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Abstract

This paper proposes a new algorithm for learning gradient boosted decision trees
while ensuring the existence of recourse actions. Algorithmic recourse aims to
provide a recourse action for altering the undesired prediction result given by
a model. While existing studies often focus on extracting valid and executable
actions from a given learned model, such reasonable actions do not always exist
for models optimized solely for predictive accuracy. To address this issue, recent
studies proposed a framework for learning a model while guaranteeing the existence
of reasonable actions with high probability. However, these methods can not be
applied to gradient boosted decision trees, which are renowned as one of the most
popular models for tabular datasets. We propose an efficient gradient boosting
algorithm that takes recourse guarantee into account, while maintaining the same
time complexity as the standard ones. We also propose a post-processing method
for refining a learned model under the constraint of a recourse guarantee and provide
a PAC-style analysis of the refined model. Experimental results demonstrated that
our method successfully provided reasonable actions to more instances than the
baselines without significantly degrading accuracy and computational efficiency.

1 Introduction

Machine learning models are increasingly applied to critical decision-making tasks, such as loan
approvals. In such high-stakes applications where predictions can significantly impact individuals [52],
decision-makers need to explain how users can alter undesired predictions [42, 62]. Algorithmic
Recourse (AR) aims to provide such information [58]. For a predictive model f : X → Y , a desired
class y∗ ∈ Y , and an instance x ∈ X such that f(x) ̸= y∗, AR provides a perturbation a that flips
the prediction result into the desired class, i.e., f(x+ a) = y∗. The user can regard the perturbation
a as a recourse action for obtaining the desired outcome y∗ [32]. For example, let us consider a
situation where a bank deploys a model f for predicting whether a loan applicant will repay the loan
or default, and a user x gets the loan application rejected. To help the user x get the loan approved,
AR suggests an action a that changes the prediction result of f from “default” to “repayment.”

To provide actions that are executable for users, most of the existing studies on AR focus on post-hoc
methods for extracting feasible actions with low costs from a learned model f [5, 11, 13, 19, 27,
29, 39, 45, 48, 57, 64]. In general, however, such executable actions do not always exist when f
is trained solely for predictive performance [8, 36, 55]. For example, in the above loan approval
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scenario, users can not change their demographic features (e.g., age or race) or features relating to
past records (e.g., past bankruptcy). While users can change their education level, increasing it may
be practically difficult due to the associated costs. If a learned model f heavily relies on such features,
there is no guarantee for the existence of executable actions, and thus, the existing post-hoc methods
often fail to extract them from f . As a result, it may be impossible for many affected individuals to
flip an undesired decision to their desired one as long as f is deployed [56, 60].

To address the above issue, recent studies introduced a framework for learning a model f that
ensures the existence of executable actions a for input instances x with high probability [30, 51].
Specifically, Ross et al. [51] proposed a gradient descent algorithm for learning deep neural networks.
Kanamori et al. [30] proposed a top-down greedy learning algorithm designed for classification trees.
These studies demonstrate that we can learn a model f that guarantees the existence of executable
actions without significantly degrading predictive accuracy and computational efficiency [55].

In this paper, we focus on the gradient boosted decision trees (GBDTs) [16], such as XGBoost [7],
LightGBM [33], and CatBoost [47]. Due to their performance and scalability, they are recognized as
one of the state-of-the-art models for tabular datasets [18, 21, 31, 41], which often appear in the areas
where AR is required (e.g., finance and justice) [61]. Contrary to their popularity and importance,
however, existing methods for learning models with recourse guarantee cannot be applied to GBDTs.
Ross et al. [51] assume that the loss function is differentiable with respect to the model parameters,
which does not hold for tree-based models. The algorithm proposed by Kanamori et al. [30] is
specifically tailored for classification trees and can not learn regression trees, which are used as base
learners for GBDTs. In addition, although there exists gradient boosting algorithms considering
some additional constraints [10, 22, 26, 46, 54, 59, 65], such as robustness [1, 4, 63], they do not aim
to ensure the existence of recourse actions. Therefore, we need to design a new gradient boosting
algorithm that takes the existence of recourse actions into account.

Our contributions In this paper, we propose Recourse-Aware gradient Boosted decIsion Trees (RA-
BIT), a new framework for learning tree ensemble models that make accurate predictions and
guarantee recourse actions. Our contributions are summarized as follows:

• We propose an efficient algorithm for learning tree ensembles by gradient boosting with
the recourse loss [30, 51] that encourages the existence of recourse actions. To handle the
recourse loss in the modern framework of gradient boosting, we derive its upper bound to
which the Taylor expansion can be applied. We show that the computational complexity of
our algorithm is equivalent to that of the standard gradient boosting algorithm.

• We introduce a post-processing task of modifying a learned tree ensemble model so as to
satisfy the constraint on recourse guarantee. We formulate our task as a problem of refining
the leaf weights of the trees in the ensemble, where we minimize the empirical risk under
the constraint on the recourse loss. We show that this problem can be solved efficiently and
provide a PAC-style guarantee for the models refined by our post-processing.

• We conducted numerical experiments on real datasets and demonstrated that our RABIT
successfully provided executable recourse actions to more individuals than the baselines
while keeping comparable predictive accuracy and computational efficiency. We also con-
firmed that RABIT could attain better trade-offs between predictive accuracy and recourse
guarantee than the baselines by combining our learning algorithm and post-processing.

2 Problem statement

For a positive integer n ∈ N, we write [n] := {1, . . . , n}. As with the previous studies [30, 51], we
consider a binary classification task between undesired and desired classes. Note that our framework
can be applied to a multiclass classification task if we can reduce it to a binary classification task
between undesired and desired classes. Let X ⊆ RD and Y = {±1} be input and output domains,
respectively. We assume that y = +1 is a desirable class (e.g., loan repayment). We call a vector
x = (x1, . . . , xD) ∈ X an instance, and a function f : X → R a predictive model that maps x to
a prediction score. We assume that a predictive model f makes a prediction ŷ ∈ Y according to
ŷ = sgn(f(x)). Let l : Y × R → R≥0 be a differentiable convex loss function. We assume that a
loss function l satisfies l01(y, ŷ) ≤ l(y, ŷ) for the 0–1 loss function l01(y, ŷ) = I [y · ŷ < 0], and is
non-increasing with respect to the value of y · ŷ. These assumptions are satisfied by many major
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loss functions, such as the binary cross-entropy loss. While these assumptions are required for our
theoretical analyses, in practice, our learning algorithm works without these assumptions.

2.1 Algorithmic recourse

For an instance x ∈ X , we define an action as a perturbation vector a ∈ RD such that x+ a ∈ X .
LetA(x) be a set of feasible actions for x such that 0 ∈ A(x) andA(x) ⊆ {a ∈ RD | x+a ∈ X}.
For a model f , an action a is valid for x if a ∈ A(x) and sgn(f(x + a)) = +1. For x ∈ X and
a ∈ A(x), a cost function c : A(x)→ R≥0 measures the required effort of a with respect to x.

The aim of Algorithmic Recourse (AR) [58] is to find an action a that is valid for x with respect to f
and minimizes its cost c(a | x). This task can be formulated as follows [32]:

mina∈A(x) c(a | x) subject to sgn(f(x+ a)) = +1. (1)

As with the existing studies [30, 51], we assume that the cost function c satisfies the following
properties: (i) c(0 | x) = 0; (ii) c(a | x) = maxd∈[D] cd(ad | xd), where cd is the cost of the
action ad for a feature d; (iii) cd(ad | xd) ≤ cd(ad · (1 + ε) | xd) holds for any ε ≥ 0. Note that
several major cost functions, including the weighted ℓ∞-norm [51] and max percentile shift [58],
satisfy the above properties. We also assume that a set of feasible actions can be expressed as
A(x) = [l1, u1]× · · · × [lD, uD] with lower and upper bounds ld, ud ∈ R for d ∈ [D]. For example,
while there exist some immutable features that can not be changed, such as age, race, and past
bankruptcy, we can express them by setting ld = ud = 0. Similarly, we can express a feature that is
allowed to be only increased (e.g., education level) by setting ld = 0 and ud > 0.

2.2 Tree ensemble and gradient boosting

A tree ensemble model f is expressed as a sum of T regression trees f1, . . . , fT : X → R; that is,
f(x) =

∑T
t=1 ft(x). Each tree ft is a regressor that consists of a set of if-then-else rules expressed

as a binary tree structure [3]. For a given input x ∈ X , it makes a prediction according to the weight
value w of the leaf that x reaches. The corresponding leaf is determined by traversing the tree from
the root, depending on whether the split condition xd ≤ b is true or not, where (d, b) ∈ [D]× R is a
pair of a feature and threshold of each internal node. Let It be the total number of leaves in ft, and
wt,i ∈ R be the leaf weight of a leaf i ∈ [It], respectively. Then, we can express a regression tree ft
as ft(x) =

∑It
i=1wt,i · ϕt,i(x), where ϕt,i(x) = I [x ∈ rt,i] is the leaf indicator of i and rt,i ⊆ X

is the input region corresponding to i. Note that each region rt,i is an axis-aligned rectangle and
determined by the split conditions on the path from the root to the leaf i [15, 20].

Gradient boosting is one of the most popular frameworks for learning tree ensemble models [16,
18, 21, 41]. For each round t ∈ [T ], it learns a new regression tree ft that fits the pseudo residual
corresponding to the loss l(y, Ft−1(x)) of the model Ft−1(x) :=

∑t−1
s=1 fs(x) trained before round

t [9, 40]. Given a sample S = {(xn, yn)}Nn=1, we consider the following optimization problem:

f∗
t ∈ argminft∈F

∑N

n=1
l(yn, Ft−1(xn) + ft(xn)), (2)

where F is a set of regression trees. For simplicity, we omit some popular techniques, such as
regularization and learning rate [7, 16]. Note that our framework, proposed later, can handle them.

Because exactly solving the problem (2) is computationally challenging due to the combinatorial
nature of decision trees [23, 24], existing methods employ a top-down greedy algorithm as with the
standard decision tree learning [3]. Let us consider growing a regression tree ft by adding a new split
condition (d, b) to a leaf i ∈ [It] of ft. We assume a finite set of candidate thresholds Bd ⊂ R for
each d ∈ [D] such that |Bd| = O(N). Let N (rt,i) = {n ∈ [N ] | xn ∈ rt,i} be the set of instances
that reach i, and wL, wR ∈ R be the leaf weights of the left and right children of i, respectively. Then,
we consider the task of finding best parameters (d, b, wL, wR), which can be formulated as

mind∈[D],b∈Bd
minwL,wR∈R

∑
n∈N (rt,i)

l(yn, Ft−1(xn) + h(xn; d, b, wL, wR)), (3)

where h(x; d, b, wL, wR) := wL ·I [xd ≤ b]+wR ·I [xd > b] is a decision stump with a split condition
(d, b) and leaf weights wL, wR. While the candidate split conditions (d, b) are finite and can be easily
enumerated, we need to numerically optimize the leaf weights wL, wR for each (d, b).
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To efficiently solve the problem (3), modern implementations of the gradient boosted decision
trees (GBDTs), such as XGBoost [7], employ the second-order Taylor expansion of the loss function
l. Here, we fix the split condition (d, b) and denote rL := {x ∈ rt,i | xd ≤ b} and rR := rt,i \rL. Let
Φd,b(wL, wR) :=

∑
n∈N (rt,i)

l(yn, Ft−1(xn)+h(xn; d, b, wL, wR)) be the objective function of (3).
By ignoring the constant term independent of wL and wR, we can approximate Φd,b as follows [7]:

Φd,b(wL, wR) ≈ GL · wL +
1

2
·HL · w2

L +GR · wR +
1

2
·HR · w2

R,

where GL :=
∑

n∈N (rL)
∂
∂ŷ l(yn, ŷ) |ŷ=Ft−1(xn) and HL :=

∑
n∈N (rL)

∂2

∂ŷ2 l(yn, ŷ) |ŷ=Ft−1(xn).
We define GR and HR in a similar way. We can compute the optimal leaf weights w∗

L and w∗
R that

minimizes the above approximated objective function by w∗
L = −GL

HL
and w∗

R = −GR

HR
, respectively.

Thus, we can analytically obtain an approximate solution to the inner problem of (3) for each split
condition (d, b). While a naive computation of w∗

L and w∗
R requires O(N) time, we can compute

them in amortized constant time if the instances xn are sorted by xn,d in advance [7, 50]. Thus, we
can obtain an approximate solution to the problem (3) in O(N ·D). We grow the t-th regression tree
ft by recursively repeating this procedure until some conditions are met (e.g., maximum depth).

2.3 Problem formulation

To formulate our learning task, we introduce the recourse loss [30, 51]. For a cost budget parameter
β ≥ 0, letAβ(x) := {a ∈ A(x) | c(a | x) ≤ β} be the set of feasible actions whose costs are lower
than or equal to β. We define the recourse loss lβ(x | f) of a model f for an instance x as follows:

lβ(x | f) := mina∈Aβ(x) l(+1, f(x+ a))

We can regard lβ as a relaxation of the validity constraint with a cost budget β. By definition, it
takes a small value if there exists a feasible action a ∈ A(x) such that sgn(f(x + a)) = +1 and
c(a | x) ≤ β. Thus, minimizing lβ encourages f to ensure a valid action a with a low cost [30, 51].

The aim of this paper is to propose a gradient boosting algorithm for learning a tree ensemble model
f while ensuring the existence of valid and low-cost recourse actions a for as many instances x as
possible. More precisely, we learn a tree ensemble model f(x) =

∑T
t=1 ft(x) that minimizes the

weighted sum of the standard loss l and recourse loss lβ . Given a sample S = {(xn, yn)}Nn=1, our
learning task of each round t ∈ [T ] can be formulated as follows:

f∗
t ∈ argminft∈F

∑N

n=1
(l(yn, Ft−1(xn) + ft(xn)) + γ · lβ(xn | Ft−1 + ft)) , (4)

where γ ≥ 0 is a hyperparameter that controls the trade-off between the predictive accuracy and
recourse guarantee. We can recover the standard unconstrained gradient boosting by setting γ = 0.

3 Recourse-aware gradient boosting

In this section, we propose an efficient algorithm for learning a tree ensemble model while ensuring the
existence of recourse actions for as many instances as possible. Following the modern frameworks of
gradient boosting [7, 33, 47], we learn each regression tree ft by recursively solving the problem (4) in
a top-down greedy manner and leveraging the second-order Taylor expansion to obtain a closed-form
solution to the leaf weights wL, wR. Let vβ(x; r) := I [∃a ∈ Aβ(x) : x+ a ∈ r] be the indicator
whether x can reach a region r by some action a ∈ Aβ(x). Similar to the term Φd,b corresponding
to the standard loss l, we define the term corresponding to the recourse loss lβ as follows:

Ψd,b(wL, wR) :=
∑

n∈Nβ(rt,i)
lβ(xn | Ft−1 + h(·; d, b, wL, wR)),

where Nβ(rt,i) := {n ∈ [N ] | vβ(xn; rt,i) = 1} is the set of instances xn that can reach the leaf i
by some action a ∈ Aβ(xn). Then, we consider the following optimization problem:

mind∈[D],b∈Bd
minwL,wR∈R Φd,b(wL, wR) + γ ·Ψd,b(wL, wR). (5)

A main obstacle to solving the problem (5) is that we can not directly apply the second-order Taylor
expansion to the term Ψd,b due to the recourse loss lβ . Hence, efficiently solving the inner problem
of (5) is not trivial in contrast to the standard case. To address this issue, we derive a differentiable
upper bound of Ψd,b, which enables us to use the second-order Taylor expansion when solving the
problem (5). We also show that we can compute the approximate solution to the problem (5) in
O(N ·D) time, which is equivalent to the standard unconstrained gradient boosting algorithm.
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3.1 Differentiable upper bound on recourse loss

First, we derive an upper bound on the term Ψd,b that is differentiable with respect to the leaf weights
wL and wR. In the following proposition, we show an upper bound on the recourse loss lβ .

Proposition 1. For regression trees f1, . . . , ft−1 ∈ F , we define ξt(x) :=
∑t−1

s=1 mina∈Aβ(x) fs(x+
a). Then, for any instance x ∈ X and regression tree h ∈ F , we have

lβ(x | Ft−1 + h) ≤ mina∈Aβ(x) l(+1, ξt(x) + h(x+ a)).

We give a proof of Proposition 1 in Appendix A. Note that ξt(x) is a lower bound on the prediction
score of Ft−1 for x by some action a ∈ Aβ(x), and we can compute each term of ξt(x) inO(Is) [1].
Let l̄β(wL, wR;x) := mina∈Aβ(x) l(+1, ξt(x) + h(x + a; d, b, wL, wR)) be the upper bound of
Proposition 1 for a decision stump h(·; d, b, wL, wR). For any x with vβ(x; rt,i) = 1, we have

l̄β(wL, wR;x) =

{
minw∈{wL,wR} l(+1, ξt(x) + w) if vL(x) = vR(x) = 1,

l(+1, ξt(x) + wL · vL(x) + wR · vR(x)) otherwise,

where vL(x) := vβ(x; rL) and vR(x) := vβ(x; rR). By definition, vβ(x; rt,i) = 1 implies vL(x) +
vR(x) ≥ 1. The case with vL(x) = vR(x) = 1 corresponds to the situation where the instance x
can reach both left and right children by some action a ∈ Aβ(x), and the other case corresponds to
the situation where only one of them is reachable. We can apply the Taylor expansion to the latter
case, but not to the former, due to the minimum operator. To avoid this difficulty, we replace the
minimum operator with the LogSumExp function as follows:

l̃β(wL, wR;x) :=

{
ln 2
ν −

1
ν ln

(
e−ν·l(+1,ξt(x)+wL) + e−ν·l(+1,ξt(x)+wR)

)
if vL(x) = vR(x) = 1,

l(+1, ξt(x) + wL · vL(x) + wR · vR(x)) otherwise,

where ν > 0 is some small constant that controls the approximation quality. By LogSumExp trick, we
have l̄β(wL, wR;x) ≤ l̃β(wL, wR;x). Combining the above results, we define our surrogate function
of the recourse loss by Ψ̃d,b(wL, wR) :=

∑
n∈Nβ(rt,i)

l̃β(wL, wR;xn). Our surrogate function Ψ̃d,b

satisfies Ψd,b(wL, wR) ≤ Ψ̃d,b(wL, wR) and is differentiable with respect to wL and wR by definition.

3.2 Analytical solution to leaf weights

Now, we consider the following problem where we replace the term Ψd,b of (5) with our surrogate Ψ̃:

mind∈[D],b∈Bd
minwL,wR∈R Φd,b(wL, wR) + γ · Ψ̃d,b(wL, wR). (6)

As with the modern gradient boosting algorithm [7, 33, 47], we obtain an approximate solution to the
inner problem of (6) by applying the second-order Taylor expansion to its objective function. For
notational convenience, we divide the set of instances Nβ(rt,i) into three disjoint subsets:

NB := {n ∈ Nβ(rt,i) | vL(xn) = 1, vR(xn) = 1},
NL := {n ∈ Nβ(rt,i) | vL(xn) = 1, vR(xn) = 0},
NR := {n ∈ Nβ(rt,i) | vL(xn) = 0, vR(xn) = 1}.

By ignoring constant terms, the second-order Taylor expansion of our surrogate term Ψ̃d,b is given by

Ψ̃d,b(wL, wR) ≈ G̃L · wL +
1

2
· H̃L · w2

L + G̃R · wR +
1

2
· H̃R · w2

R + H̃B · wL · wR.

Here, each term is defined as follows:

G̃L :=
∑

n∈NL

∂

∂w
l(+1, w) |w=ξt(xn) +

∑
n∈NB

∂

∂w
l̃β(w, ξt(xn);xn) |w=ξt(xn),

H̃L :=
∑

n∈NL

∂2

∂w2
l(+1, w) |w=ξt(xn) +

∑
n∈NB

∂2

∂w2
l̃β(w, ξt(xn);xn) |w=ξt(xn),

H̃B :=
∑

n∈NB

∂2

∂w∂w′ l̃β(w,w
′;xn) |w=ξt(xn),w′=ξt(xn) .
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We define G̃R and H̃R in a similar way. By minimizing the second-order approximation of the
objective function in the inner problem of (6), we obtain an approximate solution as a closed-form:

w∗
L =

γ · H̃B · (GR + γ · G̃R)− (HR + γ · H̃R) · (GL + γ · G̃L)

(HL + γ · H̃L) · (HR + γ · H̃R)− γ2 · H̃2
B

, (7)

w∗
R =

γ · H̃B · (GL + γ · G̃L)− (HL + γ · H̃L) · (GR + γ · G̃R)

(HL + γ · H̃L) · (HR + γ · H̃R)− γ2 · H̃2
B

. (8)

As with the standard unconstrained case, a naive computation of w∗
L and w∗

R requires O(N) time due
to each of the terms such as G̃L and H̃L. However, we can compute them in amortized constant time
by the same technique for classification trees proposed by Kanamori et al. [30]. Proposition 2 shows
that we can compute an approximate solution to the problem (5) in the same time complexity as the
standard gradient boosting algorithm. We present our algorithm and proof in Appendix A.

Proposition 2. There exists an algorithm that approximately solves the problem (5) in O(N ·D).

4 Recourse-aware leaf refinement

This section presents a post-processing approach for improving the recourse guarantee of a learned
tree ensemble model. While minimizing the recourse loss lβ encourages a model f to ensure the
existence of recourse actions for instances in a training sample S, there is no guarantee that the
model f can ensure for unseen test instances as well [51]. To alleviate this issue, we introduce a
post-processing task, called leaf refinement [49], that modifies the leaf weights of a learned tree
ensemble model f under the constraint on the recourse loss lβ . Then, we show that we can guarantee
the existence of recourse actions for unseen test instances through a PAC-style bound [43]. Note that
our post-processing method can be applied to any tree ensemble model, and does not require any
assumptions on the cost function c and feasible action set A(x).

4.1 Formulation and optimization

We introduce a post-processing task that refines the leaf weights of a learned tree ensemble model f
under the constraint on the recourse loss lβ . Let J =

∑T
t=1 It be the total number of leaves in the

ensemble. From the definition of tree ensemble models, we can express a given learned tree ensemble
model f as a form of f(x) =

∑J
j=1 wj · ϕj(x) [49]. Let α ∈ RJ be a vector of refined leaf weights,

and we define a refined model by fα(x) :=
∑J

j=1 αj · ϕj(x). Given a sample S = {(xn, yn)}Nn=1,
we formulate our task as a constrained empirical risk minimization problem [6] defined as follows:

minα∈RJ

∑N

n=1
l(yn, fα(xn)) subject to

1

N

∑N

n=1
lβ(xn | fα) ≤ ε, (9)

where ε ≥ 0 is a given parameter. Note that each leaf indicator ϕj is fixed here, and a model fα can
be regarded as a linear model with respect to the binary representation vector (ϕ1(x), . . . , ϕJ(x)).

To make the constraint of the problem (9) tractable, we assume a deterministic oracle algorithm A∗
β

that takes an instance x and returns a feasible action a ∈ Aβ(x) based on the learned model f , as
with the previous study [51]. Note that we can employ any existing algorithm for tree ensembles
(e.g., [5, 11, 57]) and do not require the oracle to be optimal in the sense of the problem (1). We also
note that we can easily extend the setting where the oracle A∗

β returns multiple diverse actions [44].

Using the oracle algorithm A∗
β , by definition, lβ(x | fα) ≤ l(+1, fα(x+A∗

β(x))) holds for any x.
It implies that the recourse loss lβ for x is upper bounded by the standard loss l for a labeled instance
(x+A∗

β(x),+1), which is tractable to be minimized. Based on this fact, we consider the following
unconstrained problem instead of (9):

minα∈RJ

∑N

n=1
l(yn, fα(xn)) + λ ·

∑N

n=1
l(+1, fα(xn +A∗

β(xn))), (10)

where λ ≥ 0 is a Lagrangian multiplier. There exists λ such that the solution to the problem (10)
satisfies 1

N

∑N
n=1l(+1, fα(xn +A∗

β(xn))) ≤ ε, which implies that 1
N

∑N
n=1lβ(xn | fα) ≤ ε holds
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as well. Furthermore, the problem (10) can be easily solved by any off-the-shelf library since it can be
regarded as a learning problem for a linear model with the weighted empirical risk on the concatenated
sample S ∪ S′, where S′ := {(xn + A∗

β(xn),+1)}Nn=1. In a nutshell, by iteratively solving the
problem (10) and updating λ, we can efficiently obtain a feasible solution to the problem (9).

4.2 PAC-style guarantee

Our leaf refinement approach enables us to control the ratio that the refined model fα can ensure
actions for instances in S with a given parameter ε. However, it is not guaranteed that the model fα
can ensure actions for unseen test instances as well. To analyze this risk, we show a PAC-style bound
on the estimation error of our surrogate risk R̃β(fα | S) := 1

N

∑N
n=1l(+1, fα(xn +A∗

β(xn))).

Proposition 3. For a model f : X → R, letRβ(f) := Px[∀a ∈ Aβ(x) : sgn(f(x+ a)) ̸= +1] be
the expected recourse risk of f . Given a sample S = {(xn, yn)}Nn=1, refined tree ensemble model
fα(x) =

∑J
j=1 αj · ϕj(x), and δ > 0, the following inequality holds with probability at least 1− δ:

Rβ(fα) ≤ R̃β(fα | S) +

√
8 · ln e·N

4

N
+

√
ln 1

δ

2 ·N
.

We give our proof of Proposition 3 in Appendix A. From Proposition 3, we can probably obtain a
refined model fα that can guarantee the existence of actions for any instance with probability at least

1− ε′ by solving the problem (9), where ε′ = ε+

√
8·ln e·N

4

N +

√
ln 1

δ

2·N .

5 Experiments

To investigate the performance of our RABIT, we conducted experiments on real datasets. All the
code was implemented in Python 3.10 with Numba 0.61.0 and is available at https://github.
com/kelicht/rabit. All the experiments were conducted on macOS Sequoia with Apple M2 Ultra
CPU and 128 GB memory. Our experimental evaluation aims to answer the following questions:
(i) How are the predictive accuracy and recourse guarantee of tree ensembles learned by our RABIT
compared to those by the baselines? (ii) Can our RABIT balance the trade-off between accuracy and
recourse? (iii) Is our post-processing approach effective in improving the recourse guarantee of tree
ensembles? Due to page limitations, the complete results are shown in Appendix C.

Experimental settings We used four real benchmark datasets: FICO (N = 9871, D = 23) [14],
COMPAS (N = 6167, D = 14) [2], Adult (N = 48842, D = 16) [34], and Bail (N = 8923, D =
16) [53]. These datasets represent diverse real-world applications (finance, criminal justice, census,
and bail prediction) that are widely used in the literature of algorithmic recourse [32]. For each
dataset, all the categorical features were one-hot encoded. To obtain an action a for each instance x
by solving the problem (1), we employed the feature tweaking algorithm [57], which is a fast heuristic
algorithm for tree ensemble models. Note that we also employed the exact method based on integer
optimization [11, 28], and its results are presented in Appendix C. As a cost function c, we used the
max percentile shift (MPS) [58] defined as c(a | x) = maxd∈[D] |Qd(xd + ad)−Qd(xd)|, where
Qd is the cumulative distribution function of a feature d. In addition, actionability constraints were
imposed on certain features (e.g., gender), as shown in Appendix C. To the best of our knowledge,
there is no existing method that can train GBDTs while guaranteeing the existence of actions.
Following the previous studies [12, 30], we compared our RABIT with two baselines: standard
unconstrained learning (Vanilla) and learning with only actionable features (OAF).

5.1 Baseline comparison

First, we evaluate the performance of tree ensemble models learned by our RABIT in comparison with
the baselines. We randomly split the dataset into the training and test sets with a ratio of 75 : 25, and
trained tree ensemble models by each method on the training set. For learned models, we measured
(1) the accuracy on the test set, (2) the recourse ratio, which is defined as the ratio of the test instances
that are guaranteed valid actions whose costs are less than β = 0.2, and (3) the running time for
training. We repeated this procedure 10 times. For the baselines and our RABIT, we trained T = 100
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Figure 1: Experimental results of baseline comparison with respect to the accuracy and the recourse
ratio (higher is better). We observed that our RABIT attained a higher recourse ratio than the baselines
while keeping comparable accuracy on all the datasets.

FICO COMPAS Adult Bail
0

10

20

30

T
im

e
(s

)

Vanilla

OAF

RABIT

Figure 2: Average running time [s] of each method (lower is better). There is no significant difference
between the baselines and our RABIT on all the datasets.

regression trees with a maximum depth of 8 and a learning rate 0.1. For RABIT, we set γ = 0.002
and did not apply our leaf refinement post-processing.

Figure 1 presents the results on the accuracy and recourse ratio. From Figure 1, we observed that
(i) RABIT attained comparable accuracy to the baselines, and (ii) RABIT achieved significantly
higher recourse ratios than the baselines. Compared to Vanilla, while OAF attained a slightly higher
recourse ratio, it suffered from a significant degradation in accuracy. One possible reason is that OAF
was restricted to using only actionable features, sacrificing predictive power by ignoring potentially
highly predictive non-actionable features. On the other hand, our RABIT succeeded in improving
the recourse guarantee without significantly degrading the predictive performance. Figure 2 shows
the average running time for each dataset. We can see that there is no significant difference in the
running time between the baselines and RABIT. These results indicate that our algorithm performed
as fast as the standard learning algorithms, even though it additionally considers the recourse loss.

In summary, we have confirmed that our RABIT succeeded in guaranteeing the existence of re-
course actions for more instances than the baselines without compromising predictive accuracy and
computational efficiency. Our findings show that RABIT improves the availability of executable
recourse actions for individuals without sacrificing the predictive accuracy or computational efficiency
of standard GBDTs. This makes RABIT a practical and reliable tool for high-stakes automated
decision-making systems, enhancing transparency and user trust in real-world applications.

Recourse quality analyses To assess the quality of actions extracted from tree ensembles trained
by our RABIT, we evaluate their cost, sparsity, and plausibility. To evaluate the plausibility, the
previous studies often use the outlier score q of x+ a [19]. Following the previous study [45], we
employed isolation forests (IF) [37] as q. Table 1 shows the average cost c(a | x), sparsity ∥a∥0, and
plausibility q(x + a) of the obtained valid actions a for test instances x. We can see that RABIT
attained lower cost and sparsity than the baselines. We also observed that there is no remarkable
difference in plausibility between the baselines and RABIT. From these results, we have confirmed
that our method could provide executable recourse actions without harming their plausibility.
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Table 1: Average cost, sparsity, and plausibility of extracted actions (lower is better). Our RABIT
achieved lower costs and sparsity than the baselines while keeping comparable plausibility.

Cost (MPS) Sparsity (ℓ0-norm) Plausibility (IF)

Dataset Vanilla OAF RABIT Vanilla OAF RABIT Vanilla OAF RABIT

FICO 0.358 0.315 0.165 2.155 2.792 1.078 0.438 0.44 0.475
COMPAS 0.23 0.181 0.112 1.518 1.553 1.264 0.436 0.446 0.466

Adult 0.354 0.308 0.275 1.467 1.547 1.422 0.477 0.464 0.479
Bail 0.449 0.371 0.225 1.546 1.563 1.131 0.508 0.503 0.519
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Figure 3: Sensitivity analyses of the parameter γ with respect to the accuracy and recourse ratio. We
can see that the average recourse ratio (resp. accuracy) was improved as γ increased (resp. decreased).

5.2 Trade-off analysis

Next, we analyze the trade-off between the predictive accuracy and recourse guarantee of our RABIT
by varying its trade-off parameter γ. Under the same experimental settings as in Section 5.1, we
trained tree ensemble models by varying the trade-off parameter γ, and compared their average
accuracy and recourse ratio to those of the baselines.

Figure 3 shows the average accuracy and recourse ratio for each γ. We can see that the recourse ratio
(resp. accuracy) was improved by increasing (resp. decreasing) γ on almost all the datasets, which
suggests that we could balance their trade-off by tuning γ. More precisely, we observed that RABIT
began to outperform the baselines in terms of the recourse ratio without significantly degrading the
accuracy around γ = 0.002 on all the datasets. These results indicate that we have a chance to
attain a higher recourse ratio without compromising prediction performance if we can determine the
appropriate value of γ. In summary, we have confirmed that our method could obtain models that
achieve a better recourse ratio than the baselines while keeping comparable accuracy by tuning γ.

5.3 Efficacy of post-processing approach

Finally, we examine the efficacy of our leaf refinement approach for improving the recourse guarantee
of tree ensemble models. We randomly split the dataset into the training, calibration, and test sets with
a ratio of 50 : 25 : 25. After learning tree ensembles by each method on the training set, we applied
our leaf refinement approach to them with the calibration set. Instead of solving the problem (9)
directly, we solved the problem (10) for a fixed Lagrangian multiplier λ and repeated this procedure
by varying λ. We report the average accuracy and recourse ratio of the refined models over 10 trials.
Note that the ablation study on our post-processing approach is presented in Appendix C.

Figure 4 presents the scatter plots of the average accuracy and recourse ratio for each λ. We can
see that, in the FICO and COMPAS datasets, RABIT dominated the baselines in terms of accuracy
and recourse ratio. It indicates that the combination of our learning algorithm and post-processing
approach performed the best on these datasets. On the other hand, in the Adult and Bail datasets,
we observed that Vanilla and RABIT demonstrated comparable performance. For example, in the
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Figure 4: Experimental results of the post-processing approach. In each figure, x-axis and y-axis
stand for the average accuracy and the recourse ratio, respectively. Our RABIT attained better or
comparable trade-offs between the accuracy and the recourse ratio than the baselines.

Adult dataset, they maintained the accuracy around 85% while improving the recourse ratio from
roughly 40% to 80%, which are better results than those in Figure 1. These results suggest that
our post-processing approach was sometimes effective even for tree ensembles learned by existing
standard algorithms. In summary, we have confirmed that our post-processing approach succeeded
in improving the recourse guarantee of tree ensembles while maintaining their predictive accuracy.

6 Conclusion

This paper proposed a new framework of gradient boosted decision trees, named recourse-aware
gradient boosted decision trees (RABIT), that can provide both accurate predictions and executable
recourse actions. We proposed an efficient gradient boosting algorithm for learning tree ensemble
models with the recourse loss that encourages the existence of recourse actions, and showed that
its computational complexity is equivalent to that of the standard unconstrained algorithm. We also
proposed a post-processing approach that refines the leaf weights of a learned tree ensemble model
under the constraint on the recourse loss, and gave a PAC-style guarantee on the existence of recourse
actions. Experimental results demonstrated that our RABIT succeeded in guaranteeing recourse
actions for more individuals than the baselines while keeping comparable accuracy and efficiency.

Limitations and future work

There are several directions to make our RABIT more practical. First, the computational efficiency
of our algorithm relies on our assumption of the ℓ∞-type cost function c. For the ℓ∞-type cost
functions, we can easily decide whether the budget constraint is violated or not by checking each
feature independently. In general, such a property does not hold for other cost functions, including ℓ1-
or ℓ2-type cost functions. However, we expect that our algorithm can efficiently handle general cost
functions by exploiting some heuristic strategies (e.g., changing β depending on the tree depth [63]).

Second, deriving a tight bound for our recourse loss lβ is important for future work. From Figure 3,
we found that a slight emphasis on lβ , i.e., setting γ = 0.002, is sufficient to achieve substantial
improvements in the recourse ratio without harming performance. It suggests that our bound in
Proposition 1 is too conservative, and our method can be improved by developing a tighter bound.

Third, identifying when our post-processing method becomes effective is interesting for future work.
In Figure 4 and our ablation study in Appendix C, we observed that the combination of our learning
algorithm and post-processing method worked the best on some datasets, while it was comparable to
the combination of standard learning algorithms and our post-processing method on other datasets. It
suggests that there exist situations where our post-processing alone yields sufficient improvement in
recourse guarantee. Such situations might be characterized by some specific properties of datasets,
such as the ratio of actionable features or the percentage of categorical features. However, it is still
challenging to identify a general cause of this phenomenon, and we leave it as future work.

Finally, there is room for our implementation of RABIT to be more sophisticated. In particular,
our RABIT has the potential to improve scalability, generalization performance, and stability by
several techniques implemented in modern frameworks of gradient boosting, such as histogram-
based learning [7, 33], stochastic sampling [17, 25], and so on [35, 38]. Since these techniques are
compatible with RABIT, it is worth investigating their effectiveness in our framework.
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A Omitted proofs

A.1 Proof of Proposition 1

To prove Proposition 1, we first show a lemma that provides a lower bound on the maximum of the
sum of two functions.
Lemma 1. For any functions g1 and g2 defined on a finite set X , the following inequality holds:

maxx∈X (g1(x) + g2(x)) ≥ minx∈X g1(x) + maxx∈X g2(x).

Proof. Let x∗ = argmaxx∈X g2(x). From the property of the maximum operator, we have
maxx∈X(g1(x) + g2(x)) ≥ g1(x

∗) + g2(x
∗). Since g1(x

∗) ≥ minx∈Xg1(x) and g2(x
∗) =

maxx∈Xg2(x) hold by definition, we have g1(x
∗) + g2(x

∗) ≥ minx∈Xg1(x) + maxx∈Xg2(x),
which concludes the proof.

Using Lemma 1, we give a proof of Proposition 1 as follows.

Proof of Proposition 1. Recall that the loss function l(y, ŷ) is non-increasing with respect to ŷ when
y = +1. That is, l(+1, ŷ) ≤ l(+1, ŷ′) holds if ŷ ≥ ŷ′. Combining Lemma 1 with this fact, we have

lβ(x | Ft−1 + h) = mina∈Aβ(x) l(+1, Ft−1(x+ a) + h(x+ a))

= l(+1,maxa∈Aβ(x) Ft−1(x+ a) + h(x+ a))

≤ l(+1,mina∈Aβ(x) Ft−1(x+ a) + maxa∈Aβ(x) h(x+ a))

From the definition of Ft−1, we have mina∈Aβ(x)Ft−1(x+ a) ≥
∑t−1

s=1mina∈Aβ(x)fs(x+ a) =
ξt(x). Thus, we have

lβ(x | Ft−1 + h) ≤ l(+1,mina∈Aβ(x) Ft−1(x+ a) + maxa∈Aβ(x) h(x+ a))

≤ l(+1,
∑t−1

s=1
mina∈Aβ(x) fs(x+ a) + maxa∈Aβ(x) h(x+ a))

= l(+1, ξt(x) + maxa∈Aβ(x) h(x+ a))

= mina∈Aβ(x) l(+1, ξt(x) + h(x+ a)),

which concludes the proof.

A.2 Proof of Proposition 2

Algorithm We present our algorithm for approximately solving the problem (5) in Algorithm 1.
In addition to the subset of a sample N (rt,i) and trade-off parameter γ, our algorithm takes the
following inputs:

1. a set of candidate thresholds Bd = {bd,1, . . . , bd,Md
} such that bd,1 ≤ · · · ≤ bd,Md

and
|Bd| = O(N) for each feature d ∈ [D];

2. a permutation σd such that xσd(1),d ≤ · · · ≤ xσd(N),d for each d ∈ [D];

3. gradient and hessian statistics for each n ∈ N (rt,i) defined as follows:

gn :=
∂

∂ŷ
l(yn, ŷ) |ŷ=Ft−1(xn), hn :=

∂2

∂ŷ2
l(yn, ŷ) |ŷ=Ft−1(xn),

ĝn :=
∂

∂ŷ
l(+1, ŷ) |ŷ=ξt(xn), ĥn :=

∂2

∂ŷ2
l(+1, ŷ) |ŷ=ξt(xn),

ḡn :=
∂

∂w
l̃β(w, ξt(xn);xn) |w=ξt(xn) h̄n :=

∂2

∂w2
l̃β(w, ξt(xn);xn) |w=ξt(xn),

h̃n :=
∂2

∂w∂w′ l̃β(w,w
′;xn) |w=ξt(xn),w′=ξt(xn) .

(11)

4. indicator values on(d, b) and ōn(d, b) for each n ∈ N (rt,i), d ∈ [D], and b ∈ Bd, which
are defined as follows:
on(d, b) := I

[
mina∈Aβ(xn)ad ≤ b− xn,d

]
, ōn(d, b) := I

[
maxa∈Aβ(xn)ad > b− xn,d

]
.

(12)
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Algorithm 1 Algorithm for approximately solving the problem (5).

1: G←
∑

n∈N (rt,i)
gn; H ←

∑
n∈N (rt,i)

hn; G̃←
∑

n∈N (rt,i)
ĝn; H̃ ←

∑
n∈N (rt,i)

ĥn;
2: for d = 1, 2, . . . , D do
3: /* Initialize each term */
4: GL, HL, G̃L, H̃L, H̃B ← 0, 0, 0, 0, 0; GR, HR, G̃R, H̃R ← G,H, G̃, H̃;
5: m,mL,mR ← 1; n, nL, nR ← σd(m), σd(mL), σd(mR);
6: for b ∈ Bd do
7: /* Update terms corresponding to the standard loss l */
8: while xn,d ≤ b and m ≤ N do
9: GL, GR, HL, HR ← GL + gn, GR − gn, HL + hn, HR − hn;

10: m← m+ 1; n← σd(m);
11: end while
12: /* Update terms corresponding to the recourse loss lβ */
13: while onL

(d, b) = 1 and mL ≤ N do
14: G̃L, H̃L ← G̃L + ĝnL − ḡnL , H̃L + ĥnL − h̄nL ;
15: H̃B ← H̃B − h̃nL

;
16: mL ← mL + 1; nL ← σd(mL);
17: end while
18: while ōnR

(d, b) = 0 and mR ≤ N do
19: G̃R, H̃R ← G̃R − ĝnR

+ ḡnR
, H̃R − ĥnR

+ h̄nR
;

20: H̃B ← H̃B + h̃nR ;
21: mR ← mR + 1; nR ← σd(mR);
22: end while
23: /* Compute leaf weights and approximate loss */
24: Compute leaf weights wL(d, b) and wR(d, b) by (7);
25: Compute approximate objective value loss(d, b, wL(d, b), wR(d, b)) by (13);
26: end for
27: end for
28: /* Find the best parameters */
29: d∗, b∗ ← argmind∈[D],b∈Bd

loss(d, b, wL(d, b), wR(d, b));
30: w∗

L, w
∗
R ← wL(d

∗, b∗), wR(d
∗, b∗);

31: return d∗, b∗, w∗
L, w

∗
R;

Note that while we need to compute these inputs in advance, it roughly takes at most O(D ·N2) and
we only need to compute them once as pre-processing before growing trees [30].

In the following, we give a proof of Proposition 2.

Proof of Proposition 2. To prove Proposition 2, we first prove that Algorithm 1 computes an approx-
imate solution to the problem (5), and then, we show that it runs in O(D ·N) time.

Correctness We first show that Algorithm 1 returns a split condition (d, b) and leaf weights wL, wR

that minimize our approximate objective function of the problem (5) by the same technique proposed
by [30]. By applying the second-order Taylor expansion to our surrogate objective function in (6),
we obtain our approximate objective function as follows:

loss(d, b, wL, wR) =(GL + γ · G̃L) · wL +
1

2
· (HL + γ · H̃L) · w2

L

+ (GR + γ · G̃R) · wR +
1

2
· (HR + γ · H̃R) · w2

R + γ · H̃B · wL · wR.

(13)

For a fixed split condition (d, b), we can compute the optimal leaf weights that minimize (13) by
taking the derivatives of (13) with respect to wL and wR and setting it to zero, which yields our
closed-form solution shown in (7) of the main paper. Since the candidate features d ∈ [D] and
thresholds b ∈ Bd are finite, we can obtain the optimal split condition (d, b) and leaf weights wL, wR

that minimize (13) by enumerating all the possible split conditions, computing their optimal leaf
weights, and comparing their objective values loss(d, b, wL, wR). Thus, in the following, we prove
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that Algorithm 1 exactly computes each term in (13) for each split condition (d, b). For that purpose,
we show that we can compute the terms G̃L, H̃L, H̃B for a split condition (d, bm) using those for
the previous split condition (d, bm−1), which we denote G̃′

L, H̃
′
L, H̃

′
B. For notational simplicity, we

assumeN (rt,i) = [N ] and x1,d < · · · < xN,d without loss of generality. Recall that vβ(xn; rt,i) = 1
holds for any n ∈ [N ], and thus, we have vL(xn) = vβ(xn; rt,i) · on(d, bm) = on(d, bm) and
vR(xn) = vβ(xn; rt,i) · ōn(d, bm) = ōn(d, bm) by definition. In addition, we can see the two
monotonic properties on n ∈ [N ] and m ∈ [Md]: on(d, bm) ≥ on′(d, bm) for any n′ > n and
on(d, bm) ≥ on(d, bm′) for any m′ < m. While the former implies that on(d, bm) = 0 =⇒
on′(d, bm) = 0 holds for any n′ > n, the latter implies that on(d, bm) = 1 =⇒ on(d, bm′) =
1 holds for any m′ > m. Let k = minn∈[N ]:on(d,bm−1)=0 n and k′ = maxn∈[N ]:on(d,bm)=1 n.
Combining the above properties and the definitions of G̃L, H̃L, H̃B, we have

G̃L − G̃′
L =

∑k′

n=k
ĝn −

∑k′

n=k
ḡn ⇐⇒ G̃L = G̃′

L +
∑k′

n=k
(ĝn − ḡn),

H̃L − H̃ ′
L =

∑k′

n=k
ĥn −

∑k′

n=k
h̄n ⇐⇒ H̃L = H̃ ′

L +
∑k′

n=k
(ĥn − h̄n),

H̃B − H̃ ′
B = −

∑k′

n=k
h̃n ⇐⇒ H̃B = H̃ ′

B −
∑k′

n=k
h̃n.

Because the similar monotonic properties hold for ōn, we can compute G̃R and H̃R in the same way.
Note that GL, HL, GR, HR can also be computed in a similar manner, as shown in [7]. Algorithm 1
updates each term of (13) in lines 8–22 using these facts. To conclude, we can see that Algorithm 1
correctly computes the leaf weights for each split condition, and thus, it returns the optimal split
condition (d, b) and leaf weights wL, wR that minimize our surrogate objective function.

Complexity We now show that Algorithm 1 runs in O(D ·N) time. Our complexity analysis of
Algorithm 1 can be divided into the following four parts:

• In line 1, Algorithm 1 initializes the terms in O(N).

• In the for-loop of lines 6–26, each while-loop runs at most N times through the for-loop of
a fixed Bd. In addition, we can compute leaf weights wL, wR and their objective value in
constant time. Since we assume |Bd| = O(N), the overall complexity is O(N).

• Since the inner for-loop of lines 6–26 takes O(N), the outer for-loop of lines 2–27 takes
O(D ·N).

• The optimization task in line 29 can be solved in O(D ·N) because the objective value of
each (d, b) has been computed in lines 2–27.

In summary, the overall complexity of Algorithm 1 is O(D ·N), which concludes the proof.

A.3 Proof of Proposition 3

To prove Proposition 3, we first show two lemmas. Our first lemma is a Rademacher complexity
bound for the expected recourse riskRβ(f).
Lemma 2. For a model class F , let Ω(F) be the Rademacher complexity of F . Then, for any f ∈ F
and δ > 0, the following inequality holds with probability at least 1− δ:

Rβ(f) ≤ R̂β(f | S) + Ω(F) +

√
ln 1

δ

2 ·N
,

where R̂β(f | S) := 1
N

∑N
n=1l01(+1, f(x+A∗

β(x))).

Proof. Let D be a distribution over the input domain X . By the definition of the expected recourse
riskRβ , we have

Rβ(f) = Px∼D [∀a ∈ Aβ(x) : sgn(f(x+ a)) ̸= +1]

= Ex∼D [I [∀a ∈ Aβ(x) : sgn(f(x+ a)) ̸= +1]]

= Ex∼D
[
mina∈Aβ(x) l01(+1, f(x+ a))

]
.
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From our assumptions on the oracle A∗
β , we have mina∈Aβ(x)l01(+1, f(x+ a)) ≤ l01(+1, f(x+

A∗
β(x))) for any x ∈ X . Thus, we haveRβ(f) ≤ Ex∼D[l01(+1, f(x+A∗

β(x)))]. By applying the
Rademacher complexity bound [43], we have

Ex∼D[l01(+1, f(x+A∗
β(x)))] ≤

1

N

∑N

n=1
l01(+1, f(x+A∗

β(x))) + Ω(F) +

√
ln 1

δ

2 ·N

with probability at least 1 − δ. Combining these inequalities, the following inequality holds with
probability at least 1− δ:

Rβ(f) ≤ Ex∼D[l01(+1, f(x+A∗
β(x)))]

≤ 1

N

∑N

n=1
l01(+1, f(x+A∗

β(x))) + Ω(F) +

√
ln 1

δ

2 ·N
= R̂β(f | S) + Ω(F) +

√
ln 1

δ

2 ·N
,

which concludes the proof.

In our second lemma, we show that the Rademacher complexity of the refined model fα is equivalent
to that of the leaf indicator functions ϕj if we normalize the weight vector α.

Lemma 3. LetH := {ϕ1, . . . , ϕJ} and F̄ := {fα | ∥α∥1 ≤ 1}, where fα(x) =
∑J

j=1 αj · ϕj(x).
Then, we have Ω(F̄) = Ω(H).

Proof. Recall that the Rademacher complexity Ω(F) of a model class F is defined as Ω(F) :=

ES,σ[supf∈F
1
N

∑N
n=1 σn · f(xn)] [43]. Thus, we have

Ω(F̄) = ES,σ

[
supfα∈F̄

1

N

∑N

n=1
σn · fα(xn)

]
= ES,σ

[
supα∈RJ :∥α∥1≤1

1

N

∑N

n=1
σn ·

∑J

j=1
αj · ϕj(xn)

]
= ES,σ

[
supα∈RJ :∥α∥1≤1

1

N

∑J

j=1
αj ·

∑N

n=1
σn · ϕj(xn)

]
= ES,σ

[
maxj∈[J]

1

N

∑N

n=1
σn · ϕj(xn)

]
= ES,σ

[
supϕ∈H

1

N

∑N

n=1
σn · ϕ(xn)

]
= Ω(H),

where the fourth equality holds by the property of the dual norm [43].

Using Lemmas 2 and 3, we give a proof of Proposition 3 as follows.

Proof of Proposition 3. For any α ∈ RJ , let ᾱ := 1
∥α∥1

α. Since ∥ᾱ∥1 = 1, fᾱ ∈ F̄ holds. Thus,
from Lemmas 2 and 3, we have

Rβ(fᾱ) ≤ R̂β(fᾱ | S) + Ω(H) +

√
ln 1

δ

2 ·N

with probability at least 1 − δ. Recall that ϕj ∈ H is defined as ϕj(x) = I [x ∈ rj ] with an axis-
aligned rectangle rj ⊆ X . Hence, the VC dimension of H is 4 and its Rademacher complexity

is bounded by Ω(H) ≤
√

8·ln e·N
4

N [43]. In addition, since fᾱ(x) = 1
∥α∥1

fα(x) holds, we have
sgn(fᾱ(x)) = sgn(fα(x)), which implies l01(+1, fᾱ(x + A∗

β(x))) = l01(+1, fα(x + A∗
β(x))).

Thus,Rβ(fᾱ) = Rβ(fα) and R̂β(fᾱ | S) = R̂β(fα | S) holds. Finally, recall that l01(+1, f(x+
A∗

β(x))) ≤ l(+1, f(x+A∗
β(x))) holds from our assumption on the loss function l. Therefore, we
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Algorithm 2 Actionable feature tweaking algorithm for approximately solving the problem (1).
1: a∗ ← 0; c∗ ←∞;
2: /* Enumerate all leaves in ensemble */
3: for t = 1, . . . , T do
4: for i = 1, . . . , It do
5: /* Optimize action for leaf */
6: â← argmina∈A(x) c(a | x) s.t. x+ a ∈ rt,i;
7: /* Check if the action is better */
8: if sgn(f(x+ â)) = +1 and c(â | x) < c∗ then
9: a∗ ← â; c∗ ← c(â | x);

10: end if
11: end for
12: end for
13: return a∗;

have R̂β(fᾱ | S) ≤ R̃β(fᾱ | S) by definition. To summarize, the following inequality holds with
probability at least 1− δ:

Rβ(fα) = Rβ(fᾱ)

≤ R̂β(fᾱ | S) + Ω(H) +

√
ln 1

δ

2 ·N

≤ R̂β(fᾱ | S) +

√
8 · ln e·N

4

N
+

√
ln 1

δ

2 ·N

= R̂β(fα | S) +

√
8 · ln e·N

4

N
+

√
ln 1

δ

2 ·N

≤ R̃β(fα | S) +

√
8 · ln e·N

4

N
+

√
ln 1

δ

2 ·N
,

which concludes the proof.

B Implementation Details

B.1 Baseline methods

Vanilla. To the best of our knowledge, there is no study on learning tree ensemble models by
gradient boosting while guaranteeing the existence of recourse actions. Thus, as baseline approaches,
we employed standard unconstrained gradient boosting methods, which we refer to as Vanilla. Note
that it can be implemented by simply setting γ = 0.0 in our RABIT.

Only actionable features (OAF). As another baseline, we employed a modified version of Vanilla,
named only actionable features (OAF), that uses only features that can be changed by actions. Note
that such a baseline was employed by the previous studies as well [12, 30]. Its idea is based on
the observation of the existing study that relying on actionable features facilitates the existence of
actions [12]. Our setting of actionability of the features in each dataset is shown in Tables 2 to 5.

B.2 Actionable feature tweaking algorithm

To extract actions from tree ensemble models f(x) =
∑T

t=1 ft(x) by solving the problem (1), we
employed actionable feature tweaking algorithm [57] which is a fast heuristic method. Algorithm 2
presents a pseudo-code of the actionable feature tweaking algorithm. Algorithm 2 consists of the
following three steps: (i) for each tree ft in the ensemble, enumerating all the leaves i ∈ [It];
(ii) computing an optimal action â to the region rt,i corresponding to the leaf i; (iii) finding the
minimum cost action a∗ among ones altering the prediction results of f into the desired class (i.e.,
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sgn(f(x + a)) = +1). Note that we can easily compute an optimal action â = (â1, . . . , âD) to
an instance x and a region r = [l1, u1) × · · · × [lD, uD) as âd = median(xd, ld, ud) − xd for
d ∈ [D] [5, 63]. Our implementation is parallelized and runs faster than the existing public ones.

C Complete experimental results

We present the complete results of our experiments. Tables 2 to 5 present the details on the value
type, minimum value, maximum value, immutability, and constraint of each feature of the datasets
that we used in our experiments.

C.1 Additional experimental results of baseline comparison

Figure 5 presents the experimental results of our baseline comparison with respect to the area under
the ROC curve (AUC) and F1 score. As with the results with respect to the accuracy, we observed
that RABIT achieved comparable AUC and F1 score to the baselines. Table 6 shows the average cost,
sparsity, and plausibility of extracted actions with their standard deviations.

C.2 Sensitivity analysis of hyperparameters

Number of trees T Figure 6 presents the experimental results of our baseline comparison with
different numbers of trees T . We varied T from 50 to 250 with a step size of 50, and measured the
average accuracy and recourse ratio for each T . We can see that RABIT attained higher recourse
ratios than the baselines while keeping comparable accuracy regardless of the number of trees T .

Cost budget β Figure 7 presents the sensitivity analysis of the cost budget β. We varied β from 0.1
to 0.5 with a step size of 0.1, and measured the average accuracy and recourse ratio for each β. We
can see that RABIT stably attained comparable accuracy to the baselines regardless of the cost budget
β. We also observed that RABIT achieved higher recourse ratios than the baselines for almost all β.

C.3 Efficacy of intercept adjustment

By transforming a learned tree ensemble f into a probabilistic forecaster gθ(x) = 1
1+e−f(x)+θ with an

intercept θ ∈ R, we can directly apply the existing post-processing method that adjusts the intercept
θ through a PAC-style guarantee [51]. To investigate the efficacy of the existing intercept adjustment,
we applied it to the baselines and RABIT and measured the accuracy and recourse ratio of the adjusted
models.

Figure 8 presents the results, where we fixed δ = 0.05 and varying ε from 0.05 to 0.5 with a step
size of 0.05. We can see that while the recourse ratios of all the methods could be controlled by
the parameter ε, RABIT succeeded in maintaining the best accuracy for almost all the situations.
However, compared to our leaf refinement approach, the intercept adjustment approach tended to
drop the accuracy significantly when ε is small. For the example on the Adult dataset, the accuracies
of the intercept adjustment approach were less than 50% when ε ≤ 0.1, while those of our leaf
refinement approach were more than 80% as shown in Figure 4. These results suggest that the
intercept adjustment approach is effective in controlling the recourse ratio, but it is not as effective as
our leaf refinement approach in terms of accuracy.

C.4 Impact on model brittleness

We examine the impact of our method on the model brittleness, i.e., the sensitivity of the model to
small perturbations of the input data. Following the previous work [51], we add i.i.d. Gaussian noises
to test instances and measure the ratio of instances whose predictions change. For each test instance,
we generate 100 perturbed instances by adding δd ∼ N (0, 0.1 · σ2

d) for each actionable feature d,
where σ2

d is the variance of d.

Table 7 presents the results of the average model brittleness of each method. We can see that there is
no significant difference in the model brittleness between RABIT and the baselines, which suggests
that our method does not significantly affect the model brittleness.
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C.5 Comparison using Exact AR Algorithm based on Integer Optimization

To investigate whether an action extraction algorithm affects the results, we also employed the exact
AR method based on integer optimization [11, 28] to extract actions from tree ensembles trained by
each method. As with our experiment of Section 5.1, we extracted actions for test instances predicted
as the undesired class in each trial, and measured the average cost of the extracted actions. We used
PySCIPOpt 5.5.0, which is a Python wrapper of SCIP1, one of the fastest open-source mathematical
programming solvers. Due to computational cost, we randomly picked 30 test instances in each fold,
and a 60 second time limit was imposed on optimizing an action for each instance.

Table 8 presents the average cost of the extracted actions. As with our results using the heuristic
algorithm shown in Section 5.1, we can see that our RABIT achieved lower cost than the baselines
regardless of the datasets.

C.6 Ablation Study on Leaf Refinement

To investigate the efficacy of our learning algorithm and leaf refinement approach, we conducted
its ablation study that compares Vanilla and RABIT with Vanilla with leaf refinement (Vanilla w/
Refinement) and RABIT with leaf refinement (RABIT w/ Refinement). Note that there are two main
evaluation metrics (i.e., accuracy and recourse ratio) and the parameter λ of our post-hoc refinement
affects these metrics. To make the comparison easier to understand, for each method and dataset, we
selected the value of λ that attained the closest accuracy to that of RABIT.

Table 9 presents the average accuracy and recourse ratio of each method. We can see that the accuracy
gaps between methods were at most 2.7%, 0.6%, 0.3%, and 1.0% on FICO, COMPAS, Adult, and
Bail datasets, respectively. It indicates that all the methods attained comparable accuracy in each
dataset. In addition, we observed that RABIT w/ Refinement performed the best, and that RABIT
and Vanilla w/ Refinement performed better than Vanilla. Furthermore, we also observed that while
RABIT outperformed Vanilla w/ Refinement in FICO and COMPAS datasets, Vanilla w/ Refinement
outperformed RABIT in Adult and Bail datasets. These results indicate that our learning algorithm
and post-hoc refinement are effectice individually, and their combination can achieve better results.

D Additional Comments on Existing Assets

Numba 0.61.02 is publicly available under the BSD-2-Clause license. PySCIPOpt 5.5.03 is publicly
available under the MIT license. All the scripts and datasets used in our experiments are available in
our GitHub repository at https://github.com/kelicht/rabit.

All the datasets used in Section 5 are publicly available and do not contain any identifiable information
or offensive content. As they are accompanied by appropriate citations in the main body, see the
corresponding references for more details.

E Discussion on potential societal impacts

Our proposed method, named RABIT, is a new framework that aims to learn accurate tree ensemble
models while guaranteeing the existence of recourse actions. As demonstrated in our experiments,
tree ensembles trained by our method can provide executable actions to more individuals than the
existing baselines without degrading accuracy. Thus, our method enables us to learn predictive
models that make accurate predictions and guarantee recourse actions. It improves the trustworthiness
of algorithmic decision-making for critical tasks in the real world, such as loan approvals and judicial
decisions [36, 58].

On the other hand, our framework also has potential societal impacts that need careful consideration.
In practice, it may not always be necessary for decision-makers to guarantee the existence of
executable actions for all individuals. For example, providing easy actions for granting loans to
applicants who do not have sufficient capacity to repay might cause a serious financial crisis in the

1https://www.scipopt.org/
2https://numba.pydata.org/
3https://pyscipopt.readthedocs.io/
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future. However, since our method can adjust the ratio of individuals who are guaranteed to have
executable actions by tuning its hyperparameter γ, it helps decision-makers provide recourse actions
to appropriate individuals while keeping the quality of decision-making.

In addition, there is a risk that our method may be used maliciously to train a model that provides
specific actions for causing some undesired situations, such as discrimination. To avoid this risk, we
may need to check the actions provided to affected individuals before deploying the models (e.g.,
using the existing techniques for globally summarizing recourse actions [29, 48]).

Overall, the proposed method has the potential to significantly improve the trustworthiness of the
decision-making process, but we need careful consideration of its risks before incorporating it into
the actual decision-making process.
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Table 2: Details of each feature of the FICO dataset [14].

Feature Type Min Max Immutable Constraint

ExternalRiskEstimate Integer 0.00 94.00 Yes Fix
MSinceOldestTradeOpen Integer 0.00 803.00 Yes Fix
MSinceMostRecentTradeOpen Integer 0.00 383.00 Yes Fix
AverageMInFile Integer 4.00 383.00 Yes Fix
NumSatisfactoryTrades Integer 0.00 79.00 No Nothing
NumTrades60Ever2DerogPubRec Integer 0.00 19.00 Yes Fix
NumTrades90Ever2DerogPubRec Integer 0.00 19.00 Yes Fix
PercentTradesNeverDelq Integer 0.00 100.00 No Nothing
MSinceMostRecentDelq Integer 0.00 83.00 No Nothing
MaxDelq2PublicRecLast12M Integer 0.00 9.00 No Nothing
MaxDelqEver Integer 2.00 8.00 No Nothing
NumTotalTrades Integer 0.00 104.00 Yes Fix
NumTradesOpeninLast12M Integer 0.00 19.00 Yes Fix
PercentInstallTrades Integer 0.00 100.00 No Nothing
MSinceMostRecentInqexcl7days Integer 0.00 24.00 No Nothing
NumInqLast6M Integer 0.00 66.00 No Nothing
NumInqLast6Mexcl7days Integer 0.00 66.00 No Nothing
NetFractionRevolvingBurden Integer 0.00 232.00 No Nothing
NetFractionInstallBurden Integer 0.00 471.00 No Nothing
NumRevolvingTradesWBalance Integer 0.00 32.00 No Nothing
NumInstallTradesWBalance Integer 0.00 23.00 No Nothing
NumBank2NatlTradesWHighUtilization Integer 0.00 18.00 No Nothing
PercentTradesWBalance Integer 0.00 100.00 No Nothing

Table 3: Details of each feature of the COMPAS dataset [2].

Feature Type Min Max Immutable Constraint

age Integer 18.00 96.00 No Irreducible
juv_fel_count Integer 0.00 20.00 No Nothing
juv_misd_count Integer 0.00 13.00 No Nothing
juv_other_count Integer 0.00 17.00 No Nothing
priors_count Integer 0.00 38.00 No Nothing
sex:Female Binary 0.00 1.00 Yes Fix
sex:Male Binary 0.00 1.00 Yes Fix
race:African-American Binary 0.00 1.00 Yes Fix
race:Asian Binary 0.00 1.00 Yes Fix
race:Caucasian Binary 0.00 1.00 Yes Fix
race:Hispanic Binary 0.00 1.00 Yes Fix
race:Native-American Binary 0.00 1.00 Yes Fix
race:Other Binary 0.00 1.00 Yes Fix
c_charge_degree:F Binary 0.00 1.00 No Nothing
c_charge_degree:M Binary 0.00 1.00 No Nothing
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Table 4: Details of each feature of the Adult dataset [34].

Feature Type Min Max Immutable Constraint

age Integer 17.00 90.00 No Irreducible
educational-num Integer 1.00 16.00 No Nothing
capital-gain Integer 0.00 99999.00 No Nothing
capital-loss Integer 0.00 4356.00 No Nothing
hours-per-week Integer 1.00 99.00 No Nothing
marital-status:Married Binary 0.00 1.00 Yes Fix
marital-status:NotMarried Binary 0.00 1.00 Yes Fix
race:Amer-Indian-Eskimo Binary 0.00 1.00 Yes Fix
race:Asian-Pac-Islander Binary 0.00 1.00 Yes Fix
race:Black Binary 0.00 1.00 Yes Fix
race:Other Binary 0.00 1.00 Yes Fix
race:White Binary 0.00 1.00 Yes Fix
gender:Female Binary 0.00 1.00 Yes Fix
gender:Male Binary 0.00 1.00 Yes Fix
native-country:Others Binary 0.00 1.00 Yes Fix
native-country:US Binary 0.00 1.00 Yes Fix

Table 5: Details of each feature of the Bail dataset [53].

Feature Type Min Max Immutable Constraint

White Binary 0.00 1.00 Yes Fix
Alchy Binary 0.00 1.00 No Nothing
Junky Binary 0.00 1.00 No Nothing
Super Binary 0.00 1.00 Yes Fix
Married Binary 0.00 1.00 Yes Fix
Felon Binary 0.00 1.00 Yes Fix
Workrel Binary 0.00 1.00 No Nothing
Propty Binary 0.00 1.00 Yes Fix
Person Binary 0.00 1.00 Yes Fix
Male Binary 0.00 1.00 Yes Fix
Priors Integer 0.00 40.00 No Nothing
School Integer 1.00 19.00 No Nothing
Rule Integer 0.00 39.00 No Nothing
Age Integer 15.00 72.00 No Irreducible
Tservd Integer 1.00 287.00 Yes Fix
Follow Integer 46.00 57.00 Yes Fix
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Figure 5: Experimental results of baseline comparison with respect to the area under the ROC curve
(AUC) and F1 score of the models trained by each method (higher is better).

Table 6: Average cost, sparsity, and plausibility of extracted actions with their standard deviation
(lower is better).

(a) Cost

Dataset Vanilla OAF RABIT
FICO 0.358± 0.01 0.315± 0.01 0.165± 0.03

COMPAS 0.23± 0.02 0.181± 0.01 0.112± 0.01
Adult 0.354± 0.0 0.308± 0.01 0.275± 0.0
Bail 0.449± 0.02 0.371± 0.01 0.225± 0.03

(b) Sparsity

Dataset Vanilla OAF RABIT
FICO 2.155± 0.06 2.792± 0.08 1.078± 0.05

COMPAS 1.518± 0.05 1.553± 0.05 1.264± 0.04
Adult 1.467± 0.07 1.547± 0.1 1.422± 0.14
Bail 1.546± 0.1 1.563± 0.05 1.131± 0.03

(c) Plausibility

Dataset Vanilla OAF RABIT
FICO 0.438± 0.0 0.44± 0.0 0.475± 0.0

COMPAS 0.436± 0.01 0.446± 0.01 0.466± 0.01
Adult 0.477± 0.01 0.464± 0.01 0.479± 0.01
Bail 0.508± 0.0 0.503± 0.0 0.519± 0.0
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Figure 6: Sensitivity analysis of the number of trees T .
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Figure 7: Sensitivity analysis of the cost budget β.
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Figure 8: Experimental results of the intercept adjustment approach proposed by [51].

Table 7: Average brittleness of the models trained by each method against input perturbations (lower
is better).

Dataset Vanilla OAF RABIT
FICO 0.064± 0.0 0.098± 0.01 0.063± 0.0

COMPAS 0.107± 0.0 0.114± 0.0 0.113± 0.0
Adult 0.04± 0.0 0.064± 0.0 0.043± 0.0
Bail 0.112± 0.01 0.144± 0.01 0.105± 0.01

Table 8: Average cost of actions extracted by the exaxt AR method (lower is better).

Dataset Vanilla OAF RABIT
FICO 0.354± 0.05 0.293± 0.07 0.11± 0.01

COMPAS 0.188± 0.04 0.158± 0.03 0.096± 0.01
Adult 0.34± 0.02 0.297± 0.02 0.257± 0.02
Bail 0.42± 0.05 0.32± 0.04 0.213± 0.02
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Table 9: Average accuracy and recourse ratio of each method in the ablation study on our learning
algorithm and leaf refinement method (higher is better).

(a) Accuracy

Dataset Vanilla RABIT Vanilla w/ Refinement RABIT w/ Refinement
FICO 0.735± 0.01 0.732± 0.01 0.708± 0.01 0.716± 0.01

COMPAS 0.682± 0.01 0.677± 0.01 0.676± 0.01 0.677± 0.01
Adult 0.852± 0.0 0.851± 0.0 0.853± 0.0 0.85± 0.0
Bail 0.711± 0.01 0.701± 0.0 0.702± 0.01 0.706± 0.01

(b) Recourse Ratio

Dataset Vanilla RABIT Vanilla w/ Refinement RABIT w/ Refinement
FICO 0.541± 0.01 0.825± 0.03 0.694± 0.01 0.859± 0.01

COMPAS 0.832± 0.02 0.936± 0.02 0.887± 0.01 0.986± 0.0
Adult 0.274± 0.01 0.427± 0.02 0.685± 0.06 0.847± 0.05
Bail 0.364± 0.02 0.628± 0.03 0.84± 0.03 0.868± 0.01
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