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Abstract

Diffusion models have been successful on a range
of conditional generation tasks including molec-
ular design and text-to-image generation. How-
ever, these achievements have primarily depended
on expensive, task-specific conditional training
or error-prone heuristic approximations to them.
Ideally, a conditional generation method should
provide exact samples for a broad range of condi-
tional distributions without requiring task-specific
training. To this end, we introduce the Tivisted Dif-
fusion Sampler, or TDS, a sequential Monte Carlo
(SMC) algorithm that targets the conditional dis-
tributions of diffusion models. The main idea is to
use twisting, an SMC technique the enjoys good
computational efficiency, to incorporate heuris-
tic approximations without compromising asymp-
totic exactness. We study the properties of TDS
on MNIST image inpainting and class-conditional
generation tasks. TDS extends to Riemannian
diffusion models, which are crucial for protein
modeling. When applied to the motif-scaffolding
problem, a core problem in protein design, TDS
enables more flexible conditioning criteria than
conditionally trained models, and provides state-
of-the-art success rates on 9/12 problems in a
benchmark set with scaffolds shorter than 100
residues.

1. Introduction

Conditional sampling is an essential primitive in the proba-
bilistic machine learning toolkit. Generative models param-
eterize distributions pg(x) on data 2. When combined with
a likelihood p(y | x), this implies conditional distributions
pe(x | y) given conditioning information y. Conditional
generation tasks that customize generative models’ outputs
to meet specified requirements can be formalized as con-
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ditional sampling problems. In protein design, ps(x) can
represent a distribution of physically realizable protein struc-
tures, y a substructure that imparts a desired biochemical
function, and samples from py(z | y) are then physically
realizable structures that contain the substructure of interest
(e.g. Trippe et al., 2023; Watson et al., 2022). In computer
vision, as another example, py () is a distribution of images,
y a classification label, and samples from py(x | y) where y
are then images likely to be classified as with label y (Ho
and Salimans, 2022).

Diffusion models are a class of generative models that have
demonstrated great successes in conditional generation tasks
(Ho et al., 2020; Ramesh et al., 2022; Song et al., 2020;
Watson et al., 2022). They parameterize complicated data
distributions py(x) through an iterative refinement process
that builds up data from noise. All conditional generation
approaches for diffusion models proceed by modifying the
refinement process to account for conditioning at each step.

For example, conditionally trained diffusion models, which
take additional conditioning information y as input (e.g.
Ramesh et al., 2022), have provided most of the major suc-
cesses of diffusion models to date. However, conditional
training requires (i) assembling a large set of paired exam-
ples of the data and conditioning information (z, y), and (ii)
designing and training a task-specific model when adapting
to new conditioning tasks.

To help with this expense, a separate line of work uses
heuristic approximations that directly operate on uncondi-
tional diffusion models. These approaches have had some
success in inpainting problems (Meng et al., 2021; Song
et al., 2020; Trippe et al., 2023), and other general inverse
problems (Bansal et al., 2023; Chung et al., 2023; Ho et al.,
2022; Song et al., 2023). But it is unclear how well these
heuristics approximate the exact conditional distributions
they are designed to mimic, and they often fail in practice
(Zhang et al., 2023). These issues are particularly relevant
for domains that require accurate conditionals. In molecular
design, for example, even a small approximation error could
result in atomic structures that have chemically implausible
bond distances.

In this paper, we develop a practical and exact method for
conditional sampling from a unconditional diffusion model.
Our method employs sequential Monte Carlo (SMC), which
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is a general tool for asymptotically exact inference in se-
quential probabilistic models (Chopin and Papaspiliopoulos,
2020; Doucet et al., 2001; Naesseth et al., 2019). SMC first
simulates an ensemble of weighted trajectories, or particles,
using a sequence of proposals and weighting mechanisms.
It then uses the weighted particles to form an asymptotically
exact approximation to a desired target distribution.

The premise of this work is to recognize that the sequen-
tial structure of diffusion models permits the application of
SMC for sampling from conditional distributions pg(x | y).
To this end, we develop an algorithm that is practical and
asymptotically exact. The algorithm leverages twisting func-
tions, an SMC technique that modifies proposals and weight-
ing schemes to approach the optimal choices (Guarniero
et al., 2017; Whiteley and Lee, 2014). While optimal twist-
ing functions are analytically intractable, we effectively
approximate them with recent heuristic approaches to con-
ditional sampling (eg. Ho et al., 2022), and then correct the
errors by the weighting mechanisms The algorithm main-
tains asymptotic exactness to pg(z | y) with many particles,
and we find empirically that it improves beyond the heuris-
tics alone with even a handful of particles.

We summarize our contributions as following: (i) We pro-
pose a practical SMC algorithm, Twisted Diffusion Sampler
or TDS, for asymptotically exact conditional sampling from
diffusion models; (ii) We show TDS applies to a range of
conditional generation problems, and extends to Rieman-
nian manifold diffusion models; (iii) We demonstrate TDS’s
empirical improvements on MNIST inpainting and class-
conditional generation tasks, and (iv) We demonstrate that
TDS provides greater flexibility and achieves higher success
rates than state of the art on several protein motif-scaffolding
problems.

2. Twisted Diffusion Sampler: SMC sampling
for diffusion model conditionals

We develop the Twisted Diffusion Sampler (TDS), a prac-
tical SMC algorithm targeting pg(2° | y). Section 2.1 de-
scribes how the Markov structure of diffusion models per-
mits a factorization of an extended conditional distribution
to which SMC applies. Section 2.2 then shows how a diffu-
sion model’s denoising predictions support the application
of twisting, an SMC technique for constructing a set of
“nearly optimal” proposals and weighting functions. Lastly,
Section 2.3 shows that TDS applies to a broader range of
conditioning problems and extends to Riemannian diffusion
models.

TDS builds on diffusion generative models and SMC; we
provide background and specify the conventions we adopt
for diffusion models and SMC in Appendix A. Empirical
results are left to Appendix B.

2.1. Conditional diffusion sampling as an SMC
procedure

We first show that the Markov structure of the diffusion
model permits a factorization that is recognizable as the
final target of an SMC algorithm. Assuming the conditional
independence of 27 and y given 2°, we may write the
conditional distribution, extended to additionally include
b7 as

1 T-1

pg(l,O:T ‘ y) — p(ng) pg(.Tt | frt+1) p(yalo)
po(y) g

ey

with the desired marginal, pg(z° | y). Comparison of Equa-
tion (1) to the form of the final SMC target 1y in Equa-
tion (21) immediately suggests the application of SMC is
possible.

For example, consider choosing proposals rr(xT) =

p(xT), ry(xt | 2t = py(at | 2't1) fort = 1,...,T,
and weighting functions wr(z7) = wy (2!, 2'T1) = 1 for
t=1,...,Tand wo(z°, z') = p(y; 2°). Substituting these
choices into Equation (21) results in the desired final target
vo = pe(x®T | y) with normalizing constant Ly = py(y).
As a result, the associated SMC algorithm produces a fi-
nal set of K weighted particles {z9;w{}X | that represent
approximate samples from pg(2° | y) satisfying

K
1 e
éiﬂo}’;wk%z(r )= 0o(a®) =po(a® [y) @)

with z§ i po ().

However, this sampler reduces to naive importance sampling
with proposal pg(2%7). Consequently, this approach will
be impractical if pg(2° | y) is too dissimilar from pg(z°):
the number of particles required for accurate estimation of
po(2%T | y) is exponential in KL [pg(2°7 | y) pp(2*7)]
(Chatterjee and Diaconis, 2018).

2.2. Twisted diffusion sampler

Twisting is a technique in SMC literature intended to reduce
the number of particles required for good approximation
accuracy (Guarniero et al., 2017; Heng et al., 2020; Naes-
seth et al., 2019). Its key idea is to relieve the discrepancy
between successive intermediate targets by bringing them
closer to the final target. This is accomplished by introduc-
ing a sequence of twisting functions that define new twisted
proposals and twisted weighting functions.

Optimal twisting functions. For example, define the
twisted proposals 7; by multiplying the naive proposals
r¢ described in Section 2.1 by the twisting functions set as
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¥y (z') == po(y | 2*):
i (2T) o< rp(at)h(21) and 3)
ri(xt | 2t oc (2t | 2Ty () for 0<t<T.
“

In fact, 1) are optimal twisting functions because they
permit an SMC sampler that draws exact samples from
po(2%7T | 3y) even when run with a single particle.

To see that even a single particle provides an exact sample,
note that by Bayes rule the proposals in Equation (3) reduce
to

rr(«") = po(2” | y) and ®)

ri(zt | ) = po(at | 2T, y) for 0<t<T. (6)
If we choose twisted weighting functions as wi(z1) =
wi(zt, z'™) = 1fort = T — 1,...,0, then resulting
twisted targets v} are all equal to pg (%7 | /). Specifically,
substituting r; into Equation (21) gives , fort =0,--- , T,

T-1
vi (@) = po(a” | y) [] po(a® | 2", y) = po(a"" | y),
t=0

N

However, we cannot generate samples from the optimally
twisted proposals 7; in Equation (5).

Tractable twisting functions. Our key insight is to approx-
imate optimal twisting functions by

=*(a'), (8

where Z((z!) is the denoising estimate of 2° at step ¢ from
the diffusion model. To see that Equation (8) is a reason-
able approximation, recall that Zo(z?) = E,, [2° | '] if pg
is optimized to exactly match the true distribution ¢q. For
t = 0 we set 2o(z") := 2° which makes the approxima-
tion to the optimal twisting function exact pg(y | 2°) =
p(y | 2°) = ¢*(2°). This choice will ensure that the final
target coincides with the exact conditional distribution.

Po(y | 2") = plys do(a’, 1)) = po(y | 2")

We next use Equation (8) to develop a sequence of twisted
proposals pg(xt | 211, y), to approximate the optimal pro-
posals pg(x! | /71 y) in Equation (5). Specifically, we
define twisted proposals as

po(at | 2T y) = N (wt; 4+ Jt2+189($t+1, Y); 17,52“) ,
)
where sg(z',y) := sg(2") + Ve log pg(y | %) (10)
is an approximation of the conditional score, 59(:ct, y) =

V.t logpe (2! | y) and n? is the variance of the step ¢ pro-
posal. For example, for simplicity one could choose each
n? = o? to match the unconditional diffusion variance.

The gradient in Equation (10) is computed by back-
propagating through the denoising network Zo(z'). Equa-
tion (9) builds on previous works (e.g. (Shi et al., 2022)) that
seek to approximate the reversal of a conditional forward
noising process. And the idea to backpropagate through
the denoising network follows from earlier reconstruction
guidance approaches (Ho et al., 2022; Song et al., 2023)
(See related works discussion in Appendix C).

To see why pg (2! | '+, y) provides a reasonable approx-
imation of py(z! | x'*1,y), notice that if s¢(xt,y) =
Varlogq(a® | y), nf = of, pp = ¢, and po(y | 2*) =
po(y | x"), then

Po(z" | 2" y) = N (a%52" + 07 Vyen log g(a't | y), 07,4)
(11)
=q(a" [ 2" y) = po(a’ | 2", y).
(12)

In practice, however, we cannot expect to have
po(at | L y) = po(zt | 271, y). So we must introduce
non-trivial weighting functions to ensure the resulting SMC
sampler converges to the desired final target. In particular,
we define rwisted weighting functions as

__pe(@' 2" D)o (y | 2')
Po(y | 2™ 1)po(at [ 21, y)

(13)

fort =0,...,7 — 1, and wr(z1) := pg(xT). The weight-
ing functions in Equation (13) again recover the optimal,
constant weighting functions if all other approximations at
play are exact.

These twisted proposals and weighting functions define in-
termediate targets that gradually approach the final target

o = pe(z%T | y). Substituting into Equation (21) each
po(zt | 2t y) for ry(zt | 2T1) and wy (2!, 2'T1) in Equa-
tion (18) for each wy(zt, z'™1) and then simplifying we
find

(y |t 1:[15 (2t | 21 y)
(o) 7= po(x? |2+ y)

(14)

l/t(.I‘O:T) ocpg(xO:T | y

The right-hand bracketed term in Equation (14) can be un-
derstood as the discrepancy of v; from the final target 1/
accumulated from step ¢ to O (see Appendix D.1 for a deriva-
tion). As ¢ approaches 0, pg(y | ') improves as an approx-
imation of py(y | #%), and the t-term product inside the
bracket consists of fewer terms. Finally, at t = 0, because
po(y | 2°) = pe(y | 2Y) by construction, Equation (14)
reduces to vy (z%T) = pg(z%T | y), as desired.

The TDS algorithm and asymptotic exactness. Together,
twisted proposals P (z | z*1,y) and weighting functions
wy(zt, 2+1) lead to the Twisted Diffusion Sampler, or TDS,
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in Algorithm 1. While Algorithm 1 states multinomial re-
sampling for simplicity, in practice other resampling strate-
gies (e.g. systematic (Chopin and Papaspiliopoulos, 2020,
Ch. 9)) may be used as well. Under additional conditions,
TDS provides arbitrarily accurate estimates of pg(x° | y).
Importantly, this guarantee does not rely on assumptions
on the accuracy of the approximations used to derive the
twisted proposals and weights.

Theorem 2.1. (Informal) Let Pre = S5, w00 denote
the discrete measure defined by the particles and weights
returned by Algorithm 1 with K particles. Under mild
conditions on the twisted proposals and weighting functions,
Py converges weakly to pg(x° | y) as K approaches infinity.

Appendix D provides a statement with complete conditions
and proof.

2.3. TDS for inpainting, additional degrees of freedom,
and Riemannian diffusion models

The previous decision to set twisting functions py(y | xt) :=
p(y; £o(z")) is one convenient choice, and is sensible only
when p(y; 2o (z?)) is differentiable and positive. We now
show how alternative twisting functions lead to proposals
and weighting functions that address inpainting problems
and more flexible conditioning specifications. In these ex-
tensions, Algorithm 1 applies but with these new twisting
functions. Lastly, we extend TDS to Riemannian diffusion
models. Appendix D provides additional details, includ-
ing the adaptation of TDS to variance preserving diffusion
models (Song et al., 2020).

Inpainting. Consider the case that 2° can be segmented
into observed dimensions M and unobserved dimensions
M such that we may write 2° = [23;,2%;] and let y =
x3;. The goal, then, is to sample pp(2° | 28; = y) =
po( | 231)0y(23y). Here we define the twisting function

as
Po(y | 2's M) := N (y; &o(z")m, 571) - (15)

The variance in Equation (15) ideally should reflect
Vary, [y | 2*], but may be chosen as 7 = Var,, [z | 2°] for
simplicity. The twisted proposals and weighting functions
are chosen according to eq 9 and 13, except at ¢ = 0. These
final quantities are set as

po(a’ | o', y; M) := 6 (aR)po(agq | ') (16)

and wo(2°, 1) = 1. One can verify the resulting final target

is po(2° | 28; = y) according to Equation (21).

Inpainting with degrees of freedom. We next consider the
case when we wish to condition on some observed dimen-
sions, but have additional degrees of freedom. In particular,
let pg(2° | y) = po(2® | IM € M s.t. 2% = y), where

M is a set of possible observed dimensions. For example in
the context of motif-scaffolding in protein design, the event
{IM € M s.t. 28; = y)} could represent a functional
motif y appearing anywhere in a protein structure. In this
case, we define

Poly a5 M) = Y Po(y|ah; M),  (17)
MeM

with each py(y | '; M) defined as in Equation (15), and
define the final proposal and weight as in Equation (16),
with wo (2%, 2') = 1 and

po(a” |2t y; M) =
MeM

The cost of a naive approach to computing pg(y | z*) in
Equation (17) would grow linearly with | M|, with each
term requiring an expensive call to the neural network .
But each term depends on z! only through the o(x?,t),
so if the expensive denoising step is computed only once,
effectively constant runtime obtains even with large |F|.

TDS on Riemannian manifolds. TDS can be easily ex-
tended to diffusion models on Riemannian manifolds with
slight modifications. Riemannian diffusion models [7] are
set up similarly as in the Euclidean case, but with con-
ditionals defined using tangent normal distributions pa-
rameterized with a score approximation followed by a
projection step back to the manifold. When we assume
that (as, e.g., in (Yim et al., 2023)) the model is associ-
ated with a denoising network g, twisting functions are
also constructed analogously. For conditional tasks de-
fined by positive likelihoods, pg(y | ') in Equation (8)
applies. For inpainting (and by extension, degrees of free-
dom), we propose pp(y | 2")=TN a1 (51 (y; 0,57), where
TN M (at) (0,57) is a tangent normal distribution centered

on ) (z*). As in the Euclidean case, pg(z! | 2/T1,y) is

defined with conditional score approximation sg(zt,y) =
sg(xt) + Vi logp(y | «t), which is also computable by
automatic differentiation. Appendix E provides details.

3. Discussion

A limitation of TDS is its requirement for additional com-
putational resources to simulate multiple particles. While in
some cases we see improved performance with as few as two
particles, how many particles is enough is problem depen-
dent. Furthermore, the computational efficiency depends on
how closely the twisting functions approximate exact condi-
tionals, which depends on both the unconditional model and
the conditioning information. Moreover, choosing twisting
functions for generic, nonlinear, constraints may be chal-
lenging. Addressing these limitations and improving the
computational efficiency of the TDS is an important direc-
tion for future work.

Y polafy | 2" M)S, (eRg)po(agy | ).
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A. Background: Diffusion models and sequential Monte Carlo

Diffusion models. Our goal in this work is to sample from pg(2°|y) oc pg(2°)p(y | 2°) where pg(2°) is a fitted unconditional
diffusion model and p(y | 2°) := p(y; 2°) is a pre-specified conditional likelihood model.

A diffusion model generates a data point 2° by iteratively refining a sequence of noisy data points z*, starting from pure
noise =7 This procedure parameterizes a distribution of ¥ as the marginal of a length T Markov chain

0
pe(xO) — /p(l‘T) H pe(xt I $t+1)dl_1:T’ (18)
=T—

t 1

where p(z7) is an easy-to-sample noise distribution, and each pg (2! | /1) is the transition distribution defined by the
(T — t)*® refinement step.

Diffusion models py are fitted to match a data distribution ¢(z") from which we have samples. To achieve this goal, a forward
process q(z°) [T}y q(«+! | 2*) is set to gradually add noise to the data, where g(z'+! | 2*) = A" (2'*1; 2%, 07,,), and
0%,...,0% is a sequence of variances. To fit a diffusion model, one finds 6 such that pp(z* | ') ~ g(x!|z'™1), which is
the reverse conditional of the forward process. If this approximation is accomplished for all £, and if 7" is big enough that

p(xT) ~ q(zT), then we will have py(z°) ~ q(z?).
In particular, when T is large enough then the reverse conditionals of ¢ are approximately Gaussian,
gz | 2™ = N (252" + 07V e log g(a'™), 0744 ) (19)

where g(2') = [ q(2°)g(a! | 2°)dz® and V,+ log q(z?) is known as the (Stein) score (Song et al., 2020). To mirror Eq 19,
diffusion models parameterize pg(x! | 21T1) via a score network sq(at,t)

po(z' | 2" = N (2% 2" + ofsp(a' Tt +1),07,4) . (20)
When sq (2!, t) is trained to approximate V¢ log q(x'), we have py(z* | z'*1) =~ g(a? | 21H1).

Notably, approximating the score is equivalent to learning a denoising neural network 2 (z?, ¢; ) to approximate E,, [2° | x].
The reason is that by Tweedie’s formula V. log ¢(z!) = &7 2(E,[z° | 2] — ) for 57 := 3_/,_, 0 and one can set
so(xt,t) == &; % (&o(2?, t;0) — ). For a detailed training procedure see (Ho et al., 2020; Vincent, 2011). For the remainder
of paper, we drop the dependence on 6 in Z(, and drop the argument ¢ in £ and s¢ when it is clear from context.

Sequential Monte Carlo. Sequential Monte Carlo (SMC) is a general tool to approximately sample from a sequence of
distributions on variables 27, terminating at a final target of the main interest (Gordon et al., 1993; Doucet et al., 2001;
Naesseth et al., 2019; Chopin and Papaspiliopoulos, 2020). SMC approximates these targets by generating a collection of K
particles {x,} —1.x across T steps of an iterative procedure. The key ingredients are proposals r7(z7), {r:(z! | x!+1)} 1!
and weighting functions wy (z7), {w;(x!, z+1)} /!, Atstep T, one draws 2} ~ r7(27) and sets w} := wr (] ), and
sequentially repeats the following for¢t =7 —1,...,0:

* resample {2t ~ Multinomial ({7 M {witHE )
* propose at ~ oy (at | ot
* weight wh = wy(2h, 2i).

The proposals and weighting functions together define a sequence of intermediate target distributions,

T—1 T-1
Ve (20T = /;i rr(aT) H ro (2t |xt'+1)] [wT(xT) H wy (a2t ) 1)
t

+'=0 t'=t

where £; is a normalization constant. For example, a classic SMC setting is where v is a target posterior p(z%7 | 3t:7T)
after the first 7' — ¢ observations in a filtering equation where p(z7') and each p(2! | 2!*1) and p(y' | x') are known but the
posterior is intractable. This example also points to the connection to diffusion and to our conditional sampling problem of

interest.
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Figure A. Errors of conditional mean estimations with 2 SEM error bars averaged over 25 replicates. TDS applies to all three tasks and
provides increasing accuracy with more particles.

The defining pr%perty of SMC is that the weighted particles at each ¢ form discrete approximations
(e wh) PR w;d,: (') (where § is a Dirac measure) to v;(z") that become arbitrarily accurate in the limit
that many particles are used (Chopin and Papaspiliopoulos, 2020, Proposition 11.4). So, by choosing r; and w; so that
vo(z") matches the desired distribution, one can guarantee perfect accuracy in the large compute limit.

However, for SMC to be practical with finite compute, the weights must be sufficiently regular. Otherwise when only a small
fraction of particles receive nontrivial weights, the rest will be discarded and the procedure provides a poor approximation
of the target distributions.

B. Empirical Results

We first test the dependence of the accuracy of TDS on the number of particles in synthetic settings with tractable exact
conditionals in Appendix B.1. We then demonstrate TDS’s utility on an MNIST class-conditional generation task in
Appendix B.2, and include an MNIST inpainting experiment in Appendix F. Finally, in Appendix B.3 we show that when
applied to an unconditional model of protein backbones, TDS provides state-of-the-art performance on the motif-scaffolding
problem. All experiment details are included in Appendix F.

Our evaluation includes: (i) TDS; (ii) TDS-IS, a variant of TDS without resampling steps; (iii) Guidance, equivalent to TDS
with 1 particle (e.g. Chung et al., 2023; Ho et al., 2022; Song et al., 2023); (iv) IS, the naive importance sampler described in
Equation (2); (v) Replacement method, a heuristic sampler for inpainting tasks that replaces =4 ; with a noisy version of the
observed x3, at each ¢ (Song et al., 2020); and (vi) SMC-Diff, an SMC algorithm with replacement method as proposals for
inpainting tasks (Trippe et al., 2023). TDS and SMC-Diff are implemented with sytematic resampling. In all experiments,
we follow the standard practice of returning the denoising mean on the final sample (Ho et al., 2020). See Appendix C for
detailed method descriptions and other related works.

Each of the SMC samplers (TDS, TDS-IS, IS, and SMC-Diff) forms a discrete approximation to pg(x° | 3/) with K weighted
particles {29, wO}K | ie. (Xh_ wd) 1 -8 w0 (x°). Guidance and replacement methods are considered to form
a similar particle-based approximation with K independently drawn samples viewed as K particles with uniform weights.

B.1. Synthetic diffusion models

We explore two questions in this section: (i) what sorts of conditioning information can be handled by TDS as well as other
baselines, and (ii) does TDS provide better conditional estimates?

To study these questions, we use an unconditional diffusion model py to approximate a bivariate Gaussian g, where pg is
defined by analytical score functions (see Appendix F). We consider three test cases defining the conditional information:
(i) Smooth likelihood: pg(x° | y = 0) o< pg(z°)p(y = 0;2°) where p(y; 2°) e~ ll2"=vll2; (ii) Inpainting: py (2% |y =1)
where y representing the first dimension of 20 is set to 1; and (iii) Inpainting with degrees-of-freedom: pg(2° |y = 0 or 1)
where y — first dimension of 2° — can be either 0 or 1.

For the above problems, our choice of the diffusion model permits tractable conditional distributions which we can use as
ground truth, and the exact score V. log q(z') is analytically available. Hence, we can analyze the performance without the
influence of score network approximation errors. And the choice of a two-dimensional target distributions permits very
close approximation of exact conditional distributions by numerical integration that can then be used as ground truth.
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Figure B. MNIST class-conditional generation. TDS generates a diverse set of desired digits, and has higher particle efficiency compared
to other SMC samplers. Notably, TDS with K = 2 particles outperform the Guidance baseline in terms of classification accuracy.

Figure A reports the estimation error for the mean of the desired conditional distribution, i.e. || Y wgz) — E,[2° | y]|2,
where we approximate E,[2° | y] numerically. TDS provides a computational-statistical trade-off: using more particles
decreases estimation error at a roughly O(1/ VK ) rate (note the slopes of ~ —1/2 in log-log scale) as expected from
standard SMC theory (Chopin and Papaspiliopoulos, 2020, Ch. 11). Moreover, TDS is applicable to all three different
conditioning problems, and consistently outperforms other baselines.

B.2. MNIST class-conditional generation

We move on to study the performance of TDS on diffusion models where neural network approximations to score functions
are employed. In particular, we study the class-conditional generation task on MNIST dataset, which involves sampling
an image of the digit from pp(2° | y) oc pe(2°)p(y; 2°), where ¥ is a given class of the digit, and p(y; -) denotes the
classification likelihood'. We compare TDS to TDS-IS, Guidance, and IS, all with 7" = 100 sampling steps. In addition we
include a variation called TDS-truncate that truncates the TDS procedure at ¢ = 10 and returns Zq(z°).

To assess the faithfulness of generation, we evaluate classification accuracy (CA) on predictions of conditional samples
20 given y, made by the same classifier that specifies the likelihood. Another metric used for comparing between SMC
samplers (namely TDS, TDS-IS and IS) is effective sample size (ESS) , which is defined as (Zszl wt)?/ (Zszl (w})?) for
K weighted particles {z%,w! }¥_,. Note that ESS is always bounded between 0 and K.

The results are summarized in Figure B. To compare generation quality and diversity, we visualize conditional samples given
class y = 7 in Figure Ba. Samples from Guidance have noticeable artifacts, and most of them do not resemble the digit 7,
whereas the other 4 methods produce authentic and correct digits. owever, most samples from IS or TDS-IS are identical.
By contrast, samples from TDS and TDS-truncate have greater diversity, with the latter exhibiting slightly more variations.

The ESS trace comparison in Figure Bb shows that TDS has a general upward trend of ESS approaching K = 64. Though
in the final few steps ESS of TDS drops by a half, it is still higher than those of TDS-IS and IS that deteriorates to around 1

'We trained an unconditional diffusion model on 60k training images with 1k diffusion steps and the architecture proposed in (Dhariwal
and Nichol, 2021), The likelihood id parameterized by a pretrained ResNet50 model taken from https://github.com/VSehwag/
minimal-diffusion. See Appendix F for details.
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Figure C. Dependence of TDS motif-scaffolding success rate (test case 5IUS) on (Left) number of particles, (Middle Left) number of
motif location degrees of freedom, (Middle Right) number of rotation degrees of freedom, and twist scale.

and 6 respectively.

Finally, Figure Bc depicts the classification accuracy of all methods against # particles K. For all SMC samplers, more
particles improve the accuracy, with K = 64 leading to nearly perfect accuracy. Given the same K, TDS and its variants
have similar accuracy that outperforms others. This observation suggests that one can use TDS-truncate to avoid effective
sample size drop and encourage the generation diversity, without compromising the performance.

TDS can be extended by exponentiating twisting functions with a twist scale. This extension is related to existing literature
of classifier guidance (eg. Dhariwal and Nichol, 2021) that exponentiates the classification likelihood. We conduct an
ablation study on twist scales, and find that moderately large twist scales enhance TDS’s performance especially for small
K. See Appendix F for details.

B.3. Protein design application: flexible conditioning and state-of-the-art motif-scaffolding

The biochemical functions of proteins are typically imparted by a small number of atoms (a motif), that are stabilized by the
overall protein structure, known as the scaffold (Wang et al., 2022). A central task in protein design, then, is to identify
stabilizing scaffolds in response to motifs known or theorized to confer biochemical function. Provided with a generative
model supported on physically realizable protein structures py(z"), suitable scaffolds may be constructed by solving a
conditional generative modeling problem (Trippe et al., 2023). Complete structures are viewed as segmented into a motif

xRy and scaffold 23, , i.e. 2° = [2}, 23, |. Putative compatible scaffolds are then identified by (approximately) sampling
from pg (g, | 231)-

While the conditional generative modeling approach to motif-scaffolding has produced functional, experimentally validated
structures for certain motifs, the general problem remains open. For example, on a recently proposed benchmark set of
motif-scaffolding problems, the state-of-the-art method (RFdiffusion, a conditionally trained diffusion model) provides low
in silico success on a majority of test cases (Watson et al., 2022). Moreover, current methods for motif-scaffolding require
a practitioner to specify of the location of the motif within the primary sequence of the full scaffold; this choice that can
require significant expert knowledge and trial and error.

We hypothesized that greater flexibility and improved motif-scaffolding could be achieved through accurate conditional
sampling. To this end, we applied TDS to FrameDiff, a Riemannian diffusion model that parameterizes protein backbones
as a collection of rigid bodies (Yim et al., 2023). 2

We first use TDS to address the requirement that motif location indices within the scaffold be specified in advance. While
prior work randomly sampled this variable (Trippe et al., 2023; Wang et al., 2022; Watson et al., 2022), TDS can eliminate
this degree of freedom and condition on the motif appearing at any combination of indices by applying the strategy described
in Section 2.3 (see Appendix G for details). We are similarly able to eliminate the rotation of the motif as a degree of freedom
as well. To circumvent the computational intractability of accounting for every possible motif location and orientation, we

2https ://github.com/jasonkyuyim/se3_diffusion
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subsample as needed; subsampling introduces the number of motif locations and rotations subsampled as a hyperparameter.
Notably conditional training does not immediately address these degrees of freedom.

We follow a self-consistency evaluation criteria of generated backbones described in (Trippe et al., 2023) that (i) uses fixed
backbone sequence design (inverse folding) to generate a putative amino acid sequence to encode the backbone, (ii) forward
folds sequences to obtain backbone structure predictions, and (iii) judges the quality of initial backbones by their agreement
(or self-consistency) with predicted structures. We inherit the specifics of our evaluation and success criteria set-up following
(Watson et al., 2022), including using ProteinMPNN (Dauparas et al., 2022) for step (i) and AlphaFold (Jumper et al., 2021)
on a single sequence (no multiple sequence alignment) for (ii). We first explore the impact of different hyper-parameters on
a single problem in the benchmark, 5IUS, before addressing the full benchmark set.

Figure C compares the impact of several TDS hyperparameters on success rates for a single motif (5IUS) from the
benchmark set (Watson et al., 2022). We found success rate to increase monotonically with the number of particles used,
with K = 16 providing a roughly 4 fold increase in empirical success rate (Figure C Left). Non-zero success rates in this
setting with FrameDiff required accounting for motif locations (Figure C Left uses 1,000 possible motif locations and 100
possible rotations). The success rate was 0% without accounting for these degrees of freedom, and increased with larger
numbers of locations and rotations (Figure C Middle-Left and Middle-Right). Larger twist-scales also gave higher success
rates on SIUS (Figure C Right), though we found this trend was not monotonic for all problems (see Appendix G).

We next evaluated TDS on a benchmark set of 24 motif-scaffolding problems and compare its success rates to the previous
state of the art, RFdiffusion (Watson et al., 2022). We ran TDS with K=1 and K=8 particles, twist-scale=2, and 100 rotations
and 1,000 motif location degrees of freedom (100,000 combinations total). TDS with 8 particles provides higher empirical
success than guidance on most benchmark problems, including two cases (5TPN and 7MRX_128) with zero success rate, and
two problems (6EXZ_long and 1QJG) on which the empirical success rate increased by at least 4-fold. We found variable
sample efficiency (quantified by ESS) in different settings (see Appendix G). We next compare performance too RFdiffusion
(Watson et al., 2022), the previous state of the art method. RFdiffusion operates on the same rigid body representation of
protein backbones as FrameDiff, but is conditionally trained for the motif-scaffolding task. TDS provides higher success
rates on half (11/22) of the problems on which either TDS and RFdiffusion have non-zero success rates. This performance
is obtained despite the fact that FrameDiff is not trained on this task.

The division between problems on which each method performs well is primarily explained by total scaffold length, with
TDS providing higher success rates on smaller scaffolds. TDS has higher success on 9/12 problems with scaffolds shorter
than 100 residues and 2/10 problems with 100 residue or longer scaffolds; the successes in this latter group (5UIS and
10JG) both have discontiguous motif segments, on which the motif-placement degrees of freedom may be particularly
helpful. We suspect the performance gap between TDS and RFdiffusion on longer scaffolds owes to (i) the underlying
model; long backbones generated unconditionally by RFdiffusion are designable (backbone scRMSD;2A) with significantly
higher frequency (Yim et al., 2023) and (ii) that unlike RFdiffusion, FrameDiff does not model and so can not condition on
the fixed motif sequence.

C. Related work

There has been much recent work on conditional generation using diffusion models. But these prior works demand either
task specific conditional training, or involve unqualified approximations and can suffer from poor performance in practice.

Approaches involving training with conditioning information. There are a variety of works that involve training a neural
network on conditioning information to achieve approximate conditional sampling. These works include
» Conditional training with embeddings of conditioning information, e.g. for denoising or deblurring lower resolution

images (Saharia et al., 2022b), and text-to-image generation (Ramesh et al., 2022)).

» Conditioning training with a subset of the state space, e.g. for protein design (Watson et al., 2022), and image inpainting
(Saharia et al., 2022a).

¢ Classifier-guidance (Song et al., 2020; Dhariwal and Nichol, 2021), an approach for generating samples from a diffusion
model that fall into a desired class. This strategy requires training a time-dependent classifier to approximate, for each
t, p(y | #*). Training such a time-dependent classifier may be inconvenient and costly.

¢ Classifier-free guidance (Ho and Salimans, 2022), an approach that builds on the idea of classifier-guidance but does



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Practical and Asymptotically Exact Conditional Sampling in Diffusion Models

not require training a separate classifier. Instead, this technique trains a diffusion model that takes class information as
additional input.

These conditionally-trained models have the limitation that they do not apply to new types of conditioning information
without additional training.

Reconstruction guidance. Outside of the context of SMC and the twisting technique, the use of denoising estimate Zo(x?, t)
to form an approximation pp (2 | 2171, y) to pg(at | 2'F1, y) is called reconstruction guidance (Ho et al., 2022; Chung et al.,
2023; Song et al., 2023). This technique involves sampling one trajectory from pg(z? | 21, y) from T — 1 to 1, starting
with 27 ~ p(zT). Notably, while this approximation is reasonable, there is no formal guarantee or evaluation criteria on
how accurate the approximations, as well as the final conditional samples z°, are. Also this approach has empirically been
shown to have unreliable performance in image inpainting problems (Zhang et al., 2023).

Replacement method. The replacement method (Song et al., 2020) is the most widely used approach for approximate
conditional sampling in an unconditionally trained diffusion model. In the inpainting problem, it replaces the observed
dimensions of intermediate samples x4, with a noisy version of observation x3;. However, it is a heuristic approximation
and can lead to inconsistency between inpainted region and observed region (Lugmayr et al., 2022). Additionally, the
replacement method is applicable only to inpainting problems. While recent work has extended the replacement method to
linear inverse problems (e.g. Kawar et al., 2022), the heuristic approximation aspect persists, and it is unclear how to further
extend to problems with smooth likelihoods.

SMC-Diff. Most closely related to the present work is SMC-Diff (Trippe et al., 2023), which uses SMC to provide
asymptotically accurate conditional samples for the inpainting problem. However, this prior work (i) is limited to the
inpainting case, and (ii) provides asymptotically accurate conditional samples only under the assumption that the learned
diffusion model exactly matches the forward noising process at every step. Notably, the assumption in (ii) will not be
satisfied in practice. Also, SMC-Diff does not leverage the idea of twisting functions.

D. Supplementary details on method

Algorithm 1: TDS: Twisted Diffusion Sampler

fork=1: Kdo
xf ~p(x’)

w;{ +— twist (x;‘g,T)

Algorithm 2: Twisting Functions

wy — PF
end 1 Function twist (z,%):
fort=7T—1,---,0do 2 L return p(y; o(z,t))
{23 o HE  ~Mult. ({2t HE s {wr ) 3 Function twist2 (z,¢,y,M):
fork=1:Kdo 4 § < Zo(w, t)m
sk G, (To(zpth) — 2t s | return N (y;7,07)
s}f skt Ven log i+t ¢ Function twist3 (x,t,y, M):
at~po(- | 2t y) =N (zfj’l + at2+1Sf777t2+1> 7| return M%:MtWiStz(a:’t’y’ M)

Yy, < twist (zf,1)

po (k| M)y

W < G0 7 —351—~
kS T B (ol | 2 Ly)

end
end
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TDS algorithm for variance exploding diffusion models. Our method developed in Section 2 is based on the variance
exploding (VE) diffusion models. To provide a brief summary, VE diffusion models define the forward process ¢ by

T
q(l‘LT | JJO) — Hq(xt | xt—l), q(mt | J,‘t_l) — N(.’I}t;l‘t_l,af)- (22)
t=1

where o7 is an increasing sequence of variances such that ¢(z7) ~ N(0,52), with 57 :== Y,_, 02 fort = 1,--- ,T. And
so one can set p(zT) = N(0,52). Equation (22) gives the marginal conditional g(z! | 2°) = N (x!;2°,52). The reverse
diffusion process py is parameterized as

1
po(@®™) i=p(a") [T po(="" |2"),  po(a™' | 2) := N (@' "s2" + 07s0(a", 1), 07) (23)
t=T

Zo(z?,t;0)—a’
—_— .

where the score network sy is modeled through a denoiser network & by sg(z,t) := =
t

The TDS algorithm for VE models is then described in Algorithm 1. Algorithm 2 covers twisting functions for different

conditioning cases described in Sections 2.2 and 2.3.

Extension to variance preserving diffusion models. Another widely used diffusion framework is variance preserving
(VP) diffusion models (Ho et al., 2020). VP models define the forward process ¢ by

T
q(z¥T | 20) = Hq(mt | 271, q(zt | 27 = N (2t 4 /1 — o2zt~ o) (24)
t=1
where o7 is a sequence of increasing variances chosen such that ¢(z7) ~ N(0, 1), and so one can set p(z1) = N(0,1
Define oy := 1 — 02, & := Hi,zl ay, and 62 := 1 — &;. Then the marginal conditional of Equation (22) is g(z! | 2°) =

N (xt; /a2, 52). The reverse diffusion process pyg is parameterized as

1

po (%1 == p(2T) H po(x' 1| 2h), pe(z't|at) == N(a' Tt Jaua! + ofse(at,t), 0F) (25)
t=T

— . ot o\t
where sy is now defined through the denoiser g by sg(2?,t) := —W
t

Varido(z ) —a

)
Oit1

>

TDS still applies to VP settings, with slight modifications of Algorithm 1 that Line 1 is changed to s;

and Line 1 is changed to x§ ~pg (- | 24, y):=N (‘/atﬂxffl + Ufﬂs}f,ntﬂl) :

Proposal variance. In Line 1 of Algorithm 1, the proposal variance is a hyperparameter 77 1. Unless otherwise specified,
we set )7, | == Vary, [z! | 2]

Resampling strategy. The mulinomial resampling strategy in Line 1 of Algorithm 1 can be replaced by other strategies.
In our experiments, we use the systematica resampling strategy.

In addition, one can consider setting an effective sample size (ESS) threshold (between 0 and 1), and only when the ESS is
smaller than this threshold, the resampling step is implemented. Unless otherwise specified, TDS is implemented with ESS
threshold equal to 1, i.e. always resampling.

D.1. Derivation of Equation (14)

We here provide a derivation of Equation (14), which illustrated how one can interpret the extended intermediate targets
v¢(2%T") as approximations to the final target py (27 | y) that become increasingly accurate as t approaches 0. We obtain
Equation (14) by substituting the proposal distributions in Equation (9) and weights in Equation (13) into Equation (21) and
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simplifying.
T—1

v (297 o -p(xT) ﬁ po(zt | xt'“w)} [15(2/ 12" ] = pe(xt//\ xt/jl)‘ﬁe(y |,xt/) ]
t'=0

L 56 T D paa? | 275, y)

Rearrange and cancel py and py terms.

= [p") ] po(a” th/“)] lpe y|a") Hpe Clat )]

L t'=t

Group pg terms by chain rule of probability.
t—1
= po(@T)poly | ') [ Bl |2, y)
#=0
Apply Bayes’ rule and note that py(y | °7) = pg(y | 2?).

. pOQw
x po(aT | ) ' prx )

t—1
Multiply by ] pa(z" | 2", y)/pe(a” | 2" y) = 1.
t'=0
t—1 t t+1
0T | ) poly | =) Hp =" y)
y|l‘t xt|xt+1y)

= Pa(ﬂc
o P

The final line is the desired expression.

D.2. Asymptotic accuracy of TDS - additional details and theorem statement

In this section we (i) characterize sufficient conditions under which TDS provides arbitrarily accurate estimates as the
number of particles is increased and (ii) discuss when these conditions will hold in practice.

We begin with a theorem providing sufficient conditions for asymptotic accuracy of TDS.

Theorem D.1. Let po(2%7T) be a diffusion generative model (defined by Equations (18) and (20)) with
po(zt | 2T =N (xt | ot O't2+189(l‘t+1),0'152+11) ,
with variances 03, . . .,0%. Let pg(y | x%) be twisting functions, and
(et | 2 = N (2! | 2+ oy [se (") + Ve log Bo(y | )], 0740 1)

be proposals distributions fort = 0,...,T — 1, and let Py = Zszl wgéwg for weighted particles {(z,w{)}_, returned
by Algorithm I with K particles. Assume

(a) the final twisting function is the likelihood, py(y | 2°) = p(y; 2°),

(b) the first twisting function pg(y | 1), and the ratios of subsequent twisting functions py(y | 2)/pe(y | 1) are
positive and bounded,

(c) each V4 log pe(y | 2t) with t > 0 is continuous and has bounded gradients, and

(d) the proposal variances are larger than the model variances, i.e. for each t, n? > o?.

Then Py converges weakly to pe(x° | y) with probability one, that is for every set A, limp o P (A) = I4 po (20 | y)da®

The assumptions of Theorem D.1 are mild. Assumption (a) may be satisfied by construction by, for example, choosing

Po(y | 2°) = p(y; 2°) by enforcing that £ (2?) = 2.
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Assumption (b) that py(y | 27) and each pg(y | 2*)/pg(y | x1*1) are positive and bounded will typically be satisfied too; for
example, p(y; ) is smooth in = and everywhere positive, and if £ (') takes values in some compact domain. An alternative
sufficient condition for the positive and bounded condition is for py(y | 2°) to be positive and bounded away from zero; this
will typically be the case when, for example, p(y|z°) is a classifier fit with some sort of regularization.

Next, Assumption (c) is the strongest assumption. It will be satisfied if, for example, if p(y; ) and £q(z*) are smooth in x
and x*. While smoothness of & can be encouraged by the use of skip-connections and regularization, particularly at ¢ close
to zero, this £y may present sharp transitions.

Lastly, Assumption (d), that the proposal variances satisfy 77 > o7 is likely not needed for the result to hold, but permits
using existing SMC theoretical results in the proof; in practice, our experiments use 777 = o7, but alternatively the assumption
could be met by inflating each 7, by some arbitrarily small § without markedly impacting the behaviour of the sampler.

Proof of Theorem D.1: Theorem D.1 characterizes a set of conditions under which a standard result on the convergence
of SMC algorithms. We restate this result below in our own notation, which differs from the alternative presentations in, for
example, the reversal of time indices.

Theorem D.2 (Chopin and Papaspiliopoulos (2020) — Proposition 11.4). Let {(x?,w))}X_, be the particles and weights
returned at the last iteration of a sequential Monte Carlo algorithm with K particles using multinomial resampling. If each
weighting function wy(xt, x**1) is positive and bounded, then for every bounded, vy-measurable function ¢ of x*

K
: 04(,.0\ _ 0 0Y,7,.0
dim 3 upota)) - [ otatm(a®)aa
with probability one.

An immediate consequence of Theorem D.2 is the weak (i.e. set-wise) convergence of the discrete measures, Py =
Zszl wgéwg. This can be seen by taking for each ¢(x) = I[x € A] for any set A. The theorem applies both in the Euclidean

setting, where each 2, € R”, as well as the Riemannian setting.

We now proceed to prove Theorem D.1.

Proof. To prove the theorem we show (i) the 2° marginal final target vq is pg(z | 7) and then (ii) Px converges weakly to
vy.

We first show (i) by manipulating v in Equation (21) to obtain py (:cO:T | ¥). From Equation (21) we first have

r T—1 T T—1
. 1 ’ ’ ’ ’
Z/Q(IIJO'T) _ ? T(.Z‘T) H ’I“t/(l‘t | .Z‘t +1) [wT(xT) H ’U)t/(LIJt ,Jit +1)1
0 =0 i =0
Substitute in proposals and weights from Eqs .

i p(xT)ji:[lrt(:ct | xt+1)] o(y | 27 H Pe a [ )Py (y | =) ]

= [,0 - P y | rt+l Tt(l‘t | xt-&-l)

Rearrange pg and r; terms, and cancel out 7; terms.
r T—1

_ L 1 RAPRES I I PR, ry (2t )Po(y | =*)
o _p( )L[Ope( | )] _pe(y\ )tgﬁe(yw“)W]

Collapse pyg terms, rearrange and cancel pg terms.

= [HW Po(y | )

Recognize py(y | %) = p(y | 2°) by Assm.(a) and apply Bayes’ rule with £y = pg(y)
= po (2”7 | y).

The final line reveals that once we marginalize out 2" we obtain (%) = p(2° | y) as desired.
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We next show that Py converges to v by applying Theorem D.2. To apply Theorem D.2 we need only to confirm that the
weights at each step are upper bounded. Since there are a finite number of steps 7, it is enough to show that each w; is
bounded. The first weight is the first twisting function, wr(xT) = pg(y | ), which is bounded by Assumption (b). So we
proceed to intermediate weights.

To show that the weighting functions at subsequent steps are bounded, we decompose the log-weighting functions as
t+1 )

~ t t
t+1):10g po(y | ") ] po(z' |z

lo t
gur(e,@ Poly [cHF) T 108 (et [ 2P

and show independently that log pg(y | zt)/Pe(y | 1) and log pe (2t | xtT1) /7y (x? | 2'T1) are bounded. The first term
log po(y | %) /Pe(y | z'*1) is again bounded by Assumption (b), and we proceed to the second.
That log pg (! | xtT1) /7y (2! | 2'1) is bounded follows from Assumptions (c) and (d). First write

po(a’ | &) = N (' | 10841 )

with fi = 21 + 67 sp(x' "), and
Tt(xt | xtJrl) = N (xt | ﬂwantz+1j) )
for fiy, = fi + 07, Vs log po(y | 1), The log-ratio then simplifies as

o 15 | ot 1172 exp{=Cot,) i — o' )
ri(xt [ 2tth) 207y I|=1/2 exp{=(2n7, 1) Iy — 217}
Rearrange and let C' = log |2waf+1f|*1/2/|27r77t2+11|71/2
-1

= = ol — 2112 = il — 2?) + C
Expand and rearrange [, — a*| = [[it — 2" > + 2(ivy, — fus o — 2*) + ljsg, — ]

-1 _ _ N 9 . JUN . .
= [0 = mf)li = 217 = 2003 g — o = 2) = nalliiy — %] + C
1
Let C'=C — §7it2+1||/1¢ — 1]|? and rearrange
-1

= 7(05-21 — )l — a2t

2 = - a2ty + O
Apply Cauchy-Schwarz

-1 o P . .
< (o =)l = 217 + ngilli = gl - Nl = 2" + ¢
, . —a , b?
Upper-bounding using that maXg -2 + bz = %"
a
1 (072 i — D2
<L (nt-i-igui/i _/;II) Lo
2 oh—ma
nd
_ t+1 ||A a2 C/
=52 oAy — A7+
2(04 7 — M)
ol
1 -
= N%U?HIIVZ log pe(y | xt)HQ +C
(01 — M)

< C//

The final line follows from Assumption (c), that the gradients of the twisting functions are bounded. The above derivation
therefore provides that each w; is bounded, concluding the proof. O

E. Extending Twisted Diffusion Sampler to Riemannian diffusion models

This section provides additional details on the extension of TDS to Riemannian diffusion models introduced in Section 2.
We begin with some background on Riemannian diffusion models. Then we describe the extension of TDS to these models.
Finally we show how Algorithm 1 modifies to this setting.
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Riemannian diffusion models. Unconditional generation in Riemannian diffusion models proceeds through a geodesic
random walk (De Bortoli et al., 2022).

At each step ¢, 2? is sampled from a tangent normal distribution (see e.g. (Chirikjian and Kobilarov, 2014; De Bortoli et al.,
2022)) as
at ~p(at | 2" = TN e (25 07s0(2"), 07) (26)

In particular we use TN 41 (zt; 1, 02) with ¢ and 2**! in the manifold, 1 € T,.+1 (the tangent space at x'*1), and
o2 > 0 to denote the density of z* implied by a two step procedure. The first step is to sample a variable ' in T,c41; if

{h1,...,hp} is an orthonormal basis of 7 :+1 one may generate
D
~t 2 t+1
' =o0p,,59(x 4 E 1164 - ha,
d=1

with e "% A7(0, 1). The second step is to project ¢ back onto the manifold to obtain ¢ = exp,.4: {Z'} where exp, {-}
denotes the exponential map at x.

TDS for Riemannian diffusion models. To extend TDS, appropriate analogues of the twisted proposals and weights are
all that is needed. For this extension we require that the diffusion model is also associated with a manifold-valued denoising
estimate 2, as will be the case when, for example, sq(z¢,t) := V.« logq(z! | z° = &) for &o(z?, ). In contrast to the
Euclidean case, a relationship between a denoising estimate and a computationally tractable score approximation may not
always exist for arbitrary Riemannian manifolds; however for Lie groups when the the forward diffusion is the Brownian
motion, tractable score approximations do exist (Yim et al., 2023, Proposition 3.2).

For positive and differentiable py(y | z*), we again choose pg(y | zt) = p(y; Zo(z?)).

Next the inpainting and inpainting with degrees of freedom cases. Here, assume that 29 lives on a multidimensional manifold
(e.g. SE(3)") and the unmasked observation y = x%—/l with M C {1,..., N} on a lower-dimensional sub-manifold (e.g.
SE(3)MI with M < N). In this case, twisting functions are constructed exactly as in Section 2.3, except with the normal
density in Equation (15) replaced with a Tangent normal.

We propose the twisting function and twisted proposal
Po(y | ") =T Nzt (4t (y;0,57) and o (2’ | ', y)=TN per (25071802 y), 07 27)
where as in the Euclidean case sg(x!,y) = so(z?) + Ve log p(y | t).

Note that the tangent Normal as we have defined it involves a change of variables (the exponential map). Therefore, to
compute its density exactly one must compute the Jacobian of the exponential map. However since this term always occurs
both the numerator and denominator of the weights, it cancels out at each step and so we do not need to compute it.

Weights at intermediate steps are computed as in the Euclidean case (Equation (13)). However, since the tangent normal
includes a projection step back to the manifold, its density involves not only usual Gaussian density but also the Jacobian
of the exponential map to account for the change of variables. For example, in the case that the ambient dimension of the
manifold and the tangent space are the same dimension,

)

TN(2's p,0%) = N(exp, {z'}; 1, 07)

0 -1 /
%expz {{E}

where exp, 1 {2’} is the inverse of the exponential map at z from the manifold into 7, and ] % exp, H{a’ }’ is the determinant
of its Jacobian. The weights are then computed as
toot41y . po(z’ [ 2" )Py (y | o)
w(zt, 2" ) = = S A (28)
Po(y | 2t )po(at | 2+, y)
_ TN gerr (2 0152+136(55t+1)a Ut2+1)259(y | 2') (29)
Po(y | o) TN pena (2t 07,y so (2t y), nf 1)
While the proposal and target contribute identical Jacobian determinant terms that cancel out, they remain in the twisting
functions.
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Figure D. Errors of conditional mean estimations with 2 SEM error bars averaged over 25 replicates on mixture of Gaussians unconditional
target. TDS applies to all three tasks and provides increasing accuracy with more particles.

Adapting the TDS algorithm to the Riemannian setting. To translate the TDS algorithm to the Riemannian setting
we require only two changes. The first is on Algorithm 1 Line 1. Here we assume that the score is computed through the
transition density functions of the the forward processed used when training the diffusion model as

so(a',t) = Vi logq | o(z' | #9) for &g = Zo(a’).

Line 1 is then replaced with
s < Vg log g | o(zh | Z0) for 29 = @o(xk).

Notably, s (and similarly sZ on the next line) is a 7,:-valued Riemannian gradient.

The second change is to make the proposal on Algorithm 1 Line 1 a tangent normal, as defined in Equation (26).

F. Results supplementary details
F.1. Synthetic diffusion models

Forward process. Our forward process is variance preserving (as described in Appendix D) with 7' = 100 steps and a
quadratic variance schedule. We set 07 = 02, + (&)%02,, witho2, =10"°and 02, = 1071

min T max max

Unconditional target distributions. We evaluate the different methods with two different unconditional target distribu-
tions:

1. A bivariate Gaussian with mean at (3, 3) and covariance 0.9 and

2. A Gaussian mixture with three components with mixing proportions [0.3,0.5,0.2],, means
[(1.54,—0.29), (—2.18,0.57), (—1.09, —1.40)], and 0.2 standard deviations.

Unconditional target distributions. We evaluate using three different conditional distributions:

1. Smooth likelihood, with p(y; 2°) = exp{—||z°},
2. Inpainting corresponding to p(y; 2°) = 6, (z7), fory = 0 and
3. Inpainting with degrees-of-freedom corresponding to p(y; 2°) = 6, (%) + 0, (29 — 1).

Figure D provides results analogous to those in Figure A but with the mixture of Gaussians unconditional target. In this
second example we evaluate a with a variation of the inpainting degrees of freedom case wherein we consider y = 1 and

M = {[1],[2]}, so that p(y; 2°) = 5, (2?) + 6, (29).
F.2. MNIST experiments

Setup. We set up an MNIST diffusion model using variance preserving framework. The model architecture is based on the
guided diffusion codebase’, with the following specifications: number of channels = 64, attention resolutions = 28,14,7”,

*https://github.com/openai/guided-diffusion
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number of residual blocks = 3, learn sigma (i.e. learning the variance of py (xt’l | xt)) = True, resblock updown = True,
dropout = 0.1, variance schedule = "linear”. We trained the model for 60k epochs with a batch size of 128 and a learning
rate of 10~* on 60k MNIST training images. The model uses 7" = 1000 for training and 7' = 100 for sampling.

The classifier used for class-conditional generation and evaluation is a pretrained ResNet50 model #. This classifier is trained
on the same set of MNIST training iamges.

F.2.1. MNIST CLASS-CONDITIONAL GENERATION

Sample plots. To supplement the sample plot conditioned on class 7 in Figure Ba, we present samples conditioned on
each of the remaining 9 classes. The observations are similar to Appendix B.2.

Ablation study on twist scales. We consider exponentiating and re-normalizing twisting functions by a twist scale 7, i.e.
setting new twisting functions to pg(y | 2'; ) o p(y; Zo(z'))?. In particular, when ¢ = 0, we set p(y; 2%; ) o p(y; 2°)7.
This modification suggests that the targeted conditional distribution is now

po(z° | y;7) o po(z®)p(y; 2°). (30)

By setting v > 1, the classification likelihood becomes sharper, which is potentially helpful for twisting the samples towards
a specific class. The TDS algorithm (and likewise TDS-IS and Guidance) still applies with this new definition of twisting
functions. The use of twist scale is similar to the classifier scale introduced in classifier-guidance literature, which is used to
multiply the gradient of the log classification probability (Dhariwal and Nichol, 2021).

In Figure F, we examine the effect of varying twist scales on classification accuracy of TDS, TDS-IS and Guidance. We
consider two ways to evaluate the accuracy. First, classification accuracy computed by a neural network classifier, where the
evaluation setup is the same as in Appendix B.2. Second, the human-rated classification accuracy, where a human (one of
the authors) checks if a generated digit has the right class and does not have artifacts. Since human evaluation is expensive,
we only experiment with TDS (K = 64, 2), TDS-IS (K = 64, 2) and Guidance. In each class-conditional generation run,
we randomly sample one particle out of K particles according to the associated weights. We conduct 64 runs for each class
label, leading to a total of 640 samples for evaluation.

Figure Fa depicts the classification accuracy measured by a neural network classifier. We observe that in general larger twist
scale improves the classification accuracy. For TDS and TDS-IS, the improvement is more significant for smaller number of
particles K used.

Figure Fb depicts the human-rated accuracy. In this case, we find that larger twist scale is not necessarily better. A moderately
large twist scale (v = 2, 3) generally helps increasing the accuracy, while an excessively large twist scale (7 = 10) decreases
the accuracy. An exception is TDS with K = 64 particles, where any v > 1 leads to worse accuracy compared to the case
of v = 1. Study on twist scale aside, we find that using more particles K help improving human-rated accuracy (recall that
Guidance is a special case of TDS with K = 1). And TDS and TDS-IS with K = 64 and v = 1 both have almost perfect
accuracy. This observation is consistent with previous findings with neural network classifier evaluation in Appendix B.2.

We note that there is a discrepancy on the effects of twist scales between neural network evaluation and human evaluation.
We suspect that when overly large twist scale is used, the generated samples may fall out of the data manifold; however,
they may still retain features recognizable to a neural network classifier, thereby leading to a low human-rated accuracy
but a high classifier-rated accuracy. To validate this hypothesis, we present samples conditioned on class 6 in Figure G.
For example, in Figure Ge, Guidance with v = 1 has 31 good-quality samples out of 64, and the rest of the samples often
resamble the shape of other digits, e.g. 3,4,8; and Guidance with v = 10 has 34 good-quality samples, but most of the
remaining samples resemble 6 with many artifacts.

F.2.2. MNIST INPAINTING
The inpainting task is to sample images from py (2 | 23; = y) for some observed y, where 2% = [23, 2%, ] is separated

into observed dimensions M and unobserved dimensions M, as described in Section 2.3.

In this experiment, we consider two types of observed dimensions: (1) M = “half”, where the left half of an image is
observed, and (2) M = “quarter”, where the upper left quarter of an image is observed.

“Downloaded from https://github.com/VSehwag/minimal-diffusion
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(a) Classification accuracy (measured by the neural network classifier) v.s. number of particles K, under different twist scales. Results are
averaged over 1k random runs with error bands indicating 2 standard errors. Across the panels we see that for all the methods, the larger
the twist scale (i.e. the darker the line color), the higher the classification accuracy. For TDS and TDS-IS, this improvement is more
significant for smaller value of K,
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(b) Human-rated classification accuracy v.s. twist scale, for TDS (K = 64, 2), TDS-IS (K = 64, 2) and Guidance. Results are averaged
over 640 randomly chosen samples with error bands indicating 2 standard errors. For TDS (K = 2), TDS-IS (K = 64, 2) and Guidance,
a moderate increase in twist scale improves the human-rated accuracy; however, excessively large twist scale can hurt the accuracy. For
TDS (K = 64), increasing the twist scale generally decreases the human-rated accuracy.

Figure F. MNIST class-conditional generation: classification accuracy under different twist scales, computed by a neural network classifier
(top panel) and a human (bottom panel).

We run TDS, TDS-IS, Guidance, SMC-Diff, and Replacement to inpaint 10k validation images. We also include TDS-
truncate that truncates the TDS procedure at t = 10 and returns 2 (z'%).

For TDS and its variants, twisting functions are defined by twist2 in Algorithm 2, with the modification that the variance

~2 _
o7 in line 5 is replaced by other rwist scales ;. Here we set v = 54—, where 67 := % and 72 = 0.12 is the
t

population variance of z° estimated from training data.

Metrics. As in Appendix B.2, we use effective sample size (ESS) to compare the particle efficiency among different SMC
samplers (namely TDS, TDS-IS, and SMC-Diff).

In addition, we ground the performance of a sampler in the downstream task of classifying a partially observed image
x3; = y: we use a classifier to predict the class 2 of an inpainted image 2, and compute the accuracy against the true
class z* of the unmasked image (z* is provided in MNIST dataset). This prediction is made by the same classifier used in

Appendix B.2.

Consider K weighted particles {x0; w?} 1 generated from a sampler conditioned on 23, = y and assume the weights are
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(c) TDS-IS (K = 64). # of good-quality samples counted by a human is 62, 61, 64, 64, 61, from left to right.
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(e) Guidance. # of good-quality samples counted by a human is 31, 38, 41, 39, 34, from left to right.

Figure G. MNIST class-conditional generation: random samples selected from 64 random runs conditioned on class 6 under different

twist scales. Top to bottom: TDS (K = 64), TDS (K = 2),

, moderately

TDS-IS (K = 64), TDS-IS (K = 2) and Guidance. In general

large twist scales improves the sample quality. However, overly large twist scale (e.g. 10) would distort the digit shape with more artifacts,

though retaining useful features that may allow a neural network classifier to identity the class.
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Figure H. MNIST image inpainting. Results for observed dimension M = “half” are shown in the top panel, and M = “quarter” in the
bottom panel. (i) Left column: ESS traces are averaged over 100 different images inpainted by TDS, TDS-IS, and SMC-Diff, all with
K = 64 particles. TDS’s ESS is generally increasing untill the final 20 steps where it drops to around 1, suggesting significant particle
collapse in the end of generation trajectory. TDS-IS’s ESS is always around 1. SMC-Diff has higher particle efficiency compared to
TDS. (ii) Right column: Classification accuracy and Bayes accuracy are averaged over 10k images. In general increasing the number of
particles K would improve the performance of all samplers. TDS and TDS-truncate have the highest accuracy among all given the same
K. (iii) Finally, comparison of top and bottom panels shows that in a harder inpainting problem where M = “quarter”’, TDS’s has a higher
ESS but lower CA and BA.

normalized. We define the Bayes accuracy (BA) as

K
1{2(y) =2"}, with Z2(y):= argmaxZwﬁp(z;x%), 3D

z=1:10 1

where Z(y) is viewed as an approximation to the Bayes optimal classifier Z*(y) given by

£"(y) = argmaxpy(z | 23y = y) = arg max / po(2” | 2}y = y)p(z;2°)da”. (32)
(In Equation (32) we assume the classifier p(-; 2°) is the optimal classifier on full images.)
We also consider classification accuracy (CA) defined as the following

K
Zw%]l{é(a:g) = 2%}, with 2(2)) := argmaxp(z;2Y). (33)
b—1 z=1:10

BA and CA evaluate different aspects of a sampler. BA is focused on the optimal prediction among multiple particles,
whereas CA is focused on the their weighted averaged prediction.

Comparison results of different methods. Figure H depicts the ESS trace, BA and CA for different samplers. The overall
observations are similar to the observations in the class-conditional generation task in Appendix B.2, except that SMC-Diff
and Replacement methods are not available there.

Replacement has the lowest CA and BA across all settings. Comparing TDS to SMC-Diff, we find that SMC-Diff’s ESS is
consistently greater than TDS; however, SMC-Diff is outperformed by TDS in terms of both CA and BA.
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Figure I. MNIST image inpainting: Ablation study on twist scales. Top: observed dimensions M = “half”’. Bottom: M = “quarter”. In
most case, the performance of our choice of twist scale is similar to that of IIGDM, and is better compared to DPS.

We also note that despite Guidance’s CA is lower, its BA is comparable to TDS. This result is due to that as long as Guidance
generates a few good-quality samples out of K particles, the optimal prediction can be accurate, thereby resulting in a high
BA.

Ablation study on twist scales. We compare the following three twist scale schemes:

1. DPS: v := 2||#o(2)Mm — yl||20?2, adapted from (Chung et al., 2023) (see Algorithm 1).
2. TIGDM: v, := 02 /\/ay, adapted from (Song et al., 2023) (see Algorithm 1).

~2 9 _
3. Ours: y; := =t where 67 := 1=% and 72 = (.12 is the population variance of z° estimated from training data.
t G472 t ay

Figure I shows the classification accuracy of TDS, TDS-IS and Guidance with different twist scale schemes. We find that
our choice has similar similar performance to that of IIGDM, and outperforms DPS in most cases. Exceptions are when M
= “quarter” and for large K, TDS with twist scale choice of IIGDM or DPS has higher CA, as is shown in the left panel in
Figure Ib.

G. Supplementary motif-scaffolding methodological details

Unconditional model of protein backbones. We here use the FrameDiff, a diffusion generative model described by Yim
et al. (2023). FrameDiff parameterizes protein N-residue protein backbones as a collection of rigid bodies defined by
rotations and translations as z° = [(Ry, 21),..., (R, 2n)] € SE(3)N. SE(3) is the special Euclidean group in three
dimensions (a Riemannian manifold), each R,, € SO(3) is a rotation matrix and each z,, € R? in a translation. Together,
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R,, and z,, describe how one obtains the coordinates of the backbone atoms C, C' — «, and N for each residue by translating
and rotating the coordinates of an idealized residue with C' — « carbon and the origin. The conditioning information is then
amotif y = 2%, € SE(3)™! for some M C {1,..., N}. FrameDiff is a continuous time diffusion model and includes the
number of steps as a hyperparmeter; we use 200 steps in all experiments. We refer the reader to (Yim et al., 2023) for details
on the neural network architecture, and details of the forward and reverse diffusion process.

Twisting on SE(3)"N. We use the Riemannian extension of TDS in Appendix E with twisting functions defined as
po(y | ) =TN M (xt) (y;0,52). Because this approximation has isotropic covariance it factorizes across rotations and
translations; for the translations (for the forward diffusion is variance preserving) the tangent normal is simply a usual normal
distribution. For the rotational component of the twisting functions, in constructing the twisting functions we approximate
the log density of the tangent normal using a the squared Frobenius norm, which provides a close approximation for ¢ close
to 0 (Watson et al., 2022). When running TDS, we use an effective sample size threshold of K /2 in all experiments; that is,
we trigger resampling steps only once the effective sample size computed from intermediate weights drops below half the
number of particles, as is commonly done to improve efficiency of SMC algorithms (see e.g. Naesseth et al., 2019, Chapter
2.2.2). See supplementary code for implementation details.

Evaluation details. For our self-consistency evaluation we use ProteinMPNN (Dauparas et al., 2022) with default settings
to generate 8 sequences for each sampled backbone. Positions not indicated as resdesignable in (Watson et al., 2022,
Methods Table 9) are held fixed. We use AlphaFold (Jumper et al., 2021) for forward folding. We define a “success” as a
generated backbones for which at least one of the 8 sequences has backbone atom with both scRMSD ; 1 A on the motif and
scRMSD ; 2 A on the full backbone. We benchmarked TDS on 24/25 problems in the benchmark set introduced (Watson
et al., 2022, Methods Table 9). A 25th problem (6VW1) is excluded because it involves multiple chains, which cannot be
represented by FrameDiff. Because FrameD1i f f requires specifying a total length of scaffolds. In all replicates, we fixed
the scaffold the median of the Total Length range specified by Watson et al. (2022, Methods Table 9). For example,
116 becomes 125 and 62-83 becomes 75.

G.1. Additional degrees of freedom in motif location, rotation, and translation

Prior motif-scaffolding approaches have required of pre-specification of the location of the motif within the final scaffold,
translation and rotation of the motif (Trippe et al., 2023; Wang et al., 2022; Watson et al., 2022). However, these nuisance
degrees of freedom are ancillary to the biochemical function of a motif, which is determined by its internal geometry. We
sought to eliminate these degrees of freedom by applying and extending the approach described in Section 2.

Motif locations degrees of freedom. We eliminate degrees of freedom associated with motif locations, by treating the
sequence indices as a mask M and applying Equation (17). Because the number of motif placements grows combinatorially
with number of residues in the backbone and motif, we (i) restrict to masks which place the motif indices in a pre-specified
order that we do not permute, and (ii) when there are still too many possible placements sub-sample randomly to obtain M
of at most some maximum length. When motif specifications include multiple contiguous residues from the same chain in
the source PDB file we do not separate them. For each offset considered, we constrain the ordering of the motif segments,
but do not enforce the spacing between segments specified in the “contig” description (Watson et al., 2022).

Motif orientation and translation degrees of freedom. To eliminate the translational degree of freedom, we simply
remove the center of mass from the provided motif and the motif residues when computing the likelihood by redefining
p(y; 2°, M) = 6,5 (2%; — 20 ). To eliminate the rotational degree of freedom, we wish to condition on the event that
there exists a rotation R such that y = R(z3; — 2% ). Then the likelihood becomes p(y; z°, M) = [ pr(R)d,(Rz3;)dR,
where pr(R) is the uniform distribution on the manifold of rotation matrices (the Haar measure). Because we cannot
compute this integral exactly, we use an M sample Monte Carlo approximation from which we define the twisting function
aspo(y | 2t) := M1 2%21 Po(y | %5 Ry, M), with R, “d pr. We use the same collection of R,,,’s for each particle and
each step of generation. We suspect that future work may be able to handle this integral more accurately, and with greater
compute efficiency, or eliminate the need for approximately including this integral altogether, by for example aligning

predictions on the motif.
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Figure J. Results on full motif-scaffolding benchmark set. The y-axis is the fraction of successes across 200 replicates. Error bars are -2
standard errors of the mean.
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Figure K. Increasing the twist-scale has a different impact across motif-scaffolding benchmark problems.

G.2. Additional Results

Full benchmark results. Figure J compares the success rates of TDS with K = 8 and K = 1 particles to RFdiffusion on
the benchmark set of 24 problems.

Impact of twist scale on additional motifs. Figure C showed monotonically increasing success rates with the twist-scale.
However, this trend does not hold for every problem. Figure K demonstrates this by comparing the success rates with
different twist-scales on five additional benchmark problems.

Effective sample size varies by problem. Figure L shows two example effective sample size traces over the course
of sample generation. For 6EXZ-med resampling was triggered 38 times (with 14 in the final 25 steps), and for 5UIS
resampling was triggered 63 times (with 13 in the final 25 steps). The traces are representative of the larger benchmark.

Application of TDS to RFdiffusion: We also tried applying TDS to RFdiffusion (Watson et al., 2022); RFdiffusion is
a diffusion model that uses the same backbone structure representation as FrameDiff, and because it was trained with a
mixture of conditional and unconditional training examples we reasoned that TDS should apply to RFdiffusion as well (when
conditioning information if not provided as input). However, we were unable to compute numerically stable gradients (with
respect to either the rotational or translational components of the backbone representation); this lead to twisted proposal
distributions that were similarly unstable and trajectories that frequently diverged even with one particle. We suspect this
instability owes to RFdiffusion’s structure prediction pretraining and limited fine-tuning, which may allow it to achieve good
performance without having fit a smooth score-approximation.
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Figure L. Effective sample size traces for two motif-scaffolding examples (Left) 6EXZ-med and (Right) 5IUS. In both case K = 8 and
a resampling threshold of 0.5K is used. Dashed red lines indicate resampling times.



