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Abstract
Applications such as engineering design often re-
quire us to optimize a black-box function, i.e.,
a system whose inner processing is not analyti-
cally known and whose gradients are not avail-
able. Practitioners often have a fixed budget for
the number of function evaluations and the per-
formance of an optimization algorithm is mea-
sured by its simple regret. In this paper, we study
the class of “Optimistic Optimization” algorithms
for black-box optimization that use a partitioning
scheme for the domain. We develop algorithms
that learn a good partitioning scheme and use flex-
ible surrogate models such as neural networks in
the optimization procedure. For multi-index func-
tions on an m-dimensional subspace within d di-
mensions, our algorithm attains Õ(n−β/d) regret,
where β = 1+ d−m

2m−1 , as opposed to Õ(n−1/d) for
SequOOL, a state-of-the-art optimistic optimiza-
tion algorithm. We use our approach to improve
the quality of Activation-aware Weight Quantiza-
tion (AWQ) of the OPT-1.3B model, achieving
∼ 10% improvement in performance relative to
the best possible unquantized model.

1. INTRODUCTION AND MOTIVATION
Optimization of black-box functions is often carried out by
a class of algorithms called “Optimistic Optimization” algo-
rithms (Munos, 2014). These algorithms are preferred due
to their mild assumptions; however, they require a partition
scheme to be provided for the search space. The quality of
a partitioning scheme depends on the function being opti-
mized (Grill et al., 2015). If information on the function is
lacking, then a default partitioning scheme, i.e., axis-aligned
rectangles, is used (Jones et al., 1993; Bartlett et al., 2019).
But this default choice might not be a good choice for the
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function. Additionally, an axis-aligned rectangle scheme
limits the application to low-dimensional search spaces (as
the number of rectangles grows as kdn, where k is the num-
ber of splits at each height, d is the dimension and n is the
number of splits needed in each dimension), or it may fail
to exploit low-dimensional structures in high-dimensional
spaces. Thus, there is a need to develop partitioning schemes
that can adapt to the low dimensional structure that may be
present in a black-box function.

Global optimization is impossible without restricting the
class of functions: a degenerate function that takes the value
1 at particular location and zero everywhere else can only
be optimized by sampling every point in the domain. The
class of functions is typically restricted by assumptions on
its “smoothness”. One of the first global optimization algo-
rithms with provable convergence was obtained for the class
of Lipschitz functions. The DiRect algorithm (Jones et al.,
1993; Jones & Martins, 2021) is a well-known algorithm
that can optimize Lipschitz functions without knowing the
Lipschitz constant. A different class of functions studied in
the Bayesian Optimization literature is that of the Gaussian
Process (GP) prior for the unknown function f . Combining
the observed samples with the prior mean and covariance
kernel, a posterior distribution for f is obtained and used
to guide the sampling strategy, see e.g. GP-UCB (Srinivas
et al., 2012). Since its sampling strategy required maximiz-
ing the Upper Confidence Bound obtained from the poste-
rior, its could feasibly be applied only on low-dimensional
X . Later works (Shekhar & Javidi, 2018; Salgia et al., 2021)
incorporated domain partitioning ideas to reduce the com-
putational cost. GP-UCB can also be applied if f belongs
to a Reproducing Kernel Hilbert Space corresponding to
the covariance kernel. However, these methods require the
kernel associated with f as an input.

Unlike the above methods, which assume a global character-
istic for f , the “Optimistic Optimization” class of algorithms
(HOO (Bubeck et al., 2011), SOO (Munos, 2011), SequOOL
(Bartlett et al., 2019)) just assume a local smoothness con-
dition around the global maximizer. This local smoothness
ensures that the function does not rapidly decrease around
its maximum value. These algorithms require as input a hier-
archical partitioning of X that is well-behaved with respect
to a semi-metric on X . Although the semi-metric is not
needed to be known, the performance of these algorithms
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can be heavily influenced by the choice of the partitioning
scheme. Absent any additional information, the default par-
titioning is the axis-aligned rectangles from DiRect, leading
to the shortcomings described in the beginning. We propose
to develop an algorithm that adaptively builds a partitioning
scheme as new samples are collected. Additionally, it refines
partitions using SequOOL in the low dimensional subspace
that accounts for most of the variation in the function.

We sumarize the main contributions of our paper below.

• We demonstrate the benefit of using a learned partition-
ing scheme for existing derivative-free optimization
algorithms such as SequOOL.

• When the function is a low-dimensional multi-index
function we theoretically prove improved regret bounds
shown in Table 1.

• Empirically, we demonstrate the improvement in opti-
mization error for several benchmark functions includ-
ing Rastrigin (multi-modal), Branin (multiple minima),
and Sharp Ridge (non-differentiable).

• We pose the quantization of Large Language Model
(LLM) as a high-dimensional black-box optimization
problem and obtain an improved perplexity value.

SOO SequOOL Our Method
η = 0 ρ

√
n ρΩ̃(n) ρβΩ̃(n)

η > 0 Õ(n−1/η) Õ(n−1/η) Õ(n−β/η)

Table 1. Regret bounds on a budget of n evaluations for a m-
dimensional multi-index function in d dimensions. β = 1+ d−m

2m−1

and ρ, η are parameters for the default partitioning scheme.

Related works Here we summarize the methods we have
compared in our experiments. Perhaps the closest related
work is Random Embedding Simultaneous Optimistic Opti-
mization (RESOO) (Qian & Yu, 2016), which scales SOO to
high-dimensional optimization problems by applying SOO
in a random low-dimensional search space. The simple re-
gret of RESOO depends only on the effective dimension of
the problem, rather than the full dimension of the solution
space. REMBO (Random EMbedding Bayesian Optimiza-
tion) (Wang et al., 2016) uses a random projection matrix to
create a lower-dimensional embedding for high-dimensional
optimization problems. It then applies Bayesian optimiza-
tion on this low-dimensional space, allowing it to efficiently
search for optima in the reduced space. HeSBO (Nayebi
et al., 2019) uses hashing-enhanced embeding subspaces.
ALEBO (Adaptive Linear Embedding Bayesian Optimiza-
tion) (Letham et al., 2020) builds upon and improves the
original REMBO by proposing a new linear-embedding
method. However, these algorithms requires an lower-bound

to the low-dimensional subspace dimension, which is dif-
ficult to obtain in real-world problems. Additionally, the
Bayesian Optimization algorithms can be computationally
expensive for large budgets.

Latent Action Monte Carlo Tree Search (LA-MCTS) (Wang
et al., 2020) recursively partitions the high-dimensional
search space into regions with high/low function values
using nonlinear decision boundaries. It serves as a meta-
algorithm by using existing black-box optimizers (e.g.,
BO, TuRBO (Eriksson et al., 2019)) as its local model.
LA-MCTS creates sub-regions by partitioning the variable
ranges without reducing dimensionality. Each sub-region
retains the full dimensionality of the original problem space.
While LA-MCTS has shown good empirical performance, it
encounters challenges in high-dimensional spaces. Voronoi
Optimistic Optimization (VOO) (Kim et al., 2020) is a
method for optimizing functions in high-dimensional spaces.
Instead of using fixed partitions, VOO creates flexible sec-
tions called Voronoi cells. Each cell contains points closest
to a specific evaluated point. As new points are evaluated,
the cells automatically adjust based on the best results.

Evolutionary algorithms such as CMA-ES (Hansen, 2023)
and simulated annealing (Xiang et al., 2013) are other popu-
lar approaches for black-box optimization. The CMA-ES
technique performs well in finding the best solutions in
high-dimensional optimization problems. However, these
methods do not have convergence guarantees (Loshchilov
& Hutter, 2016; Nomura et al., 2021).

2. PROBLEM SETUP & ADAPTIVE
PARTITIONING SCHEMES

We consider the problem of optimizing a function f : X 7→
R using only its evaluations at appropriately chosen points
in its domain X , which is assumed to be a closed and
compact set. Given a budget of n evaluations, at each
t ∈ {1, 2, . . . , n} the algorithm queries a point xt ∈ X
and observes a real number yt = f(xt). After exhausting
its budget, the algorithm returns the estimated maximizer
x̂(n). The optimization error is quantified by the simple
regret rn, defined as

rn ≜ f∗ − f(x̂(n)),where f∗ ≜ sup
x∈X

f(x),

and x∗ ∈ X such that f∗ = f(x∗).

Our focus is on the class of optimistic optimization algo-
rithms (Munos, 2011; Bubeck et al., 2011; Valko et al., 2013;
Munos, 2014; Grill et al., 2015; Bartlett et al., 2019). These
algorithms require as input a hierarchical partitioning of the
domain X for their search procedure.

Definition 2.1. Partitioning scheme (Bartlett et al., 2019).
Let P denote a tree representation of the domain X . All the
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h = 0 : X = [−1, 1]2

Depth h = 2: axis 2 trisection

Depth h = 1: axis 1 trisection

Depth h = 3: axis 1 trisection

(a) (b)

(c) (d)

A blue dot represents a cell that is trisected at height h

An orange dot represents a cell that is not trisected at height h

Figure 1. First four depths of the default partitioning P on [−1, 1]2

cells at depth h form a partition of X and are denoted as Ph.
We index the cells at depth h with an additional index i, i.e.,
Ph,i is a cell in the tree at depth h. A cell Ph,i is partitioned
to obtain one or more cells of Ph+1. P∗

h denotes a cell at
depth h containing a maximizer x∗ of f and xh,i denotes a
representative location within the Ph,i cell.

A common choice for the domain is obtained when we have
interval constraints on each of its components. In this case,
without loss of generality, we can consider X = [−1, 1]d.
And a default choice for the partitioning scheme that is often
used in practice is the axis-aligned trisection scheme (Jones
et al., 1993). We use Hm

1 to denote the unit hypercube in
m-dimensional space. i.e., [−1, 1]m domain.

Definition 2.2. The default partitioning schemeP = {Ph,i :
h, i ∈ N0} of X = [−1, 1]d uses an axis-aligned trisection
method in a round-robin manner (see Figure 1). At depth
h = 0, there is a single cell P0,1 = X . Each cell Ph,i at
depth h is split into three children cellsPh+1,j at depth h+1.
The trisection occurs along the (h mod d) + 1 axis, i.e., the
new cells are created by introducing (d − 1)-dimensional
hyperplanes orthogonal to the chosen axis. For all h, i the
representative xh,i is the midpoint of the cell Ph,i.

We consider partitioning schemes that are not aligned with
the standard axes. We define such a rotated low-dimensional
partitioning scheme using a matrix of orthonormal rows.

Definition 2.3. Given A ∈ Rm×d such that AA⊤ = Im
and a scalar α > 0, we establish a partitioning scheme
denoted as A. Let the default partitioning scheme (Defini-
tion 2.2) on [−α, α]m be denoted as T . For any depth h and

index i, the cell Ah,i ≜ {A⊤t : t ∈ Th,i} is a cell in the
partitioning on the m-dimensional projection of X onto the
subspace spanned by rows of A.

Since the projection ofX onto A can result in points outside
X , the value of α is chosen to ensure that the projection is
covered by theA partitioning scheme. An appropriate value
of α is in the following definition.

Definition 2.4. Let cj ∈ {−1, 1}d denote the 2d corners,
indexed by j, of the default axis-aligned P partitioning
scheme. Given a matrix A with m orthonormal rows de-
noted as a1,a2, . . . ,am, we define

αmax ≜
[

max
1≤j≤2d

a⊤1 cj , max
1≤j≤2d

a⊤2 cj , · · · max
1≤j≤2d

a⊤mcj

]⊤
as the extent of the A partitioning scheme. We choose the
largest component of the extent as α ≜ maxi,j a

⊤
i cj .

In this paper, we will provably demonstrate the advantage of
our method when there is a low-dimensional ridge structure
present in the black-box function. We consider the class of
multi-index functions (Fornasier et al., 2012), i.e., there is a
matrix A ∈ Rm×d with orthonormal rows and a Lipschitz
function g such that

f(x) = g(Ax). (1)

Then optimizing over the low-dimensional subspace is suf-
ficient to recover the maximizer. All proofs and omitted
details can be found in the supplementary.

Proposition 2.5. Suppose f : Rd 7→ R is a multi-index
function with f(x) = g(Ax). If x∗ ∈ X = [−1, 1]d is an
optimizer and α is chosen as per definition 2.4, then there is
a z∗ ∈ Rm such that f(A⊤z∗) = f(x∗) and ∥z∗∥∞ ≤ α.

Proof Sketch. For an optimizer x∗ ∈ [−1, 1]d let z∗ =
Ax∗. Then f(A⊤z∗) = f(A⊤Ax∗) = f(x∗) since A⊤A
is identity. We then use that x∗ lies in a convex hull of
cube corners and apply the definition of α to show that
∥z∗∥∞ ≤ α, see details in Appendix 11.4.

The above proposition implies that if we have access to the
true subspace matrix A, we can compute α and restrict our
optimization to the m dimensional space αHm

1 using the
A partitioning scheme. We theoretically characterize the
benefit of using the partitioning scheme A for the class of
multi-index functions, i.e., if f satisfies (1) then using the
partitioning scheme A can decrease rn at a faster rate with
n. To show this, we use the partitioning scheme assumption
made by Grill et al. (2015) and Bartlett et al. (2019) that
states that the suboptimality of any point in the P∗

h cell
improves as depth h increases. The rate of this improvement
is characterized by a parameter ρ ∈ (0, 1).
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Assumption 2.6. (Bartlett et al., 2019) For any global op-
timum x⋆, there is a ν > 0 and ρ ∈ (0, 1) such that for all
h ∈ N0 and all x ∈ P∗

h , we have that f(x) ≥ f(x⋆)− νρh.

Bartlett et al. (2019) define the near-optimality dimension
which characterizes the difficulty of optimizing a black-box
function using a partitioning scheme.

Definition 2.7. (Bartlett et al., 2019). Consider a partition-
ing P that satisfies Assumption 2.6 for some ν, ρ. For any
C > 1, the near-optimality dimension ηP(ν, ρ, C) of f with
respect to the partitioning P is defined as

ηP(ν, ρ, C) ≜ inf{η ≥ 0 : |NP(3νρ
h)| ≤ Cρ−ηh ∀h ≥ 0},

where NP(3νρ
h) is the set of near-optimal cells Ph,i at

depth h for which supx∈Ph,i
f(x) ≥ f(x∗)− 3νρh.

Intuitively, a larger ρ implies that the function is only im-
proving slowly near the maximizer, and a larger η implies
that there are many near-optimal cells which must be ruled
out to get the true maximizer. In both cases, we need a larger
budget of evaluations to converge. The following example
shows a partitioning scheme A with a lower near-optimality
dimension than the default partitioning scheme.

Example 2.8. Consider the function f(x1, x2) = g(Ax) =
1− |x1| with A = [1, 0] and g(z) = 1− |z|. Let ηP , ηA be
the near-optimality dimensions for the partitioning schemes
P,A as defined in Definitions 2.2 and 2.3, respectively.
Then we have that ηP = 1 and ηA = 0.

In the next example, the subspace defined by A is not
aligned with the canonical axes and we see that ρA is smaller
than ρ of the default partitioning scheme.

Example 2.9. Consider the function f(x1, x2) = g(Ax) =
1 − |x1 + x2| with A = [1, 1] and g(k) = 1 − |k|. Let
ηP , ηA be the near-optimality dimensions for the partition-
ing schemes P,A associated with (ν, ρ), (νA, ρA) respec-
tively. Then ρ = 1/

√
3 and ρA = 1/3 and ηP = ηA = 0.

In addition to identifying the important subspace spanned by
m orthonormal directions, an adaptive partitioning scheme
can choose which direction to split at each depth.

Definition 2.10. Direction selection strategy. For a par-
titioning A in Definition 2.3, a direction selection strat-
egy τh : H → [1 : m] defined for each height h takes the
history H of all past function evaluations till depth h − 1
and outputs the index of the direction to be split at depth h.

In the following example, a direction selection strategy that
splits the x1 axis twice as often as the x2 axis results in
a lower near-optimality dimension than that of the default
partition P which splits both the axes in equal proportion.

Example 2.11. The near-optimality dimension of the de-
fault partitioning scheme for the function f(x1, x2) =

Algorithm 1 Obtaining directions for an adaptive partition-
ing scheme
Require: T , oracle for f which is a multi-index function

defined using A (see (1))
1: Sample f at T points chosen as x(i) iid∼ N (0, Id) and

fit a single hidden-layer neural network ŷ
2: Â ← top right singular vectors of the hidden layer

weight matrix preserving 95% variance
3: u ← Upper bound to dist (A, Â) obtained in

Lemma 9.11 or Theorem 9.12
4: return Â and α̂ (see Equation 4) used to specify the

partitioning scheme A in Definition 2.3

1− |x1| − x2
2 is ηP = 0.5. For the partitioning scheme A

from Definition 2.3 with A = I2, α = 1 and direction selec-
tion strategy τh = 1 if h mod 3 ̸= 0 and τh = 2 otherwise,
its near-optimality dimension ηA = 0.

Empirically, as we increase the optimization budget, we
observe that SequOOL on A decreases regret at a faster rate
than SequOOL on P for the above example functions.

3. PROPOSED ALGORITHMS FOR
BLACK-BOX OPTIMIZATION

To utilize an adaptive partitioning scheme, we develop two
kinds of algorithms: 1. a two-stage algorithm where the first
stage learns an adaptive partitioning scheme and the second
stage uses it for optimization, and 2. an interleaved algo-
rithm where learning and optimization happen iteratively.

Two-stage algorithm. In the first stage, we use a learning
algorithm to obtain Â, i.e., the directions used to define the
adaptive partitioning scheme A. If f is a multi-index func-
tion satisfying (1), the quality of this estimate is measured by
the subspace distance between Â and the true A. The value
of α̂ chosen in Lemma 4.5 is such that f(Â

⊤
t) = f(x⋆)

for some t ∈ [−α̂, α̂]m and the optimization can find the
maximizer in the low-dimensional subspace.

Algorithm 1 learns Â by fitting a single hidden-layer neural
network to the function evaluations at random locations in
its domain. A single hidden-layer neural network can model
the fact that only a subspace of the domain explains all
the variation in the function values (see Proposition 8.1).
In practice, we can choose the value of m to explain a
desired percentage (such as 95%) of the total variation in
the SVD step calculating Â. Another approach to learn Â
is from Fornasier et al. (2012, Algorithm 2) which estimates
the gradient of the function using finite differences. The
second stage applies SequOOL to the partitioning scheme
A returned by Algorithm 1.
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Algorithm 2 SequOOL on an adaptive partitioning scheme
with a direction selection strategy
Require: Total number of openings n, number of samples

T for updating f̂ , integer c stating how often f̂ is updated,
number of dimensions m, oracle for f , direction selection
strategy τh.
Setup a partitioning scheme Â with Â and α̂ obtained by
(Fornasier et al., 2012, Algorithm 2)
Obtain f̂ by fitting a neural network on available samples,
set hmax ← ⌊n2/

(
nlogn+ Tn

3c

)
⌋

for h← 1 to hmax do
Th ← the cell with the largest function sample value
at height h
if h mod c = 0 then

Obtain evaluations of f at T uniform random loca-
tions in T ∗

h and update f̂
end if
Open ⌊hmax/h⌋ cells at depth h and trisect them along
the direction returned by τh(f̂)

end for
return x̂(n)← argmaxall h,i f(xh,i)

Interleaved learning and optimization. Instead of sepa-
rating the learning and optimization in two distinct stages,
an interleaved algorithm updates the neural network fit at
regular intervals. The updated approximant is used to spec-
ify the direction selection strategy in Definition 2.10.

Algorithm 2 uses a parameter τh that takes the updated
approximation f̂ as input. Our proposed method for τh is
the lookahead direction selection strategy, which is detailed
in Algorithm 3 in Appendix section 3.

A different value of hmax is used in Algorithm 2, com-
pared to hmax =

⌊
n2

nlogn

⌋
used in SequOOL, to account for

the additional evaluations required to update the surrogate
model f̂ at regular intervals. This adjustment ensures that
the total number of evaluations, including both SequOOL
openings and model updates, remains within the overall bud-
get. The following proposition guarantees that the chosen
hmax ensures the total number of function evaluations does
not exceed 3n.

Proposition 3.1. Let n, T, c, hmax be the parameters de-
fined in Algorithm 2 with logn ≜

∑n
t=1

1
t . Then the total

number of function evaluations taken by the algorithm will
not exceed 3n.

4. THEORETICAL ANALYSIS
We show that for the class of multi-index functions (1),
the partitioning Â obtained using the learned Â can have
a lower η and a lower ρ compared to that of the default
partitioning P . Our proof proceeds by analyzing the rela-

tionships between three partitioning schemes: the default
scheme P , the scheme A based on the true subspace A,
and the scheme Â based on the estimated subspace Â. Our
analysis proceeds in two main stages: We first relate the
parameters of the default partitioning scheme P to those
of the scheme A. This includes comparing their SequOOL
parameters (ν, ρ), characterizing their star cells, and bound-
ing the number of near-optimal cells. We then extend this
analysis to the estimated scheme Â, relating its properties to
those ofA. This involves quantifying the impact of using an
estimated subspace and establishing relationships between
the SequOOL parameters of Â and A.

We will use the notation of lattices to relate the number of
near-optimal cells in two different partitioning schemes.

Definition 4.1. (Vaikuntanathan, 2011) Given m lin-
early independent vectors b1, . . . ,bm ∈ Rm, the lat-
tice generated by them is defined as L(b1, . . . ,bm) =
{
∑m

i=1 aibi | ai ∈ Z} . We call b1, . . . ,bm a basis of the
lattice. We denote lattices formed by the standard basis vec-
tors e1, e2, . . . , em as Λ. Thus, Λ = L(e1, e2, . . . , em) =
Zm. The lattice Λ scaled by a scalar κ is the same as
L(κe1, κe2, . . . , κen).

For a d-dimensional vector x = [x1, . . . , xd]
⊤, we use ∥x∥p

and ∥x∥∞ to denote its ℓp and ℓ∞ norm respectively. The
following lemma bounds the number of cells from a finer
partitioning scheme that cover a given region in the domain.

Lemma 4.2. Let κ, κ′ ∈ R+ with κ > κ′, and let B(x, r) =
{y ∈ Rm : ∥y − x∥∞ ≤ r}. Consider a lattice Λ as
defined in Definition 4.1 , scaled by κ′, and translated by a
vector t to form the lattice Λ + t. Define the subset of all
lattice points that cover B(0, κ) as C(κ, κ′, t) ⊆ Λ+ t, i.e.,

C(κ, κ′, t) = {ci ∈ Λ + t : B(ci, κ
′) ∩B(0, κ) ̸= ∅

and B(0, κ) ⊆
⋃
i

B(ci, κ
′)}.

Then, the cardinality of C satisfies:( κ

κ′

)m
≤ |C(κ, κ′, t)| ≤

( κ

κ′ + 2
)m

We switch from A to T to simplify analysis by working di-
rectly in the low-dimensional space. Detailed mathematical
justification is in Appendix Section 11.13.

The following lemma provides an upper bound on the num-
ber of near-optimal cells in scheme A relative to scheme
P . This relationship is fundamental for comparing the near-
optimality dimensions of the two schemes, which will be
addressed in a subsequent lemma (Lemma 4.4).

Lemma 4.3. For the partitioning schemes P and T from
Definition 2.7, letNP(ϵ) be the number of cellsPh,i at depth
h for which supx∈Ph,i

f(x) ≥ f(x∗)− ϵ, and similarly for
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NT (ϵ). Then

NT (ϵ) ≤ CNP(ϵ) where C = 3ddd−m(12
√
m)m.

Proof Sketch. Consider the following POpt relation:

POpt ≜ {(Th,i,Ph,j) : Th,i ∈ NT (ϵ), Ph,j ∈ NP(ϵ),

Th,i ∩APh,j ̸= ∅},
APh,j ≜ {Ax | x ∈ Ph,j}.

For any h, i, consider the cell Th,i ∈ NT (ϵ). Let l be the
lower bound to the number of elements in POpt that are of
the form (Th,i, ·), implying |POpt| ≥ |NT (ϵ)| · l. Similarly,
for any h, j, consider the cell Ph,j ∈ NP(ϵ). Let u be the
upper bound to the number of elements in POpt that are of
the form (·,Ph,j). Then, we have: |NP(ϵ)| · u ≥ |POpt|.
Combining these two inequalities, we get:

|NT (ϵ)| ≤ |NP(ϵ)| ·
u

l
(2)

In our proof in Appendix 11.10, we further refine the upper
bound on u to (12

√
m)m3d3k(d−m) and the lower bound

on l to (1/d)d−m3k(d−m), leading to the result.

The above lemma is a key technical result that enables us to
relate the parameters of the partitioning schemes A and P .

Lemma 4.4. For a function in the multi-index class (1)
with known A ∈ Rm×d and m < d, let (ν, ρ, ηP , C),
(νA, ρA, ηA, CA) be parameters of P,A. Let lf ≜ f∗ −
infx∈κ1Hd

1
f(x). Then we have that

νA = max{ν, lf}ρ(1−β)(m−1)−h̃1 ,

ρA = ρβ ,

ηA(νA, ρA, CA) ≤ ηP(ν, ρ, C)/β,

and CA = 3ddd−m(12
√
m)mCρ− ηP h̃3 ,

where β ≜ 1 + d−m
2m−1 , h̃1 ≜ d ⌈log3 κ1⌉ and

κ1 ≜ 3⌈log3

√
mα⌉, h̃3 ≜ −

⌊
logρ

νA
ν

⌋
. (3)

Proof Sketch. Lemma 9.4 shows that A is a valid partition-
ing scheme and relates its parameters to those of the default
partitioning scheme P . We then use Lemma 4.3 to bound
the number of near-optimal cells in A, see details in Ap-
pendix 11.11.

Since β ≥ 1, the previous lemma shows that ηA ≤ ηP . Fur-
thermore, since ρ ∈ (0, 1), ρA ≤ ρ and ν ≤ νA. As an illus-
tration, Example 2.9 satisfies the conditions of Lemma 4.4
with d = 2, m = 1, and hence β = 1 + d−m

2m−1 = 2. This
implies ρA = ρ2 and ηA(νA, ρA, CA) ≤ ηP(ν, ρ, C)/2.

Figure 2. Illustration of Lemma 4.5 for d = 2,m = 1, showing
the true subspace A and the estimated subspace Â used in defining
the expansion factor.

We previously computed ρ = 1/
√
3 and ρA = 1/3, which

confirms the first conclusion. Additionally, since both ηP
and ηA are 0, the second conclusion holds with equality.

When the low rank matrix A is unknown, we use the esti-
mation guarantees for the learning algorithms of Fornasier
et al. (2012) and Mousavi-Hosseini et al. (2023) that bound
the subspace distance dist(A, Â). The subspace distance
between the two row subspaces A and Â and is given by∥∥∥A⊤A− Â

⊤
Â
∥∥∥
2
, where ∥·∥2 denotes the spectral norm.

The following lemma shows that we need an upper bound
on the subspace distance dist(A, Â) to ensure that an opti-
mizer exists within the low-dimensional search space.

Lemma 4.5. Consider a multi-index function f(x) =
g(Ax) over Rd. Let x∗ be an optimizer of f within [−1, 1]d,
α be as in definition 2.4 and Â be an estimate of A satisfy-
ing dist(A, Â) < 1. Then there exists a z∗ ∈ Rm such that

f(Â
⊤
z∗) = f(x∗) and ∥z∗∥∞ ≤

√
m√

1−dist2 (A,Â)
α.

Proof Sketch. Consider a z∗ satisfying AÂ
⊤
z∗ = Ax∗.

Since dist(A, Â) < 1, the matrix AÂ
⊤

is invertible, giving

that z∗ = (AÂ
⊤
)−1Ax∗ and f(Â

⊤
z∗) = g(AÂ

⊤
z∗) =

g(AÂ
⊤
(AÂ

⊤
)−1Ax∗) = f(x∗). Finally, we bound

∥z∗∥∞ using matrix norm inequalities and the subspace
distance dist(A, Â) in Appendix 11.12.

Figure 2 shows an illustration of the lemma. Specifically,
optimizing f over the blue segment is enough to obtain its
optimum value over X = [−1, 1]2. The value of α̂ used
in Algorithm 1 is obtained from this lemma. If we have a
u ≥ dist(A, Â), then since α ≤

√
d, we set

α̂ ≜
√

dm/(1− u2) (4)

to ensure it is larger than
√
m√

1−dist2 (A,Â)
α. The value of u

6
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is obtained from Lemma 9.11 or Theorem 9.12, along with
Lemma 9.8. In practice, m is chosen to obtain a A that
preserves 95% variance in the hidden layer weight matrix.

The next lemma bounds the number of near-optimal cells in
T̂ in terms of those in T . This is a key step toward compar-
ing their near-optimality dimensions (see Lemma 4.7).

Lemma 4.6. For the partitioning schemes T and T̂ in
Definition 2.3, letNT (3νT ρ

h
T ) be the number of cells Th,i at

depth h for which supz∈Th,i
g(z) ≥ f∗−3νT ρ

h
T . Similarly,

let NT̂ (3νT̂ ρ
h
T̂ ) be the number of cells T̂h,i at depth h for

which supz∈T̂h,i
g(AÂ

⊤
z) ≥ f∗ − 3νT̂ ρ

h
T̂ . Then

∀h ≥ 0, NT̂ (3νT̂ ρ
h
T̂ ) ≤ 4mNT (3νT ρ

h
T ). (5)

Proof Sketch. We aim to upper-bound the number of near-
optimal cells in the partitioning scheme T̂ in terms of those
in T . The key idea is to relate the two schemes through the
transformation AÂ

⊤
, under which we optimize the function

g(AÂ
⊤
z) over T̂ . For a near-optimal cell Th,i ∈ T , its

preimage under this transformation defines a bounded set B
in Rm, which we enclose within a hypercube of computable
size. To bound the number of near-optimal cells in T̂ , we
count how many of its cells at height h can intersect this
hypercube. We invoke the Lemma 4.2 and show that at
most 4m such cells can intersect the enlarged region. The
complete proof is provided in Appendix 11.17

Lemma 4.7. Consider the partitioning scheme Â obtained

using Â. Let lg = g∗ − infz∈κ2αHm
1
g(AÂ

⊤
z). Then,

νÂ = max{νA, lg}ρ−h̃2

A , ρÂ = ρA, ηÂ ≤ ηA

with

CÂ = CA4
mρηAh̃4

A , h̃2 = m+m

⌈
log3

2
√
mκ2

κ2 − 1

⌉

κ2 =

√
m√

1− dist2 (A, Â)
, h̃4 = −

⌊
logρA

νÂ
νA

⌋
(6)

Proof Sketch. We first relate the SequOOL parameters
(ν, ρ) of the partitioning scheme Â to the scheme A us-
ing Lemma 9.6, yielding expressions for (νÂ, ρÂ). Next,
using the bound on the number of near-optimal cells in A
(Definition 2.7), we upper bound the number of near-optimal
cells in Â by composing with the Lemma 4.6. The complete
proof is provided in Appendix 11.18.

Theorem 4.8. For a function in the multi-index class
(1), the regret of SequOOL applied on the partition-
ing scheme using Â returned by Algorithm 1 and α̂ =
√
dm/

√
1− dist2(A, Â) satisfies

rn ≤

γ(ν, ρ)ρ−βh̃2ρ
β
C1

⌊ n
log n

⌋ if ηP = 0,

γ(ν, ρ)ρ−βh̃2

(
ñ

log ñ

)− β
ηP if ηP > 0,

where γ(ν, ρ) = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg},

C1 = 3ddd−m(12
√
m)mCρ−ηP h̃34mρηP h̃4 and ñ =⌊

n/logn
⌋
ηP log(1/ρ)/C1,

with h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
, h̃1 = d ⌈log3

√
mα⌉ and

κ2 =
√
m√

1−dist2 (A,Â)
, where h̃3, h̃4 are from equations (3)

and (6) respectively.

When ηP > 0, Algorithm 1 has rn = Õ(n−β/ηP ) =

Õ(n−(1+ d−m
2m−1 )/ηP ) while default SequOOL would give

Õ(n−1/ηP ), showing our approach reduces the regret at
a faster rate. The proof of this theorem follows from ap-
plying the SequOOL parameters derived in Corollary 9.7
to Theorem 5 of Bartlett et al. (2019). Detailed proof is in
Appendix 11.20.

5. EXPERIMENTS
All implementation details, benchmark functions, and
experiment scripts can be found at our GitHub repos-
itory: https://github.com/raja-sunkara/
Learned-Partitions-SequOOL

We evaluate our algorithms against baselines from various
optimization categories. These include Bayesian Optimiza-
tion (REMBO (Wang et al., 2016), HesBO (Nayebi et al.,
2019)), Evolutionary Algorithms (CMA-ES (Hansen et al.,
2003)), Dual Annealing (Pincus, 1970), Optimistic Opti-
mization (SOO, SequOOL, RESOO (Qian & Yu, 2016),
DiRect), and Random Search. The optimization functions
used in our experiments include Sphere, Rastrigin, Different
Powers, Rosenbrock, Styblinski-Tang, Hartmann-6, Branin,
Ellipsoid, Sharp Ridge, and the CUSTOM function defined
as 1 + (x1 − 1)2 +

∑d
i=d−m+2(xi − 1)4.

In our experimental setup, we construct the multi-index
function as f(x) = g(Ax), where x ∈ Rd, g : Rm → R
is a standard optimization test function, and A ∈ Rm×d

is a randomly generated matrix satisfying AA⊤ = Im.
The Branin and Hartmann-6 functions are defined in 2 and
6 dimensions respectively; thus, we choose m = 2 for
Branin and m = 6 for Hartmann-6 when constructing the
multi-index function. To further evaluate the efficacy of our
algorithm, we conducted benchmarks on low-dimensional
multi-index functions with d = 5 and m = 2. Additional
experimental results are in Appendix 12.2.

Our algorithm demonstrates superior performance on the
Rastrigin, Sphere and Styblinski-Tang functions, achieving
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Figure 3. Regret Plots: Algorithm 1 (SequOOL on Â) uses 650 additional samples to learn the subspace. Regret is plotted for 100 equally
spaced budget values between 1 and 2000. For the randomized algorithms, we took 10 trials and plotted the median curve (thick line) and
0 and 95 percentile curves. Random Search is run on Â.

zero regret with fewer samples compared to other methods.
On the different powers function, we perform comparable to
the other methods, however, on the (x1 − 1)2 + (x72 − 1)4,
Ellipsoid and Sharp Ridge function, our algorithm perform
slightly worse than the RESOO. This may be attributed to
the use of several (650) samples for the first stage in a 2000
budgeted experiment.

5.1. LLM Quantization

The AWQ (Lin et al., 2024) method for quantizing large
language models formulates optimization problem as:

α∗ = arg min
α∈[0,1]

L(sαX)

L(s) =
∥∥Q(W · s)(s−1 ·X)−WX

∥∥
2

Where X is the input features to the block which is cached
from a calibration dataset. It uses the parameterization
s = sαX, where sX is the activation scale computed from X
and α ∈ [0, 1] and Q as the quantization function and W
as the original weights (full-precision). To determine the
optimal α∗, AWQ applies a 1D grid search over the interval

8
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[0, 1]. This parameter controls the scale of activations and
influences quantization error.

Each layer of the LLM contains three primary components:
the attention matrices (WQ, WK , WV , and WO: all four
matrices share a single α per layer), the first fully connected
layer (Wfc1: one α per layer), and the second fully con-
nected layer (Wfc2:one α per layer). Consequently, this
leads to three optimization parameters per layer, resulting in
a total of 3M parameters to optimize across M layers. Each
of these parameters is derived from separate optimization
problems, all of which are solved through the grid search
method in the interval [0, 1] to find the optimal value of α∗.

We propose a new approach which involves solving this
LLM Quantization as high-dimensional black-box optimiza-
tion problem. In our approach, we jointly optimize all layers
to minimize perplexity: So, our approach has one optimiza-
tion problem in 3M dimensional space, compared to AWQ
which has 3M one-dimensional optimization problems. Let
α = [α1, ..., α3M ]⊤ represent the scales for all M layers,
with each layer having three parameters. We define our
proposed optimization problem as:

α∗ = arg min
α∈[0,1]3M

PPL(α)

Where, PPL(α) is the perplexity on the calibration set after
quantization using the scaling factors derived from α.

We evaluated our approach on the OPT-1.3B model (Zhang
et al., 2022), with results presented in Table 2. Our pro-
posed objective function using SequOOL over 72 dimen-
sions outperformed AWQ, achieving lower perplexity on
both WikiText-2 (Merity et al., 2016) and the calibration
set (Pile dataset (Gao et al., 2020)). More details are in
Appendix 12.3.

To quantify this improvement, we compare perplexity scores
across methods. The perplexity of the unquantized model is
14.47, which we treat as a reference point for comparison.
Quantization with the AWQ baseline increases perplexity
to 16.92, resulting in a perplexity gap of 2.45. In contrast,
our proposed method (Algorithm 2) achieves a perplexity
of 16.68, reducing the gap to 2.21. This corresponds to a
relative improvement of approximately 10% in perplexity
degradation compared to AWQ, demonstrating the benefit
of jointly optimizing the scaling factors across all layers.

6. DISCUSSION AND CONCLUSION
We have proposed an adaptive approach to learning a good
partitioning scheme for black-box optimization. When the
function belongs to a multi-index class, we prove that the
adaptive partitioning scheme results in lower regret. To
achieve this, we have developed a novel theoretical contribu-

Table 2. LLM Quantization Experiment Results
Algorithm Compute WikiText-2 Calibration

Time PPL -Set PPL

Grid Search ≈ 9 hours 16.92 14.62
SequOOL ≈ 10 hours 16.83 14.28

Algorithm 1 ≈ 10 hours 16.96 14.42
Algorithm 2 ≈ 12 hours 16.68 14.29

tion by relating the near-optimality dimensions of different
partitioning schemes for the same function. Empirically, we
observe that our proposed approach is better or comparable
to existing methods over a wide range of benchmark func-
tions and can be applied to high-dimensional functions. For
example, on the Rastrigin function, SequOOL achieved a
regret of 4.22×10−5, while our method reached zero regret.
Against RESOO, on both the Rastrigin and Styblinski-Tang
functions, our method achieved zero regret compared to
5.5× 10−3 for RESOO on Rastrigin. For Styblinski-Tang,
our method reached zero regret with approximately 900
evaluations, versus 2000 for RESOO.

Some limitations of our approach are estimating the low-
dimensional subspace dimension and using an upper bound
on the subspace distance in our algorithm. When the multi
index assumption is not valid, we see only a mild benefit
over SequOOL, e.g., in the AWQ experiments, our proposed
objective function has function variation in all the directions
and improvement over SequOOL is minimal. In the two-
stage algorithm, the first stage chooses samples randomly for
the subspace learning and these samples reduce the budget
available for optimization.

There are several avenues for future work. We can extend
our approach to the case when the function evaluations are
noisy. We can consider other low-dimensional functions be-
yond the class of multi-index functions, e.g., functions with
bounded second order variation in the Radon domain (Parhi
& Nowak, 2022). Obtaining theoretical guarantees for di-
rection selection strategy could be possible using active
learning techniques, e.g., in (Mukherjee et al., 2022).
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7. Notation
Let N0 = N ∪ {0} denote the set of non-negative integers and [d] represents the set {1, 2, . . . , d}. For vectors and matrices,
we use (·)⊤ to denote the transpose. For a d-dimensional vector x = [x1, . . . , xd]

⊤, we use ∥x∥p and ∥x∥∞ to denote its ℓp
and ℓ∞ norm respectively. For any matrix X = [x1, . . . ,xn], ∥X∥2 and ∥X∥F represent its spectral and Frobenius norms.
We use σi(X) for the ith largest singular value, with σmax(X) and σmin(X) denoting the largest and smallest singular
values. Suppose A ∈ Rm×d, with AA⊤ = Im, then for any vector v ∈ Rd, we denote its orthogonal projection onto the
span of the rows of A as v∥ = A⊤Av, with the orthogonal component given by v⊥ = v − v∥. For a matrix W ∈ Rp×d,
we denote W∥ and W⊥ as the projections applied to each row, i.e., W∥ = WA⊤A and W⊥ = W −W∥. For a given
scalar κ > 0, we denote κX as the set {κx : x ∈ X}. By a partitioning scheme P with κ, we mean the domain for the
partitioning scheme is the set {κx : x ∈ [−1, 1]d}. By the default partitioning scheme P , we mean partitioning scheme P
with κ = 1. To describe side-length of a hyper-rectangle, we use the notation [3−⌊

h+m−i
m ⌋]mi=1. This expressions represents

a vector of m components, where each component is given by 3−⌊
h+m−i

m ⌋, with i ranging from 1 to m.

8. Omitted details for Section 3
A single hidden layer neural network with p hidden neurons maps input x ∈ Rd to the scalar

ŷ(x,W,a,b) =

p∑
i=1

aiσ(w
⊤
i x+ bi), (7)

where σ is the non-linear activation function, W is the hidden layer weight matrix consisting of p weight vectors denoted
as wi, bi is the scalar bias for the ith hidden neuron, and ai are the components of the output layer weight vector. The
following proposition shows that the class of single hidden layer neural networks can represent the important subspace of
multi-index functions.
Proposition 8.1. Consider a function f(x) =

∑p
i=1 viσ(w

⊤
i x + bi), where x ∈ Rd and σ is a non-linear function.

Let x = Px + (I − P)x, where P is the projection matrix that maps any x ∈ Rd to Span{w1,w2, . . . ,wp}. Then
f(x) =

∑p
i=1 viσ(w

⊤
i Px+ bi). And if x,x′ ∈ Rd are such that (x− x′) ⊥ Span{w1,w2, . . . ,wp}, then f(x) = f(x′).

We use SGD with weight decay to fit the neural network on the function evaluations obtained at uniform random locations in
X . The top m right singular vectors of the learned weight matrix of the hidden layer is used as the estimated Â for obtaining
the partitioning scheme Â.

Algorithm 3 describes our lookahead direction selection strategy τh(f̂).

Querying outside the domain and optimizing f̂ In practice, with our optimization domain set as X = [−1, 1]d, we

may encounter situations during low-dimensional subspace optimization where t ∈ [−α, α]m results in Â
⊤
t /∈ X . To

ensure that f can be evaluated in all cases, we employ a two-step approach. First, we attempt to solve the optimization
problem: argmintc∈Rd−m

∥∥∥Â⊤
c tc

∥∥∥
2

subject to Â
⊤
t + Â

⊤
c tc ∈ X , where Âc consists of the remaining d −m columns

of Â that are not in Â. If this optimization problem has no feasible solution, we then employ Euclidean projection onto
X : argminx∈X

∥∥∥x− Â
⊤
t
∥∥∥
2
. This projection method is applied whenever Â

⊤
t /∈ X , ensuring that we always have a

valid point within our optimization domain.In practice, we estimate the minimum of f̂ on the domain Th+1 using random
sampling or any of the other black-box optimization algorithms, since f̂ is cheap to evaluate and gradients are also available.

9. Omitted details for Section 4
Proofs are in Section 11.

First, we start with relating the default partitioning scheme P with A partitioning scheme. To establish the relationship
between the near-optimality dimensions of the two schemes, we first need to compare the parameters (ν, ρ) of SequOOL
across both partitioning schemes. This requires a characterization of the cellsA∗

hand P∗
h . The following proposition provides

this characterization.
Proposition 9.1. Let κ > 0 and α∗

h ∈ Rm be the representative of the A∗
h cell containing a global maxima of the function.

Using fraction of two vectors to denote component-wise division,
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Algorithm 3 Implementing lookahead direction selection strategy τh(f̂)

Require: Current partition tree T , height h, estimated function f̂
x̂h∗ ← argmaxi f(xh, i), representative of cell T h with the largest function value at height h
T h← cell at height h in T whose representative is x̂h∗, axis to split← 0, minimum←∞
for i← 1 m do
T h+ 1← child cell of T h after trisecting axis i and having the same representative x̂∗h
temp← Compute minimum of f̂ on the domain Th+1

if temp ¡ minimum then
axis to split← i
minimum← temp

end if
end for
return axis to split

A∗
h = {A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1}. (8)

Similarly, if x∗
h ∈ Rd is the representative of the P∗

h cell containing the same global maxima,

P∗
h = {x : x ∈ Rd,

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ κ with c = [3−⌊

h+d−i
d ⌋]di=1}. (9)

Proposition 2.5 shows that we can useA partitioning scheme to perform optimization. We now relate the ν and ρ parameters
(see Assumption 2.6) of the partitioning schemes P and A.

To establish relationships between the parameters of the partitioning schemes A and the default scheme P , we need to
connect the sets P∗

h and A∗
h. The following lemma provides this connection:

Lemma 9.2. Let the domain for P be κHd
1 = {κx | x ∈ Hd

1} with κ ≥ 3⌈log3

√
mα⌉. Suppose x∗ ∈ P∗

h is such that
x∗ = A⊤Ax∗. Then, ∀i ∈ [1 : m− 1],∀k ∈ N0 we have that A∗

km+i ⊆ P∗
kd+i.

Having established the relationship between the star cells of the partitioning schemes A and P , we can now proceed to
relate their respective parameters. The following two lemmas establish these relationships.

This lemma connects the parameters (ν, ρ) of the partitioning scheme P with κ ≥ 3⌈log3

√
mα⌉ to the parameters (νA, ρA)

of the scheme A.
Lemma 9.3. Let the parameters for the partitioning schemes P,A be (ν, ρ), (νA, ρA) respectively. If Lemma 9.2 is
applicable and P satisfies Assumption 2.6. Then we have that νA = νρ(1−β)(m−1), ρA = ρβ where β = 1 + d−m

2m−1 .

This lemma establishes the relationship between the parameters (νA, ρA) of scheme A and (ν, ρ) of the default partitioning
scheme P .
Lemma 9.4. The parameters (νA, ρA), (ν, ρ) associated with partitioning schemes A and P with κ = 1. Let lf =
f∗ − infx∈κ1Hd

1
f(x). Then

ρA = ρβ , νA = max{ν, lf}ρ(1−β)(m−1)−h̃1

where h̃1 = d ⌈log3 κ1⌉ , β = 1 + d−m
2m−1 and κ1 = 3⌈log3

√
mα⌉.

The previous lemmas established relationships between the parameters of the partitioning schemes A and P . They
demonstrate thatA is a valid partitioning scheme with a reduced sequOOL parameter ρA compared to the default partitioning
scheme ρ.

9.1. Using Â defined over the estimated Â

We obtain Â using a subspace learning algorithm with evaluations of f at selected points in X . We then use Â to define a
partitioning scheme Â (as per Definition 2.3) and apply SequOOL to it. The impact of using an estimated matrix Â instead

13
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of the true matrix A in our optimization problem can be quantified using subspace distance. The following is the definition
of the subspace distance.

Definition 9.5. ((Chen et al., 2021, Lemma 2.5)) Let A, Â ∈ Rm×d consists of orthonormal rows such that AA⊤ = Im

and ÂÂ
⊤

= Im. Define two more matrices A⊥, Â⊥ ∈ R(d−m)×d such that
[
A⊤ A⊤

⊥
]

and
[
Â

⊤
Â

⊤
⊥

]
form two

orthonormal bases for Rd. Then the subspace distance between the two row subspaces (A, Â) is given by

dist (A, Â) =
∥∥∥A⊤A− Â

⊤
Â
∥∥∥
2
=
∥∥∥Â⊥A

⊤
∥∥∥
2
=
∥∥∥A⊥Â

⊤∥∥∥
2
=
∥∥∥sinΘ(A, Â)

∥∥∥
2
, (10)

where ∥·∥2 denotes the spectral norm, and sinΘ is a diagonal matrix of {sin(arccos(σi)) : i = 1, 2, . . . ,m} where σi are
the singular values of ÂA⊤ in decreasing order.

Moreover, we have the following equality:

σmin(ÂA⊤) = cos θm =

√
1− sin2 θm =

√
1−

∥∥∥sinΘ(A, Â)
∥∥∥2
2
=

√
1− dist2(A, Â) (11)

We observe that assuming dist(A, Â) < 1 implies that σmin(ÂA⊤) ̸= 0 and rank(ÂA⊤) = m.

Given that we only have an estimate Â of the true matrix A, and we perform optimization on the subspace spanned by Â,
Lemma 4.5 guarantees that we can use Â and recover f∗. Now, we relate the SequOOL parameters between the partitioning
schemes A and Â partitioning schemes.

Lemma 9.6. Let A and Â be the partitioning schemes defined in Definition 2.3. Suppose A satisfies Assumption 2.6 with

parameters νA, ρA. Let lg = g∗ − infz∈κ2αHm
1
g(AÂ

⊤
z). Then Â satisfies Assumption 2.6 with parameters

νÂ = max{νA, lg}ρ−h̃2

A , ρÂ = ρA

where h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and κ2 =

√
m√

1−dist2 (A,Â)
.

The above lemma demonstrates that the partitioning scheme Â is valid and satisfies Assumption 2.6 and it establishes the
relationship between the SequOOL parameters of the Â and A partitioning schemes.

This corollary synthesizes the relationships established in the preceding lemmas, providing a direct comparison between
the estimated scheme Â and the default partitioning scheme P . It combines the two-step process of relating A to P and
then Â to A, yielding a comprehensive set of relationships for the SequOOL parameters, near-optimality dimensions, and
associated constants.

Corollary 9.7. Referring to Lemma 4.4, for the partitioning scheme P with κ = 1, we have ρA = ρβ , νA =

max{ν, lf}ρ(1−β)(m−1)−h̃1 , ηA(νA, ρA, CA) ≤ ηP(ν,ρ,C)
β and CA = 3ddd−m(12

√
m)mCρ− ηP h̃3 . By utilizing

Lemma 9.6 and Lemma 4.7, we establish the following relationships among the parameters associated with Â and
P .

ρÂ = ρβ , νÂ = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−h̃2

A ,

ηÂ(νÂ, ρÂ, CÂ) ≤
ηP(ν, ρ, C)

β
,CÂ = 3ddd−m(12

√
m)mCρ− ηP h̃34mρηP h̃4 .

with h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and h̃1 = d

⌈
log3 3

⌈log3

√
mα⌉

⌉
with κ2 =

√
m√

1−dist2 (A,Â)

h̃3 = −
⌊
logρ(max{ν, lf}ρ(1−β)(m−1)−h̃1)− logρ(ν)

⌋
, h̃4 = −

⌊
logρA

(max{νA, lg}ρ−h̃2

A )− logρA
(νA)

⌋
(Mousavi-Hosseini et al., 2023), controls the closeness between true and estimated subspace expressed in terms of ∥W⊥∥F .
However, for out Algorithm 2, we require an upper bound on the distance between the true subspace A and its estimate Â.
This lemma bridges this gap by providing an upper bound on dist (A, Â) in terms of ∥W⊥∥F and the singular values of
W.
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Lemma 9.8. Given A ∈ Rm×d satisfying AA⊤ = Im, let W ∈ Rp×d be any matrix such that rank(W) ≥ m and d ≥ m.
Consider the singular value decomposition of W = USV⊤ and collect the top m right singular vectors in the matrix
Â =

[
v1 v2 · · · vm

]⊤
, where vi is the ith column of V. Recollect the definition of sinΘ(A, Â) and dist (A, Â)

from Definition 9.5 and the notation of W⊥ from section 7. Using ∥·∥F to denote Frobenius norm and σm to denote the
mth singular value of W, we have that

dist (A, Â) =
∥∥∥sinΘ(A, Â)

∥∥∥
2
≤
∥W⊥∥F

σm
. (12)

9.2. Supporting lemmas

The following lemmas and assumptions are needed to obtain guarantees on learning a good estimate Â.

Assumption 9.9. (Mousavi-Hosseini et al., 2023) The student model is a two-layer neural network Equation (7) trained
over the data set {(x(i), y(i))}i≥1, where the target values y(i) are generated according to the teacher model Equation (1)

and the inputs satisfy x(i) iid∼ N (0, Id). The link function g(·) is weakly differentiable.

Assumption 9.10. (Mousavi-Hosseini et al., 2023) For all 1 ≤ i ≤ m, 1 ≤ j ≤ d, we initialize the NN weights and biases
with

√
dW0

ij
iid∼ N (0, 1),ma0i

iid∼ Unif([−1, 1]), and b0i
iid∼ Unif({−1, 1})

Lemma 9.11 ((Mousavi-Hosseini et al., 2023), Theorem 3). Consider running T SGD iterations over samples satisfying
Assumption 9.9, with an initialization satisfying Assumption 9.10, and using the following decaying step size schedule.
Assuming ReLU non-linearity, let ζ := 2

√
2/eπ. Choose the decreasing step size ηt = m 2(t+t∗)+1

γ(t+t∗+1)2 , λ̃ ≥ γ+ ζ and t∗ ≍ λ̃
γ

for any γ > 0. Then, for λ = λ̃
m , with probability at least 1− δ,

∥∥W⊤
⊥
∥∥
F√

m
≲

√
(d+ log(1/δ)

γ2T

whenever m ≳ log(1/δ) and T ≳ λ̃2

d+log(1/δ) .

The following Lemma is to control the subspace distance using compressed sensing algorithm.

Theorem 9.12 ((Fornasier et al., 2012), Theorem 4.1). Let f(x) = g(Ax) be a function where A is a k × d matrix with
orthonormal rows, and g is a twice continuously differentiable function. Assume that Hf = A⊤HgA is well-conditioned
with σk(H

f ) ≥ α > 0. Let Â be the matrix obtained from the Dantzig Selector approximation X̂ of the matrix X of
gradients of f at mX random points. Then, with high probability, the distance between the subspaces spanned by the rows
of A and Â is bounded by: ∥∥∥A⊤A− Â

⊤
Â
∥∥∥
F
≤ 2ν2√

α(1− s)− ν2

where

ν2 = Ck1/q
(

mΦ

log(d/mΦ)

)1/2−1/q

+
ϵk2
√
mΦ

and C is a constant depending on the parameters C1 and C2 from the conditions on A and g, mΦ is the number of derivative
directions, ϵ is the step size used in the finite difference approximation, d is the ambient dimension, and s ∈ (0, 1) is a
parameter.

10. Illustrative experiments to motivate lookahead direction selection
Using a partitioning scheme with a lower near-optimality dimension can lead to a faster decrease in regret. Empirically,
we observe that the regret for SequOOL applied for a budget of 200 evaluations of the function in the Example 2.11 was
5× 10−10 for the default partitioning scheme and 5.8× 10−12 for the direction selection strategy in Example (2.11). This
example indicates that it can be beneficial to use a direction splitting strategy that adapts to the function being optimized.
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Figure 4. Optimal splitting ratio between the first and second
directions. Green curve is obtained using the strategy in Defi-
nition 10.1

Additionally, we evaluate the regret for different choices of A,
by parameterizing A =

[
cos θ − sin θ
sin θ cos θ

]
and changing the rotation

angle from 0 to π/8 while keeping the direction selection strategy
the same as in Example (2.11). Figure 5 shows that the regret
varies significantly over the range of angles. This shows that
minimizing the angle of discrepancy between A and the true
directions of variation (which are the standard x1 and x2 axes
in this example) is beneficial in reducing the regret.

Given a particular A and function f , we consider the question
of identifying an appropriate direction selection strategy that
minimizes NA(3νAρ

h
A) at all heights. The two example strate-

gies for f(x1, x2) = 1 − |x1| − x2
2 we have seen so far are

the default round-robin (equivalently 1:1) splitting and the 2:1
splitting in Example(2.11). For an A with θ = π/48, we mini-
mize the number of near-optimal cells NA(3νAρ

h
A) at different

heights by choosing the best splitting ratio at each height and
plot the ratios as the blue line in Figure 4. We see that as the
height increases to infinity the optimal split ratio converges to
1. However, at lower heights, the optimal split ratio is greater
than 1 and takes its maximum value 1.83 at h = 3.
Definition 10.1. Lookahead strategy for direction selection. Given an estimated f̂ and the current tree of partitions till depth
h, the lookahead strategy first evaluates the different number of near-optimal cells for f̂ at depth h+ 1 by splitting along
each of the m directions. It then greedily selects the direction to be split at h+ 1 as the direction that results in the lowest
number of near-optimal cells.

Figure 5. Regret at n = 300 for SequOOL on A with
varying θ.

In a numerical experiment, we see that the lookahead strategy closely
matches the optimal split ratio (shown as green points in Fig 4) over
all heights. This also results in it having a low regret than the default
partitioning scheme. Empirically, we observe that the regret for Se-
quOOL applied for a budget of 500 evaluations of the function in the
previous lemma was 5.68×10−10 for the partitioning schemeA using
the lookahead strategy for direction selection, 1.98× 10−5 forA with
1:1 splitting, and 1.8× 10−4 forA with the 2:1 splitting strategy from
Example (2.11).

11. Proofs
Some of the facts which we use in our proofs.

Key inequalities for the matrix norms include: ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1.
Holder’s inequality, applicable for p, q ≥ 1 where 1

p + 1
q = 1, states

that |x⊤y| ≤ ∥x∥p ∥y∥q . The triangle inequality, valid for any p ≥ 1,
asserts that ∥x+ y∥p ≤ ∥x∥p + ∥y∥p.

Matrix Norms: For a matrix A ∈ Rm×n, the operator norm is:

∥A∥p = sup
x̸=0

∥Ax∥p
∥x∥p

When p = ∞, ∥A∥∞ = max1≤i≤m

∑n
j=1 |aij | and when p = 2, ∥A∥2 = σmax(A), Where σmax(A) represents the

largest singular value of matrix A. Additionally, the Frobenius norm is given by ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2.

For a matrix A ∈ Rm×n of rank r, the following inequalities hold:

∥A∥2 ≤ ∥A∥F ≤
√
r ∥A∥2 ,

1√
n
∥A∥∞ ≤ ∥A∥2 ≤

√
m ∥A∥∞ (13)

16



Adaptive Partitioning Schemes for Optimistic Optimization

For the operator norm ∥·∥2, one has

∥AB∥2 ≤ ∥A∥2 ∥B∥2 , ∥AB∥2 ≥ ∥A∥2 σmin(B), ∥AB∥2 ≥ ∥B∥2 σmin(A) (14)

Suppose a matrix A consists of orthonormal rows or columns, then ∥A∥2 =
∥∥∥A⊤

∥∥∥
2
= 1

11.1. Proof of Example 2.8

Proof. Consider the function f(x1, x2) = g(Ax) = 1−|x1|with A = [1, 0] and g(z) = 1−|z|. LetP,A be the partitioning
schemes defined in Definition 2.2 with κ = 1 and parameters (ν, ρ), (νA, ρA) respectively. For the P partitioning scheme,
along the X axis, the side lengths of the children at depth h are given by 3−⌈h/2⌉ and along the Y axis, it is 3−⌊h/2⌋.
Consider f(x∗

1, x
∗
2)− f(x1, x2) = |x1|, and the cell with the representative origin is the P∗

h cell, therefore

|x1| = 3−⌈h/2⌉ ≤ 3−h/2 ≤ (1/
√
3)h.

According to Assumption 2.6, the appropriate values are ν = 1, ρ = 1/
√
3. Now consider a rectangle region R with corners

{(−3νρh,−1), (3νρh,−1), (3νρh, 1), (−3νρh, 1)}. Since f∗−f(x1, x2) = |x1|, ∀(x1, x2) ∈ R, f∗−f(x1, x2) ≤ 3νρh.
Thus any cell in P that has a non-empty intersection with R is a near-optimal cell. Each cell at depth h has an area of
3−⌈h/2⌉3−⌊h/2⌋, therefore

NP(3νρ
h) ≥ Area(R)

Area(Ph,i)
=

4(3(1/
√
3)h)

3−⌈h/2⌉3−⌊h/2⌋ ,

yielding that since NP(3νρ
h) = Ω(ρ−h) , from the Definition 2.7 we get ηP = 1.

For the A partitioning scheme, we first note that α = 1. Along X axis, the side length of the children at depth h is 3−h,
therefore

f(x∗
1, x

∗
2)− f(x1, x2) = |x1| = 3−h ≤ (1/3)h,

yielding the values are νA = 1, ρA = 1/3. Now consider a line segment L with endpoints {(−3νAρhA, 0), (3νAρhA, 0)}.
Since f∗ − f(x1, x2) = |x1|, ∀(x1, 0) ∈ L, f∗ − f(x1, x2) ≤ 3νAρ

h
A. Thus any cell in A that has an intersection with the

L is a near-optimal cell. Every Ah,i cell at depth h has a length of 3−h, therefore,

NA(3νAρ
h
A) ≤ 2 +

len(L)

len(A(h, i))
= 2 +

2(3(1/3)h)

3−h
= 8,

where the additional term 2 accounts for cells in A that partially intersect L at its endpoints. Hence NA(3νAρ
h
A) is a

constant and ηA = 0.

11.2. Proof of Example 2.9

Proof. Consider the function g(k) = 1 − |k| with A = [1, 1]. Then, f(x1, x2) = g(Ax) = 1 − |x1 + x2|. For the P
partitioning scheme with κ = 1, along the X axis, the side lengths of the children at depth h along the X,Y axes are
3−⌈h/2⌉, 3−⌊h/2⌋ respectively. Consider f(x∗

1, x
∗
2)− f(x1, x2) = |x1 + x2|, and the cell with the representative origin is

the P∗
h cell, therefore

|x1 + x2| = 3−⌈h/2⌉ + 3−⌊h/2⌋ ≤ 2 · 3−(h−1)/2 ≤ 2
√
3(1/
√
3)h.

According to Assumption 2.6, ν = 2
√
3, ρ = 1/

√
3. Consider a rhombus region T formed by coordinates

{(−3νρh, 0), (0,−3νρh), (3νρh, 0), (0, 3νρh)}. Since f∗−f(x1, x2) = |x1+x2|, ∀(x1, x2) ∈ T, f∗−f(x1, x2) ≤ 3νρh.
This says, any cell in P that has an intersection with the T is near-optimal cell. Each cell at depth h has an area of
3−⌈h/2⌉3−⌊h/2⌋, therefore,

NP(3νρ
h) ≤

(
1 +

3νρh

3−⌈h/2⌉

)(
1 +

3νρh

3−⌊h/2⌋

)
≤ O(1)

Hence NP(3νρ
h) is independent of h and ηP = 0.

For the A partitioning scheme, along the X axis and Y axis, the side lengths of the children at depth h is given by 3−h and
3−h, giving that

f(x∗
1, x

∗
2)− f(x1, x2) = |x1 + x2| = 2 · 3−h ≤ 2(1/3)h.

According to Assumption 2.6, the values are νA = 2, ρA = 1/3.

Further, we see from Definition 2.4 that α =
√
2 in this example.
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11.3. Proof of Example 2.11

Proof. For the P partitioning scheme, the side lengths of the children at depth h are as follows: along the X axis, 3−⌈h/2⌉.
Along the Y axis, it is 3−⌊h/2⌋. Consider f(x∗

1, x
∗
2)− f(x1, x2) = |x1|+ x2

2, and the cell with the representative origin is
the P∗

h cell, therefore

|x1|+ x2
2 = 3−⌈h/2⌉ + 3−2⌊h/2⌋ ≤ 3−⌊h/2⌋ + 3−2⌊h/2⌋

≤ 2 · 3−⌊h/2⌋ ≤ 2 · 3−(h−1)/2 ≤ 2
√
3(1/
√
3)h

According to Assumption 2.6, the appropriate values are ν = 2
√
3, ρ = 1/

√
3 and νρh = 2

√
3(1/
√
3)h.

Consider a region R which is given by |x1|+x2
2 ≤ 3νρh. Since f∗−f(x1, x2) = |x1|+x2

2, ∀(x1, x2) ∈ R, f∗−f(x1, x2) ≤
3νρh. Thus any cell in P that has a non-empty intersection with R is a near-optimal cell. Each cell at depth h has an area of
3−⌈h/2⌉3−⌊h/2⌋, therefore

NP(3νρ
h) ≥ Area(R)

Area(Ph,i)

Now, we compute the area of the region formed by the curve |x1|+ x2
2 = 3νρh which is given by

4

∫ √3νρh

0

∫ 3νρh−x2
2

0

dx1dx2 = 8/3(3νρh)
3/2

Thus,

NP(3νρ
h) ≥ Area(R)

Area(Ph,i)
=

8/3(6
√
3( 1√

3
)h)3/2

3−⌈h/2⌉3−⌊h/2⌋ = Ω

(
(
1√
3
)−h/2

)
Hence, ηP ≥ 0.5

The P∗
h cell contains the point (0, 0). Since P is an axis-aligned partitioning scheme, we can bound the number of cells

directly above, i.e., having the same x coordinate of their representative as that of, P∗
h by the value

√
3νρh/3−⌊h/2⌋. In a

similar manner, we can bound the maximum number of cells having their representative’s y coordinate to be the same as that
of P∗

h by 3νρh/3−⌈h/2⌉. Since P is an axis aligned partitioning scheme, the previous two bounds imply that number of near
optimal cells are upper bounded by the product of number of cells along x axis times number of cells along y axis. Thus,

NP(3νρ
h) ≤

1 +


√
3 · 2
√
3(1/
√
3)h

3−⌈h/2⌉


(1 + ⌈3 · 2√3(1/√3)h

3−⌊h/2⌋

⌉)
= O

(
(
1√
3
)−h/2

)

Thus, ηP ≤ 0.5, hence ηP = 0.5

For the A partitioning scheme, the side lengths of the children at depth h are as follows: along the X axis, 3−(h+1) if h is
odd; otherwise, 3−h. Along the Y axis, it is 3−⌊h/2⌋. Let h is even. consider f(x∗

1, x
∗
2)− f(x1, x2) = |x1|+ x2

2 and the
cell with the representative origin is the A∗

h cell, therefore

|x1|+ x2
2 = 3−h + 3−2⌊h/2⌋ ≤ 3−h + 3−2(h−1)/2 ≤ 4 · 3−h

According to Assumption 2.6, we have νA = 4, ρA = 1/3, and 3νAρ
h
A = 12 · 3−h.

The A∗
h cell contains the point (0, 0). Since A is an axis-aligned partitioning scheme, we can bound the number of cells

directly above, i.e., having the same x coordinate of their representative as that of, A∗
h by the value

√
3νρh/3−h/2. In a

similar manner, we can bound the maximum number of cells having their representative’s y coordinate to be the same as that
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of P∗
h by 3νρh/3−h. Since P is an axis aligned partitioning scheme, the previous two bounds imply that number of near

optimal cells are upper bounded by the product of number of cells along x axis times number of cells along y axis. Thus,

NA(3νAρ
h
A) ≤

(
1 +

⌈√
3 · 4 · 3−h

3−h/2

⌉)(
1 +

⌈
3 · 4 · 3−h

3−h

⌉)
= 65

When h is odd, following the same steps will give NA(νAρ
h
A) ≤ 148.

Hence, NA(νAρ
h
A) is a constant and ηA = 0.

11.4. Proof of Proposition 2.5

Proof. We claim that z∗ = Ax∗, where x∗ ∈ X is the optimizer of f . This choice of z∗ satisfies f(A⊤z∗) = f(x∗) as
required in the Lemma. we will now show that the infinity norm of this z∗ is less than or equal to α.

First, observe that for any x ∈ [−1, 1]d, we can express x as a convex combination of corner points:

x =

2d∑
j=1

cjαj , αj ≥ 0,

2d∑
j=1

αj = 1 (15)

Now, let’s consider the infinity norm of Ax∗:

∥Ax∗∥∞ =

∥∥∥∥∥∥
2d∑
j=1

Acjαj

∥∥∥∥∥∥
∞

(Using Equation 15)

≤
2d∑
j=1

∥Acjαj∥∞ (Triangle Inequality of Norms)

=

2d∑
j=1

|αj | ∥Acj∥∞ (Absolute Homogeneity property of Norms)

≤ α

2d∑
j=1

|αj | ≤ α (From the definition of α in the Proposition statement)

Therefore, we have shown that ∥z∗∥∞ = ∥Ax∗∥∞ ≤ α, which completes the proof.

11.5. Proof of Proposition 9.1

Proof. Let x∗
h be the representative point (midpoint) of the P∗

h cell and x is within the P∗
h cell.

Let x be a point in a hyperrectangle centered at x∗
h with side lengths 2κc, where c is a vector of side lengths. Then,

this point x satisfies |xi − x∗
h,i| ≤ κci for all i ∈ {1, . . . , d}. Equivalently, this set of inequalities can be written as

maxi∈{1,...,d}

∣∣∣xi−x∗
h,i

ci

∣∣∣ ≤ κ. Using the infinity norm, we can concisely express this conditions as
∥∥∥x−x∗

h

c

∥∥∥
∞
≤ κ, where

the division is performed element-wise.

For the partition scheme, we perform trisection along each axis in a round-robin manner. After h iterations, the side lengths
are given by:

ci = κ3−⌊
h+d−i

d ⌋, i ∈ {1, . . . , d} (16)

where
⌊
h+d−i

d

⌋
represents the number of trisections applied to dimension i. Therefore, the cell P∗

h can be described as:

P∗
h =

{
x ∈ Rd :

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ κ with c = [3−⌊

h+d−i
d ⌋]di=1.

}
(17)
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From the Definition 2.3, we have A∗
h ≜ {A⊤α : α ∈ T ∗

h } and

T ∗
h =

{
α ∈ Rm :

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]di=1.

}
(18)

Hence,

A∗
h =

{
A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]di=1.

}
(19)

11.6. Proof of Lemma 9.2

Proof. Following the Definition 2.2, consider the partitioning schemes P and A.

According to Proposition 9.1, we can express the cell A∗
h as:

A∗
h = {A⊤α : α ∈ Rm,

∥∥∥∥α−α∗
h

s

∥∥∥∥
∞
≤ α with s = [3−⌊h+m−i

m ⌋]mi=1}

At depth h = km+ i, for i ∈ [1 : m− 1] and k ∈ N0, the side lengths simplifies to: s = [3−1(j≤i)−k]mj=1 Similarly,

P∗
h = {x : x ∈ Rd,

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ 1} with c = [3−⌊h+d−i

d ⌋]di=1.

At depth h = kd+ i, for i ∈ [1 : d− 1] and k ∈ N0, the side lengths for P∗
h become: c = [3−1(j≤i)−k]dj=1.

And let us consider another partitioning scheme G = κP . Let us denote x̃∗
h to be the representative of the G∗h cell. Using

Proposition 9.1, the cell G∗h can be written as

G∗kd+i = {x : x ∈ Rd,

∥∥∥∥x− x̃∗
kd+i

c

∥∥∥∥
∞
≤ κ} with c = [3−1(j≤i)−k]dj=1

Consider an element x = A⊤α ∈ A∗
km+i. we now proceed with the following chain of inequalities:

∥∥x− x̃∗
kd+i

∥∥
∞ ≤ ∥x− x∗∥∞ +

∥∥x∗ − x̃∗
kd+i

∥∥
∞ (Vector Norm property)

=
∥∥∥A⊤α−A⊤α∗

∥∥∥
∞

+
∥∥x∗ − x̃∗

kd+i

∥∥
∞ (x∗ = A⊤α∗)

=
∥∥∥A⊤(α−α∗)

∥∥∥
∞

+
∥∥x∗ − x̃∗

kd+i

∥∥
∞

≤
∥∥∥A⊤

∥∥∥
∞
∥α−α∗∥∞ +

∥∥x∗ − x̃∗
kd+i

∥∥
∞ (Matrix Norm definition)

≤
√
m3−kα+ 3−kκ (From the Matrix Inequality 13)

≤ 2 · 3−kκ ( From the Lemma statement, κ ≥ 3⌈log3

√
mα⌉)

≤ 3−(k−1)κ

This sequence of inequalities demonstrates that x ∈ G∗(k−1)d. Moreover, we know that G∗(k−1)d ⊆ G
∗
kd+i. Therefore,

partitioning scheme P with κ ≥ 3⌈log3

√
mα⌉ will satisfy:

A∗
km+i ⊆ P∗

kd+i ∀i ∈ [1 : m− 1],∀k ∈ N0
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11.7. Proof of Lemma 9.3

Proof. Since Lemma 9.2 is assumed to be applicable, consider a partitioning scheme P with κ = 3⌈log3

√
mα⌉ and suppose

f∗
1 = supx∈κHd

1
f(x). Let P satisfies Assumption 2.6, then, there exist constants ν and 0 < ρ < 1 such that

sup
x∈P∗

h

(f∗
1 − f(x)) ≤ νρh. ∀h ∈ N0 (20)

Since κ ≥ 3⌈log3

√
mα⌉, we can incorporate Lemma 9.2, which gives,

A∗
km+i ⊆ P∗

kd+i ∀i ∈ [1 : m− 1],∀k ∈ N0

Therefore, we get
sup

x∈A∗
km+i

(f∗ − f(x)) ≤ sup
x∈P∗

kd+i

(f∗ − f(x)) ∀i ∈ [1 : m− 1],∀k ∈ N0 (21)

Combining Equations (20) and (21), and using the fact f∗ ≤ f∗
1 , we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ sup
x∈P∗

kd+i

(f∗ − f(x)) ≤ νρkd+i ≤ ν(ρ
kd+i
km+i )km+i (22)

Therefore, we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ ν(ρ
kd+i
km+i )km+i ∀i ∈ [1 : m− 1],∀k ∈ N0 (23)

Consider ρA = ρβ where

β = min

{
kd+ i

km+ i

∣∣∣∣ i ∈ [1 : m− 1], k ∈ N
}

(24)

Then the sequence of inequalities supx∈A∗
km+i

(f∗ − f(x)) ≤ ν(ρβ)km+i ∀i ∈ [1 : m− 1],∀k ∈ N ensures that (23) is

satisfied for all heights h ≥ m. We show that β = d+m−1
2m−1 is the solution to (24). We consider the sequence for k = 1:

ti =
d+ i

m+ i
, ∀i ∈ [1,m− 1]

First, we show that this sequence is decreasing. For any i in the range [2,m−2], consider the difference between consecutive
terms:

ti+1 − ti =
d+ (i+ 1)

m+ (i+ 1)
− d+ i

m+ i
=

m− d

(m+ i)(m+ i+ 1)

Since m > d, we have m− d > 0, but the denominator (m+ i)(m+ i+ 1) is positive. Thus, ti+1 < ti, which says that
sequence ti is decreasing and the minimum value of ti occurs at i = m− 1:

tm−1 =
d+ (m− 1)

m+ (m− 1)
=

d+m− 1

2m− 1

We now consider the general form for any k ∈ N:

β = min

{
kd+ i

km+ i

∣∣∣∣ i ∈ [1 : m− 1]

}
With the observation that

(k + 1)d+m− 1

(k + 1)m+m− 1
≥ kd+m− 1

km+m− 1

we get β = (d+m− 1)/(2m− 1). With this choice of β we have

sup
x∈A∗

km+i

(f∗ − f(x)) ≤ ν(ρ
kd+i
km+i )km+i ≤ ν(ρβA)

km+i ∀i ∈ [1 : m− 1],∀k ∈ N (25)
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Now, we choose νA to satisfy (23) for the first m− 1 heights. From Equation 22,

sup
x∈A∗

i

(f∗ − f(x)) ≤ νρi = νρi−βiρβi ∀i ∈ [1 : m− 1] (26)

≤ νρ(1−β)(m−1)ρβi ∀i ∈ [1 : m− 1] (27)

Therefore, νA = νρ(1−β)(m−1) and ρA = ρβ will satisfy the Assumption 2.6 for the A partitioning scheme.

11.8. Proof of Lemma 9.4

Proof. Consider partitioning schemes P (κ = 1) and G (κ = κ1 = 3⌈log3

√
mα⌉) with star cells:

P∗
h = {x : x ∈ Rd,

∥∥∥∥x− x∗
h

c

∥∥∥∥
∞
≤ 1},G∗h = {x : x ∈ Rd,

∥∥∥∥x− x̃∗
h

c

∥∥∥∥
∞
≤ κ}

. where c = [3−⌊
h+d−i

d ⌋]di=1

At height h̃1 = d ⌈log3
√
mα⌉, there are ⌈log3

√
mα⌉ divisions along each of the d-axis. Since at each division the cell is

divided into three parts, after ⌈log3
√
mα⌉ divisions, side length along any axis becomes κ1/3

⌈log3

√
mα⌉ = 1. Since we

are focusing on the x∗ which lies in the domain P∗
0 , we have G∗

h̃1
= P∗

0 . Subsequently, we deduce that G∗
h+h̃1

⊆ P∗
h.

implying:

sup
x∈G∗

h̃1+h

(f∗ − f(x)) = sup
x∈P∗

h

(f∗ − f(x)) ∀h ∈ N0 (28)

By lemma assumption P satisfies Assumption 2.6, with parameters (ν, ρ). Therefore we have

sup
x∈P∗

h

(f∗ − f(x)) ≤ νρh ∀h ∈ N0

Therefore,

sup
x∈G∗

h̃1+h

(f∗ − f(x)) ≤ νρh = νρ−h̃1ρh̃1+h ∀h ∈ N0 (29)

For depths h ∈ [1 : h̃1 − 1]:

sup
x∈G∗

h

(f∗ − f(x)) ≤ f∗ − inf
x∈κ1Hd

1

f(x)

≤ (f∗ − inf
x∈κ1Hd

1

f(x))ρ−h̃1ρh

Using inequality 29 and the above inequality, we conclude that G satisfies Assumption 2.6 with parameters (ρ,max{ν, f∗ −
infx∈κ1Hd

1
f(x)}ρ−h̃1).

By Lemma 9.3 and κ ≥ 3⌈log3

√
mα⌉, we conclude:

ρA = ρβ , νA = max{ν, f∗ − inf
x∈κ1Hd

1

f(x)}ρ(1−β)(m−1)−h̃1

11.9. Proof of Lemma 4.2

Proof. Let B◦(x, r) be the open ball corresponding to the closed ball B(x, r). We will first demonstrate that B◦(ci, κ
′) ∩

B◦(cj , κ
′) = ∅ ∀i ̸= j. Suppose there exists a point y ∈ B◦(ci, κ

′) ∩B◦(cj , κ
′), then:

∥ci − cj∥∞ ≤ ∥ci − y∥∞ + ∥cj − y∥∞ < 2κ′.
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However, for lattice points, we have ∥ci − cj∥∞ ≥ 2κ′, contradicting the above inequality.

Next, we show that

B(ci, κ
′) ⊆ (κ+ 2κ′)Hm

1 ∀ci ∈ C. (30)

For any y ∈ B(ci, κ
′) we have that:

∥y∥∞ ≤ ∥y − ci∥∞ + ∥ci∥∞
≤ κ′ + ∥ci∥∞ (since y ∈ B(xi, κ

′)

= κ′ + ∥ci − z+ z∥∞ (for some z ∈ B(0, κ) ∩B(ci, κ
′) ̸= ∅)

≤ κ′ + ∥ci − z∥∞ + ∥z∥∞
≤ κ′ + κ′ + κ

= κ+ 2κ′.

Therefore, y ∈ (κ+ 2κ′)Hm
1 , which proves (30). Let N be the number of balls B(ci, κ

′). Since B◦(xi, κ
′) are disjoint and

all these balls are contained in (κ+ 2κ′)Hm
1 , we have:

N · Vol(B◦(xi, κ
′)) ≤ Vol((κ+ 2κ′)Hm

1 )

N · (2κ′)m ≤ (κ+ 2κ′)m,

giving that N ≤
(
2 + κ

κ′

)m
. For the lower bound to N , since, B(0, κ) ⊆

⋃
i B(ci, κ

′), we have that

Vol(B(0, κ)) = (2κ)m ≤ Vol(
⋃
i

B(ci, κ
′))

≤
N∑
i=1

Vol(B(ci, κ
′)) = NVol(B(c0, κ

′)) = N(2κ′)m.

Hence N ≥
(

κ
κ′

)m
.

Lemma 11.1. Let P = [−1/
√
d, 1/
√
d]d, Prot = {Q⊤x : x ∈ P}, where Q =

[
A⊤ A⊤

⊥
]

is an orthonormal matrix, with
A ∈ Rm×d and A⊥ ∈ R(d−m)×d. Denote, ProjA⊥

(S) = {β ∈ Rd−m : β = A⊥x,x ∈ S ⊆ Rd} and

α′
max ≜

[
max1≤j≤2d q

⊤
1 cj , · · · , max1≤j≤2d q

⊤
mcj , max1≤j≤2d q

⊤
m+1cj , · · · , max1≤j≤2d q

⊤
d cj

]⊤
,

where cj are corners of hypercube P . Then:

Vol(ProjA⊥
(Prot)) =

d∏
i=m+1

2α′
max,i and Vol(ProjA⊥

([−1, 1]d)) ≥
d∏

i=m+1

2α′
max,i.

Proof. The projection of Prot onto the subspace orthogonal to A is determined by:

ProjA⊥
(Prot) =

{
A⊤

⊥y : y ∈ Prot

}
.

Let us denote α′
max[1 : m] and α′

max[m + 1 : d] as first m components and last d −m components of the vector α′
max.

Since Prot = {Q⊤x : x ∈ P}, the corners of Prot are given by:

Crot =
{
A⊤(α′

max[1 : m]⊙ s1) +A⊤
⊥(α

′
max[m+ 1 : d]⊙ s2) : s1 ∈ {−1/

√
d, 1/
√
d}m, s2 ∈ {−1/

√
d, 1/
√
d}d−m

}
.

The volume of the projection onto the subspace orthogonal to A is:

Vol(ProjA⊥
(Prot)) =

d∏
i=m+1

2α′
max,i.
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Let y ∈ Prot. By definition, y = Q⊤x for some x ∈ P . Then:

∥y∥∞ = ∥Q⊤x∥∞.

Using the properties of the norm and orthonormality of Q:

∥y∥∞ ≤
∥∥∥Q⊤

∥∥∥
∞
∥x∥∞ ≤

√
d
∥∥∥Q⊤

∥∥∥
2
∥x∥∞ ≤ 1

Since Q is orthonormal, ∥Q⊤∥∞ = 1. Additionally, ∥x∥∞ ≤ 1/
√
d because x ∈ [−1/

√
d, 1/
√
d]d. Thus:

∥y∥∞ ≤ 1,

showing that y ∈ [−1, 1]d. Hence, Prot ⊆ [−1, 1]d.

Since Prot ⊆ [−1, 1]d, the volume of the projection satisfies:

Vol(ProjA⊥
(Prot)) ≤ Vol(ProjA⊥

([−1, 1]d)).

Thus:

Vol(ProjA⊥
([−1, 1]d)) ≥

d∏
i=m+1

2α′
max,i.

11.10. Proof of Lemma 4.3

Proof. Recollect the definition of the partitioning scheme T from Definition 2.3. T represents the equivalent partitioning
scheme of A. For the partitioning scheme T , at a specific depth h, each cell can be indexed by i, i.e, Th,i 1 ≤ i ≤ 3h,
where, 3h represents the total number of cells at depth h, and i is the index of a specific cell within that depth. Similarly, For
the partitioning scheme P , at a depth h, each cell can be indexed by j, i.e, Ph,j 1 ≤ j ≤ 3h.

Definition of the POpt Relation Consider the following definition of the POpt relation:

POpt = {(Th,i,Ph,j) : Th,i ∈ NT (ϵ), Ph,j ∈ NP(ϵ), Th,i ∩APh,j ̸= ∅}

The sets NT (ϵ) and NP(ϵ) denote near-optimal cells in the respective partitioning schemes.

Figure 6. Caption

For any h, i, consider the cell Th,i ∈ NT (ϵ). Let l be the lower bound on the number of elements in POpt that are of the
form (Th,i, ·). Then, we have: |POpt| ≥ |NT (ϵ)| · l. Similarly, for any h, j, consider the cell Ph,j ∈ NP(3νρ

h). Let u be
the upper bound on the number of elements in POpt that are of the form (·,Ph,j). Then, we have: |NP(ϵ)| · u ≥ |POpt|.
Combining these two inequalities, we get:

|NT (ϵ)| ≤ |NP(ϵ)| ·
u

l
(31)

This inequality provides a relationship between the near-optimal cells in the two partitioning schemes, taking into account
the bounds on the number of elements in the POpt relation.
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11.10.1. ESTIMATING UPPER BOUND u

If Ph,j is a near-optimal cell, then there is a x ∈ Ph,j such that f(x) ≥ f∗ − ϵ. For a y = Ax we get g(y) = f(ATy) =
f(x). If y ∈ Th,i, then Th,i is a near optimal cell and y ∈ Th,i ∩APh,j . Thus the pair (Th,i,Ph,j) ∈ POpt. To obtain the
upper bound u on the number of such pairs, suppose that all x ∈ Ph,j satisfy f(x) ≥ f∗ − ϵ. Then the entire region APh,j

is near-optimal, and we calculate the maximum number of distinct Th,i that can be present in POpt.

We use Lemma 4.2 to obtain an upper bound to u. To apply the lemma, we first approximate the domain APh,j with a
hypercube, which we use as κ and we obtain a lower bound on the side-lengths of Th,i cells which will be used as a κ′.
These approximations allows us to effectively utilize Lemma 4.2 in our analysis.

Using Proposition 9.1, the cell Th,i and Ph,j can be written as

Th,i = {α ∈ Rm,

∥∥∥∥α−αh,i

s

∥∥∥∥
∞
≤ α with s = [3−⌊h+m−j

m ⌋]mj=1}

Ph,i = {x ∈ Rd,

∥∥∥∥x− xh,i

c

∥∥∥∥
∞
≤ κ with c = [3−⌊h+d−j

d ⌋]dj=1}

For all x1,x2 ∈ Ph,i, consider ∥Ax1 −Ax2∥∞, we have:

= ∥Ax1 −Ax2∥∞
≤ ∥A∥∞ ∥x1 − x2∥∞ (from the Matrix operator norm definition)

≤
√
m ∥x1 − x2∥∞ (From Matrix Inequality 13 and ∥A∥2 = 1)

=
√
m ∥x1 − x2 + xh,i − xh,i∥∞

≤
√
m ∥x1 − xh,i∥∞ +

√
m ∥x1 − xh,i∥∞

≤ 2
√
m3−k (Let h = kd+ i)

Now, we estimate the side lengths for the Th,i cell, by computing s

h+m− j

m
=

kd+m+ i− j

m
≤ kd+m+ d

m
≤ (k + 1)

d

m
+ 1

Hence 3−⌊
h+m−j

m ⌋ ≥ 3−(1+(k+1) d
m ).

We set κ = 2
√
m3−k, κ′ = α3−(1+(k+1) d

m ) and invoke Lemma 4.2, to derive the upper bound to u. Thus,

u ≤
(
2 +

2
√
m3−k

α3−13−(k+1) d
m

)m

=

(
2 +

6
√
m3d/m3k(

d−m
m )

α

)m

≤
(
2 + 6

√
m3d/m3k(

d−m
m )
)m
≤ (12

√
m)m3d3k(d−m)

11.10.2. ESTIMATING LOWER BOUND l

Recall the definition of A⊥ from Definition 9.5. IfAh,i is a near-optimal cell, then there is a x ∈ Ah,i s.t. f(x) ≥ f∗−3νρh.
Consider x′ = x + A⊥y, where y ∈ Rd−m. Then, f(x′) = g(Ax′) = g(Ax) = f(x). Hence the entire domain
{x+A⊥y | y ∈ Rd−m, x+A⊥y ∈ [−1, 1]d} is a near optimal region. Suppose Ph,j has a not zero intersection with the
above domain, then the cell Ph,j is a near-optimal cell. We thus count all these cells to get a lower bound l.
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n2 ≥
Vol(ProjA⊥

(P0,0))

Vol(ProjA⊥
(Ph,0))

≥
∏d

i=m+1 2(α
′
max)i∏d

i=m+1 2max1≤j≤2d q
⊤
i xj

(Numerator is through Lemma 11.1)

≥
∏d

i=m+1(1/
√
d)2max1≤j≤2d q

⊤
i cj∏d

i=m+1 2max1≤j≤2d q
⊤
i xj

(Here cj are corners of hypercube [−1, 1]d)

≥
(1/
√
d)d−m

∏d
i=m+1 max1≤j≤2d q

⊤
i cj∏d

i=m+1 3
−k max1≤j≤2d q

⊤
i cj

≥ (1/
√
d)d−m

3−k(d−m)
≥ (1/d)d−m3k(d−m).

Hence, the lower bound l = (1/d)d−m3k(d−m) Thus, using Equation 31, we conclude that

|NA(ϵ)| ≤ |NT (3νρ
h)| · 3ddd−m(12

√
m)m (32)

11.11. Proof of Lemma 4.4

Proof. To start, we recall the relationship between the parameters of the two partitioning schemes as established in Lemma
9.4. Specifically, we have:

ρA = ρβ , νA = max{ν, f∗ − inf
x∈κ1Hd

1

f(x)}ρ(1−β)(m−1)−h̃1

For brevity, we denote ν′ = max{ν, f∗ − infx∈κ1Hd
1
f(x)}.

From the definiton of near-optimality dimension for the P partioning scheme, we have:

NP(3νρ
h) ≤ Cρ− ηP h (33)

Now, consider 3νAρhA:

= 3ν′ρβh+(1−β)(m−1)−h̃1

= 3νρβh+logρ(ν
′ρ(1−β)(m−1)−h̃1 )−logρ(ν)

≤ 3νρh+logρ(ν
′ρ(1−β)(m−1)−h̃1 )−logρ(ν)

≤ 3νρ
h+

⌊
logρ(ν

′ρ(1−β)(m−1)−h̃1 )−logρ(ν)
⌋

= 3νρh−h̃3 (Denote h̃3 = −
⌊
logρ(ν

′ρ(1−β)(m−1)−h̃1)− logρ(ν)
⌋

)

Now, consider

NA(3νA/ρ
−h
A ) ≤ NA(3νρ

h−h̃3) (3νAρhA ≤ 3νρh−h̃3 )

≤ 3ddd−m(12
√
m)mNP(3νρ

h−h̃3) (Using Lemma 4.3)

≤ 3ddd−m(12
√
m)mCρ− ηP(h−h̃3) (Using Inequality 33)

= 3ddd−m(12
√
m)mCρηP h̃3ρ− ηP h

Therefore, we have:
NA(3νA/ρ

−h
A ) ≤ 3ddd−m(12

√
m)mCρηP h̃3ρ− ηP h ∀h ≥ h̃3
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For heights h ∈ [0 : h̃3 − 1], since the right-hand side quantity is monotonically increasing, we can use the value of the
right-hand side at depth h = h̃3 in the above expression, which is 3ddd−m(12

√
m)mC.

Therefore, we have

NA(3νA/ρ
−h
A ) ≤ 3ddd−m(12

√
m)mCρ− ηP h̃3ρ− ηP h = 3ddd−m(12

√
m)mCρ− ηP h̃3ρ

− ηP
β h

A

This implies that ηA ≤ ηP /β, and the constant CA is given by 3ddd−m(12
√
m)mCρ− ηP h̃3 .

11.12. Proof of Lemma 4.5

Proof. Consider z∗ = (AÂ
⊤
)−1Ax∗, then

f(Â
⊤
z∗) = g(AÂ

⊤
z∗) = g(AÂ

⊤
(AÂ

⊤
)−1Ax∗)

= g(Ax∗) = f(x∗).

Now, we show that

∥z∗∥∞ =
∥∥∥(AÂ

⊤
)−1Ax∗

∥∥∥
∞

≤
∥∥∥(AÂ

⊤
)−1Ax∗

∥∥∥
2

(Vector Norm Inequality)

≤
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥Ax∗∥2 (Operator Norm Definition)

=

∥∥∥(AÂ
⊤
)−1
∥∥∥
2
σmin(AÂ

⊤
)

σmin(AÂ
⊤
)

∥Ax∗∥2 (Since, σmin(AÂ
⊤
) > 0)

≤

∥∥∥(AÂ
⊤
)−1AÂ

⊤∥∥∥
2

σmin(AÂ
⊤
)

∥Ax∗∥2 (From Matrix Inequality 14)

≤
∥Ax∗∥2

1− dist2(A, Â)
(From the Equation 11 and ∥I∥2 = 1)

≤
√
m ∥Ax∗∥∞

1− dist2(A, Â)
(Vector Norm Inequality)

≤
√
mα

1− dist2(A, Â)
.

For some of the proofs, we use the following equivalence of partitioning schemes.

11.13. Equivalence of partitioning schemes

Consider the partitioning schemes A and T which are defined in Definition 2.3. For every α ∈ Th,i, there exists a unique
x ∈ Ah,i such that x = A⊤α. This establishes an equivalence:

∀x ∈ Ah,i, f(x) = f(A⊤α) = g(AA⊤α) = g(α) (34)

where f is optimized on Ah,i and g on Th,i. Thus, optimizing f over A is equivalent to optimizing g over T .

Similarly, for the partitioning schemes Â and T̂ , we have: ∀α ∈ T̂h,i,∃x ∈ Âh,i such that x = Â
⊤
α. This leads to:

∀x ∈ Âh,i, f(x) = f(Â
⊤
α) = g(AÂ

⊤
α)

def
= ĝ(α) (35)

where g is defined on Th,i and ĝ on T̂h,i. Therefore, optimizing f over Â is equivalent to optimizing ĝ over T̂ .
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11.14. Proof of Lemma 9.8

Proof. From the notation section 7, we have W⊥ = W−WA⊤A. Next, consider the singular value decomposition (SVD)
of W, given by W = USV⊤, where U ∈ Rp×p and V ∈ Rd×d are orthogonal matrices, satisfying UU⊤ = U⊤U =
Ip,VV⊤ = V⊤V = Id and S ∈ Rp×d is a diagonal matrix.

We have this relation ∥W∥2 = σ1(W) ≥ · · · ≥ σr(W) ≥ 0, r = min{p, d}. From the Lemma assumption, we have
rank(W) = r ≥ m. Thus, we collect the respective leading m columns of U and V, denoted as U1 ∈ Rp×m and
V1 ∈ Rd×m, respectively. The remaining columns are denote by U2 ∈ Rp×p−m and V2 ∈ Rd×d−m. Since, columns of
U1 and U2 forms a orthonormal basis for Rp, we have:

U⊤
1 U1 = Im and U⊤

1 U2 = 0m×p−m. (36)

Then the SVD of W can be written as: W = U1S1V
⊤
1 +U2S2V

⊤
2 . and from the lemma hypothesis Â = V⊤

1 . Now,
consider the implications of this decomposition for the proof. Consider,

=
∥∥∥W(I−A⊤A)

∥∥∥
F

≥
∥∥∥W(I−A⊤A)

∥∥∥
2

(From Matrix Norm Inequality 13)

=
∥∥∥U1S1V

⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A)

∥∥∥
2

(SVD of W)

=
∥∥∥U⊤

1

∥∥∥
2

∥∥∥U1S1V
⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A)

∥∥∥
2

(
∥∥∥U⊤

1

∥∥∥
2
= 1)

≥
∥∥∥U⊤

1 (U1S1V
⊤
1 (I−A⊤A) +U2S2V

⊤
2 (I−A⊤A))

∥∥∥
2

(From Matrix Norm Inequality 14)

=
∥∥∥S1V

⊤
1 (I−A⊤A)

∥∥∥
2

(Using Equation 36)

≥ σmin(S1)
∥∥∥V⊤

1 (I−A⊤A)
∥∥∥
2

(From Matrix Norm Inequality 14)

= σm

∥∥∥Â(I−A⊤A)
∥∥∥
2

= σm

∥∥∥ÂA⊤
⊥A⊥

∥∥∥
2

(
[
A⊤,A⊤

⊥

]
is a orthonormal matrix, thus A⊤A+A⊤

⊥A⊥ = Id)

= σm

∥∥∥ÂA⊤
⊥A⊥

∥∥∥
2

∥∥∥A⊤
⊥

∥∥∥
2

(
∥∥∥A⊤

⊥

∥∥∥
2
= 1)

≥ σm

∥∥∥ÂA⊤
⊥A⊥A

⊤
⊥

∥∥∥
2

(From Matrix Norm Inequality 14)

= σm

∥∥∥ÂA⊤
⊥

∥∥∥
2

(A⊥ consists of orthonormal rows)

= σm

∥∥∥sinΘ(A, Â)
∥∥∥
2

(From Definition 9.5)

Since σm > 0, we have

∥∥∥sinΘ(A, Â)
∥∥∥
2
≤

∥∥∥W(I−A⊤A)
∥∥∥
2

σm
≤

∥∥∥W(I−A⊤A)
∥∥∥
F

σm
.

11.15. Proof of Lemma 9.6

Proof. Using the partitioning scheme equivalence from Section 11.13, we can work with partitioning schemes T and T̂ in
place of the A and Â partitioning schemes.
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Let zh, ẑh be the representatives of T ∗
h and T̂ ∗

h cells respectively. Then

T ∗
h =

{
z ∈ Rm,

∥∥∥∥z− zh
s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1

}
and

T̂ ∗
h =

z ∈ Rm,

∥∥∥∥z− ẑh
s

∥∥∥∥
∞
≤

√
mα√

1− dist2(A, Â)
with s = [3−⌊

h+m−i
m ⌋]mi=1


For brevity, denote κ2 =

√
m√

1−dist2(A,Â)
. Let z∗ denote a maximizer of the function g, i.e., z∗ ∈ argmaxz∈αHm

1
g(z).

Given that ĝ(z) = g(AÂ
⊤
z) and that AÂ

⊤
an invertible matrix, we can identify a corresponding maximizer z∗ĝ for ĝ such

that: z∗g = AÂ
⊤
z∗ĝ . Under this transformation, ĝ(z∗ĝ) will be a maximizer of the function ĝ.

From lemma assumption, T satisfies Assumption 2.6, therefore we have:

∀h ∈ N0, sup
z∈T ∗

h

(g∗ − g(z)) ≤ νAρ
h
A (37)

We aim to control

∀h ∈ N0, sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) = sup
z∈T̂ ∗

h

(g∗ − g(AÂ
⊤
z)) (38)

We choose some height h and represent it as h = km+ i. Let us denote:

Rh = {AÂ
⊤
z : z ∈ T̂ ∗

h }.

Now, we show that:
Rkm ⊆ T ∗

km−mk′ ,

where k′ =
⌈
log3

2
√
mκ2

κ2−1

⌉
.

Consider a point AÂ
⊤
z from the set Rkm, where z ∈ T̂ ∗

km. By definition, z satisfies the following condition:

∥z− ẑkm∥∞ ≤ 3−kκ2α. (39)

Now, we show that AÂ
⊤
z ∈ T ∗

km−mk′ . We begin with the following inequality:

=
∥∥∥z(k−k′)m −AÂ

⊤
z
∥∥∥
∞

=
∥∥∥z(k−k′)m − z∗g +AÂ

⊤
z∗ĝ −AÂ

⊤
z
∥∥∥
∞

(Using z∗g = AÂ
⊤
z∗ĝ)

≤
∥∥z(k−k′)m − z∗g

∥∥
∞ +

∥∥∥AÂ
⊤
(z∗ĝ − z)

∥∥∥
∞

(Triangle Inequality of Norms)

≤ 3−(k−k′)α+
∥∥∥AÂ

⊤
(z∗ĝ − z)

∥∥∥
∞

(z∗g ∈ T ∗
km cell. Thus ∥zkm − z∗∥∞ ≤ 3−kα)

≤ 3−(k−k′)α+
∥∥∥AÂ

⊤∥∥∥
∞

∥∥z∗ĝ − z
∥∥
∞ (Operator Norm Definition)

≤ 3−(k−k′)α+
√
m
∥∥z∗ĝ − z

∥∥
∞ (From Matrix Inequality 13, 14 and ∥A∥2 =

∥∥∥Â∥∥∥
2
= 1)

≤ 3−(k−k′)α+
√
m
∥∥−ẑkm + z∗ĝ

∥∥
∞ +

√
m ∥ẑkm − z∥∞

≤ 3−(k−k′)α+
√
m3−k2κ2α (using Inequality 39 and z∗ĝ ∈ T̂ ∗

km)

≤ 3−(k−k′)α+ 3−(k−k′)α(κ2 − 1) (Suppose k′ is chosen such that 2
√
mκ2 ≤ (κ2 − 1)3k

′
)

= ακ23
−(k−k′)
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From the above inequality, we can conclude:

Rkm ⊆ T ∗
km−m

⌈
log3

2
√

mκ2
κ2−1

⌉

Using the above set containment, for any height h = km+ i, we have

Rkm+i ⊆ Rkm ⊆ T ∗
km−m

⌈
log3

2
√

mκ2
κ2−1

⌉ ⊆ T ∗
km−m

⌈
log3

2
√

mκ2
κ2−1

⌉
+i−m

First and the last set containment are valid from the round robin paritioning scheme. Substituting, h = km+ i, we get:

Rh ⊆ T ∗
h−m

⌈
log3

2
√

mκ2
κ2−1

⌉
−m

Define: h̃2 = m
⌈
log3

2
√
mκ2

κ2−1

⌉
+m. Using the Inequalities 37, 38 and the above set containment, we conclude:

sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) ≤ νAρ
h−h̃2

A ∀h ≥ h̃2 (40)

For height h ∈ [0 : h̃2 − 1], we know that:
inf

z∈T̂ ∗
h

ĝ(z) ≥ inf
z∈T̂ ∗

0

ĝ(z)

which implies:

sup
z∈T̂ ∗

h

(g∗ − ĝ(z)) ≤ g∗ − inf
z∈T̂ ∗

0

ĝ(z) ≤ (g∗ − inf
z∈T̂ ∗

0

ĝ(z))ρ−h̃2

A ρhA

Combining 40 and the above inequality, we conclude that T̂ satisfies Assumption 2.6 with parameters:

(ρA,max{νA, g∗ − inf
z∈κ2αHm

1

g(AÂz)}ρ−h̃2

A )

11.16. Proof of Proposition 8.1

Proof. Let A = [w1,w2,w3, . . . ,wp] ∈ Rd×p, where we assume without loss of generality that the vectors
{w1,w2, · · · ,wp} are linearly independent. If the vectors were dependent, we could consider only the independent
vectors without changing the Span{w1,w2, . . . ,wp}. The orthogonal projection matrix P onto Span{w1,w2, . . . ,wp} is
given by P = A(A⊤A)−1A⊤.

For all x ∈ Rd, consider (wT
i P)x = (P⊤wi)

⊤x = (Pwi)
⊤x = w⊤

i x, where the equalities hold due to the following:
First, P⊤ = P because P is a projection matrix and thus symmetric. Second, Pwi = wi since wi is in the column span of
A, and P projects onto this span. Therefore, we can express f(x) as

f(x) =

p∑
i=1

viσ(w
⊤
i x+ bi) =

p∑
i=1

viσ(w
⊤
i Px+ bi). (41)

Since (x− x′) ⊥ Span{w1,w2, . . . ,wp},Px = Px′ and therefore using Equation (41), f(x) = f(x′).

11.17. Proof of Lemma 4.6

Proof. Using the partitioning scheme equivalence from Section 11.13, we can work with partitioning schemes T and T̂ in
place of the A and Â partitioning schemes.
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An arbitrary cell Th,i in T is defined as:

Th,i =
{
z : z ∈ Rm,

∥∥∥∥z− zh,i
s

∥∥∥∥
∞
≤ α with s = [3−⌊

h+m−i
m ⌋]mi=1

}
, (42)

and an arbitrary cell T̂h,i in T̂ is defined as:

T̂h,i =

z : z ∈ Rm,

∥∥∥∥z− z̃h,i
s

∥∥∥∥
∞
≤ α

√
m√

1− dist2(A, Â)
with s = [3−⌊

h+m−i
m ⌋]mi=1

 . (43)

We optimize the function ĝ(z) = g(AÂ
⊤
z) over T̂ , while optimizing g(z) over T . For a near-optimal cell Th,i ∈

NT (3νT ρ
h
T ), the following holds:

sup
z∈Th,i

g(z) = sup
z∈(AÂ

⊤
)−1Th,i

g(AÂ
⊤
z) ≥ g∗ − 3νT ρ

h
T , (44)

where the inequality holds because Th,i is a near-optimal cell by assumption.

We aim to count the number of cells in T̂ that satisfy the following near-optimality cell condition:

sup
z∈T̂h,i

g(AÂ
⊤
z) ≥ g∗ − 3νT̂ ρ

h
T̂ . (45)

Since, νT̂ ρ
h
T̂ > νT ρ

h
T , the above condition is satisfied by

sup
z∈T̂h,i

g(AÂ
⊤
z) ≥ g∗ − 3νT ρ

h
T . (46)

Using relations (44) and (46), we observe that since the function g(AÂ
⊤
z) is identical in both cases, it suffices to work

with the domain of the cells. Define:

B = {(AÂ
⊤
)−1z : z ∈ Th,i}.

To obtain an upper bound to the number of near-optimal cells in the partitioning scheme T̂ , we consider every cell in T̂
(T̂h,i) that intersects with B as potentially near-optimal. For simplicity, we enlarge the domain B into a hypercube in Rm.

The set B is the transformation of the cell Th,i under (AÂ
⊤
)−1. Since the transformation is linear and invertible, B remains

a bounded region. However, to simplify analysis, we enclose B in a hypercube. By ensuring that the hypercube fully
contains B, any cell T̂h,i that intersects this hypercube is considered a candidate near-optimal cell.
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∀z1, z2 ∈ Th,i, consider,∥∥∥(AÂ
⊤
)−1z1 − (AÂ

⊤
)−1z1

∥∥∥
∞

≤
∥∥∥(AÂ

⊤
)−1
∥∥∥
∞
∥z1 − z2∥∞ (From the Matrix Operator Norm definition)

≤
√
m
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥z1 − z2∥∞ (From the Matrix Inequality 13)

≤

√
m
∥∥∥(AÂ

⊤
)−1
∥∥∥
2
∥z1 − z2∥∞ σmin(AÂ

⊤
)

σmin(AÂ
⊤
)

(Since, σmin(AÂ) > 0)

≤
√
m

∥∥∥(AÂ
⊤
)−1AÂ

⊤∥∥∥
2
∥z1 − z2∥∞

σmin(AÂ
⊤
)

(From the Matrix Inequality 14)

=

√
m ∥z1 − z2∥∞
σmin(AÂ

⊤
)

(∥I∥2 = 1)

(1)

≤
√
m

σmin(AÂ
⊤
)
2α3−k

= 2α3−k

√
m√

1− dist2(A, Â)
(From the Equation 11)

(1) is true from the following inequality,

∥z1 − z2∥∞ =

∥∥∥∥s(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞

=

∥∥∥∥diag (s)(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞

≤ ∥diag (s)∥∞

∥∥∥∥(z1 − zh,i + zh,i − z2
s

)∥∥∥∥
∞
≤ 3−k2α

Hence:

B ⊆ 2α3−k

√
m√

1− dist2(A, Â)
Hm

1 .

To establish an upper bound for the near-optimal cells of T̂ partitioning scheme, we consider the hypercube
2α3−k

√
m√

1−dist2(A,Â)
Hm

1 as potentially near-optimal. We can then count the maximum number of cells in the T̂ par-

titioning scheme at height h that can intersect with this region.

To invoke the Lemma 4.2, we have κ = 2α3−k
√
m√

1−dist2(A,Â)
and we need the side-length of the cell T̂h,i cell or for

simplicity, lower-bound to side-length will be κ′. And the side-length of T̂h,i cell is greater than 2 · 3−(k+1) α
√
m√

1−dist2(A,Â)
.

Hence, the maximum number of cells of T̂h,i that can be tiled inside the hypercube with side length = 2α3−k
√
m√

1−dist2(A,Â)
are

1 +


2α3−k

√
m√

1−dist2(A,Â)

2 · 3−(k+1) α
√
m√

1−dist2(A,Â)




m

= 4m

Hence, upper-bound to the near-optimal calls of T̂ partitioning scheme is

∀h ≥ 0, NT̂ (3νT̂ ρ
h
T̂ ) ≤ 4mNT (3νT ρ

h
T ) (47)
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11.18. Proof of Lemma 4.7

Proof. From the Lemma 4.6, we have

∀h ≥ 0, NT̂ (3νT̂ ρ
h
T̂ ) ≤ 4mNT (3νT ρ

h
T ) (48)

Using the above relation, we relate the near-optimality dimension. Suppose, ηT (νT , ρT , CT ) is the near optimality
dimension of T then,

∀h ≥ 0, NT (3νT ρ
h
T ) ≤ CT ρ

−ηT h
T (49)

From Lemma 9.6, we have the following SequOOL parameter relations:

νT̂ = max{νT , g∗− inf
z∈κ2αHm

1

g(AÂ
⊤
z)}/ρh̃2

T , ρT̂ = ρT where h̃2 = m+m

⌈
log3

2
√
mκ2

κ2 − 1

⌉
and κ2 =

√
m√

1− dist2 (A, Â)
.

For brevity, denote ν′T = max{νT , g∗ − infz∈κ2αHm
1
g(AÂ

⊤
z)}. Now, consider 3νT̂ ρ

h
T̂ :

= 3ν′T ρ
h−h̃2

T

= 3νT ρ
logρT

(ν′
T ρ

−h̃2
T )−logρT

(νT )

T ρhT

≤ 3νT ρ

⌊
logρT

(ν′
T ρ

−h̃2
T )−logρT

(νT )
⌋

T ρhT

= 3νT ρ
−h̃4

T ρhT (Denote h̃4 = −
⌊
logρT

(ν′T ρ
−h̃2

T )− logρT
(νT )

⌋
)

Next, we examine NT̂ (3νT̂ ρ
h
T̂ ):

≤ NT̂ (3νT ρ
h−h̃4

T )

≤ 4mNT (3νT ρ
h−h̃4

T ) (Using Inequality 48 and NT̂ (3νT ρ
h
T ) ≤ NT̂ (3νT̂ ρ

h
T̂ ))

≤ 4mCT ρ
−ηT (h−h̃4)
T (Using Inequality 49 and ∀h ≥ h̃4)

Therefore, we have:

NT̂ (3νT̂ ρ
h
T̂ ) ≤ 4mCT ρ

ηT h̃4

T ρ−ηT h
T ∀h ≥ h̃4 (50)

For heights h ∈ [0 : h̃4 − 1], we can use the value of the right-hand side at depth h = h̃4, which is 4mCT . Hence, we have:

NT̂ (3νT̂ ρ
h
T̂ ) ≤ 4mCT ρ

ηT h̃4

T ρ−ηT h
T ∀h ≥ 0

= 4mCT ρ
ηT h̃4

T ρ−ηT h

T̂
∀h ≥ 0

Therefore, we conclude that ηT̂ ≤ ηT and CT̂ = CT 4
mρηT h̃4

T .

11.19. Proof of Proposition 3.1

Proof. Let hmax =
⌊

n2

nlogn+Tn
3c

⌋
as given in the lemma statement. SequOOL opens

⌊
hmax

h

⌋
cells at depth h for all

h ∈ [1, hmax]. Additionally, we utilize T samples for every c heights to learn f̂ . The total number of samples used to learn
f̂ up to height hmax is thus

⌊
Thmax

c

⌋
. Each cell opening in SequOOL requires 3 samples. Therefore, the total number of

openings performed by Algorithm 3 is given by
∑hmax

i=1

⌊
hmax

i

⌋
+
⌊
Thmax

3c

⌋
. According to the proposition, we need to show
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that this quantity is ≤ n. Consider, total number of openings:

=

n∑
i=1

⌊
hmax

i

⌋
+

⌊
hmaxT

3c

⌋

≤

⌊
n2

nlogn+ Tn
3c

⌋
(

n∑
i=1

1

i
+

T

3c
) (Definition of hmax)

≤ n2

nlogn+ Tn
3c

(logn+
T

3c
) (Recall the definition: logn ≜

∑n
t=1

1
t )

= n

Hence, the number of openings made in Algorithm 3 does not exceed n.

11.20. Proof of Theorem 4.8

We start with the Theorem 5 of (Bartlett et al., 2019). We restate the theorem, adapting it to our notation and incorporating
the dependency of the parameters on the partitioning scheme P:

Theorem 11.2 ((Bartlett et al., 2019), Theorem 5). Let W be the standard Lambert W function. Suppose f along
the partitioning scheme P satisfies Assumption 2.6 with associated (νP , ρP), CP > 1, and near-optimality dimension
ηP = ηP(νP , CP , ρP) parameters. Then, after n rounds, the simple regret of SequOOL is bounded as follows: For ηP > 0,
we use Corollary 6 of (Bartlett et al., 2019). Let ñ =

⌊
n/logn

⌋
ηP log(1/ρP)/(CP).

• If ηP = 0, rn ≤ νPρ
1

CP
⌊ n
log n

⌋
P • If ηP > 0, rn ≤ νP

(
ñ

log ñ

)− 1
ηP

To invoke this Theorem for our proof, first we apply the theorem for the partitioning scheme Â. 4.7 shows that Â is a valid
partioning scheme, i.e., it satisfies 2.6, hence we can invoke Theorem 11.2.

Thus, for our partitioning scheme Â, denoting ñ =
⌊
n/logn

⌋
ηÂ log(1/ρÂ)/(CÂ), the regret is bounded by

• If ηÂ = 0, rn ≤ νÂρ
1

CÂ
⌊ n
log n

⌋

Â
• If ηÂ > 0, rn ≤ νÂ

(
ñ

log ñ

)− 1
ηÂ

Corollary 9.7 relates SequOOL parameters and gives,

ρÂ = ρβ , νÂ = max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−h̃2

A ,

ηÂ(νÂ, ρÂ, CÂ) ≤
ηP(ν, ρ, C)

β
,CÂ = 3ddd−m(12

√
m)mCρ− ηP h̃34mρηP h̃4 .

Now, we substitute these relations in our regret bound to get the upper bound in terms of default partitioning scheme P
parameters.

rn ≤

max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−βh̃2ρ
β
C1

⌊ n
log n

⌋ if ηP = 0,

max{max{ν, lf}ρ(1−β)(m−1)−h̃1 , lg}ρ−βh̃2

(
ñ

log ñ

)− β
ηP if ηP > 0,

Where C1 = 3ddd−m(12
√
m)mCρ−ηP h̃34mρηP h̃4 and ñ =

⌊
n/logn

⌋
ηP log(1/ρ)/C1

with h̃2 = m+m
⌈
log3

2
√
mκ2

κ2−1

⌉
and h̃1 = d

⌈
log3 3

⌈log3

√
mα⌉

⌉
with κ2 =

√
m√

1−dist2 (A,Â)

h̃3 = −
⌊
logρ(max{ν, lf}ρ(1−β)(m−1)−h̃1)− logρ(ν)

⌋
, h̃4 = −

⌊
logρA

(max{νA, lg}ρ−h̃2

A )− logρA
(νA)

⌋
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12. Additional Experiment Details & Results
12.1. Test Functions Experiments

We implemented SequOOL, SOO, and RESOO ourselves due to the absence of publicly available open-source code for
these algorithms. For DiRect and Dual Annealing, we utilized the implementations provided in the SciPy library’s optimize
module. The CMA-ES algorithm was sourced from its dedicated project repository1. REMBO and HesBO implementations
were derived from the original HesBO repository2. Bayesian Optimization was implemented using the repository 3.

12.2. Multi-Index Functions Results

We present additional experimental results to further demonstrate the effectiveness of our approach. Figure 7 showcases
the performance of various algorithms on low-dimensional multi-index functions with d = 5 and m = 2. Our algorithm
consistently achieves lower regret across different test functions, including Sphere, Branin, Ellipsoid, and Rastrigin, often
reaching zero regret with fewer samples compared to competing methods.

12.3. Training Details of LLM Quantization Experiment

We implemented our Large Language Model (LLM) code on hardware equipped with one Quadro RTX 5000 GPU having
16GB VRAM. For comparison, we ran AWQ baselines using the original authors’ code, which also served as a foundation
for developing our proposed method.

To optimize the neural network used in Algorithm 3 for our LLM Quantization objective function, we employed the Ray
package for hyper-parameter tuning 4. We used Adam optimizer and our search space included hidden layer sizes (500,
1000, 2000, 3000), learning rates (log-uniform from 1× 10−4 to 1× 10−1), weight decay (log-uniform from 1× 10−2 to
1× 10−1), and learning rate Step Decay with gamma values (uniform from 0.9 to 0.99), and step sizes (500, 1000, 2000).
We utilized early stopping to prevent overfitting.

The neural network was retrained on SequOOL-collected samples every 5 heights, with the look-ahead strategy applied up
to a height of 60 and performed round-robin direction selection after this height.

1https://github.com/CyberAgentAILab/cmaes
2https://github.com/aminnayebi/HesBO
3https://github.com/bayesian-optimization/BayesianOptimization
4https://github.com/ray-project/ray
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Figure 7. Regret Plots: Legend for the plots are arranged in the order of their performance. Algorithm 1 (SequOOL on Â) uses 100
additional samples to learn the subspace through the Fornasier et al. (2012) approach. Our Algorithm, SOO, RESOO, SequOOL are
budget algorithms, so we run these algorithms using 100 equally spaced budget values between 1 and 2000 and plot the regret at the end
of each run. For the randomized algorithms, we took 10 trials and plotted the median curve (thick line) and 0 and 95 percentile curves.
Random Search is run on Â.
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