
Published in Transactions on Machine Learning Research (01/2024)

ModuLoRA: Finetuning 2-Bit LLMs on Consumer GPUs by
Integrating with Modular Quantizers

Junjie Yin jyin27@jhu.edu
Department of Computer Science
Johns Hopkins University

Jiahao Dong jd787@cornell.edu
Department of Computer Science
Cornell University and Cornell Tech

Yingheng Wang yw2349@cornell.edu
Department of Computer Science
Cornell University

Christopher De Sa cdesa@cs.cornell.edu
Department of Computer Science
Cornell University

Volodymyr Kuleshov kuleshov@cornell.edu
Department of Computer Science
Cornell University and Cornell Tech

Reviewed on OpenReview: https://openreview.net/forum?id=r9p9CV52MV

Abstract

We propose a memory-efficient finetuning algorithm for large language models (LLMs) that
supports finetuning LLMs with 65B parameters in 2/3/4-bit precision on as little as one
24GB GPU. Our method, modular low-rank adaptation (ModuLoRA), integrates any user-
specified weight quantizer with finetuning via low-rank adapters (LoRAs). Our approach
relies on a simple quantization-agnostic backward pass that adaptively materializes low-
precision LLM weights from a custom black-box quantization module. This approach enables
finetuning 2-bit and 3-bit LLMs for the first time—leveraging state-of-the-art 2-bit QuIP#
quantization and 3-bit OPTQ quantization—outperforming finetuning that relies on less
sophisticated 4-bit and 8-bit methods. In our experiments, ModuLoRA attains competitive
performance on text classification, natural language inference, and instruction following tasks
using significantly less memory than existing approaches, and we also surpass the state-of-the-
art ROUGE score on a popular summarization task. We release ModuLoRA together with
a series of low-precision models as part of LLMTools, a user-friendly library for quantizing,
running, and finetuning LLMs on consumer GPUs.

1 Introduction

Large language models (LLMs) excel across diverse tasks such as code generation, instruction following,
and reasoning (Brown et al., 2020; Scao et al., 2023; Zhang et al., 2022). However, the massive size of
these models—often reaching into hundreds of billions of parameters—makes them challenging to deploy on
downstream tasks and motivates research into efficient finetuning algorithms (Li & Liang, 2021; Hu et al.,
2022).

1

https://openreview.net/forum?id=r9p9CV52MV

Published in Transactions on Machine Learning Research (01/2024)

Here, we propose modular low-rank adaptation (ModuLoRA), a memory-efficient finetuning algorithm
for large language models (LLMs) that runs on consumer-grade hardware. For example, in 3-bit precision,
ModuLoRA finetunes a LLaMA-30B model (Touvron et al., 2023) on one Nvidia RTX 3090 24GB GPU and
a LLaMA-65B on one RTX A6000 48GB GPU. In 2-bit precision, ModuLoRA finetunes a LLaMA-30B or
LLaMA-65B on one Nvidia RTX 3090 24GB GPU.

Our approach adds high-precision low-rank adapters to the low-precision 3-bit or 4-bit weights of a frozen
base LLM obtained via modern quantization algorithms (Hubara et al., 2021; Yao et al., 2021; Frantar et al.,
2023). Crucially, ModuLoRA does not specify its own quantization procedure—rather, it integrates with
user-defined quantizers via a simple quantization-agnostic backward pass. This backward pass adaptively
materializes low-precision LLM weights obtained from a black-box quantizer and integrates them with
high-precision low-rank adapters.

We release ModuLoRA as part of LLMTools, a user-friendly library that enables finetuning LLMs on
consumer GPUs. When paired with the modern OPTQ quantizer (Frantar et al., 2023), ModuLoRA enables
finetuning 3-bit LLMs for the first time, often outperforming methods based on less sophisticated 4-bit and
8-bit quantization. When paired with the state-of-the-art QuIP# quantizer Chee et al. (2023); Tseng et al.
(2023), ModuLoRA enables finetuning 2-bit LLMs for the first time, matching methods’ performance on less
sophisticated 4-bit and 8-bit quantization method. Across tasks in classification, natural language inference,
and instruction following, our low-precision models achieve competitive performance using significantly less
memory than existing approaches. On a popular summarization benchmark, we attain a new state-of-the-art
ROUGE score using a quantized LLaMA-65B model. We open-source all our low-precision models, including
the first 3-bit family of Alpaca models that feature strong instruction-following performance at multiple
model sizes. Our findings reveal that high performance can be achieved using smaller quantized LLMs than
previously thought.

Contributions. In summary, this paper makes the following contributions: (1) we propose ModuLoRA, a
memory-efficient finetuning method that operates over low-precision weights obtained via a user-specified
black-box quantization module; (2) we release LLMTools, a user-friendly Python library that features an
implementation of ModuLoRA and that enables users to easily finetune the largest LLMs on consumer
GPUs; (3) we provide empirical evidence that high performance on downstream tasks can be achieved with a
smaller LLM than previously thought.

2 Background and Related Work

We are interested in finetuning a pre-trained LLM for downstream tasks (Li & Liang, 2021; Lester et al.,
2021; Houlsby et al., 2019; Rebuffi et al., 2017). LLMs use a transformer architecture where almost all of
the learnable weights—and almost all of the memory used to store these weights—appear in linear layers.1
We let the weights and biases of these n linear layers be denoted W(i) and b(i) for i ∈ {1, 2, ..., n}. Given a
pretrained network, our goal is to finetune it for downstream tasks using much less working memory than
would be needed to store all of the W in full precision.

2.1 Large Language Model Finetuning

Because of the high memory requirements needed to fine-tune and store all the weights of a LLM, practitioners
have developed a variety of parameter-efficient fine tuning methods that learn in a lower dimensional space.
These methods include tuning only the output layer (Devlin et al., 2018) and tuning the prompt or prefix
passed as input to an LLM (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2023a;b), as well as LoRA, which
is the focus of this work.

Low-Rank Adaptation (LoRA) The LoRA algorithm (Hu et al., 2022) decomposes the weights W into2

a sum of frozen base model weights W0 ∈ Rd×d and a small additive low-rank adapter AB⊤ consisting of

1These layers include the K, V , Q, and O projection matrices of attention blocks and the linear layers of MLP blocks.
2For simplicity here we consider square weight matrices W; the rectangular case is a straightforward generalization.

2

Published in Transactions on Machine Learning Research (01/2024)

the product of two rectangular matrices A, B ∈ Rd×r, where r > 0 indicates the rank:

W = W0 + AB⊤. (1)

LoRA reduces the number of trained parameters by a factor of 2r/d, lowering the storage, transmission, and
task-switching overhead of inference on a system that already maintains the base model. However, LoRA
must hold the base weights W0 in memory, which requires multiple high-end GPUs and precludes tuning
large LLMs on commodity hardware.

2.2 Low-Precision Machine Learning

The computational requirements of modern machine learning models motivate a wide range of efficient
machine learning algorithms (Li & Liang, 2021; Hu et al., 2022; Frantar et al., 2023).

Quantization Quantization methods for neural networks reduce the number of bits required to store model
weights (Dong et al., 2019; 2020; Yao et al., 2022; Park et al., 2023). A b-bit quantization method has the
form

(Ŵq, z, s) = Q(W) Ŵ = D(Ŵq, z, s). (2)

Here, the quantization algorithm Q takes a weight matrix W ∈ Rd×d (or its subset) and outputs a quantized
version Ŵq ∈ {0, 1, . . . , 2b−1}d×d (using b bits to represent each entry of W), as well as zero and scale
parameters z, s ∈ Rd (in full precision). The dequantization algorithm D(Ŵq, z, s) recovers an approximation
Ŵ ∈ Rd×d by rescaling the quantized weights as Ŵ = s ⊙ Ŵq + z, where ⊙ denotes the Hadamard product,
and ⊙, + are extended with numpy-style broadcasting.

Recently, Frantar et al. (2023) proposed OPTQ, a quantization algorithm that scales to modern LLMs. The
method iteratively runs two steps over the weight columns: (1) quantize with nearest rounding and compute
the error, (2) update the remaining weights with a scaled error. Many of our experiments finetune LLMs
quantized with OPTQ.

Following OPTQ, Chee et al. (2023) proposed QuIP, a quantization algorithm that makes two-bit LLM
compression viable for the first time. The method follows a 2-step procedure: (1) an adaptive rounding
procedure that minimizes a quadratic proxy objective„ (2) an efficient pre- and post-processing procedure
ensuring weight and Hessian incoherence through multiplication by random orthogonal matrices. Further,
Tseng et al. (2023) proposed QuIP#, combining lattice codebooks with incoherence processing from QuIP to
create state-of-the-art 2 bit quantized models. We show the performance of QuIP# (with D4 codebooks)
quantized LLMs on the SAMSum summarization experiment.

In concurrent work, Dettmers et al. (2023) proposed QLoRA, an approach for tuning quantized LLMs based
on LoRA. While our work seeks to integrate with any user-defined quantization module (such as OPTQ),
QLoRA defines its own quantization scheme, which is simpler than, say, OPTQ or QuIP. One advantage of
our approach is support for 2-bit and 3-bit finetuning; QLoRA only supports 4-bit finetuning. We will also
identify settings where using advanced quantizers yields performance gains over QLoRA. See Section 5.1 for
details.

3 Low-Precision Low-Rank Adaptation with a Modular Quantizer

In this section, we describe modular low-rank adaptation (ModuLoRA), a memory-efficient finetuning
algorithm for large language models (LLMs) that leverages custom quantization algorithms and runs on
consumer GPU hardware.

3.1 Low-Rank Adaptation of Low-Precision Models

3

Published in Transactions on Machine Learning Research (01/2024)

class ModuLoRALinear(Module):
"""Linear ModuLoRA Layer"""
def __init__(self, ...):
self.hatWq_z_s = quantize(pretrained_W)
(self.A, self.B) = lora_init(...)

def forward(self, x):
(hatWq, z, s) = self.hatWq_z_s
return LPLinear.apply(x, hatWq, z, s) \
+ (x @ self.B) @ self.A.t() + self.bias

class LPLinear(Function):
"""Low-Precision Linear Map"""
@staticmethod
def forward(ctx, input, hatWq, z, s):
ctx.save_for_backward(hatWq, z, s)
hatW = dequantize(hatWq, z, s)
output = input @ hatW.t()
return output # hatW is deallocated

@staticmethod
def backward(ctx, grad_output):
hatWq, z, s = ctx.saved_tensors
we recompute hatW
hatW = dequantize(hatWq, z, s)
grad_input = grad_output @ hatW
here hatW can be deallocated
return grad_input, None, None, None

Figure 1: PyTorch pseudocode for ModuLoRA.

The first step of our approach is quantization: we ap-
ply a black-box quantization algorithm Q to a set of
pre-trained weight matrices W(i). This yields quan-
tized weights, zeros, and scales (Ŵ(i)

q , z(i), s(i)) =
Q(W(i)). We use Ŵ(i)

q to denote the quantized
weights stored in low precision, while Ŵ(i) denotes
the same weights materialized in high precision (both
approximate the original weights W(i)). Crucially,
we do not specify a quantization procedure Q as part
of ModuLoRA—rather, we seek to support user-
defined quantizers that are treated by our method
is a black-box.

The core of our efforts focuses on finetuning the
base quantized model. Our method first modifies
the network by replacing each linear layer—originally
defined by the affine map x 7→ x(W(i))⊤+b(i)—with
the reparameterized low precision ModuLoRALinear
layer in Figure 1, given by

x 7→ x(Ŵ(i))⊤ + xB(i)(A(i))⊤ + b(i). (3)

Here A(i), B(i) ∈ Rd×r are learnable parameters
initialized as in Hu et al. (2022), and Ŵ(i) =
D(Ŵ(i)

q , z(i), s(i)) is the fixed dequantized weight ma-
trix. Note that this is algebraically (but not compu-
tationally) equivalent to transforming the quantized
matrix as given in (1). Lastly, ModuLoRA fits the
A(i) and B(i) using backprop and gradient-based
learning.

A key challenge in this procedure is to efficiently perform computations with high-precision and low-precision
tensors. Clearly, the forward pass requires multiplying by weights stored in quantized Ŵ(i)

q ’s. Below, we
derive the backward pass for A(i), B(i) and show that it also requires multiplying by the transpose of the
Ŵ(i)

q ’s.

3.1.1 The Structure of a Quantized Backward Pass

We illustrate the technical challenges that arise in the design of a quantized backward pass in the context
of a network of n ModuLoRALinear layers. Each ModuLoRALinear is effectively a fully connected layer with
reparameterized dense weights defined as

W(i)
l = Ŵ(i) + A(i)(B(i))⊤, (4)

biases b(i), and outputs yi for i = 1, 2, ..., n. We use ȳi = W(i)
l x + b(i) to denote the pre-activation output of

the i-th step and we use L to denote the loss. The backward pass seeks to compute gradients dL/dA(i) and
dL/dB(i), where we overload the Leibniz notation for derivatives to also denote gradients. By the chain rule,

dL

dA(i) = dL

dȳi
· dȳi

dA(i) . (5)

Because of the additive structure of the weights W(i)
l in (4), dyi/dA(i) is straightforward to handle as it

is not a function of the quantized weights Ŵ(i)
q . The second term can be computed via the chain rule of

calculus as
dL

dȳi
= dL

dȳi+1
· dȳi+1

dyi
· dyi

dȳi
, (6)

4

Published in Transactions on Machine Learning Research (01/2024)

where dyi/dȳi is the derivative of the activation function, and dȳi+1/dyi = (W(i)
l)⊤ = (Ŵ(i))⊤ +B(i)(A(i))⊤.

The above derivations indicate that computing the gradient dL/dA(i) (the argument for dL/dB(i) is identical)
requires performing a matrix-vector multiply dL

dyi+1
· (Ŵ(i))⊤ between a high-precision vector dL

dyi+1
with a

quantized matrix (Ŵ(i))⊤. Performing this multiplication in a stable and efficient way is a challenge that we
must address.

3.1.2 Efficient Mixed-Precision Computation of Forward and Backward Passes

If we could precompute all dequantized weight matrices (Ŵ(i))⊤ in a high-precision format, our challenge
would be solved: the matrix-vetor multiplication dL

dyi+1
· (Ŵ(i))⊤ in the backward pass would operate over

two high-precision arrays, and would not introduce questions of efficiency and stability.

Unfortunately, precomputing all dequantized weight matrices (Ŵ(i))⊤ requires the same amount of GPU
memory as it would take to store the original high-precision LLM. For this computation to fit on consumer
GPU hardware, we need to avoid manifesting all the Ŵ(i) in memory at once. Using (3) naively, backprop
would store all the Ŵ(i) from the forward pass to use them in the backward pass.

Efficient Mixed Precision Computation. Our strategy is to recompute the high-precision materialization
Ŵ(i) of the quantized Ŵ(i)

q in the backward pass rather than save it (Figure 1). In the LPLinear function,
the forward method dequantizes Ŵ(i) and performs multiplication. Similarly, backward re-dequantizes Ŵ(i)

and computes the gradient derived in Appendix ?? via dynamic programming. The hatW goes out of scope
and can be freed at the end of each method, so only one Ŵ(i) is ever stored in memory at any given time.

The amount of memory used in the forward pass of the LPLoRA module is small: all the intermediates are
either the same size as the input x, or even smaller (e.g. if x ∈ Rm×d then x @ self.B is of size Rm×r

for r ≪ d). The amount of additional computation involved is also small: the dequantization procedure
Ŵ = s ⊙ Ŵq + z only requires multiplying and adding a scalar to each row of Ŵq.

Increasing Efficiency Further. Figure 1 depicts a weight materialization strategy in which Ŵ(i) is fully
materialized at each layer in both forward and backward passes. To further reduce memory, we can materialize
elements of Ŵ(i) only as needed. For many quantization algorithms (Nagel et al., 2020; Frantar et al., 2023),
we can perform row materialization: dequantize Ŵ(i) one row at a time and immediately multiply it with an
input x. ModuLoRA also naturally generalizes to any direct vector-by-quantized-matrix product subroutine
provided by the quantizer Q, in which case materializing any part of Ŵ(i) may be unnecessary.

3.2 LLMTools: A Library for Efficient LLM Finetuning Using ModuLoRA.

We implement ModuLoRA as part of LLMTools, a user friendly library that enables users to interact with
the largest LLMs on consumer hardware. The LLMTools library enables finetuning LLMs in 2-bit, 3-bit, and
4-bit precision using the ModuLoRA algorithm. It also provides an easy-to-use Python API for quantization,
inference, and finetuning, as well as modular support for multiple quantizers, LLMs (including LLaMA1,
LLaMA2, BLOOM, and OPT), and optimization algorithms (including all that are compatible with the
Hugging Face Trainer class). Lastly, LLMTools supports easily loading datasets and sharing models via the
HuggingFace Hub. Our code is available at: https://github.com/kuleshov-group/llmtools; our evaluation
code to reproduce our results is available at: https://github.com/kuleshov-group/MODULoRA-Experiment.

A key quantization algorithm implemented in LLMTools is OPTQ (Frantar et al., 2023). In order to
integrate OPTQ with LoRA-based finetuning, LLMTools provides efficient CUDA implementations of
mixed-precision matrix-vector multiplication, including row and weight materialization. We provide CUDA
kernels for both row and weight materialization in both the forward and backward passes. For maximum
efficiency, we materialize elements of Ŵ(i)

q in float16. The base quantized LLM models are represented via
weights Ŵ(i)

q stored in 3 or 4 bits, with scales and zeros s(i), z(i) as well as biases b(i) all stored as float16.
Similarly, to integrate QuIP# with LoRA, LLMTools provides CUDA kernels for weight re-materialization
and orthogonal matrices multiplication in the forward and backward passses. The base quantized LLM
models are represented via weights Ŵ(i)

q stored in 2 bits.

5

https://github.com/kuleshov-group/llmtools
https://github.com/kuleshov-group/MODULoRA-Experiment

Published in Transactions on Machine Learning Research (01/2024)

4 Experiments

4.1 Setup

Models. We evaluate ModuLoRA and LLMTools on the recent LLaMA (Touvron et al., 2023) family
of models, as well as open-source BLOOM (Scao et al., 2023) and OPT models (Zhang et al., 2022). We
quantize the models to 3 bits and 4 bits using OPTQ as in Frantar et al. (2023) with calibration 128 samples
from C4 (Raffel et al., 2020). We quantize the models to 2 bits using QuIP# as in Chee et al. (2023); Tseng
et al. (2023) with D4 lattice codebooks3.

Baseline. We use LoRA (as implemented in the PEFT library (Mangrulkar et al., 2022)) to finetune models
quantized in 8 bits using the BitsAndBytes library (Dettmers et al., 2022); we also compare to full-precision
results from the literature. In concurrent work, Dettmers et al. (2023) proposed QLoRA, a related 4-bit
finetuning algorithm implemented in the BitsAndBytes library. Accordingly, we present an experimental
comparison of QLoRA with our approach, along with an in-depth discussion.

Training. We finetune all models on NVIDIA TITAN, 3090, and A6000 GPUs (depending on the model)
with a LoRA rank of r = 8 and alpha of a = 32, and report results from 3 random seeds. We set up the
training procedure following Hu et al. (2022), with slight variation to accommodate our particular language
models. For a fair comparison with the concurrent work by Dettmers et al. (2023), we use the exact same
hyperparameter set up. Please see Appendix C for details on the hyperparameters used for each of our
experiment.

4.2 Text Classification

Data & Metrics. We start with a simple text classification task where we seek to classify a short text
snippet (up to 50 words) into its genre (e.g., fiction, telephone chat, etc.). We finetune 13B to 65B LLaMA
models on 392,702 snippets from five genres and evaluate on 9,815 held out instances (Williams et al., 2018),
reporting accuracy. This yields a challenging classification task for LLMs of all sizes.

LLAMA Tuning Quantizer 13B 30B 65B
LLMTools (3-bit) OPTQ 93.5 ± 0.7 97.0 ± 0.9 97.2 ± 0.8
LLMTools (4-bit) OPTQ 92.9 ± 0.7 96.3 ± 1.0 98.0 ± 0.9
Bits&Bytes (8-bit) LLM.int8() 93.0 ± 0.7 93.7 ± 1.0 98.6 ± 1.0

Table 1: Text classification accuracy (%) for LLAMAs finetuned with LoRA & ModuLoRA in 3, 4, 8 bits.

Results. We observe that classification accuracy consistently improves as we increase the number of
parameters of the LLM. ModuLoRA combined with a 3-bit or a 4-bit LLM offers comparable performance
to 8-bit finetuning in Bits&Bytes while using significantly less memory (Table 1).

4.3 Natural Language Inference

Data & Metrics. Next, we finetune LLMs on natural language inference tasks. The model is asked to
predict a label from a small set (entailment, contradiction, or neutral) after being presented with a sentence
pairing (a hypothesis and premise sentence pair). We finetune 7B to 65B LLaMA models on the Multi-Genre
Natural Language Inference Corpus (MNLI) (Williams et al., 2018) and evaluate on the matched test sets
(in-domain examples), reporting accuracy. Baselines from GPT-3 and T5 are included, as presented in Hu et
al. (2022) and Chung et al. (2022).

Results. Our 2-bit and 3-bit 65B LLaMA model matches the performance of a full-precision GPT-3+LoRA
baseline. We also find that 3-bit and 4-bit models from LLMTools outperform 8-bit models from
the Bits&Bytes library for the entire model size range. 2-bit, 3-bit and 4-bit ModuLoRA models

3QuIP# also introduces E8 based codebooks, which achieve an even lower element-wise mean squared error (MSE) than D4
codebooks. With the application of E8 codebooks, 2-bit QuIP# finetuning could potentially yield stronger results.

6

Published in Transactions on Machine Learning Research (01/2024)

either match or outperform their 4-bit QLoRA counterparts, often using less memory because of lower
precision models.

Baselines
Models Finetuning Adaptation Model Size # Trainable Parameters MNLI-m (accuracy)
GPT-3 Full Finetuning 175B 175,255.8M 89.5 ± 0.1
GPT-3 Adapter 175B 40.1M 91.5 ± 0.1
GPT-3 LoRA 175B 4.7M 91.7 ± 0.1
T5 Full Finetuning 11B 11,307.4M 92.2 ± 0.1

LLaMA Finetuning Quantizer 7B 13B 30B 65B
LLMTools (2-bit) QuIP#(D4) 86.59 ± 0.5 87.42 ± 0.5 89.72 ± 0.5 90.85 ± 0.5
LLMTools (3-bit) OPTQ 88.98 ± 0.2 90.20 ± 0.2 91.09 ± 0.2 91.42 ± 0.1
LLMTools (4-bit) OPTQ 89.31 ± 0.2 90.41 ± 0.2 91.31 ± 0.1 91.59 ± 0.2
Bits&Bytes (4-bit) QLoRA 89.28 ± 0.2 89.67 ± 0.2 91.22 ± 0.1 91.36 ± 0.2
Bits&Bytes (8-bit) LLM.int8() 88.95 ± 0.1 90.08 ± 0.1 91.15 ± 0.1 91.55 ± 0.1

Table 2: Natural language inference on the MNLI-m dataset evaluated using classification accuracy (%). Our
LLaMA-65B-3bit model approaches state-of-the-art scores using significantly less memory.

4.4 Abstractive Summarization

Data & Metrics. We finetune 7B-65B LLaMA and 7B-13B OPT models on the SAMSum dataset (Gliwa
et al., 2019), consisting of 14,732 (text, summary) training pairs and 819 test pairs. Our methodology
fully mirrors the evaluation of GPT-style models finetuned using LoRA (Hu et al., 2022). We evaluate
summarization quality using ROUGE-1/2/L; we include GPT-3 baselines from Hu et al. (2022).

Results. Our 4-bit 65B LLaMA models finetuned with ModuLoRA outperform the GPT-3 baseline
and even reach new state-of-the-art performance on this dataset (Table 3). Importantly, Modu-
LoRA demonstrates performance improvements over the 4-bit QLoRA and the 8-bit BitsAndBytes methods.
In the 7B to 65B model size range, ModuLoRA models (3-bit or 4-bit) outperform 8-bit LoRAs in Bit-
sAndBytes and LLM.int8() and 4-bit LoRAs in BitsAndBytes and QLoRA. ModuLoRA models (2-bit)
match the performance of 8-bit LoRAs in BitsAndBytes and LLM.int8() and 4-bit LoRAs in BitsAndBytes
and QLoRA. We argue that a data-driven lower precision quantization scheme can improve over a higher
precision zero-shot quantizer like LLM.int8(). Switching from 4-bit to 3-bit, and then from 3-bit to 2-bit,
precision within ModuLoRA reduces ROUGE by only about 1%.

Baselines
Models Finetuning Adaptation # Trainable Parameters SAMSum (Rouge 1/2/L)
GPT-3 Full Finetuning 175,255.8M 52.0 / 28.0 / 44.5
GPT-3 Adapter 40.1M 53.2 / 29.0 / 45.1
GPT-3 LoRA 4.7M 53.8 / 29.8 / 45.9
Pegasus SliC 2B 54.4 / 29.9 / 45.9

LLAMA Finetuning Quantizer 7B 13B 30B 65B
LLMTools (2-bit) QuIP# (D4) 49.2 / 26.9 / 42.7 50.7 / 28.6 / 44.4 51.6 / 30.2 / 46.4 52.3 / 30.5 / 46.8
LLMTools (3-bit) OPTQ 51.2 / 28.2 / 44.0 52.4 / 29.6 / 45.1 53.6 / 30.8 / 46.3 54.1 / 30.9 / 46.5
LLMTools (4-bit) OPTQ 51.7 / 28.3 / 44.4 53.2 / 30.2 / 46.1 53.9 / 31.2 / 46.9 55.9 / 32.7 / 49.0
Bits&Bytes (4-bit) QLoRA 51.6 / 28.3 / 44.5 51.3 / 28.1 / 44.1 53.0 / 30.2 / 45.7 53.8 / 30.5 / 45.9
Bits&Bytes (8-bit) LLM.int8() 51.9 / 28.1 / 44.5 51.3 / 28.2 / 43.6 50.8 / 28.4 / 44.1 53.9 / 30.4 / 46.3

Table 3: Abstractive summarization on the SAMSum dataset evaluated using ROUGE 1/2/L. Our LLAMA-
65B-4bit model obtains state-of-the-art ROUGE scores. All metrics have ±0.5 confidence intervals.

7

Published in Transactions on Machine Learning Research (01/2024)

SAMSum Performance Quantizer 7B 13B

LLMTools (3-bit) OPTQ 51.2 / 28.2 / 44.0 / 44.2 52.4 / 29.6 / 45.1 / 45.1
RTN 50.7 / 27.2 / 43.6 / 43.6 51.1 / 28.7 / 44.3 / 44.5

LLMTools (4-bit) OPTQ 51.7 / 28.3 / 44.4 / 44.4 53.2 / 30.2 / 46.1 / 46.1
RTN 51.2 / 28.5 / 44.2 / 44.2 52.5 / 29.9 / 45.5 / 45.5

Table 4: OPTQ and RTN quantization with different LLaMA model sizes on the SAMSum dataset. The
evaluation was done on ROUGE 1/2/L/LSum.

Round-to-Nearest Quantization We also perform an ablation where we replace the OPTQ quantizer
with a rount-to-nearest (RTN) approach (Table 4); OPTQ performs better than RTN, highlighting the
importance of advanced quantizers.

Other Model Families We also apply LLMTools to the OPT (Zhang et al., 2022) families of models
(Table 5). Although these models perform worse than LLaMA, ModuLoRA matches or outperforms more
memory-intensive 4-bit and 8-bit finetuning, which is consistent with our results on LLaMA.

OPT Finetuning Quantizer 13B 30B
LLMTools (3-bit) OPTQ 48.8 / 26.7 / 41.9 49.9 / 27.1 / 42.5
LLMTools (4-bit) OPTQ 49.3 / 26.8 / 42.0 49.6 / 27.1 / 42.4
Bits&Bytes (4-bit) QLoRA 49.2 / 27.0 / 42.1 49.9 / 27.0 / 42.5
Bits&Bytes (8-bit) LLM.int8() 48.8 / 26.5 / 41.7 49.3 / 27.1 / 42.3

Table 5: Abstractive summarization with OPT models on the SAMSum dataset. ModuLoRA in 3-bit and
4-bit precision matches ROUGE 1/2/L scores of 4-bit and 8-bit baselines. All metrics have ±0.5 confidence
intervals.

4.5 Instruction Following

Data & Metrics. We finetune 7B-65B LLaMA models on the Alpaca dataset (Taori et al., 2023), consisting
52,000 instructions, as well on the CodaAlpaca dataset (Chaudhary, 2023), consisting of 20K code generation
instructions (ses Table 9). We evaluate our Alpaca instruction-tuned models on the BigBenchHard (BBH)
benchmark (Suzgun et al., 2022), consisting of 23 challenging tasks on which LLMs do not exceed human
performance. We evaluate 3-shot performance via "answer-only" prompting and use exact match accuracy as
our measurement standard, testing on 6,511 samples (∼ 1.5k tokens each). We include Flan and LLaMA
baselines from Chia et al. (2023).

Results. We find that 3-bit and 4-bit performance drops only slightly relative to 8-bit and 16-bit. 2-bit
models, despite their aggressive compression, match the performance of 4-bit QLoRA in smaller model sizes.
Crucially, 4-bit and 3-bit 65B models outperform 8-bit and 16-bit 30B models, despite using
fewer total bits. Furthermore, 4-bit ModuLoRA compares well to 4-bit QLoRA, and provides consistent
performance improvements, especially at smaller model sizes, where sophisticated quantization ought to
provide greater benefits. This further highlights the benefits of one-shot quantization methods. Appendix B
also reports experiments on the CodeAlpaca dataset.

4.6 Memory Requirements

We show the memory required to perform finetuning on MNLI-M for different LLaMA model sizes in table
7. ModuLoRA significantly minimizes the memory requirements for finetuning on these models. We
plot the memory requirements in figure 2 for better visualization. As the model size increases to 65B,
ModuLoRA uses only about 6% of the memory to run memory-efficient finetuning method LoRA. As the

8

Published in Transactions on Machine Learning Research (01/2024)

Baselines
Model Method Quantizer BASE (250M) L (780M) XL (3B) XXL (11B)
FLAN-T5 No Finetuning None 30.8 30.3 39.9 47.4

Model Methods Quantizer 7B 13B 30B 65B

LLaMA

LLMTools (2-bit) QuIP# (D4) 30.3 ± 0.7 33.3 ± 0.6 37.0 ± 0.9 39.3 ± 0.9
LLMTools (3-bit) OPTQ 31.1 ± 0.4 35.3 ± 0.2 37.2 ± 0.6 43.3 ± 0.4
LLMTools (4-bit) OPTQ 33.1 ± 0.2 36.2 ± 0.4 40.4 ± 0.2 43.7 ± 0.4
Bits&Bytes (4-bit) QLoRA 31.9 ± 0.1 35.4 ± 0.2 39.0 ± 0.4 43.5 ± 0.5
Bits&Bytes (8-bit) LLM.int8() 33.3 ± 0.3 36.8 ± 0.2 39.1 ± 0.5 44.7 ± 0.4
No Finetuning None 30.9 37.1 39.3 42.6

Table 6: Instruction-tuned models evaluated on BigBench Hard (BBH). We finetune LLaMA models on the
Alpaca dataset in 2 to 16 bits. We provide exact standard deviation here.

table and figure illustrates, with ModuLoRA it’s possible to not only run inference but also finetune 65B
model on a single 24GB GPU. To produce this table, we run our quantizer-agnostic forward/backward passes
for the entire LLaMA model size range with batch size 1 and maximum sequence length 128 on MNLI-m.

LLaMA Finetuning 7B 13B 30B 65B
LLMTools (2-bit) 3.2 GB 5.4 GB 11.4 GB 21.8 GB
QLoRA (4-bit) 5.2 GB 8.6 GB 19.5 GB 36.7 GB
Full Precision (LoRA) 38.4 GB 73.9 GB 183.3 GB 360.4 GB

Table 7: Memory requirements to finetune LLaMA models on MNLI-M with batch size 1 and maximum
sequence length 128. For comparison, we include the memory requirements to finetune on LoRA and QLoRA.

5 Discussion

5.1 Comparison to Related Work

7B 13B 33B 65B
0GB

10GB

100GB

400GB

3
5

11

22

5

9

20

3738

74

183

360

Model Parameter Size (Billion)

R
eq

ui
re

d
M

em
or

y
(G

ig
ab

yt
e)

LLMTools (2-bit)
QLoRA (4-bit)
Full precision

Figure 2: Visualization of memory requirements
for different LLaMA model sizes with different
methods.

Comparison to QLoRA In concurrent work,
Dettmers et al. (2023) proposed QLoRA, a related ap-
proach for finetuning a quantized LLM. We highlight
methodological and experimental differences below. From
a methods perspective, ModuLoRA integrates with a
user-specified black-box quantization module. In our ex-
periments, we find that using a sophisticated data-driven
quantizer like OPTQ improves performance over sim-
pler zero-shot strategies, e.g., a round-to-nearest baseline.
Unlike ModuLoRA, QLoRA defines a quantization ap-
proach similar to RTN, but also introduces a specialized
packing routine, quantization of zeros and scales, and
other innovations.

From an experiments and capabilities perspective, inte-
grating with OPTQ enables ModuLoRA to fintune mod-
els quantized in 2-bits and 3-bits, which QLoRA cannot
do. Lastly, we identify settings where ModuLoRA yields
LLMs with better performance than LLMs from QLoRA;
this gap is likely due to the use of improved quantizers.

9

Published in Transactions on Machine Learning Research (01/2024)

Comparison to Other Parameter-Efficient Finetuning Methods Recent Parameter-Efficient Fine-
tuning (PEFT) methods have encompassed a range of techniques such as prompt tuning (Lester et al., 2021;
Li & Liang, 2021; Qin & Eisner, 2021; Liu et al., 2022b), modification of the embedding layer inputs (An
et al., 2022) or hidden states (Liu et al., 2022a), inclusion of full layers (Houlsby et al., 2019), only tuning
biases (Zaken et al., 2021), and others (Sung et al., 2021; Karimi Mahabadi et al., 2021). An important
shortcoming of these methods is the need to store in memory a significant amount of frozen base model
parameters. This limits their ability to finetune the largest LLMs on consumer GPU, a limitation that we
address.

5.2 Running LLMs on Consumer GPUs

Efficient LLM Algorithms The computational requirements of modern deep neural networks motivate a
wide range of efficient machine learning algorithms. Quantization methods reduce the number of bits required
to store weights (Dong et al., 2019; 2020; Hubara et al., 2021; Li et al., 2021; Yao et al., 2021), including via
adaptive methods (Nagel et al., 2020). SmoothQuant (Xiao et al., 2023) rescales between activations and
weights to remove outliers from the activations and make quantization overall easier. ZeroQuant (Yao et al.,
2022) proposes a per-layer knowledge distillation method. LLM.int8() (Dettmers et al., 2022) decompose
matrix multiplications into a majority of 8 bit and a minority of 16 bit operations. LUT-GEMM (Park et al.,
2023) designs kernels to accelerate quantized matrix multiplications. RPTQ (Yuan et al., 2023) reorders
activations and quantizes them in groups, reducing the impact of range differences between channels.

Running LLMs on Consumer GPUs Our methods for 3-bit and 4-bit precision enable the finetuning
of a 65B LLM on a 48GB GPU, and a 30B LLM on a 24GB GPU. Additionally, our 2-bit approach allows
for the finetuning of a 65B LLM on a 24GB GPU, making the finetuning of LLMs accessible on consumer
hardware. Moreover, fitting an entire LLM on GPU unlocks data parallelism, which is more efficient than
model parallelism. Previous 8-bit quantization methods required a 96GB GPU to fully fit a 65B model.
Finetuning GPUs on consumer hardware holds promise to accelerate model iteration and apply LLMs to a
wider range of domains by a larger number of practitioners.

5.3 What is a Good Base LLM for Finetuning? Models Quantization BBH PPL

LLaMA (13B) 3-bit 35.3 6.63
4-bit 36.2 5.36

LLaMA (65B) 3-bit 43.3 5.04
4-bit 43.7 3.84

Table 8: BBH vs. PPL

The traditional measure of a base LLM is perplexity. In
the adjacent table, we report LLaMA perplexity (PPL)
on Wiki2 as well as finetuning performance on BBH. Inter-
estingly, the correlation is not perfect: large gaps in PPL
admit small gaps in BBH. This questions LLM evaluation
when the goal is finetuning, and suggests exploring new
training strategies.

More generally, our results provide empirical evidence that high performance on downstream tasks can
be achieved with a smaller quantized LLM than previously thought. While existing methods (e.g.,
LLM.int8()+LoRA; Dettmers et al. (2022)) operate in 8 bits, we find that 2-bit, 3-bit, or 4-bit finetuning
yields the best results for a fixed bit budget. For example, we find that 4-bit and 3-bit 65B models outperform
8-bit and 16-bit 30B models on instruction following tasks. On the SAMSum summarization task, we find that
3-bit models are able to attain a new state-of-the-art ROUGE score, and 2-bit models match the performance
of 8-bit models quantized with LLM.int8(). The high performance of these low-precision models suggests
that competitive finetuning performance can be achieved on any base quantized LLM with x-bit precision,
provided that the LLM exhibits reasonably good performance from the beginning.

5.4 Limitations

An advantage of LoRA is that it has low inference overhead, since the low-rank adaptor can be added in to
the full-precision weight matrix when deploying. One limitation of ModuLoRA is that it does not share
this advantage relative to the black-box quantized model: the low-rank adaptor cannot be trivially added to
the weight matrix because the weight matrix is quantized while the adaptor is not. So, the weight matrix

10

Published in Transactions on Machine Learning Research (01/2024)

and adaptor cannot be fused readily, and an implementation as in Figure 1 is required at inference time. A
second limitation of ModuLoRA is that making finetuning possible on widely available commodity hardware
may make finetuning too easy, presenting potential problems related to LLM safety. Another limitation of
ModuLoRA is that the largest models in use today (e.g. GPT-4) can have up to 1 trillion parameters,
and even at the minimum of 1 bit per parameter this still would take up 125 GB, which exceeds memory
on commodity GPUs: thus a straightforward application of ModuLoRA will be unable to make these
largest-scale models finetunable on commodity hardware.

6 Conclusion

Finetuning large language models typically requires substantial hardware and storage resources. Our method,
ModuLoRA, enables 2-bit finetuning of 65B models on a single 24GB consumer GPU and also supports
3-bit and 4-bit finetuning of the same models using a single 48GB GPU. At the core of our approach
is a simple, quantization-agnostic backward pass that enables integrating low-rank adapters with frozen
LLM weights obtained from a user-defined quantization module. By integrating with modern quantizers,
ModuLoRA achieves state-of-the-art performance compared to both parameter-efficient and full fine-tuning
techniques.

ModuLoRA’s flexibility and competitive performance make finetuning more accessible and cost-effective in
a resource-constrained setting. This assists open-source model development and facilitates scientific research.
More broadly, we believe that ModuLoRA will help democratize access to large language models and make
them available to a broader audience.

11

Published in Transactions on Machine Learning Research (01/2024)

References
Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen, Nanning Zheng, and

Jian-Guang Lou. Input-tuning: Adapting unfamiliar inputs to frozen pretrained models. arXiv preprint
arXiv:2203.03131, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et. al. Language models are few-shot
learners. In Conference on Neural Information Processing Systems, 2020.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https://github.
com/sahil280114/codealpaca, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of large
language models with guarantees, 2023.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic evaluation of
instruction-tuned large language models. arXiv preprint arXiv:2306.04757, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. arXiv
preprint arXiv:2210.11416, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. In Conference on Neural Information Processing Systems, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. In International Conference on Computer Vision,
2019.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Hawq-v2:
Hessian aware trace-weighted quantization of neural networks. In Conference on Neural Information
Processing Systems, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Optq: Accurate quantization for generative
pre-trained transformers. In International Conference on Learning Representations, 2023.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-annotated
dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in
Summarization, pp. 70–79, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora:
Low-rank adaptation of large language models. In International Conference on Learning Representations,
2022.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training quantization
with small calibration sets. In International Conference on Machine Learning. PMLR, 2021.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hypercom-
plex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035, 2021.

12

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://aclanthology.org/D19-5409

Published in Transactions on Machine Learning Research (01/2024)

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL
https://aclanthology.org/2021.acl-long.353.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu.
Brecq: Pushing the limit of post-training quantization by block reconstruction. In International Conference
on Learning Representations, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances
in Neural Information Processing Systems, 35:1950–1965, 2022a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt
tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, 2022b.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands,
too. AI Open, 2023b.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul. Peft: State-of-the-art
parameter-efficient fine-tuning methods. https://github.com/huggingface/peft, 2022.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
adaptive rounding for post-training quantization. In International Conference on Machine Learning, pp.
7197–7206. PMLR, 2020.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix multiplication based on
luts for efficient inference in large-scale generative language models. arXiv preprint arXiv:2206.09557, 2023.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts. arXiv
preprint arXiv:2104.06599, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer,
2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. Advances in
Neural Information Processing Systems, 34:24193–24205, 2021.

13

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://github.com/huggingface/peft

Published in Transactions on Machine Learning Research (01/2024)

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Chris De sa. Quip#: Quip with lattice
codebooks. https://cornell-relaxml.github.io/quip-sharp/, 2023.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
N18-1101.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438, 2023.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang,
Yida Wang, Michael W. Mahoney, and Kurt Keutzer. Hawq-v3: Dyadic neural network quantization. In
International Conference on Machine Learning. PMLR, 2021.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In Conference on Neural
Information Processing Systems, 2022.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Luzhang Shang, Guangyu Sun, Qiang Wu,
Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for large language models.
arXiv preprint arXiv:2304.01089, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open pre-trained
transformer language models, 2022.

14

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Published in Transactions on Machine Learning Research (01/2024)

A Additional Implementation Details

A.1 Configurations for BBH Evaluation

We evaluate the BBH dataset using LoRA adapter weights from huggingface hub with different configurations.
For the Bits&Bytes 8-bit (LLM.int8()) LoRA adapter weights, we utilized two sources: the Alpaca-7B one is
obtained from the ’tloen/alpaca-lora-7b’ repository, while the weights for Alpaca-13b and 30b were sourced
from ’chansung/alpaca-lora-xxb’. In the case of Bits&Bytes 4-bit (QLoRA) adapter weights, all configurations
(Alpaca-7B, 13B, and 30B)—were uniformly accessed from ’timdettmers/qlora-alpaca-xxb’. Note that for the
Bits&Bytes 4-bit (QLoRA) and Bits&Bytes 8-bit (LLM.int8()) adapter wights of the 65B model, we obtain
them by finetuning the base 65B LLaMa model on Alpaca dataset using the same set of hyperparameters as
ours.

B Additional Empirical Experiments

B.1 Additional Experiments on Code-Alpaca with LLaMA

We conducted additional experiment on Code-Alpaca ((Chaudhary, 2023)). The result is shown in Table 9.
Consistent with our hypothesis, ModuLoRA performs better than or at least on par with the higher precision
8-bit models given the same number of trainable parameters and set up.

Code Alpaca Performance 7B 13B 30B 65B
LLMTools (3-bit) 53.6 / 36.3 / 50.7 57.0 / 40.0 / 53.3 58.1 / 40.7 / 54.3 60.0 / 44.1 / 58.8
LLMTools (4-bit) 54.6 / 37.2 / 51.4 57.4 / 40.6 / 54.3 59.0 / 41.4 / 57.5 60.2 / 43.5 / 56.8
Bits&Bytes 8-bit (LLM.int8()) 54.0 / 36.3 / 50.9 57.7 / 41.3 / 54.9 60.6 / 43.5 / 57.5 61.1 / 44.1 / 58.0

Table 9: Instruction-tuned models evaluated using ROUGE 1/2/L-Sum on Code Alpaca in 3, 4, and 8 bits.

B.2 Finetuning & Inference Latency

We conducted experiment to test the finetuning and inference latency of ModuLoRA.

Finetuning. During finetuning, ModuLoRA significantly outperforms full-precision LoRA as show in table
10, reducing the training time by approximately 59.3% and memory usage by 91.5%. This efficiency in
finetuning speed is primarily attributed to reduced data movement within the GPU memory.

Inference. During inference, ModuLoRA has a slightly lower speed compared to LoRA and QLoRA as
shown in table 11. We attribute this to the use of CUDA kernels that are currently not as optimized as those
of QLoRA. Note that

Precision LLMTools QLoRA LoRA
(2-bit) (4-bit) (Full Precision)

Seconds/Iteration 0.61 s/it 0.80 s/it 1.50 s/it

Table 10: Finetuning speed for LLAMA 7B on MNLI-
m benchmark with batch size 1. We report the average
time to complete one step for one training data entry.
To ensure fair comparison, we use a single A6000 to
run on all three methods.

Precision LLMTools QLoRA LoRA
(2-bit) (4-bit) (Full Precision)

Seconds/Iteration 0.68 s/it 0.52 s/it 0.52 s/it

Table 11: Inference speed for LLAMA 7B on MNLI-m
benchmark. We report the average time to complete
inference for one evaluation data entry. To ensure fair
comparison, we use a single A6000 to run on all three
methods.

15

Published in Transactions on Machine Learning Research (01/2024)

C Hyperparamters Used in Experiments

C.1 LLaMA / OPT on SAMSum

We set up the training procedure following Hu et al. (2022), with particular accommodation to our particular
language models. For a fair comparison with the concurrent work QLoRA, we use the exact same hyperpa-
rameter set up as shown in Table 12 . We train using AdamW for 350 steps with a batch size of 128 samples.
We report the results over 3 random seeds; the result for each run is taken from the training steps with the
lowest validation loss.

Dataset Model LLaMA 7B / 13B / 30B / 65B OPT 7B/ 13B / 30B

SAMSum

Optimizer AdamW
Warmup Ratio 0.06
Batch size 128
Evaluation Batch size 16
Evaluation Steps 50
Total # Training Steps 350
Learning Rate Schedule Cosine
Learning Rate 1e-3
WeightDecay 0.0
LoRAConfig rq = rv = 8
LoRA α 32
Max Seq. Len 250

Table 12: Hyperparamters configuration for ModuLoRA, Q-LoRA on SAMSum

C.2 LLaMA on Code-Alpaca & Text-Classification

We again train using AdamW optimizer with a warmup ratio of 0.06. We tune learning rate, batch size,
training steps for each task. We report the results over 3 random seeds. The result for each run is taken from
the training steps that yield the lowest validation loss.

Dataset LLaMA Model 13/30/65 B

Text-
Classification

Optimizer AdamW
Warmup Ratio 0.06
Batch size 256
Evaluation Batch size 32
Evaluation Steps 100
Total # Training Steps 1000
Learning Rate Schedule Cosine
Learning Rate 1e-3
WeightDecay 0.0
LoRAConfig rq = rv = 8
LoRA α 32
Max Seq. Len 128

Table 13: Hyperparamters configuration for Modu-
LoRA, Q-LoRA on Text-Classification

Dataset LLaMA Model 7/13/30/65 B

Code-
Alpaca

Optimizer AdamW
Warmup Ratio 0.06
Batch size 128
Evaluation Batch size 4
Evaluation Steps 40
Total # Training Steps 120
Learning Rate Schedule Linear
Learning Rate 1e-3
WeightDecay 0.0
LoRAConfig rq = rv = 8
LoRA α 32
Max Seq. Len 165

Table 14: Hyperparamters configuration for Modu-
LoRA, Q-LoRA on Alpaca-Code

16

Published in Transactions on Machine Learning Research (01/2024)

C.3 LLaMA on MNLI-M

Training is conducted using the AdamW optimizer, with a warmup ratio set at 0.06. We tune the learning
rate, batch size, and training steps. Results are reported over three random seeds, and for each run, the
performance metric is derived from the training step with the lowest validation loss. See Table 15 for more
details on the hyperparameters used.

Dataset Model LLaMA 7B / 13B / 30B / 65B

MNLI-M

Optimizer AdamW
Warmup Ratio 0.06
Batch size 128
Evaluation Batch size 64
Evaluation Steps 64
Total # Training Epoch 1.0
Learning Rate Schedule Cosine
Learning Rate 1e-3
WeightDecay 0.0
LoRAConfig rq = rv = 8
LoRA α 32
Max Seq. Len 128

Table 15: Hyperparamters configuration for ModuLoRA, Q-LoRA on MNLI-M

C.4 LLaMA on Alpaca for BBH Evaluation

Training is conducted using the AdamW optimizer, with a warmup ratio set at 0.06. We tune the learning
rate, batch size, and training steps. Results are reported over three random seeds. See Table 16 for more
details on the hyperparameters used.

Dataset Model LLaMA 7B / 13B / 30B / 65B

Alpaca

Optimizer AdamW
Warmup Ratio 0.06
Batch size 128
Total # Training Epochs 3
Learning Rate Schedule Linear
Learning Rate 1e-3
WeightDecay 0.0
LoRAConfig rq = rv = 8
LoRA α 16
Max Seq. Len 256

Table 16: Hyperparamters configuration for ModuLoRA on Alpaca

17

	Introduction
	Background and Related Work
	Large Language Model Finetuning
	Low-Precision Machine Learning

	Low-Precision Low-Rank Adaptation with a Modular Quantizer
	Low-Rank Adaptation of Low-Precision Models
	The Structure of a Quantized Backward Pass
	Efficient Mixed-Precision Computation of Forward and Backward Passes

	LLMTools: A Library for Efficient LLM Finetuning Using ModuLoRA.

	Experiments
	Setup
	Text Classification
	Natural Language Inference
	Abstractive Summarization
	Instruction Following
	Memory Requirements

	Discussion
	Comparison to Related Work
	Running LLMs on Consumer GPUs
	What is a Good Base LLM for Finetuning?
	Limitations

	Conclusion
	Additional Implementation Details
	Configurations for BBH Evaluation

	Additional Empirical Experiments
	Additional Experiments on Code-Alpaca with LLaMA
	Finetuning & Inference Latency

	Hyperparamters Used in Experiments
	LLaMA / OPT on SAMSum
	LLaMA on Code-Alpaca & Text-Classification
	LLaMA on MNLI-M
	LLaMA on Alpaca for BBH Evaluation

