schemes A and P ,
we can now proceed to relate their respective parameters. The following two lemmas establish these
relationships.

This lemma connects the parameters (ν, ρ) of the partitioning scheme P with κ ≥
√
mα to the

parameters (νA, ρA) of the scheme A.

Lemma 16 Let the parameters for the partitioning schemes P,A be (ν, ρ), (νA, ρA) respectively. If
Lemma 15 is applicable andP satisfies Assumption 12. Then we have that νA = νρ(1−β)(m−1), ρA =
ρβ where β = 1 + d−m

2m−1 .

This lemma establishes the relationship between the parameters (νA, ρA) of scheme A and (ν, ρ) of
the default partitioning scheme P .

Lemma 17 The parameters (νA, ρA), (ν, ρ) associated with partitioning schemes A and P with
κ = 1. Let lf = f∗ − infx∈κ1Hd

1
f(x). Then

ρA = ρβ, νA = max{ν, lf}ρ(1−β)(m−1)−h̃1

where h̃1 = d ⌈log3 κ1⌉ , β = 1 + d−m
2m−1 and κ1 =

√
mα.

The previous lemmas established relationships between the parameters of the partitioning schemes A
and P . They demonstrate that A is a valid partitioning scheme with a reduced sequOOL parameter
ρA compared to the default partitioning scheme ρ.

Building on these results, we now turn our attention to comparing the number of near-optimal
cells in each scheme.

It is helpful to use the notation of lattices to relate the number of near-optimal cells in two
different partitioning schemes.

Definition 18 [26] Given m linearly independent vectors b1, . . . ,bm ∈ Rm, the lattice generated
by them is defined as L(b1, . . . ,bm) = {

∑m
i=1 aibi | ai ∈ Z} . We call b1, . . . ,bm a basis of the

lattice. We denote lattices formed by the standard basis vectors e1, e2, . . . , em as Λ. Thus, Λ =
L(e1, e2, . . . , em) = Zm. The lattice Λ scaled by a scalar κ is the same as L(κe1, κe2, . . . , κen).

For a d-dimensional vector x = [x1, . . . , xd]
⊤, we use ∥x∥p and ∥x∥∞ to denote its ℓp and ℓ∞

norm respectively.

Lemma 19 Let κ1, κ2 ∈ R+ with κ1 > κ2, and let B(x, r) = {y ∈ Rm : ∥y − x∥∞ ≤ r}.
Consider a lattice Λ as defined in Definition 18 , scaled by κ2, and translated by a vector t to form

13

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

the lattice Λ + t. Define the subset of all lattice points that cover B(0, κ1) as C(κ1, κ2, t) ⊆ Λ + t,
i.e.,

C(κ1, κ2, t) = {ci ∈ Λ + t : B(ci, κ2) ∩B(0, κ1) ̸= ∅

and B(0, κ1) ⊆
⋃
i

B(ci, κ2)}.

Then, the cardinality of C satisfies:(
κ1
κ2

)m

≤ |C(κ1, κ2, t)| ≤
(
κ1
κ2

+ 2

)m

Lemma 19 is a key result which is used to relate the near-optimality dimension of P and A.
The following lemma provides an upper bound on the number of near-optimal cells in scheme A

relative to scheme P . This relationship is fundamental for comparing the near-optimality dimensions
of the two schemes, which will be addressed in a subsequent lemma (Lemma 21).

Lemma 20 Recollect the definition of the default partitiong scheme P and A partitioning scheme
from Definition 13. And letNP(ϵ) is the number of cells Ph,i at depth h for which supx∈Ph,i

f(x) ≥
f(x∗)− ϵ. NA(ϵ),NP(ϵ) denote the number of near-optimal cells for A,P respectively. Then

NA(ϵ) ≤ CNP(ϵ) where C = 3ddd−m(12
√
m)m.

Lemma 21 For a function in the multi-index class (2) with known A ∈ Rm×d,m < d and let
(ν, ρ, ηP , C), (νA, ρA, ηA, CA) be parameters of P,A. Let lf = f∗ − infx∈κ1Hd

1
f(x). Then

ρA = ρβ, ηA(νA, ρA, CA) ≤ ηP(ν, ρ, C)/β

where β = 1 + d−m
2m−1 , h̃1 = d ⌈log3 κ1⌉ and κ1 =

√
mα.

CA = 3ddd−m(12
√
m)mCρ− ηP h̃3 , νA = max{ν, lf}ρ(1−β)(m−1)−h̃1

h̃3 = −
⌊
logρ(max{ν, lf}ρ(1−β)(m−1)−h̃1)− logρ(ν)

⌋
(6)

When the low rank matrix A is unknown, we use the estimation guarantees for the learning
algorithms of Fornasier et al. [5] and Mousavi-Hosseini et al. [16] that bound the subspace distance
dist(A, Â). We can then relate the parameters of the partitioning schemes A, Â obtained using
A, Â respectively.

D.1. Using Â defined over the estimated Â

We obtain Â using a subspace learning algorithm with evaluations of f at selected points in X . We
then use Â to define a partitioning scheme Â (as per Definition 3) and apply SequOOL to it. The
impact of using an estimated matrix Â instead of the true matrix A in our optimization problem can
be quantified using subspace distance. The following is the definition of the subspace distance.

14

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Definition 22 ([3, Lemma 2.5]) Let A, Â ∈ Rm×d consists of orthonormal rows such that AA⊤ =

Im and ÂÂ
⊤
= Im. Define two more matrices A⊥, Â⊥ ∈ R(d−m)×d such that

[
A⊤ A⊤

⊥
]

and[
Â

⊤
Â

⊤
⊥

]
form two orthonormal bases for Rd. Then the subspace distance between the two row

subspaces (A, Â) is given by

dist (A, Â) =
∥∥∥A⊤A− Â

⊤
Â
∥∥∥
2
=
∥∥∥Â⊥A

⊤
∥∥∥
2
=
∥∥∥A⊥Â

⊤∥∥∥
2
=
∥∥∥sinΘ(A, Â)

∥∥∥
2
, (7)

where ∥·∥2 denotes the spectral norm, and sinΘ is a diagonal matrix of {sin(arccos(σi)) : i =

1, 2, . . . ,m} where σi are the singular values of ÂA⊤ in decreasing order.

Moreover, we have the following equality:

σmin(ÂA⊤) = cos θm =
√

1− sin2 θm =

√
1−

∥∥∥sinΘ(A, Â)
∥∥∥2
2
=

√
1− dist2(A, Â) (8)

We observe that assuming dist(A, Â) < 1 implies that σmin(ÂA⊤) ̸= 0 and rank(ÂA⊤) = m.

Lemma 23 Consider optimizing a multi-index function f(x) = g(Ax) over X = [−1, 1]d. Let
x∗ be an optimizer of f within X , α be as in definition 8 and Â be an estimate of A satisfying
dist(A, Â) < 1. Then there exists an z∗ ∈ Rm such that f(Â

⊤
z∗) = f(x∗) and ∥z∗∥∞ ≤√

m√
1−dist2 (A,Â)

α.

Given that we only have an estimate Â of the true matrix A, and we perform optimization on the
subspace spanned by Â, Lemma 23 guarantees that we can use Â and recover f∗. Now, we relate
the SequOOL parameters between the partitioning schemes A and Â partitioning schemes.

Lemma 24 Let A and Â be the partitioning schemes defined in Definition 3. Suppose A satisfies
Assumption 12 with parameters νA, ρA. Let lg = g∗ − infz∈κ2αHm

1
g(AÂ

⊤
z). Then Â satisfies

Assumption 12 with parameters

νÂ = max{νA, lg}ρ−h̃2
A , ρÂ = ρA

where h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and κ2 =

√
m√

1−dist2 (A,Â)
.

The above lemma demonstrates that the partitioning scheme Â is valid and satisfies Assumption 12
and it establishes the relationship between the SequOOL parameters of the Â and A partitioning
schemes.

Algorithm 1 returns the value of α̂ based on the Lemma 23. The next lemma relates the
near-optimality dimension of A and Â.

Lemma 25 Consider the partitioning scheme Â obtained using the estimated Â. Let lg = g∗ −
infz∈κ2αHm

1
g(AÂ

⊤
z).

νÂ = max{νA, lg}ρ−h̃2
A , ρÂ = ρA, ηÂ ≤ ηA

15

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

with

CÂ = CA4
mρηAh̃4

A , h̃2 = m+m

⌈
log3

2
√
mκ2

κ2 − 1

⌉
, κ2 =

√
m√

1− dist2 (A, Â)

h̃4 = −
⌊
logρA(max{νA, lg}ρ−h̃2

A)− logρA(νA)
⌋

(9)

This corollary synthesizes the relationships established in the preceding lemmas, providing
a direct comparison between the estimated scheme Â and the default partitioning scheme P . It
combines the two-step process of relating A to P and then Â to A, yielding a comprehensive set of
relationships for the SequOOL parameters, near-optimality dimensions, and associated constants.

Corollary 26 Referring to Lemma 21, for the partitioning scheme P with κ = 1, we have

ρA = ρβ, νA = max{ν, lf}ρ(1−β)(m−1)−h̃1 , ηA(νA, ρA, CA) ≤
ηP(ν, ρ, C)

β

and CA = 3ddd−m(12
√
m)mCρ− ηP h̃3 . By utilizing Lemma 24 and Lemma 25, we establish the

following relationships among the parameters associated with Â and P .

ρÂ = ρβ, νÂ = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−h̃2
A ,

ηÂ(νÂ, ρÂ, CÂ) ≤
ηP(ν, ρ, C)

β
,CÂ = 3ddd−m(12

√
m)mCρ− ηP h̃34mρηP h̃4 .

with h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and h̃1 = d ⌈log3

√
mα⌉ with κ2 =

√
m√

1−dist2 (A,Â)

h̃3 = −
⌊
logρ(max{ν, lf}ρ(1−β)(m−1)−h̃1)− logρ(ν)

⌋
h̃4 = −

⌊
logρA(max{νA, lg}ρ−h̃2

A)− logρA(νA)
⌋

Theorem 27 For a function in the multi-index class (2), the regret of SequOOL applied on the

partitioning scheme using Â returned by Algorithm 1 and α̂ =
√
dm/

√
1− dist2(A, Â) satisfies

• If ηP = 0, rn ≤ γ(ν, ρ)ρ−βh̃2ρ
β
C1

⌊ n
logn

⌋ • If ηP > 0, rn ≤ γ(ν, ρ)ρ−βh̃2

(
ñ

log ñ

)− β
ηP

where, γ(ν, ρ) = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}, C1 = 3ddd−m(12
√
m)mCρ−ηP h̃34mρηP h̃4

ñ =
⌊
n/logn

⌋
ηP log(1/ρ)/C1

Where h̃1, h̃2 are defined in Lemma 21 and Lemma 25. h̃3, h̃4 are from equations 6 and 9 respectively.

16

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

When ηP > 0, Algorithm 1 has rn = Õ(n−β/ηP) = Õ(n−(1+ d−m
2m−1

)/ηP) while default SequOOL
would give Õ(n−1/ηP), showing our approach reduces the regret at a faster rate. The proof of this
theorem follows from applying the SequOOL parameters derived in Corollary 26 to Theorem 5 of
Bartlett et al. [1]. Detailed proof is in Appendix F.19.

[16], controls the closeness between true and estimated subspace expressed in terms of ∥W⊥∥F .
However, for out Algorithm 2, we require an upper bound on the distance between the true subspace
A and its estimate Â. This lemma bridges this gap by providing an upper bound on dist (A, Â) in
terms of ∥W⊥∥F and the singular values of W.

Lemma 28 Given A ∈ Rm×d satisfying AA⊤ = Im, let W ∈ Rp×d be any matrix such that
rank(W) ≥ m and d ≥ m. Consider the singular value decomposition of W = USV⊤ and
collect the top m right singular vectors in the matrix Â =

[
v1 v2 · · · vm

]⊤, where vi is the ith
column of V. Recollect the definition of sinΘ(A, Â) from the Definition 22. Using ∥·∥F to denote
Frobenius norm and σm to denote the mth singular value of W, we have that

dist (A, Â) =
∥∥∥sinΘ(A, Â)

∥∥∥
2
≤
∥W⊥∥F

σm
. (10)

D.2. Supporting lemmas

The following lemmas and assumptions are needed to obtain guarantees on learning a good estimate
Â.

Assumption 29 [16] The student model is a two-layer neural network eq. (3) trained over the data
set {(x(i), y(i))}i≥1, where the target values y(i) are generated according to the teacher model eq. (2)

and the inputs satisfy x(i)
iid∼ N (0, Id). The link function g(·) is weakly differentiable.

Assumption 30 [16] For all 1 ≤ i ≤ m, 1 ≤ j ≤ d, we initialize the NN weights and biases with√
dW0

ij
iid∼ N (0, 1),ma0i

iid∼ Unif([−1, 1]), and b0i
iid∼ Unif({−1, 1})

Lemma 31 ([16], Theorem 3) Consider running T SGD iterations over samples satisfying the-
orem 29, with an initialization satisfying theorem 30, and using the following decaying step size
schedule. Assuming ReLU non-linearity, let ζ := 2

√
2/eπ. Choose the decreasing step size

ηt = m 2(t+t∗)+1
γ(t+t∗+1)2

, λ̃ ≥ γ + ζ and t∗ ≍ λ̃
γ for any γ > 0. Then, for λ = λ̃

m , with probability at least
1− δ, ∥∥W⊤

⊥
∥∥
F√

m
≲

√
(d+ log(1/δ)

γ2T

whenever m ≳ log(1/δ) and T ≳ λ̃2

d+log(1/δ) .

The following Lemma is to control the subspace distance using compressed sensing algorithm.

Theorem 32 ([5], Theorem 4.1)
Let f(x) = g(Ax) be a function where A is a k × d matrix with orthonormal rows, and g is a

twice continuously differentiable function. Assume that Hf = A⊤HgA is well-conditioned with

17

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

σk(H
f) ≥ α > 0. Let Â be the matrix obtained from the Dantzig Selector approximation X̂ of the

matrix X of gradients of f at mX random points. Then, with high probability, the distance between
the subspaces spanned by the rows of A and Â is bounded by:∥∥∥A⊤A− Â

⊤
Â
∥∥∥
F
≤ 2ν2√

α(1− s)− ν2

where

ν2 = Ck1/q
(

mΦ

log(d/mΦ)

)1/2−1/q

+
ϵk2
√
mΦ

and C is a constant depending on the parameters C1 and C2 from the conditions on A and g, mΦ is
the number of derivative directions, ϵ is the step size used in the finite difference approximation, d is
the ambient dimension, and s ∈ (0, 1) is a parameter.

Appendix E. Illustrative experiments to motivate lookahead direction selection

Figure 2: Optimal splitting ratio between the
first and second directions. Green curve is
obtained using the strategy in Definition 33

Using a partitioning scheme with a lower near-
optimality dimension can lead to a faster decrease
in regret. Empirically, we observe that the regret for
SequOOL applied for a budget of 200 evaluations
of the function in the Example 6 was 5× 10−10 for
the default partitioning scheme and 5.8× 10−12 for
the direction selection strategy in Example (6). This
example indicates that it can be beneficial to use a
direction splitting strategy that adapts to the function
being optimized.

Additionally, we evaluate the regret for different
choices of A, by parameterizing A =

[
cos θ − sin θ
sin θ cos θ

]
and changing the rotation angle from 0 to π/8 while
keeping the direction selection strategy the same as
in Example (6). Figure 3 shows that the regret varies
significantly over the range of angles. This shows
that minimizing the angle of discrepancy between
A and the true directions of variation (which are the
standard x1 and x2 axes in this example) is beneficial
in reducing the regret.

Given a particular A and function f , we consider the question of identifying an appropriate
direction selection strategy that minimizes NA(h) at all heights. The two example strategies for
f(x1, x2) = 1− |x1| −x22 we have seen so far are the default round-robin (equivalently 1:1) splitting
and the 2:1 splitting in Example(6). For an A with θ = π/48, we minimize the number of near-optimal
cells NA at different heights by choosing the best splitting ratio at each height and plot the ratios
as the blue line in Figure 2. We see that as the height increases to infinity the optimal split ratio
converges to 1. However, at lower heights, the optimal split ratio is greater than 1 and takes its
maximum value 1.83 at h = 3.

Definition 33 Lookahead strategy for direction selection. Given an estimated f̂ and the current tree
of partitions till depth h, the lookahead strategy first evaluates the different number of near-optimal

18

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

cells for f̂ at depth h + 1 by splitting along each of the m directions. It then greedily selects the
direction to be split at h+ 1 as the direction that results in the lowest number of near-optimal cells.

Figure 3: Regret at n = 300 for SequOOL on
A with varying θ.

In a numerical experiment, we see that the looka-
head strategy closely matches the optimal split ratio
(shown as green points in Fig 2) over all heights. This
also results in it having a low regret than the default
partitioning scheme. Empirically, we observe that
the regret for SequOOL applied for a budget of 500
evaluations of the function in the previous lemma
was 5.68× 10−10 for the partitioning scheme A us-
ing the lookahead strategy for direction selection,
1.98× 10−5 for A with 1:1 splitting, and 1.8× 10−4

for A with the 2:1 splitting strategy from Example
(6).

Appendix F. Proofs

Some of the facts which we use in our proofs.
Key inequalities for the matrix norms include: ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1. Holder’s inequality,

applicable for p, q ≥ 1 where 1
p + 1

q = 1, states that |x⊤y| ≤ ∥x∥p ∥y∥q. The triangle inequality,
valid for any p ≥ 1, asserts that ∥x+ y∥p ≤ ∥x∥p + ∥y∥p.

Matrix Norms: For a matrix A ∈ Rm×n, the operator norm is:

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

When p = ∞, ∥A∥∞ = max1≤i≤m
∑n

j=1 |aij | and when p = 2, ∥A∥2 = σmax(A), Where
σmax(A) represents the largest singular value of matrix A. Additionally, the Frobenius norm is given
by ∥A∥F =

√∑m
i=1

∑n
j=1 |aij |2.

For a matrix A ∈ Rm×n of rank r, the following inequalities hold:

∥A∥2 ≤ ∥A∥F ≤
√
r ∥A∥2 ,

1√
n
∥A∥∞ ≤ ∥A∥2 ≤

√
m ∥A∥∞ (11)

For the operator norm ∥·∥2, one has

∥AB∥2 ≤ ∥A∥2 ∥B∥2 , ∥AB∥2 ≥ ∥A∥2 σmin(B), ∥AB∥2 ≥ ∥B∥2 σmin(A) (12)

Suppose a matrix A consists of orthonormal rows or columns, then ∥A∥2 =
∥∥A⊤∥∥

2
= 1

F.1. Proof of Example 4

Proof Consider the function f(x1, x2) = g(Ax) = 1−|x1| with A = [1, 0] and g(z) = 1−|z|. Let
P,A be the partitioning schemes defined in theorem 2 with κ = 1 and parameters (ν, ρ), (νA, ρA)
respectively. For the P partitioning scheme, along the X axis, the side lengths of the children at depth

19

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

h are given by 3−⌈h/2⌉ and along the Y axis, it is 3−⌊h/2⌋. Consider f(x∗1, x
∗
2)− f(x1, x2) = |x1|,

and the cell with the representative origin is the P∗
h cell, therefore

|x1| = 3−⌈h/2⌉ ≤ 3−h/2 ≤ (1/
√
3)h.

According to Assumption 12, the appropriate values are ν = 1, ρ = 1/
√
3. Now consider a rectangle

region R with corners {(−3νρh,−1), (3νρh,−1), (3νρh, 1), (−3νρh, 1)}. Since f∗ − f(x1, x2) =
|x1|, ∀(x1, x2) ∈ R, f∗ − f(x1, x2) ≤ 3νρh. Thus any cell in P that has a non-empty intersection
with R is a near-optimal cell. Each cell at depth h has an area of 3−⌈h/2⌉3−⌊h/2⌋, therefore

NP(h) ≥
Area(R)

Area(P(h, i))
=

4(3(1/
√
3)h)

3−⌈h/2⌉3−⌊h/2⌋ ,

yielding that since NP(h) = Ω(ρ−h) , from the Definition 13 we get ηP = 1.
For the A partitioning scheme, we first note that α = 1. Along X axis, the side length of the

children at depth h is 3−h, therefore

f(x∗1, x
∗
2)− f(x1, x2) = |x1| = 3−h ≤ (1/3)h,

yielding the values are νA = 1, ρA = 1/3. Now consider a line segment L with endpoints
{(−3νAρhA, 0), (3νAρhA, 0)}. Since f∗− f(x1, x2) = |x1|, ∀(x1, 0) ∈ L, f∗− f(x1, x2) ≤ 3νAρ

h
A.

Thus any cell in A that has an intersection with the L is a near-optimal cell. Every A(h, i) cell at
depth h has a length of 3−h, therefore,

NA(3νAρ
h
A) ≤ 2 +

len(L)

len(A(h, i))
= 2 +

2(3(1/3)h)

3−h
= 8,

where the additional term 2 accounts for cells in A that partially intersect L at its endpoints. Hence
NA(3νAρ

h
A) is a constant and ηA = 0.

F.2. Proof of Example 10

Proof Consider the function g(k) = 1−|k| with A = [1, 1]. Then, f(x1, x2) = g(Ax) = 1−|x1+
x2|. For the P partitioning scheme with κ = 1, along the X axis, the side lengths of the children at
depth h along the X,Y axes are 3−⌈h/2⌉, 3−⌊h/2⌋ respectively. Consider f(x∗1, x

∗
2) − f(x1, x2) =

|x1 + x2|, and the cell with the representative origin is the P∗
h cell, therefore

|x1 + x2| = 3−⌈h/2⌉ + 3−⌊h/2⌋ ≤ 2 · 3−(h−1)/2 ≤ 2
√
3(1/
√
3)h.

According to Assumption 12, ν = 2
√
3, ρ = 1/

√
3. Consider a rhombus region T formed by

coordinates {(−3νρh, 0), (0,−3νρh), (3νρh, 0), (0, 3νρh)}. Since f∗ − f(x1, x2) = |x1 + x2|,
∀(x1, x2) ∈ T, f∗ − f(x1, x2) ≤ 3νρh. This says, any cell in P that has an intersection with the T
is near-optimal cell. Each cell at depth h has an area of 3−⌈h/2⌉3−⌊h/2⌋, therefore,

NP(3νρ
h) ≤

(
1 +

3νρh

3−⌈h/2⌉

)(
1 +

3νρh

3−⌊h/2⌋

)
≤ O(1)

Hence NP(3νρ
h) is independent of h and ηP = 0.

20

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

For the A partitioning scheme, along the X axis and Y axis, the side lengths of the children at
depth h is given by 3−h and 3−h, giving that

f(x∗1, x
∗
2)− f(x1, x2) = |x1 + x2| = 2 · 3−h ≤ 2(1/3)h.

According to Assumption 12, the values are νA = 2, ρA = 1/3.
Further, we see from Definition 8 that α =

√
2 in this example.

F.3. Proof of Example 6

Proof
For the P partitioning scheme, the side lengths of the children at depth h are as follows: along

the X axis, 3−⌈h/2⌉. Along the Y axis, it is 3−⌊h/2⌋. Consider f(x∗1, x
∗
2)− f(x1, x2) = |x1|+ x22,

and the cell with the representative origin is the P∗
h cell, therefore

|x1|+ x22 = 3−⌈h/2⌉ + 3−2⌊h/2⌋ ≤ 3−⌊h/2⌋ + 3−2⌊h/2⌋

≤ 2 · 3−⌊h/2⌋ ≤ 2 · 3−(h−1)/2 ≤ 2
√
3(1/
√
3)h

According to Assumption 12, the appropriate values are ν = 2
√
3, ρ = 1/

√
3 and νρh =

2
√
3(1/
√
3)h.

Consider a region R which is given by |x1| + x22 ≤ 3νρh. Since f∗ − f(x1, x2) = |x1| + x22,
∀(x1, x2) ∈ R, f∗ − f(x1, x2) ≤ 3νρh. Thus any cell in P that has a non-empty intersection with
R is a near-optimal cell. Each cell at depth h has an area of 3−⌈h/2⌉3−⌊h/2⌋, therefore

NP(h) ≥
Area(R)

Area(P(h, i))

Now, we compute the area of the region formed by the curve |x1|+ x22 = 3νρh which is given by

4

∫ √3νρh

0

∫ 3νρh−x2
2

0
dx1dx2 = 8/3(3νρh)

3/2

Thus,

NP(h) ≥
Area(R)

Area(P(h, i))
=

8/3(6
√
3(1√

3
)h)3/2

3−⌈h/2⌉3−⌊h/2⌋ = Ω

(
(
1√
3
)−h/2

)
Hence, ηP ≥ 0.5

The P∗
h cell contains the point (0, 0). Since P is an axis-aligned partitioning scheme, we can

bound the number of cells directly above, i.e., having the same x coordinate of their representative as
that of, P∗

h by the value
√
3νρh/3−⌊h/2⌋. In a similar manner, we can bound the maximum number

of cells having their representative’s y coordinate to be the same as that of P∗
h by 3νρh/3−⌈h/2⌉.

Since P is an axis aligned partitioning scheme, the previous two bounds imply that number of near

21

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

optimal cells are upper bounded by the product of number of cells along x axis times number of cells
along y axis. Thus,

NP(h) ≤

1 +


√

3 · 2
√
3(1/
√
3)h

3−⌈h/2⌉


(1 + ⌈3 · 2√3(1/√3)h

3−⌊h/2⌋

⌉)
= O

(
(
1√
3
)−h/2

)

Thus, ηP ≤ 0.5, hence ηP = 0.5
For theA partitioning scheme, the side lengths of the children at depth h are as follows: along the

X axis, 3−(h+1) if h is odd; otherwise, 3−h. Along the Y axis, it is 3−⌊h/2⌋. Let h is even. consider
f(x∗1, x

∗
2)− f(x1, x2) = |x1|+x22 and the cell with the representative origin is theA∗

h cell, therefore

|x1|+ x22 = 3−h + 3−2⌊h/2⌋ ≤ 3−h + 3−2(h−1)/2 ≤ 4 · 3−h

According to Assumption 12, we have νA = 4, ρA = 1/3, and νAρ
h
A = 4 · 3−h.

The A∗
h cell contains the point (0, 0). Since A is an axis-aligned partitioning scheme, we can

bound the number of cells directly above, i.e., having the same x coordinate of their representative as
that of, A∗

h by the value
√
3νρh/3−h/2. In a similar manner, we can bound the maximum number of

cells having their representative’s y coordinate to be the same as that of P∗
h by 3νρh/3−h. Since P

is an axis aligned partitioning scheme, the previous two bounds imply that number of near optimal
cells are upper bounded by the product of number of cells along x axis times number of cells along y
axis. Thus,

NA(νAρ
h
A) ≤

(
1 +

⌈√
3 · 4 · 3−h

3−h/2

⌉)(
1 +

⌈
3 · 4 · 3−h

3−h

⌉)
= 65

When h is odd, following the same steps will give NA(νAρ
h
A) ≤ 148.

Hence, NA(νAρ
h
A) is a constant and ηA = 0.

F.4. Proof of Proposition 9

Proof
We claim that z∗ = Ax∗, where x∗ ∈ X is the optimizer of f . This choice of z∗ satisfies

f(A⊤z∗) = f(x∗) as required in the Lemma. we will now show that the infinity norm of this z∗ is
less than or equal to α.

First, observe that for any x ∈ [−1, 1]d, we can express x as a convex combination of corner
points:

x =
2d∑
j=1

cjαj , αj ≥ 0,

2d∑
j=1

αj = 1 (13)

22

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Now, let’s consider the infinity norm of Ax∗:

∥Ax∗∥∞ =

∥∥∥∥∥∥
2d∑
j=1

Acjαj

∥∥∥∥∥∥
∞

(Using Equation 13)

≤
2d∑
j=1

∥Acjαj∥∞ (Triangle Inequality of Norms)

=
2d∑
j=1

|αj | ∥Acj∥∞ (Absolute Homogeneity property of Norms)

≤ α

2d∑
j=1

|αj | ≤ α (From the definition of α in the Proposition statement)

Therefore, we have shown that ∥z∗∥∞ = ∥Ax∗∥∞ ≤ α, which completes the proof.

F.5. Proof of Proposition 14

Proof
Let x∗

h be the representative point (midpoint) of the P∗
h cell and x is within the P∗

h cell.
Let x be a point in a hyperrectangle centered at x∗

h with side lengths 2κc, where c is a vector of
side lengths. Then, this point x satisfies |xi − x∗h,i| ≤ κci for all i ∈ {1, . . . , d}. Equivalently, this

set of inequalities can be written as maxi∈{1,...,d}

∣∣∣xi−x∗
h,i

ci

∣∣∣ ≤ κ. Using the infinity norm, we can

concisely express this conditions as
∥∥∥x−x∗

h
c

∥∥∥
∞
≤ κ, where the division is performed element-wise.

For the partition scheme, we perform trisection along each axis in a round-robin manner. After h
iterations, the side lengths are given by:

ci = κ3−⌊
h+d−i

d ⌋, i ∈ {1, . . . , d} (14)

where
⌊
h+d−i

d

⌋
represents the number of trisections applied to dimension i. Therefore, the cell P∗

h

can be described as:

P∗
h =

{
x ∈ Rd :

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ κ with c = [3−⌊

h+d−i
d ⌋]di=1.

}
(15)

From the theorem 3, we have A∗
h ≜ {A⊤α : α ∈ T ∗

h } and

T ∗
h =

{
α ∈ Rm :

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]di=1.

}
(16)

Hence,

A∗
h =

{
A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]di=1.

}
(17)

23

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.6. Proof of Lemma 15

Proof Following the Definition 2, consider the partitioning schemes P and A.
According to Proposition 14, we can express the cell A∗

h as:

A∗
h = {A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊h+m−i

m
⌋]mi=1}

At depth h = km + i, for i ∈ [1 : m − 1] and k ∈ N0, the side lengths simplifies to: s =
[3−1(j≤i)−k]mj=1 Similarly,

P∗
h = {x : x ∈ Rd,

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ 1} with c = [3−⌊h+d−i

d
⌋]di=1.

At depth h = kd + i, for i ∈ [1 : d − 1] and k ∈ N0, the side lengths for P∗
h become: c =

[3−1(j≤i)−k]dj=1.
And let us consider another partitioning scheme G = κP . Let us denote x̃∗

h to be the representa-
tive of the G∗h cell. Using Proposition 14, the cell G∗h can be written as

G∗kd+i = {x : x ∈ Rd,

∥∥∥∥x− x̃∗
kd+i

c

∥∥∥∥
∞
≤ κ} with c = [3−1(j≤i)−k]dj=1

Consider an element x = A⊤α ∈ A∗
km+i. we now proceed with the following chain of inequalities:

∥∥x− x̃∗
kd+i

∥∥
∞ ≤ ∥x− x∗∥∞ +

∥∥x∗ − x̃∗
kd+i

∥∥
∞ (Vector Norm property)

=
∥∥∥A⊤α−A⊤α∗

∥∥∥
∞

+
∥∥x∗ − x̃∗

kd+i

∥∥
∞ (x∗ = A⊤α∗)

=
∥∥∥A⊤(α−α∗)

∥∥∥
∞

+
∥∥x∗ − x̃∗

kd+i

∥∥
∞

≤
∥∥∥A⊤

∥∥∥
∞
∥α−α∗∥∞ +

∥∥x∗ − x̃∗
kd+i

∥∥
∞ (Matrix Norm definition)

≤
√
m3−kα+ 3−kκ (From the Matrix Inequality 11)

≤ 2 · 3−kκ (From the Lemma statement, κ ≥
√
mα)

≤ 3−(k−1)κ

This sequence of inequalities demonstrates that x ∈ G∗(k−1)d. Moreover, we know that G∗(k−1)d ⊆
G∗kd+i. Therefore, partitioning scheme P with κ ≥

√
mα will satisfy:

A∗
km+i ⊆ P∗

kd+i ∀i ∈ [1 : m− 1],∀k ∈ N0

24

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.7. Proof of Lemma 16

Proof Since Lemma 15 is assumed to be applicable, consider a partitioning schemeP with κ =
√
mα

and suppose f∗
1 = supx∈κHd

1
f(x). Let P satisfies theorem 12, then, there exist constants ν and

0 < ρ < 1 such that
sup
x∈P∗

h

(f∗
1 − f(x)) ≤ νρh. ∀h ∈ N0 (18)

Since κ ≥
√
mα, we can incorporate Lemma 15, which gives,

A∗
km+i ⊆ P∗

kd+i ∀i ∈ [1 : m− 1],∀k ∈ N0

Therefore, we get

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ sup
x∈P∗

kd+i

(f∗ − f(x)) ∀i ∈ [1 : m− 1], ∀k ∈ N0 (19)

Combining eqs. (18) and (19), and using the fact f∗ ≤ f∗
1 , we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ sup
x∈P∗

kd+i

(f∗ − f(x)) ≤ νρkd+i ≤ ν(ρ
kd+i
km+i)km+i

Therefore, we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ ν(ρ
kd+i
km+i)km+i ∀i ∈ [1 : m− 1], ∀k ∈ N0 (20)

Ignoring first m heights and by choosing, νA = ν, ρA = ρβ . Where

β = min

{
kd+ i

km+ i

∣∣∣∣ i ∈ [1 : m− 1], k ∈ N
}

Now, we show β = d+m−1
2m−1 .

To prove the above statement, we consider the sequence for k = 1:

ti =
d+ i

m+ i
, ∀i ∈ [1,m− 1]

First, we show that this sequence is decreasing.
For any i in the range [2,m− 2], consider the difference between consecutive terms:

ti+1 − ti =
d+ (i+ 1)

m+ (i+ 1)
− d+ i

m+ i
=

m− d

(m+ i)(m+ i+ 1)

Since m > d, we have m − d > 0, but the denominator (m + i)(m + i + 1) is positive. Thus,
ti+1 < ti, which says that sequence ti is decreasing and the minimum value of ti occurs at i = m−1:

tm−1 =
d+ (m− 1)

m+ (m− 1)
=

d+m− 1

2m− 1

We now consider the general form for any k ∈ N:

β = min

{
kd+ i

km+ i

∣∣∣∣ i ∈ [1 : m− 1]

}
25

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

With the observation that
(k + 1)d+m− 1

(k + 1)m+m− 1
≥ kd+m− 1

km+m− 1

we get β = (d+m− 1)/(2m− 1)
With this choice of β we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ ν(ρ
kd+i
km+i)km+i ≤ νAρ

β
A ∀i ∈ [1 : m− 1], ∀k ∈ N (21)

Now, we choose slightly larger νA to satisfy the first m− 1 heights.
Using Equation 20,

sup
x∈A∗

i

(f∗ − f(x)) ≤ νρi = νρi−βiρβi ∀i ∈ [1 : m− 1] (22)

≤ νρ(1−β)(m−1)ρβi ∀i ∈ [1 : m− 1] (23)

Therefore, νA = νρ(1−β)(m−1) and ρA = ρβ will satisfy the Assumption 12 for the A partitioning
scheme.

F.8. Proof of Lemma 17

Proof Consider partitioning schemes P (κ = 1) and G (κ = κ1 =
√
mα) with star cells: P∗

h = {x :

x ∈ Rd,
∥∥∥x−x∗

h
c

∥∥∥
∞
≤ 1},G∗h = {x : x ∈ Rd,

∥∥∥x−x̃∗
h

c

∥∥∥
∞
≤ κ} where c = [3−⌊

h+d−i
d ⌋]di=1.

Let h̃1 = d ⌈log3 κ1⌉. We have G∗
h+h̃1

⊆ P∗
h, implying:

sup
x∈G∗

h̃1+h

(f∗ − f(x)) ≤ sup
x∈P∗

h

(f∗ − f(x)) ∀h ∈ N0 (24)

By lemma assumption P satisfies Assumption 12, with parameters (ν, ρ). Therefore we have

sup
x∈P∗

h

(f∗ − f(x)) ≤ νρh ∀h ∈ N0

Therefore,

sup
x∈G∗

h̃1+h

(f∗ − f(x)) ≤ νρh = νρ−h̃ρh̃+h ∀h ∈ N0 (25)

For depths h ∈ [1 : h̃1 − 1]:

sup
x∈G∗

h

(f∗ − f(x)) ≤ f∗ − inf
x∈κ1Hd

1

f(x)

≤ (f∗ − inf
x∈κ1Hd

1

f(x))ρ−h̃1ρh

Using inequality 25 and the above inequality, we conclude that G satisfies Assumption 12 with
parameters (ρ,max{ν, f∗ − infx∈κ1Hd

1
f(x)}ρ−h̃1

1).

26

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

By Lemma 16 andκ ≥
√
mα, we conclude:

ρA = ρβ, νA = max{ν, f∗ − inf
x∈κ1Hd

1

f(x)}ρ(1−β)(m−1)−h̃1

F.9. Proof of Lemma 19

Proof
Let B◦(x, r) be the open ball corresponding to the closed ball B(x, r). We will first demonstrate

that B◦(ci, κ2)∩B◦(cj , κ2) = ∅ ∀i ̸= j. Suppose there exists a point y ∈ B◦(ci, κ2)∩B◦(cj , κ2),
then:

∥ci − cj∥∞ ≤ ∥ci − y∥∞ + ∥cj − y∥∞ < 2κ2.

However, for lattice points, we have ∥ci − cj∥∞ ≥ 2κ2, contradicting the above inequality.
Next, we show that

B(ci, κ2) ⊆ (κ1 + 2κ2)Hm
1 ∀ci ∈ C. (26)

For any y ∈ B(ci, κ2) we have that:

∥y∥∞ ≤ ∥y − ci∥∞ + ∥ci∥∞
≤ κ2 + ∥ci∥∞ (since y ∈ B(xi, κ2)

= κ2 + ∥ci − z+ z∥∞ (for some z ∈ B(0, κ1) ∩B(ci, κ2) ̸= ∅)
≤ κ2 + ∥ci − z∥∞ + ∥z∥∞
≤ κ2 + κ2 + κ1

= κ1 + 2κ2.

Therefore, y ∈ (κ1 + 2κ2)Hm
1 , which proves (26). Let N be the number of balls B(ci, κ2). Since

B◦(xi, κ2) are disjoint and all these balls are contained in (κ1 + 2κ2)Hm
1 , we have:

N · Vol(B◦(xi, κ2)) ≤ Vol((κ1 + 2κ2)Hm
1)

N · (2κ2)m ≤ (κ1 + 2κ2)
m,

giving that N ≤
(
2 + κ1

κ2

)m
. For the lower bound to N , since, B(0, κ1) ⊆

⋃
iB(ci, κ2), we have

that

Vol(B(0, κ1)) = (2κ1)
m ≤ Vol(

⋃
i

B(ci, κ2))

≤
N∑
i=1

Vol(B(ci, κ2)) = NVol(B(c0, κ2)) = N(2κ2)
m.

Hence N ≥
(
κ1
κ2

)m
.

27

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.10. Proof of Lemma 20

Proof
For the partitioning scheme A, at a specific depth h, each cell can be indexed by i, i.e,

A(h, i) 1 ≤ i ≤ 3h, where, 3h represents the total number of cells at depth h, and i is the
index of a specific cell within that depth. Similarly, For the partitioning scheme P , at a depth h, each
cell can be indexed by j, i.e, P(h, j) 1 ≤ j ≤ 3h.

Definition of the POpt Relation Consider the following definition of the POpt relation:

POpt = {(A(h, i),P(h, j)) : A(h, i) ∈ NA(3νρ
h), P(h, j) ∈ NP(3νρ

h),

T (h, i) ∩AP(h, j) ̸= ∅}

Here, A(h, i) represents a cell in the partition A at depth h indexed by i, and T (h, i) is equivalent
partitioning scheme of A. P(h, j) represents a cell in the partition P at depth h indexed by j. The
sets NA(3νρ

h) and NP(3νρ
h) denote near-optimal cells in the respective partitions.

For any h, i, consider the cell A(h, i) ∈ NA(3νρ
h). Let l be the lower bound on the number

of elements in POpt that are of the form (A(h, i), ·). Then, we have: |POpt| ≥ |NA(3νρ
h)| · l.

Similarly, for any h, i, consider the cell P(h, j) ∈ NP(3νρ
h). Let u be the upper bound on the

number of elements in POpt that are of the form (·,P(h, j)). Then, we have: |NP(3νρ
h)| · u ≥

|POpt|. Combining these two inequalities, we get:

|NA(3νρ
h)| ≤ |NP(3νρ

h)| · u
l

(27)

This inequality provides a relationship between the near-optimal cells in the two partitions, taking
into account the bounds on the number of elements in the POpt relation.

We define the following quantity to proceed with the proof.

∀S ⊆ Rd, ProjA⊥(S) = {β ∈ Rd−m : β = A⊥x,x ∈ S} (28)

Estimating Upper Bound u Consider a near-optimal cell P(h, j) ∈ NP(3νρ
h). Then the region

AP(h, j) is near optimal. To get the upper bound, we need to count how many cells of T (h, i) can
fit into AP(h, j) region. Using Proposition 14, the cell T (h, i) and P(h, j) can be written as

T (h, i) = {α ∈ Rm,

∥∥∥∥α−αh,i

s

∥∥∥∥
∞
≤ α with s = [3−⌊h+m−j

m
⌋]mj=1}

P(h, i) = {x ∈ Rd,

∥∥∥∥x− xh,i

c

∥∥∥∥
∞
≤ κ with c = [3−⌊h+d−j

d
⌋]dj=1}

For all x1,x2 ∈ P(h, i), consider ∥Ax1 −Ax2∥∞, we have:

= ∥Ax1 −Ax2∥∞
≤ ∥A∥∞ ∥x1 − x2∥∞ (from the Matrix operator norm definition)

≤
√
m ∥x1 − x2∥∞ (From Matrix Inequality 11 and ∥A∥2 = 1)

=
√
m ∥x1 − x2 + xh,i − xh,i∥∞

≤
√
m ∥x1 − xh,i∥∞ +

√
m ∥x1 − xh,i∥∞

≤ 2
√
m3−k (Let h = kd+ i)

28

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Now, we estimate the side lengths for the T (h, i) cell, by computing s

h+m− j

m
=

kd+m+ i− j

m
≤ kd+m+ d

m
≤ (k + 1)

d

m
+ 1

Hence,

3−⌊
h+m−j

m ⌋ ≥ 3−(1+(k+1) d
m
)

Now we will invoke Lemma 19, to get the upper bound u Thus,

u =

(
2 +

2
√
m3−k

α3−13−(k+1) d
m

)m

=

(
2 +

6
√
m3d/m3k(

d−m
m

)

α

)m

≤
(
2 + 6

√
m3d/m3k(

d−m
m

)
)m

≤ (12
√
m)m3d3k(d−m)

Estimating Lower Bound l The following set containment relation is used in the lower bound
estimation. Denote, P, P ′ to be the domains [−1, 1]d, [−κ, κ]d respectively. Consider the matrix
Q =

[
A⊤ A⊤

⊥
]
, where the columns of Q contain an orthonormal basis for Rd. Given this matrix,

we define the below quantities

αmax ≜
[
max1≤j≤2d q

⊤
1 cj max1≤j≤2d q

⊤
2 cj · · · max1≤j≤2d q

⊤
mcj

]⊤
α′

max ≜
[
max1≤j≤2d q

⊤
m+1cj max1≤j≤2d q

⊤
m+2cj · · · max1≤j≤2d q

⊤
d cj
]⊤

We introduce another domain Prot to be the smallest rotated hyper-rectangle aligned with the columns
of Q such that P ⊆ Prot. We choose κ for the P ′ domain to ensure Prot ⊆ P ′.

Define the set of corners of Prot as Crot and we choose set of corners to be

Crot =
{
A⊤(αmax ⊙ s1) +A⊤

⊥(α
′
max ⊙ s2) : s1 ∈ {−1, 1}m, s2 ∈ {−1, 1}d−m

}
(29)

Since P ′ is an axis-aligned domain, κ = maxci∈Crot ∥ci∥∞ will ensure Prot ⊆ P ′(0, 0). Bounding
the κ:

κ = max
c∈Crot

∥c∥∞

= max
s1∈{−1,1}m,s2∈{−1,1}d−m

∥∥∥A⊤(αmax ⊙ s1) +A⊤
⊥(α

′
max ⊙ s2)

∥∥∥
∞

≤ max
s1∈{−1,1}m,s2∈{−1,1}d−m

∥∥∥A⊤(αmax ⊙ s1) +A⊤
⊥(α

′
max ⊙ s2)

∥∥∥
2

= max
s1∈{−1,1}m,s2∈{−1,1}d−m

∥∥∥∥[A⊤ A⊤
⊥
] [αmax ⊙ s1

α′
max ⊙ s2

]∥∥∥∥
2

= max
s1∈{−1,1}m,s2∈{−1,1}d−m

∥∥∥∥[αmax ⊙ s1
α′

max ⊙ s2

]∥∥∥∥
2

(Orthonormal matrix does not change the length)

=

∥∥∥∥[αmax
α′

max

]∥∥∥∥
2

≤ d (αmaxj = max1≤i≤2d |ajci| ≤ ∥aj∥2∥ci∥2 =
√
d.)

29

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Hence, the domain P ′ with κ ≥ d guarantees Prot ⊆ P ′ and we have P ⊆ Prot ⊆ P ′. Moreover,
Vol(ProjA⊥(Prot)) =

∏d−m
i=1 2α′

max. Hence,

Vol((ProjA⊥(P
′
rot))) ≥

d−m∏
i=1

2α′
max (30)

Now consider a cell A(h, i) ∈ NA(3νρ
h). i.e, ∃x ∈ A(h, i) for which f(x) ≥ f(x∗)− 3νρh. We

find the number of pairs in POpt which contain A(h, i) by counting all cells in P whose projection
onto A contains x. This number n2 can be lower bounded by dividing the volume of the d −m
dimensional orthogonal space associated with x by the volume of the projection onto the orthogonal
space of a cell in P(h, 0). The number n2 can be lower bounded as

n2 ≥
Vol(ProjA⊥(P(0, 0)))
Vol(ProjA⊥(P(h, 0)))

≥
∏d−m

i=1 (1/d)2(α′
max)i∏d

i=m+1 2max1≤j≤2d q
⊤
i xj

(Using 30 on (1/d) scaled domain)

≥
∏d

i=m+1(1/d)2max1≤j≤2d q
⊤
i cj∏d

i=m+1 2max1≤j≤2d q
⊤
i xj

≥
(1/d)d−m

∏d
i=m+1max1≤j≤2d q

⊤
i cj∏d

i=m+1 3
−k max1≤j≤2d q

⊤
i cj

≥ 1

3−k(d−m)
≥ (1/d)d−m3k(d−m).

Hence, the lower bound l = (1/d)d−m3k(d−m)

Thus, using Equation 27, we conclude that

|NA(3νρ
h)| ≤ |NT (3νρ

h)| · 3ddd−m(12
√
m)m (31)

F.11. Proof of Lemma 21

Proof
To start, we recall the relationship between the parameters of the two partitioning schemes as

established in Lemma 17. Specifically, we have:

ρA = ρβ, νA = max{ν, f∗ − inf
x∈κ1Hd

1

f(x)}ρ(1−β)(m−1)−h̃1

For brevity, we denote ν ′ = max{ν, f∗ − infx∈κ1Hd
1
f(x)}.

From the definiton of near-optimality dimension for the P partioning scheme, we have:

NP(3νρ
h) ≤ Cρ− ηP h (32)

30

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Now, consider 3νAρhA:

= 3ν ′ρβh+(1−β)(m−1)−h̃1

= 3νρβh+logρ(ν
′ρ(1−β)(m−1)−h̃1)−logρ(ν)

≤ 3νρh+logρ(ν
′ρ(1−β)(m−1)−h̃1)−logρ(ν)

≤ 3νρ
h+

⌊
logρ(ν

′ρ(1−β)(m−1)−h̃1)−logρ(ν)
⌋

= 3νρh−h̃3 (Denote h̃3 = −
⌊
logρ(ν

′ρ(1−β)(m−1)−h̃1)− logρ(ν)
⌋

)

Now, consider

NA(3νA/ρ
−h
A) ≤ NA(3νρ

h−h̃3) (3νAρhA ≤ 3νρh−h̃3)

≤ 3ddd−m(12
√
m)mNP(3νρ

h−h̃3) (Using Lemma 20)

≤ 3ddd−m(12
√
m)mCρ− ηP (h−h̃3) (Using Inequality 32)

= 3ddd−m(12
√
m)mCρηP h̃3ρ− ηP h

Therefore, we have:

NA(3νA/ρ
−h
A) ≤ 3ddd−m(12

√
m)mCρηP h̃3ρ− ηP h ∀h ≥ h̃3

For heights h ∈ [0 : h̃3 − 1], since the right-hand side quantity is monotonically increasing, we
can use the value of the right-hand side at depth h = h̃3, which is 3ddd−m(12

√
m)mC.

Therefore, we have

NA(3νA/ρ
−h
A) ≤ 3ddd−m(12

√
m)mCρ− ηP h̃3ρ− ηP h = 3ddd−m(12

√
m)mCρ− ηP h̃3ρ

− ηP
β

h

A

This implies that ηA ≤ ηP /β, and the constant CA is given by 3ddd−m(12
√
m)mCρ− ηP h̃3 .

For some of the proofs, we use the following equivalence of partitioning schemes.

F.12. Equivalence of partitioning schemes

Consider the relationship between partitioning schemes A and T as defined in Definition 3. For
every α ∈ Th,i, there exists a unique x ∈ Ah,i such that x = A⊤α. This establishes an equivalence:

∀x ∈ Ah,i, f(x) = f(A⊤α) = g(AA⊤α) = g(α) (33)

where f is optimized onAh,i and g on Th,i. Thus, optimizing f overA is equivalent to optimizing
g over T .

Similarly, for Â and T̂ , we have: ∀α ∈ T̂h,i, ∃x ∈ Âh,i such that x = Â
⊤
α. This leads to:

∀x ∈ Âh,i, f(x) = f(Â
⊤
α) = g(AÂ

⊤
α)

def
= ĝ(α) (34)

where g is defined on Th,i and ĝ on T̂h,i. Therefore, optimizing f over Â is equivalent to optimizing
ĝ over T̂ .

31

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.13. Proof of Lemma 28

Proof
From the Notation section A, we have W⊥ = W −WAA⊤. Next, consider the singular

value decomposition (SVD) of W, given by W = USV⊤, where U ∈ Rp×p and V ∈ Rd×d are
orthogonal matrices, satisfying UU⊤ = U⊤U = Ip,VV⊤ = V⊤V = Id and S ∈ Rp×d is a
diagonal matrix with diagonal elements.

We have this relation ∥W∥2 = σ1(W) ≥ · · · ≥ σr(W) ≥ 0, r = min{p, d}. From the
Lemma assumption, we have rank(W) = r ≥ m. Thus, we collect the respective leading m
columns of U and V, denoted as U1 ∈ Rp×m and V1 ∈ Rd×m, respectively. The remaining
columns are denote by U2 ∈ Rp×p−m and V2 ∈ Rd×d−m. We have:

U⊤
1 U1 = Im and U⊤

1 U2 = 0m×p−m. (35)

Then the SVD of W can be written as: W = U1S1V
⊤
1 + U2S2V

⊤
2 . and let Â = V⊤

1 . Now,
consider the implications of this decomposition for the proof. Consider,

=
∥∥∥W(I−A⊤A)

∥∥∥
F

≥
∥∥∥W(I−A⊤A)

∥∥∥
2

(From Matrix Norm Inequality 11)

=
∥∥∥U1S1V

⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A)

∥∥∥
2

(SVD of W)

=
∥∥∥U⊤

1

∥∥∥
2

∥∥∥U1S1V
⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A)

∥∥∥
2

(
∥∥U⊤

1

∥∥
2
= 1)

≥
∥∥∥U⊤

1 (U1S1V
⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A))

∥∥∥
2

(From Matrix Norm Inequality 12)

=
∥∥∥S1V

⊤
1 (I−A⊤A)

∥∥∥
2

(Using Equation 35)

≥ σmin(S1)
∥∥∥V⊤

1 (I−A⊤A)
∥∥∥
2

(From Matrix Norm Inequality 12)

= σm

∥∥∥Â(I−A⊤A)
∥∥∥
2

= σm

∥∥∥ÂA⊤
⊥A⊥

∥∥∥
2

(
[
A⊤,A⊤

⊥
]

is a orthonormal matrix, thus A⊤A+A⊤
⊥A⊥ = Id)

= σm

∥∥∥ÂA⊤
⊥A⊥

∥∥∥
2

∥∥∥A⊤
⊥

∥∥∥
2

(
∥∥A⊤

⊥
∥∥
2
= 1)

≥ σm

∥∥∥ÂA⊤
⊥A⊥A

⊤
⊥

∥∥∥
2

(From Matrix Norm Inequality 12)

= σm

∥∥∥ÂA⊤
⊥

∥∥∥
2

(A⊥ consists of orthonormal rows)

= σm

∥∥∥sinΘ(A, Â)
∥∥∥
2

(From Definition 22)

Since σm > 0, we have

∥∥∥sinΘ(A, Â)
∥∥∥
2
≤
∥∥W(I−A⊤A)

∥∥
2

σm
≤
∥∥W(I−A⊤A)

∥∥
F

σm
.

32

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.14. Proof of Lemma 24

Proof
Using the partitioning scheme equivalence from Section F.12, we can work with partitioning

schemes T and T̂ in place of the A and Â partitioning schemes.
Let zh, ẑh be the representatives of T ∗

h and T̂ ∗
h cells respectively. Then

T ∗
h =

{
z ∈ Rm,

∥∥∥∥z− zh
s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1

}
and

T̂ ∗
h =

z ∈ Rm,

∥∥∥∥z− ẑh
s

∥∥∥∥
∞
≤

√
mα√

1− dist2(A, Â)
with s = [3−⌊

h+m−i
m ⌋]mi=1


For brevity, denote κ2 =

√
m√

1−dist2(A,Â)
. Let z∗ denote a maximizer of the function g, i.e.,

z∗ ∈ argmaxz∈αHm
1
g(z). Given that ĝ(z) = g(AÂ

⊤
z) and that AÂ

⊤
an invertible matrix, we can

identify a corresponding maximizer z∗ĝ for ĝ such that: z∗g = AÂ
⊤
z∗ĝ. Under this transformation,

ĝ(z∗ĝ) will be a maximizer of the function ĝ.
From lemma assumption, T satisfies Assumption 12, therefore we have:

∀h ∈ N0, sup
z∈T ∗

h

(g∗ − g(z)) ≤ νAρ
h
A (36)

We aim to control

∀h ∈ N0, sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) = sup
z∈T̂ ∗

h

(g∗ − g(AÂ
⊤
z)) (37)

We choose some height h and represent height h as h = km+ i. Lets denote Rh = {AÂ
⊤
z : z ∈

T̂ ∗
h }. Now, we show that Rkm ⊆ T ∗

km−mk′ where k′ =
⌈
log3

2
√
mκ2

κ2−1

⌉
.

Consider a point AÂ
⊤
z from the set Rkm, where z ∈ T̂ ∗

km. By definition, z satisfies the
following condition:

∥z− ẑkm∥∞ ≤ 3−kκ2α (38)

Now, we show AÂ
⊤
z ∈ T ∗

km−mk′ We begin with the following inequality:

33

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

=
∥∥∥z(k−k′)m −AÂ

⊤
z
∥∥∥
∞

=
∥∥∥z(k−k′)m − z∗g +AÂ

⊤
z∗ĝ −AÂ

⊤
z
∥∥∥
∞

(Using z∗g = AÂ
⊤
z∗ĝ)

≤
∥∥z(k−k′)m − z∗g

∥∥
∞ +

∥∥∥AÂ
⊤
(z∗ĝ − z)

∥∥∥
∞

(Triangle Inequality of Norms)

≤ 3−(k−k′)α+
∥∥∥AÂ

⊤
(z∗ĝ − z)

∥∥∥
∞

(z∗g ∈ T ∗
km cell. Thus ∥zkm − z∗∥∞ ≤ 3−kα)

≤ 3−(k−k′)α+
∥∥∥AÂ

⊤∥∥∥
∞

∥∥z∗ĝ − z
∥∥
∞ (Operator Norm Definition)

≤ 3−(k−k′)α+
√
m
∥∥z∗ĝ − z

∥∥
∞ (From Matrix Inequality 11, 12 and ∥A∥2 =

∥∥∥Â∥∥∥
2
= 1)

≤ 3−(k−k′)α+
√
m
∥∥−ẑkm + z∗ĝ

∥∥
∞ +

√
m ∥ẑkm − z∥∞

≤ 3−(k−k′)α+
√
m3−k2κ2α (using Inequality 38 and z∗ĝ ∈ T̂ ∗

km)

≤ 3−(k−k′)α+ 3−(k−k′)α(κ2 − 1) (Suppose k′ is chosen such that 2
√
mκ2 ≤ (κ2 − 1)3k

′
)

= ακ23
−(k−k′)

From the above inequality, we can conclude:

Rkm ⊆ T ∗
km−m

⌈
log3

2
√
mκ2

κ2−1

⌉
Using the above set containment, for any height h = km+ i, we have

Rkm+i ⊆ Rkm ⊆ T ∗
km−m

⌈
log3

2
√
mκ2

κ2−1

⌉ ⊆ T ∗
km−m

⌈
log3

2
√
mκ2

κ2−1

⌉
+i−m

First and the last set containment are valid from the round robin paritioning scheme. Substituting,
h = km+ i, we get:Rh ⊆ T ∗

h−m
⌈
log3

2
√
mκ2

κ2−1

⌉
−m

Let us define: h̃2 = m
⌈
log3

2
√
mκ2

κ2−1

⌉
+ m. Using the Inequalities 36, 37 and the above set

containment, we conclude:

sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) ≤ νAρ
h−h̃2
A ∀h ≥ h̃2 (39)

For height h ∈ [0 : h̃2 − 1], we know that infz∈T̂ ∗
h
ĝ(z) ≥ infz∈T̂ ∗

0
ĝ(z), which gives

sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) ≤ g∗ − inf
z∈T̂ ∗

0

ĝ(z)

≤ (g∗ − inf
z∈T̂ ∗

0

ĝ(z))ρ−h̃2
A ρhA

Using inequality 39 and the above inequality, we conclude that T̂ satisfies Assumption 12 with
parameters

(ρA,max{νA, g∗ − inf
z∈κ2αHm

1

g(AÂz)}ρ−h̃2
A)

34

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.15. Proof of Lemms 23

Proof Consider z∗ = (AÂ
⊤
)−1Ax∗, then

f(Â
⊤
z∗) = g(AÂ

⊤
z∗) = g(AÂ

⊤
(AÂ

⊤
)−1Ax∗)

= g(Ax∗) = f(x∗).

Now, we show that

∥z∗∥∞ =
∥∥∥(AÂ

⊤
)−1Ax∗

∥∥∥
∞

≤
∥∥∥(AÂ

⊤
)−1Ax∗

∥∥∥
2

(Vector Norm Inequality)

≤
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥Ax∗∥2 (Operator Norm Definition)

=

∥∥∥(AÂ
⊤
)−1
∥∥∥
2
σmin(AÂ

⊤
)

σmin(AÂ
⊤
)

∥Ax∗∥2 (Since, σmin(AÂ
⊤
) > 0)

≤

∥∥∥(AÂ
⊤
)−1AÂ

⊤∥∥∥
2

σmin(AÂ
⊤
)

∥Ax∗∥2 (From Matrix Inequality 12)

≤
∥Ax∗∥2

1− dist2(A, Â)
(From the Equation 8 and ∥I∥2 = 1)

≤
√
m ∥Ax∗∥∞

1− dist2(A, Â)
(Vector Norm Inequality)

≤
√
mα

1− dist2(A, Â)
.

F.16. Proof of Proposition 11

Proof
Let A = [w1,w2,w3, . . . ,wp] ∈ Rd×p, where we assume without loss of generality that

the vectors {w1,w2, · · · ,wp} are linearly independent. If the vectors were dependent, we could
consider only the independent vectors without changing the Span{w1,w2, . . . ,wp}. The orthogonal
projection matrix P onto Span{w1,w2, . . . ,wp} is given by P = A(A⊤A)−1A⊤.

For all x ∈ Rd, consider (wT
i P)x = (P⊤wi)

⊤x = (Pwi)
⊤x = w⊤

i x, where the equalities
hold due to the following: First, P⊤ = P because P is a projection matrix and thus symmetric.
Second, Pwi = wi since wi is in the column span of A, and P projects onto this span. Therefore,
we can express f(x) as

f(x) =

p∑
i=1

viσ(w
⊤
i x+ bi) =

p∑
i=1

viσ(w
⊤
i Px+ bi). (40)

Since (x− x′) ⊥ Span{w1,w2, . . . ,wp},Px = Px′ and therefore using eq. (40), f(x) = f(x′).

35

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.17. Proof of Lemma 25

Proof
Using the partitioning scheme equivalence from Section F.12, we can work with partitioning

schemes T and T̂ in place of the A and Â partitioning schemes.
Consider an arbitrary cell Th,i and T̂h,i

Th,i =
{
z : z ∈ Rm,

∥∥∥∥z− zh,i
s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1

}
(41)

and

T̂h,i =

z : z ∈ Rm,

∥∥∥∥z− z̃h,i
s

∥∥∥∥
∞
≤ α

√
m√

1− dist2(A, Â)
with s = [3−⌊

h+m−i
m ⌋]mi=1

 (42)

We optimize ĝ(z) = g(AÂ
⊤
z) on T̂ and g(z) on T . For a near-optimal cell Th,i ∈ NT (3νT ρ

h
T),

we have:

sup
z∈Th,i

g(z) = sup
z∈(AÂ

⊤
)−1Th,i

g(AÂ
⊤
z) ≥ g∗ − 3νT ρ

h
T (43)

We aim to count the number of cells in T̂ that satisfy:

sup
z∈T̂h,i

g(AÂ
⊤
z) ≥ g∗ − 3νT ρ

h
T (44)

Using Relations 43, 44, we observe that since the function g(AÂ
⊤
z) is same, it suffices to work

with the domain. We define the set B = {(AÂ
⊤
)−1z : z ∈ Th,i}. To obtain an upper bound for

the near optimal cells in T̂ partitioning scheme, we consider every cell in T̂ partitioning scheme
(T̂h,i) that intersects with the B is potentially a near-optimal. To simplify our analysis, we enlarge

36

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

the domain B to make it a hypercube in Rm. ∀z1, z2 ∈ Th,i, consider,∥∥∥(AÂ
⊤
)−1z1 − (AÂ

⊤
)−1z1

∥∥∥
∞

≤
∥∥∥(AÂ

⊤
)−1
∥∥∥
∞
∥z1 − z2∥∞ (From the Matrix Operator Norm definition)

≤
√
m
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥z1 − z2∥∞ (From the Matrix Inequality 11)

≤

√
m
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥z1 − z2∥∞ σmin(AÂ

⊤
)

σmin(AÂ
⊤
)

(Since, σmin(AÂ) > 0)

≤
√
m

∥∥∥(AÂ
⊤
)−1AÂ

⊤∥∥∥
2
∥z1 − z2∥∞

σmin(AÂ
⊤
)

(From the Matrix Inequality 12)

=

√
m ∥z1 − z2∥∞
σmin(AÂ

⊤
)

(∥I∥2 = 1)

(1)

≤
√
m

σmin(AÂ
⊤
)
2α3−k

= 2α3−k

√
m√

1− dist2(A, Â)
(From the Equation 8)

(1) is true from the following inequality,

∥z1 − z2∥∞ =

∥∥∥∥s(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞

=

∥∥∥∥diag (s)(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞

≤ ∥diag (s)∥∞

∥∥∥∥(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞
≤ 3−k2α

Hence, B ⊆ 2α3−k
√
m√

1−dist2(A,Â)
Hm

1 . To establish an upper bound for the near-optimal cells of

T̂ partitioning scheme, we consider the region 2α3−k
√
m√

1−dist2(A,Â)
Hm

1 as potentially near-optimal.

We can then count the maximum number of cells in the T̂ partitioning scheme at height h that can
intersect with this region.

To invoke the Lemma 19, we need the side-length of the cell T̂h,i cell or for simplicity, lower-
bound to the side-length will also work. And the side-length is greater than 2 ·3−(k+1) α

√
m√

1−dist2(A,Â)
.

Hence, the maximum number of cells of T̂h,i that can be tiled inside the hypercube with side length
= 2α3−k

√
m√

1−dist2(A,Â)
are

1 +


2α3−k

√
m√

1−dist2(A,Â)

2 · 3−(k+1) α
√
m√

1−dist2(A,Â)




m

= 4m

37

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Hence, upper-bound to the near-optimal calls of T̂ partitioning scheme is

∀h ≥ 0, NT̂ (3νT ρ
h
T) ≤ 4mNT (3νT ρ

h
T) (45)

Using the above relation, we relate the near-optimality dimension. Suppose, ηT (νT , ρT , CT) is
the near optimality dimension of T then,

∀h ≥ 0, NT (3νT ρ
h
T) ≤ CT ρ

−ηT h
T (46)

From Lemma 24, we have the following SequOOL parameter relations:

νT̂ = max{νT , g∗ − inf
z∈κ2αHm

1

g(AÂ
⊤
z)}/ρh̃2

T , ρT̂ = ρT

where h̃2 = m+m

⌈
log3

2
√
mκ2

κ2 − 1

⌉
and κ2 =

√
m√

1− dist2 (A, Â)
.

For brevity, denote ν ′T = max{νT , g∗ − infz∈κ2αHm
1
g(AÂ

⊤
z)}. Now, consider 3νT̂ ρ

h
T̂ :

= 3ν ′T ρ
h−h̃2
T

= 3νT ρ
logρT (ν′T ρ

−h̃2
T)−logρT (νT)

T ρhT

≤ 3νT ρ

⌊
logρT (ν′T ρ

−h̃2
T)−logρT (νT)

⌋
T ρhT

= 3νT ρ
−h̃4
T ρhT (Denote h̃4 = −

⌊
logρT (ν

′
T ρ

−h̃2
T)− logρT (νT)

⌋
)

Next, we examine NT̂ (3νT̂ ρ
h
T̂):

≤ NT̂ (3νT ρ
h−h̃4
T)

≤ 4mNT (3νT ρ
h−h̃4
T) (Using Inequality 46)

≤ 4mCT ρ
−ηT (h−h̃4)
T (Using Inequality 45 and ∀h ≥ h̃4)

Therefore, we have:
NT̂ (3νT̂ ρ

h
T̂) ≤ 4mCT ρ

ηT h̃4

T ρ−ηT h
T ∀h ≥ h̃4 (47)

For heights h ∈ [0 : h̃4 − 1], we can use the value of the right-hand side at depth h = h̃4, which
is 4mCT . Hence, we have:

NT̂ (3νT̂ ρ
h
T̂) ≤ 4mCT ρ

ηT h̃4

T ρ−ηT h
T ∀h ≥ 0

= 4mCT ρ
ηT h̃4

T ρ−ηT h

T̂
∀h ≥ 0

Therefore, we conclude that ηT̂ ≤ ηT and CT̂ = CT 4
mρηT h̃4

T .

38

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

F.18. Proof of Proposition 7

Proof
Let hmax =

⌊
n2

nlogn+Tn
3c

⌋
as given in the lemma statement. SequOOL opens

⌊
hmax
h

⌋
cells at

depth h for all h ∈ [1, hmax]. Additionally, we utilize T samples for every c heights to learn f̂ . The
total number of samples used to learn f̂ up to height hmax is thus Thmax/c. Each cell opening in
SequOOL requires 3 samples. Therefore, the total number of openings performed by Algorithm 3 is
given by

∑hmax
i=1

⌊
hmax

i

⌋
+ Thmax

3c . According to the proposition, we need to show that this quantity
is ≤ n. Consider, total number of openings:

=

n∑
i=1

⌊
hmax

i

⌋
+

hmaxT

3c

≤

⌊
n2

nlogn+ Tn
3c

⌋
(

n∑
i=1

1

i
+

T

3c
) (Definition of hmax)

≤ n2

nlogn+ Tn
3c

(logn+
T

3c
) (Recall the definition: logn ≜

∑n
t=1

1
t)

= n

Hence, the number of openings made in Algorithm 3 does not exceed n.

F.19. Proof of Theorem 27

We start with the Theorem 5 of [1]. We restate the theorem, adapting it to our notation and
incorporating the dependency of the parameters on the partitioning scheme P:

Theorem 34 ([1], Theorem 5) Let W be the standard Lambert W function. Suppose f along
the partitioning scheme P satisfies Assumption 12 with associated (νP , ρP), CP > 1, and near-
optimality dimension ηP = ηP(νP , CP , ρP) parameters. Then, after n rounds, the simple re-
gret of SequOOL is bounded as follows: For ηP > 0, we use Corollary 6 of [1]. Let ñ =⌊
n/logn

⌋
ηP log(1/ρP)/(CP).

• If ηP = 0, rn ≤ νPρ
1

CP
⌊ n
logn

⌋
P • If ηP > 0, rn ≤ νP

(
ñ

log ñ

)− 1
ηP

To invoke this Theorem for our proof, first we apply the theorem for the partitioning scheme Â.
25 shows that Â is a valid partioning scheme, i.e., it satisfies 12, hence we can invoke Theorem 34.

Thus, for our partitioning scheme Â, denoting ñ =
⌊
n/logn

⌋
ηÂ log(1/ρÂ)/(CÂ), the regret is

bounded by

• If ηÂ = 0, rn ≤ νÂρ

1
CÂ

⌊ n
logn

⌋

Â
• If ηÂ > 0, rn ≤ νÂ

(
ñ

log ñ

)− 1
ηÂ

Corollary 26 relates SequOOL parameters and gives,

ρÂ = ρβ, νÂ = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−h̃2
A ,

ηÂ(νÂ, ρÂ, CÂ) ≤
ηP(ν, ρ, C)

β
,CÂ = 3ddd−m(12

√
m)mCρ− ηP h̃34mρηP h̃4 .

39

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Now, we substitute these relations in our regret bound to get the upper bound in terms of default
partitioning scheme P parameters.

rn ≤

max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−βh̃2ρ
β
C1

⌊ n
logn

⌋ if ηP = 0,

max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−βh̃2

(
ñ

log ñ

)− β
ηP if ηP > 0,

Where C1 = 3ddd−m(12
√
m)mCρ−ηP h̃34mρηP h̃4 and ñ =

⌊
n/logn

⌋
ηP log(1/ρ)/C1

with h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and h̃1 = d ⌈log3

√
mα⌉ with κ2 =

√
m√

1−dist2 (A,Â)

h̃3 = −
⌊
logρ(max{ν, lf}ρ(1−β)(m−1)−h̃1)− logρ(ν)

⌋
h̃4 = −

⌊
logρA(max{νA, lg}ρ−h̃2

A)− logρA(νA)
⌋

Appendix G. Additional Experiment Details & Results

G.1. Test Functions Experiments

We implemented SequOOL, SOO, and RESOO ourselves due to the absence of publicly available
open-source code for these algorithms. For DiRect and Dual Annealing, we utilized the implementa-
tions provided in the SciPy library’s optimize module. The CMA-ES algorithm was sourced from its
dedicated project repository1. REMBO and HesBO implementations were derived from the original
HesBO repository2.

G.2. Multi-Index Functions Results

We present additional experimental results to further demonstrate the effectiveness of our approach.
Figure 4 showcases the performance of various algorithms on low-dimensional multi-index functions
with d = 5 and m = 2. Our algorithm consistently achieves lower regret across different test
functions, including Sphere, Branin, Ellipsoid, and Rastrigin, often reaching zero regret with fewer
samples compared to competing methods.

G.3. LLM Quantization

Table 2: LLM Quantization Experiment Results

Algorithm Compute WikiText-2 Calibration
Time PPL -Set PPL

Grid Search ≈ 9 hours 16.92 14.62
SequOOL ≈ 10 hours 16.83 14.28

Algorithm 1 ≈ 10 hours 16.96 14.42
Algorithm 2 ≈ 12 hours 16.68 14.29

The AWQ [13] method for quantizing large lan-
guage models formulates optimization problem
as: α∗ = argminα∈[0,1] L(sαX), where L(s) =∥∥Q(W · s)(s−1 ·X)−WX

∥∥
2
. Where X is

the input features to the block which is cached
from a calibration dataset. It uses the parame-
terization s = sαX, where sX is the activation

1. https://github.com/CyberAgentAILab/cmaes
2. https://github.com/aminnayebi/HesBO

40

https://github.com/CyberAgentAILab/cmaes
https://github.com/aminnayebi/HesBO

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

Figure 4: Regret Plots: Legend for the plots are arranged in the order of their performance. Algo-
rithm 1 (SequOOL on Â) uses 100 additional samples to learn the subspace through the Fornasier
et al. [5] approach. Our Algorithm, SOO, RESOO, SequOOL are budget algorithms, so we run these
algorithms using 100 equally spaced budget values between 1 and 2000 and plot the regret at the end
of each run. For the randomized algorithms, we took 10 trials and plotted the median curve (thick
line) and 0 and 95 percentile curves.

41

ADAPTIVE PARTITIONING SCHEMES FOR BLACK-BOX OPTIMIZATION

scale computed from X and α ∈ [0, 1] and Q as
the quantization function and W as the original
weights. And in their work α∗ is found through
1D grid search.

To optimize this single parameter α , the method utilizes a grid search approach for each of
the three primary components in every layer of the large language model: the attention matrices
(WQ, WK , WV , and WO: All the four matrices have one parameter α), the first fully connected
layer (Wfc1), and the second fully connected layer (Wfc2). Consequently, this leads to three
optimization parameters per layer, resulting in a total of 3M parameters to optimize across M layers.
Each of these parameters is derived from separate optimization problems, all of which are solved
through the grid search method in the interval [0, 1] to find the optimal value of α∗.

We propose a new approach which involves solving this LLM Quantization as high-dimensional
black-box optimization problem. In our approach, we jointly optimize all layers to minimize
perplexity: So, our approach has one optimization problem in 3M dimensional space, compared to
AWQ which has 3M one-dimensional optimization problems. Let α = [α1, ..., α3M]⊤ represent the
scales for all M layers, with each layer having three parameters. We define our proposed optimization
problem as: α∗ = argminα P(α) subject to αi ∈ [0, 1] ∀i ∈ {1, ..., 3M}. Where, P(α) is the
perplexity on the calibration set after quantization using the scaling factors derived from α.

We evaluated our approach on the OPT-1.3B [31] model and compared it with AWQ in Table 2.
Our proposed objective function using SequOOL over 72 dimensions outperformed AWQ, achieving
lower perplexity on both WikiText-2 [15] and the calibration set (Pile dataset [6]). More details are
in Appendix G.4.

G.4. Training Details of LLM Quantization Experiment

We implemented our Large Language Model (LLM) code on hardware equipped with one Quadro
RTX 5000 GPU having 16GB VRAM. For comparison, we ran AWQ baselines using the original
authors’ code, which also served as a foundation for developing our proposed method.

To optimize the neural network used in Algorithm 3 for our LLM Quantization objective function,
we employed the Ray package for hyper-parameter tuning 3. We used Adam optimizer and our
search space included hidden layer sizes (500, 1000, 2000, 3000), learning rates (log-uniform from
1× 10−4 to 1× 10−1), weight decay (log-uniform from 1× 10−2 to 1× 10−1), and learning rate
Step Decay with gamma values (uniform from 0.9 to 0.99), and step sizes (500, 1000, 2000). We
utilized early stopping to prevent overfitting.

The neural network was retrained on SequOOL-collected samples every 5 heights, with the
look-ahead strategy applied up to a height of 60 and performed round-robin direction selection after
this height.

3. https://github.com/ray-project/ray

42

https://github.com/ray-project/ray

	Introduction and motivation
	Problem formulation and adaptive partitioning schemes
	Proposed algorithms for black-box optimization
	Experiments
	Notation
	Omitted details for Section 2
	Omitted details for Section 3
	Theoretical analysis
	Using defined over the estimated
	Supporting lemmas

	Illustrative experiments to motivate lookahead direction selection
	Proofs
	Proof of Example 4
	Proof of Example 10
	Proof of Example 6
	Proof of Proposition 9
	Proof of Proposition 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 19
	Proof of Lemma 20
	Proof of Lemma 21
	Equivalence of partitioning schemes
	Proof of Lemma 28
	Proof of Lemma 24
	Proof of Lemms 23
	Proof of Proposition 11
	Proof of Lemma 25
	Proof of Proposition 7
	Proof of Theorem 27

	Additional Experiment Details & Results
	Test Functions Experiments
	Multi-Index Functions Results
	LLM Quantization
	Training Details of LLM Quantization Experiment

