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Abstract

Vision-language models (VLMs) often struggle on specialized tasks requiring fine-grained
image understanding due to inadequate task-specific text annotations in the training data.
We introduce MM-GEN, a framework for data curation that improves VLM performance
on such tasks guided by four principles: coverage of task subgroups, diversity of examples,
quality of annotations, and informational value. Given reference samples from the target task,
keywords enumerating task subgroups, and a pool of candidate images, MM-GEN implements
a multi-stage process: (1) partitioning data by subgroup to ensure coverage, (2) generating
diverse annotations via in-context learning for each subgroup using corresponding reference
samples, and (3) applying perplexity-based filtering to ensure high quality annotations while
prioritizing examples that provide novel information to the model. When fine-tuning Llava-
1.5 (7B) with our generated data, we achieve absolute improvements of 15%, 14%, and 29%
on chart understanding, diagram interpretation, and spatial reasoning tasks, respectively.
Moreover, our filtering approach enables discarding 50% of the data without performance
loss. Our results confirm that task-specific text curation is indeed the critical bottleneck
in VLM performance, and MM-GEN provides a principled and generalizable solution that
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can be applied to any image-understanding task with minimal human intervention. Code
available at https://github.com/sjoshi804/MM-Gen.

1 Introduction

Although vision language models (VLMs) excel at many multimodal tasks (Liu et al., 2023),
they often struggle with more complex challenges requiring fine-grained understanding of
image details (Balachandran et al., 2024; Fu et al., 2024; Kamath et al., 2023). We argue
this limitation stems from training data quality; while VLMs are trained on rich web-scraped
images, the accompanying text descriptions frequently lack relevance to the image (Nguyen
et al., 2024) or omit crucial details necessary for complex reasoning (Lai et al., 2024a).
Fig. 1 demonstrates this problem with examples where web captions fail to capture essential
information for chart understanding, spatial reasoning, and diagram interpretation tasks.

Recent work has addressed data quality through synthetic caption generation (Nguyen et al.,
2024; Lai et al., 2024a; Yu et al., 2024). However, these approaches remain task-agnostic
and cannot guarantee that task-relevant details are preserved. Shi et al. (2024) manually
curated a dataset for multimodal mathematical question-answering by enhancing existing
data with detailed annotations using strong VLMs, but such manual curation—including
sourcing questions from high-quality mathematical multimodal datasets and crafting specific
prompts to diversify them—requires substantial human effort and domain expertise, limiting
scalability across diverse applications (Masry et al., 2024; Zhang et al., 2024).

To address these limitations, we introduce MM-GEN, a principled framework for auto-
matically generating task-relevant text annotations for images with minimal human effort.
By automating this process in a generalizable way, MM-GEN enables VLMs to perform
better across specialized tasks—an essential step toward their broader deployment and
adoption. Our approach is guided by key principles established in prior data curation
literature (Muennighoff et al., 2025; Joshi and Mirzasoleiman, 2023; Mirzasoleiman et al.,
2020): (1) Coverage—ensuring all task-relevant subgroups are represented in the train-
ing data; (2) Diversity—incorporating varied examples to represent each subgroup; (3)
Quality—ensuring examples contain accurate and coherent information; and (4) Informa-
tiveness—prioritizing examples that provide novel information to the model. Achieving
each criterion presents significant challenges. As established in (Rolf et al., 2021; Shahbazi
et al., 2023), ensuring comprehensive subgroup representation remains particularly difficult.
Moreover, achieving genuine diversity with synthetic data generation has been a persistent
challenge across modalities and training algorithms (Chang et al., 2023; Zhu et al., 2025;
Norman and Whitney, 2024; Rotstein et al., 2023; Lai et al., 2024b; Fan et al., 2024; Yu
et al., 2024). Finally, ensuring quality and informativeness of datasets in open problem in
machine learning (Mindermann et al., 2022; Joshi and Mirzasoleiman, 2023; Zhao et al.,
2024) and hasn’t been tackled before for VLMs.

MM-GEN achieves these 4 desiderata through a multi-stage process requiring: (i) a small set
of reference samples from the target task, (ii) a list of associated image types (subgroups), and
(iii) a pool of candidate images. The framework first partitions both reference examples and
candidate images by subgroup, ensuring coverage across all categories. For each subgroup,
MM-GEN generates tailored text annotations by conditioning a strong VLM on randomly
sampled reference examples, yielding greater diversity than traditional natural language
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prompting. MM-GEN then applies perplexity-based filtering to remove both high-perplexity
outliers (likely incoherent or incorrect) and low-perplexity examples (providing minimal
learning signal), thus ensuring quality while maximizing informativeness. This systematic
and generalizable approach enables significant performance improvements on any image
understanding task.

Chart Understanding Spatial Reasoning Diagram Understanding
-vy;::s/ A, T
\ \/
¥ oo i
\/ o |
Internet  poverty rate in Alaska in the United medium resolution of britain around There are Igneous, Metamorphic and Sedimentary
Caption  states from 2000 to 2023 ad 800 Rock
What was the highest percentage of the Q: Which kingdom is located to the Q: What type of rock forms directly from magma
MM-Gen population recorded in the given years? northwest of Mercia? Options: after a volcanic eruption? A. Sedimentary rock B.
A:11.2% [Northumbria, Wessex, Dyfed, Gwent] Igneous rock C. Metamorphic rock D. Sediment*
A: Northumbria A: B. Igneous Rock

Figure 1: Examples of general text captions vs. task-specific text annotations generated by
MM-GEN and used for fine-tuning supervision.

We evaluate MM-GEN on three challenging fine-grained image understanding tasks: chart
understanding, diagram interpretation, and spatial reasoning on maps. Using Llava-1.5
as our base model, MM-GEN enables absolute improvements of 15%, 14%, and 29% on
these tasks for the 7B parameter version. The gains extend to larger models (Llava-1.5
13B) as well, as we see absolute improvements of up to 20% across tasks. Moreover, our
perplexity-based filtering reduces data volume by up to 50% while maintaining or improving
performance, demonstrating its effectiveness for training VLMs. Models trained with MM-
GEN data consistently outperform those using generic captions or annotations generated
without task-specific references. We also conduct ablation studies on reference sample set
size, subgroup partitioning, and in-context sample scaling.

In summary, our contributions are:

1. Demonstrating task-aware text annotations significantly outperform task-agnostic
approaches for VLM finetuning

2. Establishing that specifying the task in a data-centric manner (i.e. using reference
examples), rather than natural language instructions, better achieve coverage and
diversity in generated annotations

3. Showing perplexity-based filtering effectively balances data quality and efficiency

4. Creating a scalable pipeline that improves VLM performance by up to 30% across
multiple tasks with minimal human intervention
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2 Related Work

Synthetic Data Generation for Multimodal Models: Existing approaches to synthetic
data generation for VLMs fail to explicitly target all four critical desiderata: coverage,
diversity, quality, and informativeness. Nguyen et al. (2024) highlighted the low quality of
web-scraped captions, demonstrating their inadequacy for tasks requiring fine-grained visual
understanding. Subsequent approaches such as synthetic caption generation (Rotstein et al.,
2023; Lai et al., 2024b; Fan et al., 2024; Yu et al., 2024) typically focus on prominent objects
but lack the necessary coverage of task-specific details. Recent work combining real and
synthetic data using stronger VLMs (Li et al., 2023a; Chen et al., 2023b; Liu et al., 2023)
achieve limited diversity but depend heavily on human expertise for prompt engineering,
hampering scalability. MiniGPT-4 (Zhu et al., 2023) attempts to improve quality through
strong VLMs but relies on labor-intensive manual filtering that becomes impractical at scale.
Task-specific approaches like MathLLava (Shi et al., 2024) and ChartInstruct (Masry et al.,
2024) require substantial human oversight to ensure adequate quality and coverage, but their
specialized nature restricts generalizability. Critically, no existing method systematically
addresses informativeness by identifying the examples that provide the strongest learning
signal. In contrast, MM-GEN addresses all four critical criteria: (1) comprehensive coverage
of task-relevant details, (2) sufficient diversity in generated annotations, (3) effective quality
control without manual intervention, and (4) informativeness through principled filtering.

Synthetic Data Generation for Training LMs: Recent works (Eldan and Li, 2023;
Gunasekar et al., 2023; Li et al., 2023b; Abdin et al., 2024; Mukherjee et al., 2023; Dubey
et al., 2024) demonstrated LMs’ effective pre-training on synthetic data, while (Mitra
et al., 2023, 2024) highlighted synthetic task-specific data’s efficacy for specialized tasks.
These approaches focus exclusively on text, neglecting multimodal data generation’s unique
challenges, particularly ensuring comprehensive coverage of task-relevant visual details
through the text annotations. MM-GEN is the first such method for VLMs.

Data Filtering Methods Filtering techniques span supervised learning (Coleman et al.,
2019; Toneva et al., 2018; Swayamdipta et al., 2020; Paul et al., 2021; Katharopoulos and
Fleuret, 2018; Mirzasoleiman et al., 2020; Pooladzandi et al., 2022; Killamsetty et al., 2021),
self-supervised learning (Joshi and Mirzasoleiman, 2023; Tripathi et al.), multimodal con-
trastive learning (Joshi et al., 2024; Evans et al., 2024; Fang et al., 2023; Abbas et al., 2023;
Maini et al., 2024), and generative LMs (Marion et al., 2023; Tirumala et al., 2023; Zhou
et al., 2024; Chen et al., 2023a; Yang et al., 2023b). However, these have not been applied
to filtering multimodal generative data for VLMs. We adapt filtering from (Marion et al.,
2023) to discard up to 50% of generated data while maintaining performance.

3 Problem Formulation

Our objective is to generate text annotations for a given pool of candidate images, to improve
performance, of a given VLM, on a target task T'. Let a multimodal sample be denoted as
s = (v,t), where v represents an image and t represents the associated text (both the text
prompt and text response). Let V%OOl denote the provided pool of candidate images, e.g., a
corpus of chart images, and Nge, the number of multimodal samples we wish to curate. Let
St be a small (| S5 | = n < Ngen) set of reference samples that is representative of the task
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T. This set serves as a reference for the text that is relevant for task 7T. In practice, this
could be samples from the validation set of a dataset for chart understanding like ChartQA
(Masry et al., 2022). Additionally, let typest denote a list of the types of images associated
with the task. For tasks like chart understanding, which have several different types of
images, typest could include bar charts, line charts, and pie charts. The goal then is to use
Sref V?}OOl, and typest to generate Ngen multimodal samples for fine-tuning a given VLM,
to improve performance on task 7. To generate annotations, we assume access to a stronger
VLM, i.e., one with higher performance than the given VLM on target task T .

4 MM-Gen Overview

In this section, we first motivate the need for task-specific text annotations through an
empirical case study. We then present MM-GEN: our framework for generating task-specific
text annotations that satisfy all four desiderata for effective dataset curation: coverage,
diversity, quality, and informativeness. Importantly, MM-GEN is designed to generalize to
any task with minimal human supervision.

4.1 Challenge of Coverage in Task-Agnostic Text Annotations (Case Study on
MS COCO)

We demonstrate how even high-quality human-crafted text annotations can fail to provide
adequate coverage of visual elements critical for downstream tasks. MS COCO (Vinyals et al.,
2016) is widely regarded as a high-quality, large-scale dataset commonly used for training
image captioning models (Santurkar et al., 2023; Nguyen et al., 2024). Each image includes
5 manually crafted descriptive captions, with annotators explicitly instructed to describe ’all
relevant details.” Despite these rigorous annotation guidelines, Figure 1 reveals significant
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Figure 2: Even high-quality human-curated captions (MS COCQO) have poor coverage for
many visual details

gaps in coverage. Notably, 25% of object categories appearing in images are mentioned
in the accompanying captions only 25% of the time (meaning they are omitted 75% of
the time). For downstream tasks that depend on recognition of these under-represented

1. In practice, this can be a VLM specialized on the task of interest (e.g., a VLM specialized for object
detection if the task is detection), a general stronger model than the model of interest or a combination
of these.
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categories, even MS COCOQO’s ”high-quality” captions provide inadequate supervision. This
analysis highlights that carefully curated but task-agnostic text annotations frequently
miss information important for tasks requiring specific visual details. This is not simply a
long-tail problem (Changpinyo et al., 2021); these visual elements are present in many images
but omitted in the corresponding text. For example, descriptive captions of charts might
thoroughly describe their general appearance but omit crucial details like minimum/maximum
values, temporal trends, or specific data points—precisely the information needed for chart
understanding tasks.

4.2 MM-Gen: Design

We now introduce MM-GEN: an automated framework to generate text annotations that
provide task-specific supervision while satisfying all four key dataset curation principles.
Using chart understanding as exemplified by the ChartQA (Masry et al., 2022) dataset as our
running example, we describe how MM-GEN addresses each of the four desiderata. Our goal
is to improve Llava-1.5-7B (Liu et al., 2023) using a stronger VLM such as GPT-4 (OpenAl,
2023). The inputs to MM-GEN are:

1. Reference Sample Set SrTef: Examples from the ChartQA validation set
2. Types of Images typesy: [’bar chart’, ’pie chart’, ’line chart’]

3. Candidate Image Pool V%OOI: Corpus of chart images containing bar charts, pie charts,
and line charts

4.2.1 COVERAGE: PARTITIONING DATA INTO SUBGROUPS

Problem Multimodal tasks often span diverse image types, each requiring attention to
different visual elements. Generic approaches to dataset curation frequently fail to adequately
cover all task-relevant visual details across the full spectrum of image types. Generating
text annotations without considering image subgroups can lead to uneven representation
and neglect of critical visual elements in certain image categories.

Solution: Partitioning Data into Subgroups To address this coverage challenge, we
partition both the reference sample set and candidate image pool into distinct subgroups
based on the image types specified as typest before generating text annotations. This ensures
that MM-GEN explicitly generates text annotations for all subgroups in the downstream task,
guaranteeing coverage. We rely on predefined keywords in typest rather than automated
image clustering for this partitioning. This design choice is deliberate: direct image clustering
can lead to groupings based on spurious correlations (Yang et al., 2023a) (e.g., a bar chart
and a pie chart with similar color schemes might be grouped together). Such correlations,
while visually apparent, are not semantically meaningful for the task and will not guarantee
coverage of task-relevant subgroups. By using explicit type keywords, we ensure the
partitioning aligns with semantically meaningful distinctions that matter for the downstream
task.

Implementation We leverage CLIP’s (Radford et al., 2021) zero-shot classification capabil-
ities to partition images according to typest. We encode texts from typest with CLIP’s

text encoder fr and images from St and V%OOI with its vision encoder fi,. Each image is
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assigned to the text category with the highest cosine similarity:

k* =arg max Sc(fv(v), fr(k))
ketypest
where v represents the image and k refers to the k-th text in typesp. This produces
partitioned reference samples and candidate pools:

ref ref pool pool
S_USTkva_UVTk

ketypes ketypest

4.2.2 DIVERSITY: GENERATING TEXT ANNOTATIONS USING REFERENCE SAMPLES

Problem Fixed natural language instruction templates inevitably lead to homogeneous text
annotations that fail to capture the full range of ways task-relevant information might be
expressed. This lack of diversity limits the robustness of models trained on such data, as
they may overfit to a limited set of annotation patterns and fail to generalize.

Solution: Reference-Based Text Annotation Generation Rather than relying on
natural language task descriptions, we employ a data-centric approach that leverages the
diversity of a representative set of reference samples to specify the task to a stronger VLM. By
prompting the VLM with varied reference samples, we ensure the generated text annotations
are diverse. Importantly, this significantly reduces human effort—rather than crafting highly
detailed natural language instructions, simply selecting a small number of reference samples
(e.g., a subset of the validation set) is sufficient.

Implementation For each subgroup (Sﬁ?}f, V%ZOI), we generate text annotations by randomly
sampling a reference sample from the subgroup to serve as an in-context learning example
alongside a candidate image. For each subgroup, we generate a fraction of the target
dataset size Ngen proportional to that subgroup’s representation in the reference set, thereby
maintaining the natural distribution of the task while ensuring diverse examples within each
category.

4.2.3 QUALITY AND INFORMATIVENESS: FILTERING USING PERPLEXITY

Problem A key challenge in using a stronger VLM to generate training annotations
lies in ensuring both the quality and informativeness of the resulting dataset. Despite
being more capable, the stronger VLM may still produce malformed, incorrect, or low-
quality examples, which can degrade the training signal and ultimately harm downstream
performance. Simultaneously, many generated annotations may already be correctly handled
by the VLM we aim to improve, making them uninformative for training and leading to
inefficient use of computational resources.

Solution: Perplexity-Based Filtering Prior work has typically relied on manual filtering
or highly specialized prompts for LLM-Judges (Shi et al., 2024) to ensure the quality
of generated datasets, with less focus on maximizing informativeness. However, manual
curation requires significant human effort and becomes prohibitively expensive at scale,
while designing effective prompts for LLM-judges demands considerable expertise and
still requires multiple resource-intensive model runs. Instead, we address both quality
and informativeness simultaneously using lightweight perplezity-based filtering, drawing
inspiration from techniques used in LLM pre-training (Marion et al., 2023). Perplexity
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A: Six A: A:11.2%
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Figure 3: Examples of different text perplexity values mapped to easy cases (low perplexity),
outliers that are likely malformed or incorrect (high perplexity), and meaningful, non-trivial
questions (middle perplexity). Questions with middle perplexity are most likely to provide
1) informative and 2) high-quality training signal.

measures how well an auto-regressive model predicts a given sequence of tokens. Intuitively,
it captures the model’s uncertainty or surprise over the generated text. Our approach retains
only examples with middle perplexity as measured by the VLM we are training. Examples
with high perplexity are, by definition, those that the model finds highly improbable—often
due to being outliers or containing malformed or incorrect content. Since the stronger
VLM is generally reliable, such high-perplexity cases are likely artifacts or noise in the data.
Discarding these examples helps ensure the resulting dataset is of higher quality. Conversely,
examples with low perplexity correspond to prompts and answers that the current (weaker)
VLM can already predict confidently. These examples provide little new learning signal and
are thus uninformative for training. Removing them improves efficiency by focusing training
on more challenging, beneficial cases.

As illustrated in Figure 3, middle-perplexity examples strike the right balance: they are
difficult enough to challenge the current model and provide new learning signal, yet not so
difficult that they are likely to be erroneous. These examples are thus the most valuable for
fine-tuning.

Implementation Perplexity is defined as

1 n
exp <—n210gP(wi | wl,..-7wi—1)> '
=1

For each generated example, we compute the perplexity of the text response, conditioned
on the image and text prompt, using the VLM we wish to improve. Empirically, we retain
50% of the generated data (the middle-perplexity examples), which demonstrates significant
gains in both performance and efficiency across tasks.

Through this systematic, principled approach to dataset curation that directly addresses
each desideratum, MM-GEN satisfies all four key requirements—-coverage, diversity, quality,
and informativeness—resulting in synthetic datasets that enable significant performance
improvements across diverse visual understanding tasks.
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Figure 4: Comparing different baselines for multimodal data generation with MM-GEN.
MM-GEN not only customizes the generated text to the task via reference samples, but it
also adds missing details to the text that are required for answering the task.

5 Experiments

Tasks. We evaluate MM-GEN on 3 complex multimodal tasks, requiring fine-grained
understanding of details in the images, that several existing VLMSs struggle on: 1) chart
understanding & reasoning, 2) diagram understanding, and 3) spatial reasoning on maps.
Although we evaluate MM-GEN on these three currently challenging tasks, it is a general
method that can be applied to any visual understanding task without modification.

Chart Understanding and Reasoning: We use ChartQA (Masry et al., 2022) to evaluate the
ability of a model to understand and reason over chart-based visualizations. As inputs to
MM-GEN, we have: 1) Reference Samples: the validation set of ChartQA (=~ 1K samples);
2) Types of Image: determined from dataset description as [‘bar chart’, ‘line chart’,
‘pie chart’]; 3) Candidate Image Pool: 15K images of charts taken from the ChartQA
training set. With these inputs, we curate 150K multimodal samples and retain 75K after
filtering.

Diagram Understanding: We use AI2D Diagrams (AI2D) (Kembhavi et al., 2016) to asses a
model’s diagrammatic understanding using grade-school science diagrams and associated
multiple-choice questions about the relationships and components in these diagrams. As
inputs to MM-GEN, we have: 1) Reference Samples: a random subset of size 100 sampled from
AI2D’s training set; 2) Types of Image: determined as [‘physics diagram’, ‘biology
diagram’, ‘chemistry diagram’, ‘geography diagram’] from the dataset description;
3) Candidate Image Pool: approximately 5K diagram images taken from the training images
of AI2D. With these inputs, we curate a total of 100K multimodal samples and retain 50K
after filtering.

Spatial Reasoning on Maps: We use SpatialMap (Wang et al., 2024) to test the spatial
reasoning capabilities of VLMs on maps by requiring them to answer questions on cardinal
directions (e.g., North, South, East, West) and reasoning about the relationships between
different landmarks in the map. As inputs to MM-GEN, we have: 1) Reference Samples:
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Figure 5: Comparison of MM-GEN performance across tasks against contributed baselines
and skyline.

the validation set of SpatialMap; 2) Types of Image: determined from dataset description
as [‘map’]; 3) Candidate Image Pool: 1K images of maps retrieved from DataComp-
Small (Gadre et al., 2024) using CLIP embedding search. With these inputs, we curate 50K
multimodal samples and retain 25K after filtering.

5.1 Analysis of Performance of across Tasks

Baselines and Skyline. Since MM-GEN is the first framework for curating task-specific
multimodal samples, we contribute baselines and a skyline to evaluate its effectiveness. We
use GPT-40 (OpenAl, 2023) as the stronger VLM to generate the text annotations. Exact
inputs and generated examples appear in App. A. We enumerate them below:

1. Base Model: This refers to the initial performance of the VLM, before any additional
training.

2. Task-Agnostic Captions: This baseline uses task-agnostic text annotations generated by
a stronger VLM for the candidate image pool. This tests the importance of coverage of
task-relevant details, as traditional caption generation methods do not specifically target
the details needed for the target visual understanding tasks.

3. Task-Specific Text Annotations (No Reference Images): This baseline uses text annotations
generated by a stronger VLM to be task-specific using a natural language description of each
task. These descriptions are obtained from the original dataset descriptions (?Kembhavi
et al., 2016; Wang et al., 2024). This comparison tests the effectiveness of achieving diversity
and coverage through natural language instructions versus reference samples (MM-GEN).
4. Skyline — Training on i.i.d. Training Data: The skyline refers to i.i.d. training data
(curated manually by humans) specifically for the target task that includes task-relevant
details; it provides a performance benchmark for MM-GEN to approach or surpass by
representing the upper bound of what can be achieved with high coverage, diversity, quality,
and informativeness in the training data. Each of the three tasks we consider, in addition to
test data, also provides i.i.d. training data, which we use as the skyline. For (1) CHARTQA,
this consists of ~30K chart images with associated chart understanding question-answers; for
(2) AI2D, ~ 5K grade school diagram images paired with diagram understanding questions;

10



MM-GEN: PRINCIPLED AND GENERALIZABLE DATA CURATION FOR VLMSs

1.0
Base Model (LLava-1.5-13B)
mm MM-Gen (50% Filtered)

0.8

0.59 0.59

Accuracy
o
>

=]

S
=
W
©

0.31

0.2 0.18

0.0 Task: SpatialMap Task: ChartQA Task: AI2D

Performance across Tasks

Figure 6: Evaluation on Llava-1.5 (13B Parameters)

and for (3) SPATIALMAP, we generate ~15K map images paired with spatial reasoning
questions-answers using the test provided data generation scripts.

Models. As the target VLM to improve, we use Llava-1.5 (7B parameters) (Liu et al.,
2023), comparing the performance of the base model (before training on any additional
data) to that of training on the data curated by the aforementioned baselines, the skyline
and MM-GEN. To investigate the effectiveness of our approach across model sizes, we
additionally evaluate MM-GEN on Llava-1.5 (13B parameters). Further details in Appendix
D.

Fig. 5 shows that MM-GEN significantly improves upon the base model across all three
tasks, and either closes the gap with or surpasses the skyline performance. On CHARTQA,
MM-GEN achieves an absolute improvement of 15% over the base model, reaching 0.5x
of the skyline’s gain. On AI2D, it achieves a 14% absolute improvement and exceeds the
skyline, achieving 1.6 x the improvement that the skyline provides. Finally, on SPATIALMAP,
MM-GEN shows a 29% absolute improvement over the base model, reaching 0.4x of the
skyline’s gain. A qualitative comparison of all baselines is shown in Fig. 4.

Across all three tasks, MM-GEN consistently outperforms baseline 2 (task-agnostic captions),
underscoring the critical importance of coverage—i.e., including task-relevant details in
the annotations. Qualitative examples in Fig. 4 reveal that task-agnostic captions often
overlook features essential for specialized tasks such as chart understanding or spatial
reasoning. MM-GEN also outperforms baseline 3 (task-specific annotations derived from
natural language instructions), further emphasizing the value of specifying the task in a
data-centric manner—namely, through reference samples—rather than relying solely on
textual descriptions. The shortcomings in baseline 3 highlight how difficult it is to capture
the full scope of task-relevant information via natural language alone.

In addition to coverage, we also observe substantial improvements in diversity. Manual
inspection of the generated data reveals that both baselines suffer from limited diversity
in their annotations (cf. Appendix C). Despite being task-aware, baseline 3’s instructions
yield annotations that are often repetitive and formulaic, failing to capture the full range of
variation and nuance inherent in the tasks. This lack of diversity can lead to overfitting,
ultimately reducing the model’s ability to generalize. In contrast, MM-GEN generates
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diverse annotations that reflect the variability present in the reference sample set, resulting
in better generalization across tasks.

Thus, MM-GEN is not only more effective but also more adaptable, as it does not require
extensive human effort to craft detailed task descriptions. Notably, on both CHARTQA and
SPATIALMAP, baselines 2 and 3 even degrade performance relative to the base model—an
outcome we attribute to their poor coverage and diversity.

Beyond coverage and diversity, MM-GEN also excels in ensuring high quality and infor-
mativeness through its perplexity-based filtering strategy. Across all three tasks, the 50%
filtered MM-GEN dataset achieves performance nearly equivalent to that of the full, unfil-
tered dataset—while requiring only half the training resources. This demonstrates that our
filtering strategy effectively removes predominantly uninformative or low-quality examples.
Notably, on AI2D, we observe a slight performance gain after filtering, highlighting the
ability of MM-GEN’s filtering to identify higher-quality data that can outperform even a 2x
larger, less curated set. On SPATIALMAP, the modest 3% drop in performance in filtered
data performance can be attributed to the higher diversity in MM-GEN’s unfiltered dataset.
This diversity arises from the nature of the task, where questions involving pairs or groups of
objects scale combinatorially with the number of objects on the map, allowing for significant
diversity in MM-GEN’s unfiltered generated text annotations.

Finally, we note that the magnitude of MM-GEN’s absolute improvements over the base
model varies across tasks, which can be attributed to the differing levels of difficulty the base
model faces in each setting. This is reflected in the wide range of base accuracies observed.
The relative improvements compared to the skyline also vary, primarily due to differences
in the size and quality of the skyline datasets. For example, on SpatialMap, the skyline
performance is near-perfect, as the skyline data is created programmatically using the same
code used to generate the test set and is thus perfectly i.i.d. In contrast, on AI2D and
ChartQA, where data is curated by humans, the correspondence between training and test
data is necessarily weaker. Moreover, the AI2D skyline dataset is relatively small (~ 5K),
which may contribute to its limited improvement. Despite these differences, MM-GEN
consistently narrows the gap to skyline performance, demonstrating that for real-world
tasks, it can curate task-relevant training data that is nearly as effective as human-curated
datasets—while requiring only minimal human effort i.e. collecting a small set of reference
samples, candidate images, and determining the image types.

Fig. 6 shows that, across all tasks, MM-GEN can even improve models as large as Llava-1.5
(13B Parameters). In fact, the resulting performance, across tasks, is even higher than that
achieved by Llava-1.5 (7B parameters) in Fig. 5. This shows that MM-GEN curated data
can help boost performance of relatively stronger VLMs as well, utilizing their superior
initial performance to achieve even higher performance, on target tasks.

Performance on Control Tasks In Table 1, we show that training on MM-GEN data,
to improve performance on a given target task, does not affect performance on other tasks
(control tasks). Here, we use MMMU (Yue et al., 2024) to represent these tasks as it is
considered a comprehensive evaluation of VLMs across many domains.

Combining Data from All Tasks We also consider training Llava-1.5 (7B) in Table 2 on
a combination of data generated by MM-GEN for all tasks and observe that it can simultane-
ously improve performance across all three tasks. This demonstrates how MM-GEN can be
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Table 1: Effect of Performance on Control Tasks (MMMU)

Model | Accuracy (%)
Base Model 35.8
MM-GEN (ChartQA) 33.6
MM-GEN (AI2D) 37.0
MM-GEN (SpatialMap) 34.1

Table 2: Performance of Training on Combined MM-GEN Data.

Model | Base Model (%) | MM-Gen All (%)

ChartQA 18.2 25.9
AI2D 55.2 65.7
SpatialMap 18.2 44.2

used to design datasets that achieve better coverage, diversity, quality and informativeness,
to train holistically more performant VLMs.

5.2 Ablations

Here, we conduct ablations for MM-GEN on the chart understanding task (ChartQA). We
vary different components of text annotation generation, and compare performance training
on the resulting data. We do not filter the data here to isolate the differences in text
generation.

Importance of Partitioning into Subgroups: Here, we investigate the importance
of the partitioning into subgroups performed by MM-GEN prior to data generation by
comparing performance with and without partitioning on ChartQA. As shown in Table
3, partitioning contributes a non-trivial 2% of the total 15% improvement that MM-GEN
achieves. This highlights the value of explicit subgroup partitioning in ensuring coverage
across all task-relevant variations.

Effect of Number of In-Context Samples: We assess the impact of varying the number
of in-context samples provided to the stronger VLM during generation. As seen in Table
3, increasing the number of in-context samples from 1 to 3 actually decreases the final
performance, likely due to the limitations of current VLMs on mutli-image understanding
(Meng et al., 2024). This suggests that, currently, for maximizing and diversity, a single
well-chosen reference example is sufficient and potentially optimal.

Effect of Reference Sample Set Size: Here, we compare the performance of MM-GEN
using a 10x smaller reference sample set. Table 3 shows that MM-GEN can still achieve

Table 3: Ablation Study on MM-GEN using ChartQA

Ablation | Accuracy (%)
MM-GEN 33.0
MM-GEN without Partition 31.6
MM-GEN with 3 In-Context Samples 30.5
10x Smaller Reference Set 32.8
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nearly identical performance, highlighting how even a very small number of reference data
is sufficient to ensure adequate coverage and diversity. This further demonstrates the
efficiency of our approach in minimizing human effort while maintaining effectiveness.

6 Conclusion

We introduced MM-GEN, a scalable and fully automated framework for curating task-specific
multimodal data to improve small vision-language models (VLMs) on specialized tasks.
MM-GEN addresses four key desiderata—coverage, diversity, quality, and informa-
tiveness—through a multi-stage process that takes in a small set of reference samples,
image subgroup labels, and candidate images. It partitions data by subgroup, uses a strong
teacher VLM to generate diverse, task-aligned annotations, and applies perplexity-based
filtering to retain high-quality, informative examples. MM-GEN delivers up to 29% absolute
improvements over the base model and can even outperform human-curated data by 1.6x,
highlighting its effectiveness when manual curation is infeasible. These findings emphasize
the promise of targeted, automated text enrichment for multimodal learning. Future direc-
tions include curriculum-based multi-task training and improving teacher signal via model
ensembles and answer verification.
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Broader Impact Statement

This work advances the field of Machine Learning by exploring synthetic data generation
techniques to enhance Vision-Language Model performance. While our approach contributes
to improved model capabilities and efficiency, we acknowledge that generating synthetic
data using existing models may perpetuate or amplify societal biases present in the training
data of those models. These inherited biases could affect the downstream performance
and fairness of systems utilizing our methods. We encourage future work to investigate
techniques for measuring and mitigating bias propagation in synthetic data generation
pipelines. Additionally, practitioners implementing these methods should carefully consider
the potential implications for fairness and representation in their specific applications.
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Appendix A. Exact Input to Stronger VLM and Generated Text
Annotations

Exact Prompt to Stronger VLM

You are an expert in <name of task e.g. chart understanding / diagram
understadning / spatial reasoning>. Given example image-question-answer
tuples,

your task is to generate diverse high-quality question-answer pairs relevant

to this skill similar to the provided examples.

Step-by-Step Process:

1. Analyze the Example: Review the provided example question-answer pair to
understand the structure, focus, and context.

2. Understand the New Image: Infer relevant details, objects, and themes in
the new image, considering how they relate to the skill.

3. Generate Questions: Create questions that reflect the context and
content of the new image, ensuring they align with the skill and follow
the example’s style.

4. If the question is a multiple-choice question, make sure to include the
options in the question.

5. Formulate Answers: Generate accurate and concise answers to the
questions. Ensure each answer directly corresponds to the content of
the new image.

Output Format:

Return the results as a JSON list of objects. Each object should include:
- "Q": The generated question (include options if it’s multiple-choice).
- "A": The generated answer.

Example Output:

[
{"Q": "Generated question 1", "A": "Generated answer 1"},
{"Q": "Generated question 2", "A": "Generated answer 2"}

<Refererence Sample>

<Candidate Image>

Figure 7, Figure 8 and Figure 9 show examples generated by MM-GEN for chart under-
standing, diagram understanding and spatial reasoning on map, respectively.
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Projected mismanaged plastic waste in 2
- 55

! and transport by

R _ o

\re\anﬂl 14,045 tones
Gusdsioupe. I

Otonnes 50,000 tonnes 100,000 tonnes

0tonnes 200,000 tonnes

Sours: Jambeck t s (2015 ceny

Q: Which country is projected to have the highest
amount of mismanaged plastic waste in 2025? A:
Ireland B: Guadeloupe C: Dominican Republic

A: C: Dominican Republic

Q: What is the projected amount of mismanaged
plastic waste for the Dominican Republic in 2025?
A: 228,671 tonnes B: 14,045 tonnes C: 11,502
tonnes

A: 228,671 tonnes

Public Sees Weak Economic Recovery

The economy is ...

24%
i oy =
butnot so atall
1%
8% DK
Recovering
strongly

PEW RESEARCH CENTER

Q: Which category represents the largest
percentage in the survey? A: Recovering strongly
B: Not recovering at all C: Recovering, but not so
strongly D: DK

A: C: Recovering

Q: What percentage of respondents believe the
economy is not recovering at all? A: 24% B: 8% C:
67% D: 1%

A: 24%

Chinese and Russian Views of Each
Other Diverge

100%
ch

2007 2009 2011 2013 2015

PEW RESEARCH CENTER

Q: What was the percentage of China's favorability
in Russia in 20157 A: 60% B: 66% C: 79% D: 51%
A: C: 79%

Q: Between 2007 and 2015, which year had the
lowest favorability rating for Russia in China? A:
2007 B: 2009 C: 2011 D: 2015

A: 2011

Figure 7: Examples Generated by MM-GEN for Chart Understanding

rat

grass — rabbit — snake

fruit tree —caterpillar ——small bird

Q: Which organism is at the base of the food web?
A. Grass B. Rabbit C. Snake D. Hawk
A: A. Grass

Q: What is the primary prey for the hawk in this
food web? A. Rabbit B. Snake C. Rat D. Caterpillar
A: B. Snake

Q: Which organism directly consumes the
caterpillar? A. Hawk B. Small bird C. Snake D. Rat
A: B. Small bird

Load—Lightbulb ————
(energy conversion )

Source—Single Dry Cell
) to heat/light)

(chemical energy)

Conductors—Wires
——

Control—On-Off Switch >

Q: What is the component labeled 'Source' in the
diagram? A: Lightbulb B: Single Dry Cell C: On-Off
Switch D: Wires

A: B. Single Dry Cell

Q: What type of energy conversion happens in the
lightbulb in the diagram? A: Mechanical to
chemical B: Electrical to thermal\ C: Chemical to
electrical D: Energy conversion to heat/light

A: D. Energy conversion to heat/light

North Pole

Tropic of Cancer

Sunlight
Tropic of Cepricorn

Antarctic Circle

South Pole

Q: Which pole is closer to the sunlight? Options:
A: North Pole B: South Pole C: Equator D: Tropic of
Capricorn

A: A. North Pole

Q: What is located directly in the middle of the
Earth in this image? Options: A: Arctic Circle B:
Tropic of Cancer C: Equator D: Tropic of Capricorn
A: C. Equator

Figure 8: Examples Generated by MM-GEN for Diagram Understanding
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Aeronautical Stations

Q: Which airport is located at the western edge
near the Mediterranean Sea?
A: Matruh airport

Q: Which body of water borders the
northernmost part of the map?
A: Mediterranean Sea

Q: Which landmark is located near the
southernmost aeronautical station?
A: Sudan

JOSHI ET AL.

Q: Which landmark is to the east of T.C.
Cumhurba\u015fkanl\u0131\u011f\u0131 Millet
K\u0Ofct\uOOfcphanesi? A: National Library of
Turkey B: An\u0131takbir C: 30 A\wu011fustos
Zafer Park\u0131 D: Ankara

A: C. 30 A\u011fustos Zafer Park\u0131

Q: How many major highways can be seen on
the map?
A:1

Q: What is located southwest of the point
labeled "\u30ad’? A: The point labeled "u30ce’
B: The point labeled "u30ca’ C: The point
labeled "\u30ec’ D: The point labeled "\u30b5”

A: B. The point labeled "u30ca’

Q: How many marked locations are directly
along the green path within the circles? Options:
A:2B:3C:4D:5?

A:B.3

Figure 9: Examples Generated by MM-GEN for Spatial Reasoning on Maps
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Appendix B. Pseudocode for MM-Gen

In this section, we present the exact pseudocode for MM-GEN. Each of the three steps is
denoted as a subroutine in the pseudocode.

Algorithm 1 Data Generation Process

1:
2:
3:
4:
5:
6:

7

10:

11:
12:

13:
14:
15:
16:
17:
18:

19:

Subroutine 1: Partition (§ ?7)

{(Sﬁf7 VII“),COOI)}kEtypesT = PARTITION(S%efa VQBO()la typeST)
Subroutine 2: Generate Data (§ 77?)

for all k € typesr do

DEEN ()
Iterator(Vqlf:d) + Randomly order elements of lefkwl and create an infinite iterator
Sref
Set NUM_GEN_PER_REF « N - : SQ;‘
T

for all (v, t7f, 7ef) € Sief do
for i = 1 to NUM_GEN_PER_REF do
Veandidate < NEXT (Iterator(VE))

(tp, tres) < Lvim(SYS_PROMPT, v™f #2641 vedidate)
DkGEN — IDIE;EN U {(Ucandidatea tp, tres)}

end for

end for
end for
DGEN « Uk 'DEEN
Subroutine 3: Filter (§ 77)
DEENsr  Filter DEEN by computing perplexity of all examples and selecting middle
r% of examples
Return DEENs
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Appendix C. Examples of Baselines Hurt Performance on Some Tasks

In Sec. 5, we observed that for ChartQA and for SpatialMap, some of the baselines can
hurt the performance of the base model. Upon inspecting the generated data, we noticed
that this is due to highly repetitive generated text annotations for these baselines. Here, in
Figures 10, 11, 12, we present some of the generated examples to highlight this problem.

Aeronautical Stations

Veorreanarian see |

Ist observation
March.1926

2014

25 stations

Task-Specific Annotation Generated Using Natural Language Description
Q: According to the map, how many aeronautical stations are shown in Egypt? A: 15 stations B:
20 stations C: 25 stations D: 30 stations
A: B. 25 stations

Q: What is the total number of aeronautical stations marked on the map? A: 20 B: 25 C: 30 D:
35
A:B. 25

Q: How many aeronautical stations are indicated on the map? A: 20 B: 25 C: 30 D: 35?

N /

Figure 10: Task: Spatial Reasoning on Maps; Highly Repetitive Generated Text for
Baseline 3: Task-Specific Text Annotations, Generated Using Natural Language Task

Description

ANGLIA/

Essex 4/
-

Task-Agnostic Annotation

The map depicts the island of Great Britain during a historical period characterized by several
distinct kingdoms. In the north, the region of Fortriu is marked, suggesting a location within
present-day Scotland. Moving south, Northumbria stretches across the northeastern portion,
indicating its large influence during this era. To the west of Northumbria lies the domain of
Rheged, near Strathclyde, hinting at complex territorial relationships. The central part of the
island is dominated by Mercia, which extends extensively and is a major kingdom. In the
southwest, the realms of Powys and Gwent are noted, highlighting the territorial divisions
within modern-day Wales. Wessex, in the south-central region, appears prominent and
influential. The southeastern territories feature East Anglia, Essex, Kent, and Sussex, each
delineated as separate entities, representing the distinct Anglo-Saxon kingdoms of that time.

The map illustrates the territories of historic Great Britain during the early medieval period.
Major regions are marked in red, such as Northumbria, Mercia, and Wessex, which were
prominent Anglo-Saxon kingdoms. To the northeast, Northumbria extends down the eastern
coast, while Mercia occupies the central part of the island stretching towards the west.
Wessex is located in the south, with its influence reaching the coastal areas. Smaller regions
like Kent, Sussex, and Essex are positioned along the southeastern coastline. In the western
part, Welsh territories such as Gwynedd and Powys are noted, indicating a distinct cultural and
political identity. Scotland is dominated by the territories of Fortriu and Pictland to the north.
The map highlights the diverse and complex political landscape of the British Isles during this
era.

Figure 11: Task: Spatial Reasoning on Maps; Highly Repetitive Generated Text for
Baseline 2: Task-Agnostic Captions
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More see court choice as very important Task-Specific Annotation Generated Using Natural Language Description

than after Justice Stevens’ retirement Q: What percentage of respondents in February 2016 considered the choice of the next
N " " " Supreme Court justice to be 'very important’? A: 57% B: 40% C: 24% D: 32%
How important s the choice of next Supreme Court A:A.57%

justice to you personally? (%)
Q: What percentage of respondents in February 2016 considered the choice of the next
Supreme Court justice to be 'very important’? A: 57% B: 40% C: 24% D: 32%

]| A:A.57%
gl R O

Q: How did the percentage of people who found the choice of the next Supreme Court justice
‘Very' important change from April 2010 to February 2016? A: Increased by 10% B: Decreased

. by 7% C: Increased by 17% D: Decreased by 15%
Apr2010 “T = iy A: C. Increased by 17%

Q: How did the percentage of people who considered the choice of the next Supreme Court
justice as 'Very important' change from April 2010 to February 2016? A: Increased B:
Decreased C: Stayed the same D: Cannot be determined”?

A: A.Increased

mVery ®Somewhat Not too/Notatall DK

[

PEW RESEARCH CENTER

Figure 12: Task: Chart Understanding; Highly Repetitive Generated Text for Baseline 3:
Task-Specific Text Annotations, Generated Using Natural Language Task Description
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Appendix D. Data Generation and Training Details

For all data generation, we used the GPT-40 model OpenAl (2023) (2023-06-01-preview).
For all the experiments, we use the follow common hyperparameters and trained on 4 A-100

GPUs.

Table 4: Training Hyperparameters for MM-GEN

Hyperparameter

Value

Model Name or Path

Vision Tower

MM Projector Type

MM Vision Select Layer

MM Use Image Start/End Token
MM Use Image Patch Token
Image Aspect Ratio

Group by Modality Length
BF16

Train Batch Size (Per Device)
Eval Batch Size (Per Device)
Gradient Accumulation Steps
Learning Rate

Weight Decay

Warmup Ratio

LR Scheduler Type

TF32

Model Max Length

liuhaotian/llava-v1.5-7b or liuhaotian/llava-v1.5-13b
openai/clip-vit-large-patch14-336
mlp2x_gelu
-2
False
False
Pad
True
True
16
4
1
2e-5
0.0
0.03
Cosine
True
2048

For each of the tasks, we tuned the number of epochs such that training loss converged for

the MM-GEN generated data.

1. Chart Understanding (ChartQA): 6 epochs

2. Diagram Understanding (AI2D): 6 epochs

3. Spatial Reasoning on Map (SpatialMap): 3 epochs
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