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ABSTRACT

Model-based reinforcement learning (RL) offers a solution to the data inefficiency
that plagues most model-free RL algorithms. However, learning a robust world
model often demands complex and deep architectures, which are expensive to
compute and train. Within the world model, dynamics models are particularly cru-
cial for accurate predictions, and various dynamics-model architectures have been
explored, each with its own set of challenges. Currently, recurrent neural network
(RNN) based world models face issues such as vanishing gradients and difficulty
in capturing long-term dependencies effectively. In contrast, use of transform-
ers suffers from the well-known issues of self-attention mechanisms, where both
memory and computational complexity scale as O(n2), with n representing the
sequence length.
To address these challenges we propose a state space model (SSM) based world
model, specifically based on Mamba, that achieves O(n) memory and compu-
tational complexity while effectively capturing long-term dependencies and fa-
cilitating the use of longer training sequences efficiently. We also introduce a
novel sampling method to mitigate the suboptimality caused by an incorrect world
model in the early stages of training, combining it with the aforementioned tech-
nique to achieve a normalised score comparable to other state-of-the-art model-
based RL algorithms using only a 7 million trainable parameter world model.
This model is accessible and can be trained on an off-the-shelf laptop.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved remarkable success in various challenging appli-
cations, such as Go (Silver et al., 2016; 2017), Dota (Berner et al., 2019), Atari (Mnih et al., 2013;
Schrittwieser et al., 2020), and MuJoCo (Schulman et al., 2017; Haarnoja et al., 2018). However,
training policies capable of solving complex tasks often requires millions of interactions, which can
be impractical and poses a barrier to real-world applications. Thus, improving sample efficiency has
become one of the most critical goals in RL algorithm development.

World models have shown promise in improving sample efficiency through an autoregressive process
that produces artificial samples on which to train RL agents, a method referred to as model-based RL
(Micheli et al., 2023; Robine et al., 2023; Zhang et al., 2023; Hafner et al., 2024). In this approach,
interaction data is used to learn the environment dynamics using a sequence model, allowing the
agent to train on artificial experiences generated by the resulting dynamics model instead of relying
on real-world interactions. This approach shifts the problem from improving the policy directly
using real samples (which is sample inefficient) to improving the accuracy of the world model to
match the real environment (which is more sample efficient). However, model-based RL faces a
well-known challenge: when the model is inaccurate due to limited observed samples, especially
early in training, the learned policy can become biased towards suboptimal behaviour, and detecting
model errors is difficult, if not impossible.

In sequence modelling, linear complexity is highly desirable because it allows models to efficiently
process longer sequences without a dramatic increase in computational and memory resources. This
is particularly important when training world models, which require efficient sequence modelling
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to simulate complex environments over long time horizons. Recurrent Neural Networks (RNNs),
particularly advanced variants like Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU), offer linear complexity, making them computationally attractive for this task. However,
RNNs still struggle with vanishing gradient issues and are inefficient in capturing long-term depen-
dencies (Hafner et al., 2019; 2024). More recently, transformer architectures, which have dominated
natural language processing (Vaswani et al., 2017), quickly gained widespread popularity in fields
such as image processing and offline RL following groundbreaking work in these areas (Dosovit-
skiy et al., 2021; Chen et al., 2021). The transformer structure has demonstrated its effectiveness in
model-based RL as well (Micheli et al., 2023; Robine et al., 2023; Zhang et al., 2023). However,
transformers suffer from both memory and computation complexity that scale as O(n2), where n is
the sequence length, creating challenges for world models that require long sequences to simulate
complex environments.

Currently, State Space Models (SSMs) are attracting significant attention for their ability to effi-
ciently handle long-sequence problems with linear complexity. Among SSMs, Mamba has emerged
as a strong competitor to transformer-based architectures in various fields, including natural lan-
guage processing (Gu & Dao, 2024; Dao & Gu, 2024), computer vision (Zhu et al., 2024), and
offline RL (Ota, 2024). Applying Mamba’s architecture to model-based RL is particularly appeal-
ing due to its linear memory and computational scaling with sequence length, while also effectively
capturing long-term dependencies. Moreover, efficiently capturing environmental dynamics can re-
duce the likelihood that the behaviour policy is learned within an inaccurate world model, which we
also address by incorporating a novel dynamic frequency-based sampling method. In this paper, we
make three key contributions:

• We introduce Drama, the first model-based RL agent built on the Mamba SSM, with
Mamba-2 as the core of its architecture. We evaluate Drama on the Atari100k benchmark,
demonstrating that it achieves performance comparable to other state-of-the-art algorithms
while using only a 7 million trainable parameter world model.

• Additionally, we compare the performance of Mamba-1 and Mamba-2, demonstrating that
Mamba-2 achieves superior results as a dynamics model in the Atari100k benchmarks,
despite it slightly limiting expressive power in order to enhance training efficiency.

• Finally, we propose a novel but straightforward sampling method, i.e., dynamic frequency-
based sampling (DFS), to mitigate the challenges posed by imperfect dynamics models.

2 METHOD

We describe the problem as a Partially Observable Markov Decision Process (POMDP), where at
each discrete time step t, the agent observes a high-dimensional image Ot ∈ O rather than the
true state st ∈ S with the conditional observation probability given by p(Ot|st). The agent selects
actions from a discrete action set at ∈ A = {0, 1, . . . , n}. After executing an action at, the agent
receives a scalar reward rt ∈ R, a termination flag et ∈ [0, 1], and the next observation Ot+1. The
dynamics of the MDP is described by the transition probability p(st+1, rt|st, at). The behaviour
of the agent is determined by a policy π(Ot;θ), parameterised by θ, where π : O → A maps the
observation space to the action space. The goal of this policy is to maximise the expected sum of
discounted rewards E

∑
t

γtrt, given that γ is a predefined discount factor.

Unlike model-free RL, model-based RL does not rely directly on real experiences to improve the
policy π(Ot;θ) (Sutton & Barto, 1998). There are various approaches to obtaining a world model,
including Monte Carlo tree search Schrittwieser et al. (2020), offline imitation learning DeMoss
et al. (2023) and latent dynamics models Hafner et al. (2019). In this work, we focus on learning a
world model f(Ot, at;ω) from actual experiences to capture the dynamics of the POMDP in a latent
space. The actual experiences are stored in a replay buffer, allowing them to be repeatedly sampled
for training the world model. The world model consists of a variational autoencoder (VAE) (Kingma
& Welling, 2013; Hafner et al., 2021), a dynamics model, and linear heads to predict rewards and
termination flags. The details of our world model are discussed in Section 2.2.

Each time the world model has been updated, a batch of experiences is sampled from the replay
buffer to initiate a process called ‘imagination’. Starting from an actual initial observation and using
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Figure 1: Drama world model architecture. Starting from sequence index t, the raw gaming frames
are encoded into zt and combined with the action at as input to the Mamba blocks. The input
channel dimension is divided by the head dimension p to generate the deterministic recurrent state
dt. This recurrent state dt is used to predict the next embedding ẑt+1, reward r̂t, and termination flag
êt, which represent the outcomes based on the current frame and action. The decoder reconstructs
the original frame from the encoded embeddings zt rather than from the predicted embeddings ẑt.
The Mamba-2 block employs a semiseparable matrix structure, which can be decomposed into q×q
submatrices, enabling more efficient computation and processing.

an action generated by the current behaviour policy, the dynamics model generates the next latent
state. This process is repeated until the agent collects enough imagined samples to improve the
policy. We explain this process in detail in Section 2.3.

2.1 STATE SPACE MODELLING WITH MAMBA

SSMs are mathematical constructs inspired by control theory to represent the complete state of
a system at a given point in time. These models map an input sequence to an output sequence
x ∈ Rl → y ∈ Rl, where l denotes the sequence length. In structured SSMs, a hidden state
H ∈ R(n,l) is used to track the sequence dynamics, as described by the following equations:

Ht = AHt−1 +Bxt

yt = C⊺Ht
(1)

where A ∈ R(n,n),B ∈ R(n,1),C ∈ R(n,1) and Ht ∈ R(n,1), in which n represents the prede-
fined dimension of the hidden state that remains invariant to the sequence length. To efficiently
compute the hidden states, it is common to structure A as a diagonal matrix, as discussed in (Gu
et al., 2022b; Gupta et al., 2022; Smith et al., 2023; Gu & Dao, 2024). Additionally, selective
SSMs, such as Mamba-1, extend the matrices (A,B,C) to be time-varying, introducing an extra
dimension corresponding to the sequence length. The shapes of these time-varying matrices are
A ∈ R(T,N,N),B ∈ R(T,N), and C ∈ R(T,N) 1.

Dao & Gu (2024) introduced the concept of structured state space duality (SSD), which further
restricts the diagonal matrix A to be a scalar multiple of the identity matrix, forcing all diagonal
elements to be identical. To compensate for the resulting reduced expressive power, Mamba-2 in-
troduces a multi-head technique, akin to attention, by treating each input channel as p independent
sequences. Unlike Mamba-1, which computes SSMs as a recurrence, Mamba-2 approaches the

1In Mamba-1, the time variation of A is influenced by a discretisation parameter ∆. For more details, please
refer (Gu & Dao, 2024)
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sequence transformation problem through matrix multiplication, which is more GPU-efficient:

yt = C⊺
t Ht

yt =

t∑
i=0

C⊺
t At:iBixi

(2)

where At:i is AtAt−1 . . .Ai+1. This allows the SSM to be formulated as a matrix transformation:

y = SSM(x;A,B,C) = Mx

Mj,i :=

{
C⊺

t At:iBi if j ≥ i

0 if j < i

(3)

Mamba-2 reformulates the state-space equations as a single matrix multiplication by utilising semi-
separable matrices (Vandebril et al., 2005; Dao & Gu, 2024), which is well known in computational
linear algebra as shown by Figure 1. The matrix M can also be written as:

M = L ◦CB⊺ ∈ R(T,T )

L =


1
a1 1
a2a1 a2 1

...
...

. . . . . .
aT−1 . . . a1 aT−1 . . . a2 . . . aT−1 1

 (4)

where at ∈ [0, 1] is an input-dependent scalar. The matrix L connects the SSM mechanism with the
causal self-attention mechanism by removing the softmax function and applying a mask matrix L to
the ‘attention-like’ matrix. It is, in fact, equivalent to causal linear attention when all at = 1. As a
result, Mamba-2 achieves 2-8 times faster training speeds than Mamba-1, while maintaining linear
scaling with sequence length.

2.2 WORLD MODEL LEARNING

Our world model has two main components: an auto-encoder and a dynamics model. Additionally
it includes two MLP heads for reward and termination predictions. The architecture of the world
model is illustrated in Figure 1.

2.2.1 DISCRETE VARIATIONAL AUTO-ENCODER

The autoencoder extends the standard variational autoencoder (VAE) architecture (Kingma &
Welling, 2013) by incorporating a fully-connected layer to discretise the latent embeddings, con-
sistent with previous approaches (Hafner et al., 2021; Robine et al., 2023; Zhang et al., 2023). The
raw observation is a three-dimensional image, Ot ∈ [0, 255](h,w,c), at time step t. The encoder
compresses the observation into a vector of discrete numbers, denoted as zt ∼ p(zt|Ot). The de-
coder reconstructs the raw image, Ôt, from zt. Gradients are passed directly from the decoder to the
encoder using the straight-through estimator, bypassing the sampling operation during backpropa-
gation (Bengio et al., 2013).

2.2.2 DYNAMICS MODEL

The dynamics model simulates the environment in the latent variable space, zt, using a deterministic
state variable, dt. Since we are employing SSMs like Mamba-1 and Mamba-2, this should not be
confused with the hidden states typically used by SSMs to track dynamics. At each time step t, the
next token in the sequence is determined by both the current latent variable, zt and the current action
at. To integrate these, we first concatenate them and project the result using a fully-connected layer
before passing it to the dynamics model. Given a sequence length l, the deterministic state is derived
from all previous latent variables and actions. The dynamics model can be expressed as:

Dynamics model: dt = f(zt−l:t, at−l:t;ω)

Latent variable predictor: ẑt+1 ∼ p(ẑt+1|dt;ω)
(5)
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We implement the dynamics model with Mamba-2 (Dao & Gu, 2024). Specifically, each time a
batch of samples, denoted as O ∈ [0, 255](b,l,h,w,c), is drawn from the experience buffer E , where
b represents batch size, l the sequence length, and h,w, c the image height, width, and channel
dimension respectively. After encoding, the batch will be compressed to Z ∈ R(b,l,d) where d is the
dimension of the latent variable. The latent variable passes through a linear layer with the action to
produce the input X ∈ R(b,l,d) of the Mamba blocks. To fully leverage the parallel computational
capabilities of GPUs, the training process must not be strictly sequential. That is, at time step
t, the dynamic model predicts the latent variable ẑt+1, and its target zt+1 depends solely on the
observation Ot+1 as shown in Figure 1. Unlike DreamerV3, where zt+1 ∼ p(zt+1|Ot+1,dt), this
approach does not have sequential dependence.

Mamba-1 first transforms the input tensor Xb,:l,d into a sequence of hidden states H ∈ R(b,l−1,n) ,
which are then mapped back to the deterministic state sequence Db,:l,d using time-varying parame-
ters. Since the hidden states operate in a fixed dimension n (unlike standard attention mechanisms,
where the state scales with the sequence length), Mamba-1 achieves linear computational complex-
ity with respect to sequence length.

Mamba-2 applies a similar transformation but leverages matrix multiplication. The input tensor X’s
dimension d is first split into d/p heads, which are processed independently. The transformation
matrix is a specially designed semiseparable lower triangular matrix, which can be decomposed into
q × q blocks. Different types of blocks are designed for specific purposes, such as handling causal
attention over short ranges and transforming the hidden states.

2.3 BEHAVIOUR POLICY LEARNING

The behaviour policy is trained within the ‘imagination’, an autoregressive process driven by the
dynamics model. Specifically, a batch of bimg trajectories each of length limg is sampled from
the replay buffer. Since the Mamba dynamics model is efficient at handling long sequences, we
can leverage actual experiences to estimate a more informative hidden state for the ‘imagination’
process. The rollout begins from the last transition in each sequence, limg , and continues for h
steps. Notably, the rollout does not stop when an episode ends, unlike the prior SSM-based meta-
RL model (Lu et al., 2023) where the hidden state must be manually reset, as the Mamba-based
dynamics model automatically resets the state at episode boundaries (Gu & Dao, 2024).

A key difference between Mamba-based and transformer-based world models in the ‘imagination’
process is that Mamba updates inference parameters independently of sequence length. This in-
dependence is crucial for accelerating the ’imagination’ process, a significantly time-consuming
component in model-based RL. The behaviour policy’s state concatenates the prior discrete variable
ẑt with the deterministic variable dt to exploit the temporal information. While the behaviour policy
utilises a standard actor-critic architecture, other on-policy algorithms can also be applied. In this
work, we adopt the recommendations from (Andrychowicz et al., 2020) and adjust the loss functions
and value normalisation techniques as described in (Hafner et al., 2024).

2.4 DYNAMIC FREQUENCY-BASED SAMPLING (DFS)

In model-based RL, the behaviour model often underestimates rewards due to inaccuracies in the
world model, impeding exploration and error correction (Sutton & Barto, 1998). These inaccuracies
are particularly common early in training when the model relies on limited data. Thus, we propose
a sample-efficient method to address this issue, i.e., Dynamic Frequency-based Sampling (DFS).

The primary objective is to sample transitions that the world model has sufficiently learned to ini-
tiate ‘imagination’. To accomplish this, we introduce two vectors during training, each matching
the length of the transition buffer |E|. For the world model, v = (v1, v2, . . . , v|E|),where vi ∈
Z+ for i ∈ {1, 2, . . . , |E|}, tracks how many times the transition has been used to improve the world
model. The consequencing sampling probability is denoted as, (p1, p2, . . . , p|E|) = softmax(−v),
this is similar to (Robine et al., 2023). For ‘imagination’, b = (b1, b2, . . . , b|E|),where bi ∈
Z+ for i ∈ {1, 2, . . . , |E|}, counts the times that the transition has been used to improve
the behaviour policy. The resulting sampling probability is denoted as, (p1, p2, . . . , p|E|) =
softmax(f(v, b)),where f(v, b) = v − b − max(0,v − b). During training, two cases arise:
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1) ∃i ∈ |E|, vi ≥ bi, f(vi, bi) = 0, In this case, the transition has been trained more frequently
with the world model than with the behaviour policy, suggesting that the world model is likely ca-
pable of making accurate predictions from this transition. 2) ∃i ∈ |E|, vi < bi, f(vi, bi) = vi − bi,
indicating that the transition is either likely under-trained as a starting point for the world model
generation process or has been over-fitted to the behaviour policy. Consequently, the probability
of selecting this transition for behaviour policy training decreases. These two mechanisms ensure
that ’imagination’ sampling favors transitions learned by the world model, while avoiding excessive
determinism.

3 EXPERIMENTS

In this work, the proposed Drama framework is implemented on top of the STORM infrastructure
(Zhang et al., 2023). We evaluate the model using the Atari100k benchmark (Kaiser et al., 2020),
which is widely used for assessing the sample efficiency of RL algorithms. Atari100k limits interac-
tions with the environment to 100,000 steps (equivalent to 400,000 frames with 4-frame skipping).
We present the benchmark and analyse our results in Section 3.1 . Ablation experiments and their
analysis are provided in Section 3.2.

3.1 ATARI100K RESULTS

Random Human PPO SimPLe SPR TWM IRIS STROM DreamerV3 DramaXS
Alien 228 7128 276 617 842 675 420 984 1118 820
Amidar 6 1720 26 74 180 122 143 205 97 131
Assault 222 742 327 527 566 683 1524 801 683 539
Asterix 210 8503 292 1128 962 1117 854 1028 1062 1632
BankHeist 14 753 14 34 345 467 53 641 398 137
BattleZone 2360 37188 2233 4031 14834 5068 13074 13540 20300 10860
Boxing 0 12 3 8 36 78 70 80 82 78
Breakout 2 30 3 16 20 20 84 16 10 7
ChopperCommand 811 7388 1005 979 946 1697 1565 1888 2222 1642
CrazyClimber 10780 35829 14675 62584 36700 71820 59324 66776 83931 52242
DemonAttack 152 1971 160 208 518 350 2034 165 577 201
Freeway 0 30 2 17 19 24 31 34 0 15
Frostbite 65 4335 127 237 1171 1476 259 1316 3377 785
Gopher 258 2412 368 597 661 1675 2236 8240 2160 2757
Hero 1027 30826 2596 2657 5859 7254 7037 11044 13354 7946
Jamesbond 29 303 41 100 366 362 463 509 540 372
Kangaroo 52 3035 55 51 3617 1240 838 4208 2643 1384
Krull 1598 2666 3222 2205 3682 6349 6616 8413 8171 9693
KungFuMaster 258 22736 2090 14862 14783 24555 21760 26183 23920 17236
MsPacman 307 6952 366 1480 1318 1588 999 2673 1521 2270
Pong -21 15 -20 13 -5 19 15 11 -4 15
PrivateEye 25 69571 100 35 86 87 100 7781 3238 90
Qbert 164 13455 317 1289 866 3331 746 4522 2921 796
RoadRunner 12 7845 602 5641 12213 9109 9615 17564 19230 14020
Seaquest 68 42055 305 683 558 774 661 525 962 497
UpNDown 533 11693 1502 3350 10859 15982 3546 7985 46910 7387
Normalised Mean (%) 0 100 11 33 62 96 105 127 125 105
Normalised Median (%) 0 100 3 13 40 51 29 58 49 27

Table 1: Comparison of game performance metrics for various algorithms across multiple Atari
games. For Freeway IRIS enhances exploration using a distinct set of hyperparameters, while
STORM leverages offline expert knowledge. TWM reports the results with a 21.6M model while
IRIS does not report the exact number of parameters, they use the same transformer embedding
dimension and layer number as TWM plus a behaviour policy with CNN layers. DreamerV3 notably
uses a 200M parameter model and achieves good results in a series of diverse tasks. STORM does
not report the number of trainable parameters.

We compare our model against several benchmarks across 26 Atari games. In Table 1, the
‘Normalised Mean’ refers to the average normalised score, calculated as: (evaluated_score −
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random_score)/(human_score − random_score). For each game, we train Drama with 5 dif-
ferent seeds and track training performance using a running average of 5 episodes, as recommended
by Machado et al. (2018), a practice also followed in related work (Hafner et al., 2024).

Despite utilising an extra-small world model (7M parameters, referred to as the XS model), Drama
achieves performance comparable to IRIS and TWM. To enable a like-for-like comparison between
Drama and DreamerV3 with a similar number of parameters, we evaluate the learning curves of
Drama and a version of Dreamer with only 12M parameters (referred to as DreamerV3XS) on the
full Atari100K benchmark. As shown in Figure 4 in the appendix, Drama demonstrates significantly
better performance than DreamerXS, achieving a normalized mean score of 105 compared to 37 and
a normalized median score of 27 compared to 7, as presented in Table 3.

Table 1 demonstrates that Drama, with Mamba-2 as the dynamics model, is both sample- and
parameter-efficient. For comparison, Simple (Kaiser et al., 2020) trains a video prediction model
to optimise a PPO agent (Schulman et al., 2017), while SPR (Schwarzer et al., 2021) uses a dy-
namics model to predict in latent space, enhancing consistency through data augmentation. TWM
(Robine et al., 2023) employs a Transformer-XL architecture to capture dependencies among states,
actions, and rewards, training a policy-based agent. This method incorporates short-term tempo-
ral information into the embeddings to avoid using the dynamics model during actual interactions.
Similarly, IRIS (Micheli et al., 2023) uses a Transformer as its dynamics model, but generates new
samples in image space, allowing pixel-level feature extraction for behaviour policies. DreamerV3
(Hafner et al., 2024), which employs an RNN-based dynamics model along with robustness tech-
niques, achieves superhuman performance on the Atari100k benchmark using a 200M parameter
model—20 times larger than our XS model. STORM (Zhang et al., 2023), which adopts many of
DreamerV3’s robustness techniques while replacing the dynamics model with a transformer, reaches
similar performance on the Atari100k benchmark as DreamerV3.

Drama excels in games like Boxing and Pong, where the player competes against an autonomous
agent in simple, static environments, requiring a less intense auto-encoder. This strong perfor-
mance indicates that Mamba-2 effectively captures both ball dynamics and the opponent’s posi-
tion. Similarly, Drama performs well in Asterix, which benefits from its ability to predict object
movements. However, Drama struggles in Breakout, where performance can be improved with
a more robust auto-encoder in Figure 6. Additionally, Drama excels in games like Krull and
MsPacman, which require longer sequence memory, but faces challenges in sparse reward games
like Jamesbond and PrivateEye.

3.2 ABLATION EXPERIMENTS

In this section, we present three ablation experiments to evaluate key components of Drama. First,
we compare dynamic frequency-based sampling performance against uniform sampling on the
full Atari100k benchmark, demonstrating its effectiveness across diverse environments. Secondly,
we compare Mamba-1 and Mamba-2 on a subset of Atari games, including Krull, Boxing,
Freeway, and Kangaroo, to highlight the differences in their performance when applied to
dynamic gameplay scenarios. Lastly, we compare the long-sequence processing capabilities of
Mamba-1, Mamba-2, and GRU in a custom Grid World environment. This experiment focuses
on a prediction task using differnt dynamics models, offering insights into their sequence modelling
capabilities, which are crucial for MBRL applications especially if long-sequence modelling is im-
portant.

3.2.1 DYNAMIC FREQUENCY-BASED SAMPLING

In this experiment, we compare DFS with the uniform sampling method in the Mamba-2-based
Drama on the full Atari100k benchmark. As shown in Figure 5, DFS outperforms uniform sampling
in 11 games, underperforms in 2 games, and performs equally in 13 games. These results demon-
strate that applying DFS generally does not degrade performance and is often advantageous in the
Atari100k task. DFS shows significant advantages in games like Alien, Asterix, BankHeist,
and Seaquest, where adapting to game dynamics in the later stages is crucial. Additionally,
DFS performs well in opponent-based games such as Boxing and Pong, where exploiting the
weaknesses of the opponent AI is essential. However, DFS performs less effectively in games like
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Figure 2: Mamba-1 vs. Mamba-2. Mamba2 has shown a superior performance over Mamba-1 three
out of four games. Both Mamba-1 and Mamba-2 use DFS in this experiment.

Breakout and KungFuMaster, likely because the critical game dynamics are accessible early
in the gameplay.

3.2.2 MAMBA-1 VS. MAMBA-2

As mentioned in Sec 2.1, Mamba-2 imposes restrictions on A for efficiency. However, it remains
an open question whether these constraints negatively affect the performance of SSMs, as previous
studies have not offered comprehensive theoretical or empirical evidence on the matter (Dao & Gu,
2024). In response to this gap, we compare Mamba-2 and Mamba-1 as the backbone of the world
model in model-based RL. Ablation experiments were conducted using DFS, with both Mamba-1
and Mamba-2 configured with the same default hyperparameters.

Figure 2 illustrates that Mamba-2 outperforms Mamba-1 in games Krull, Boxing and Freeway.
In Krull, the player navigates through different scenes and solves various tasks. In the later stages,
rescuing the princess while avoiding hits results in a significant score boost, while failure leads to
a plateau in score. As shown, Mamba-1 experiences a score plateau in Krull, whereas Mamba-
2 successfully overcomes this challenge, leading to higher performance. Note that Freeway is a
sparse reward game requiring high-quality exploration. A positive training effect is achieved only
by combining DFS with Mamba-2 without any additional configuration.

3.2.3 DYNAMICS MODELS FOR LONG-SEQUENCE PREDICTABILITY TASKS

To assess the efficiency of Mamba-1 and Mamba-2 in long-range modelling compared to Trans-
formers and GRUs, which are widely used in recent MBRL approaches, we present a simple yet
representative grid world environment2, as illustrated in Figure 3a. The learning objectives here are
twofold: 1) the dynamics model must reconstruct (predict) the correct grid-world geometry over a
long sequence and 2) the dynamics model must accurately generate the agent’s location within the
grid world, reflecting the prior sequence of movements. To achieve this, we represent a trajectory
as a long sequence by flattening (successive) frames and separating each frame with a movement
action a. Each frame is flattened row-wise, such that each cell is treated as a token. Let the size of
the grid world be lg . Then, each frame can be tokenized into a sequence of length lf = lg

2 + 1, as
depicted in Figure 3b. Since l ≫ lf , the task demands that the dynamics model exhibit long-range
sequence memory and modelling capabilities to accurately generate (predict) tokens that are both
geometrically and logically consistent. The capability represents the core component of a MBRL
dynamics model.

We evaluate the performance of GRU, Transformer, Mamba-1, and Mamba-2 based solutions in this
grid world environment, where lg = 5 and lf = 26, considering two sequence lengths: a short
sequence length l = 8 × lf and a long sequence length l = 64 × lf . Performance is measured
in terms of training time, memory usage and reconstruction error, where lower time consumption
and reconstruction error indicate a stronger understanding of the environment. Experimental results
show that, Mamba-1 and Mamba-2 achieve equivalent low error and short training time in both
sequence lengths compared to other methods. However, Mamba-2 demonstrates the lowest training
time over all methods. These findings confirm that the proposed Mamba-based architecture presents
a strong capability to capture essential information, particularly in scenarios involving long sequence
lengths.

2Implementation based on Torres–Leguet (2024)
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(a)

(b)

Figure 3: Illustrations of the grid world environment and its reconstruction into a sequential format.
(a) Sequence of continuous frames in the grid world environment. Example presents a sequence of
continuous frames, arranged from left to right. Each frame in the grid world environment represents
a 5 × 5 grid, where the outer 16 cells are black walls, and the central 3 × 3 grid is the reachable
space. The red cell is the controllable agent, which moves according to a random action, and the
yellow cell is a fixed goal. The sequence of frames, from left to right, illustrates the movement of
the agent following the action sequence: east → south → east → north. Once the yellow cell is
reached by the agent, the location of the agent and goal will be reset randomly. (b) Reconstructing
the grid world into a long sequence. Each grey-shaded box contains 25 flattened grid tokens and one
action token.

Method l Training Time (ms) Memory Usage (%) Error (%)

Mamba-2
208 25 13 15.6 ± 2.6

1664 214 55 14.2 ± 0.3

Mamba-1
208 34 14 13.9 ± 0.4

1664 299 52 14.0 ± 0.4

GRU
208 75 66 21.3 ± 0.3

1664 628 68 34.7 ± 25.4

Transformer
208 45 17 75.0 ± 1.1

1664 - OOM -

Table 2: Performance comparison of different methods on the grid world environment. Memory
usage is reported as a percentage of an 8GB GPU. The error is represented as the mean ± stan-
dard deviation. The training time refers to the average duration of one training step. Note that the
Transformer encounters an out-of-memory (OOM) error during training with long sequences. The
experiments are conducted on a laptop. The definition of Error (%) can be found in Appendix A.6.

4 RELATED WORK

4.1 MODEL-BASED RL

The origin of model-based RL can be traced back to the Dyna architecture introduced by Sutton &
Barto (1998), although Dyna selects actions through planning rather than learning. Notably, Sutton
& Barto (1998) also highlighted the suboptimality that arises when the world model is flawed, espe-
cially as the environment improves. The concept of learning in ’imagination’ was first proposed by
Ha & Schmidhuber (2018), where a world model predicts the dynamics of the environment. Later,
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SimPLe (Kaiser et al., 2020) applied MBRL to Atari games, demonstrating improved sample ef-
ficiency compared to state-of-the-art model-free algorithms. Beginning with Hafner et al. (2019),
the Dreamer series introduced a GRU-powered world model to solve a diverse range of tasks, such
as Mujoco, Atari, Minecraft, and others (Hafner et al., 2020; 2021; 2024). More recently, inspired
by the success of transformers in NLP, many MBRL studies have adopted transformer architec-
tures for their dynamics models. For instance, IRIS (Micheli et al., 2023) encodes game frames as
sets of tokens using VQ-VAE (Oord et al., 2018) and learns sequence dependencies with a trans-
former. In IRIS, the behavior policy operates on raw images, requiring an image reconstruction
during the ’imagination’ process and an additional CNN-LSTM structure to extract information.
TWM (Robine et al., 2023), another transformer-based world model, uses a different structure. It
stacks grayscale frames and does not activate the dynamics model during actual interaction phases.
However, its behaviour policy only has access to short-term temporal information, raising ques-
tions about whether learning from tokens that already include this short-term information could be
detrimental to the dynamics model. STORM (Zhang et al., 2023), closely following DreamerV3, re-
places the GRU with a vanilla transformer. Additionally, it incorporates a demonstration technique,
populating the buffer with expert knowledge, which has shown to be particularly beneficial in the
game Freeway.

4.2 STRUCTURE STATE SPACE MODEL BASED RL

Structured SSMs were originally introduced to tackle long-range dependency challenges, comple-
menting the transformer architecture (Gu et al., 2022a; Gupta et al., 2022). However, Mamba and
its successor, Mamba-2, have emerged as powerful alternatives, now competing directly with trans-
formers (Gu & Dao, 2024; Dao & Gu, 2024). Deng et al. (2023) implemented an SSM-based world
model, comparing it against RNN-based and transformer-based models across various prediction
tasks. Despite this, SSM-based world models have yet to be tested in the context of model-based
RL, including Mamba-1 and Mamba-2. Mamba-1 has recently been applied to offline RL, either
with a standard Mamba-1 block (Ota, 2024) or a Mamba-attention hybrid model (Huang et al.,
2024). Lu et al. (2023) proposed applying modified SSMs to meta-RL, where hidden states are
manually reset at episode boundaries. Since both Mamba-1 and Mamba-2 are input-dependent,
such resets are unnecessary. Recall to Imagine (R2I) introduces advanced state space models to
enhance long-term memory and credit assignment in MBRL, achieving state-of-the-art performance
in challenging memory-intensive tasks while maintaining generality and faster convergence than
DreamerV3 (Samsami et al., 2024).

5 CONCLUSION

In conclusion, Drama, our proposed Mamba-based world model, addresses key challenges faced
by RNN and transformer-based world models in model-based RL. By achieving O(n) memory and
computational complexity, our approach enables the use of longer training sequences. Furthermore,
our novel sampling method effectively mitigates suboptimality during the early stages of training,
contributing to a model that is both lightweight, with only 7 million trainable parameter world model,
and accessible, being trainable on standard hardware. Overall, our method achieves a normalised
score competitive with other state-of-the-art RL algorithms, offering a practical and efficient alterna-
tive for model-based RL systems. Although Drama enables longer training and inference sequences,
it does not demonstrate a decisive advantage that would allow it to dominate other world models on
the Atari100k benchmark. An interesting direction for future work is to explore specific tasks where
longer sequences drive superior performance in model-based RL. Despite advances in world mod-
els, model-based RL still faces several challenges, such as long-horizon behaviour planning and
learning, informed exploration, and the dynamics of jointly training the world model and behaviour
policy. Another promising future direction is to investigate to what extent Mamba can help address
these challenges.
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A APPENDIX

A.1 ATARI100K LEARNING CURVES

Figure 4: Atari100k Learning Curve. Drama vs. DreamerV3 with few parameters. The size of
DreamerV3 is 12 millions and the size of Drama is 10 millions.
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Game Random Human DramaXS DreamerV3XS
Alien 228 7128 820 553
Amidar 6 1720 131 79
Assault 222 742 539 489
Asterix 210 8503 1632 669
BankHeist 14 753 137 27
BattleZone 2360 37188 10860 5347
Boxing 0 12 78 60
Breakout 2 30 7 4
ChopperCommand 811 7388 1642 1032
CrazyClimber 10780 35829 52242 7466
DemonAttack 152 1971 201 64
Freeway 0 30 15 0
Frostbite 65 4335 785 144
Gopher 258 2412 2757 287
Hero 1027 30826 7946 3972
Jamesbond 29 303 372 142
Kangaroo 52 3035 1384 584
Krull 1598 2666 9693 2720
KungFuMaster 258 22736 17236 4282
MsPacman 307 6952 2270 1063
Pong -21 15 15 -10
PrivateEye 25 69571 90 207
Qbert 164 13455 796 983
RoadRunner 12 7845 14020 8556
Seaquest 68 42055 497 169
UpNDown 533 11693 7387 6511
Normalised Mean (%) 0 100 105 37
Normalised Median (%) 0 100 27 7

Table 3: Atari100K performance table. Drama achieves significantly better performance than
DreamerV3 in small model domains within model-based reinforcement learning, highlighting the
parameter efficiency of Mamba-powered MBRL.
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A.2 UNIFORM SAMPLING VS. DFS LEARNING CURVES

Figure 5: Uniform Sampling vs. DFS Learning Curve.
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Game Random Human DFS Uniform
Alien 228 7128 820 696
Amidar 6 1720 131 154
Assault 222 742 539 511
Asterix 210 8503 1632 1045
BankHeist 14 753 137 52
BattleZone 2360 37188 10860 10900
Boxing 0 12 78 49
Breakout 2 30 7 11
ChopperCommand 811 7388 1642 1083
CrazyClimber 10780 35829 52242 77140
DemonAttack 152 1971 201 151
Freeway 0 30 15 15
Frostbite 65 4335 785 975
Gopher 258 2412 2757 2289
Hero 1027 30826 7946 7564
Jamesbond 29 303 372 363
Kangaroo 52 3035 1384 620
Krull 1598 2666 9693 7553
KungFuMaster 258 22736 17236 24030
MsPacman 307 6952 2270 2508
Pong -21 15 15 3
PrivateEye 25 69571 90 76
Qbert 164 13455 796 939
RoadRunner 12 7845 14020 9328
Seaquest 68 42055 497 384
UpNDown 533 11693 7387 5756
Normalised Mean (%) 0 100 105 80
Normalised Median (%) 0 100 27 28

Table 4: The Atari100K performance table demonstrates that the Drama XS model, when paired
with DFS, achieves a higher normalized mean score compared to using the uniform sampling
method. This highlights the effectiveness of DFS in enhancing performance on Atari100K bench-
marks within Mamba-powered MBRL.

A.3 MORE TRAINABLE PARAMETERS

As model-based RL agents consist of multiple trainable components, tuning the hyperparameters for
each part can be resource-intensive and is not the primary focus of this research. Previous work has
demonstrated that increasing the neural network’s size often leads to stronger performance on bench-
marks Hafner et al. (2024). In Figure 6, we demonstrate that Drama achieves overall better perfor-
mance when using a more robust auto-encoder and a larger SSM hidden state dimension n. Notably,
the S model exhibits significantly improved results in games like Breakout and BankHeist,
where pixel-level information plays a crucial role.
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Figure 6: S model vs. XS model. We adjusted the game set to emphasise the importance of recog-
nising small objects. The S model features a more robust auto-encoder than the XS model, with
additional filters and 3M more trainable parameters. In terms of performance, the S model signifi-
cantly outperforms the XS model in Breakout and BankHeist. However, it underperforms in
Kangaroo and shows comparable performance in ChopperCommand.

A.4 LOSS AND HYPERPARAMETERS

A.4.1 VARIATIONAL AUTO-ENCODER

The hyperparameters shown in Table 5 correspond to the default model, also referred to as XS in
Figure 6. For the S model, we simply double the number of filters per layer to obtain a stronger
auto-encoder.

Hyperparameter Value
Frame shape (h, w, c) (64, 64, 3)
Layers 5
Filters per layer (Encoder) (16, 32, 48, 64, 64)
Filters per layer (Decoder) (64, 64, 48, 32, 16)
Kernel 5
Act SiLU
Batch Norm Yes

Table 5: Hyperparameters for the auto-encoder.

A.4.2 MAMBA-1 AND MAMBA-2

Similar to the previous section, the values shown in Table 6 correspond to the default model. For the
S model, we double the latent state dimension, allowing more relevant information to be stored in
the recurrent state. In the Mamba-2 model, the enhanced architecture supports a larger latent state
dimension without significantly increasing the training time.

Hyperparameter Value
Hidden state dimension (d) 512
Layers 2
Latent state dimension (n) 16
RMS Norm True
Act SiLU
Mamba-2: Head dimension (p) 128

Table 6: Hyperparameters for Mamba-1 and Mamba-2. Except the head dimension is only for
Mamba-2, the other hyperparameters are shared. The head number is 512/128 = 4.
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A.4.3 REWARD AND TERMINATION PREDICTION HEADS

Both the reward and termination flag predictors take the deterministic state output from the dynamic
model to make their predictions. Due to the quality of the hidden state extracted by the dynamic
model, a single fully connected layer is sufficient for accurate predictions.

Hyperparameter Value
Hidden units 256
Layers 1

Table 7: Hyperparameters for reward and termination prediction heads.

The world model is optimized in an end-to-end and self-supervised manner on batches of shape
(b, l) drawn from the experience replay.

L(ω) = E


l∑

i=1

(Oi − Ôi)
2︸ ︷︷ ︸

reconstruction loss

+Ldyn(ω) + 0.1 ∗ Lrep(ω)

− ln p(r̂i|di;ω)︸ ︷︷ ︸
reward prediction loss

− ln p(t̂i|di;ω)︸ ︷︷ ︸
termination prediction loss

 (6)

where

Ldyn(ω) = max (1,KL [sg(p(zi+1|Oi+1;ω)) ∥ q(ẑi+1|di;ω)])
Lrep(ω) = max (1,KL [p(zi+1|Oi+1;ω) ∥ sg(q(ẑi+1|di;ω))])

(7)

and sg(·) represents the stop gradient operation.

A.4.4 ACTOR CRITIC HYPERPARAMETERS

We adopt the behavior policy learning setup from DreamerV3 (Hafner et al., 2024) for simplicity
and strong performance, as the behaviour policy model is not central to our main contribution.

Hyperparameter Value
Layers 2
Gamma 0.985
Lambda 0.95
Entropy coefficient 3e-4
Max gradient norm 100
Actor hidden units 256
Critic hidden units 512
RMS Norm True
Act SiLU
Batch size (bimg) 1024
Imagine context length (limg) 8

Table 8: Hyperparameters for the behaviour policy.
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A.5 PSEUDOCODE OF DRAMA

Algorithm 1 Training the world model and the behaviour policy

Require: Initialize behavior policy πθ, world model fω , and replay buffer E
1: Loop:
2: Phase 1: Data Collection
3: Collect experience tuple (Ot, at, rt, et) using πθ

4: Store (Ot, at, rt, et) into replay buffer E
5: Phase 2: World Model Training
6: Sample b trajectories of length l from E
7: Update world model fω using sampled trajectories
8: Phase 3: Behaviour Model Training
9: Sample bimg trajectories of length limg from E

10: Retrieve context from the first limg − 1 experiences from the world model fω
11: Generate imagined rollout for h steps using the last experience
12: Train behavior policy πθ with imagined rollout
13: Repeat

A.6 THE GRID WORLD ERROR CALCULATION

The Grid World environment task requires the dynamics model to capture two types of sequences.
The first, referred to as the geometric sequence, involves reconstructing the structural features of the
map. The map is surrounded by black walls, with only one agent and one goal cell in the center,
while the remaining cells are plain floor tiles. Formally, let the map M be defined as a grid where
M [i, j] represents the cell at position (i, j). The geometric sequence requires the dynamics model
to encode the spatial relationships such that M [i, j] satisfies the constraints of walls (W ), floor (F ),
agent (A), and goal (G), with walls forming the boundary:

M [i, j] =


W, if (i = 0 or i = lg − 1) or (j = 0 or j = lg − 1),

F, if (i, j) /∈ {W,A,G},
A, if (i, j) = agent position,
G, if (i, j) = goal position.

Therefore, the geometric error Eg is defined as instances where M [i, j] ̸= W for boundary cells,
i.e., when (i = 0 or i = lg − 1) or (j = 0 or j = lg − 1). For interior cells, where 0 < i < lg − 1
and 0 < j < lg − 1, there must be exactly one agent and one goal, with all remaining cells being
floors.

The second component, referred to as the logic sequence, involves predicting the correct next po-
sition of the agent At based on the prior action at−1 in the sequence. This prediction requires the
model to retain information about the previous action, reconstruct the geometric sequence, and de-
termine the agent’s subsequent position accordingly. The logic error, El, is defined as an incorrect
prediction of the next position. Specifically, the auto-generated action must meet two criteria: (1) it
must be valid, ensuring only one agent occupies the interior cells, and (2) the predicted next position
of the agent must match the position in the subsequent frame. If either condition is violated, the
prediction is marked as incorrect.

The Error (%) presented in Table 2 represents the average of Eg and El.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.7 EXPERIMENT ‘IMAGINATION’ FIGURES

In this section, we analyze reconstructed frames generated by the ‘imagination’ of the dynamics
model to investigate potential causes of its poor performance in certain games, such as Breakout.

Figure 7: Drama XS model’s ‘imagination’ in Breakout. The model performs poorly in
Breakout, as the reconstructed frames from the autoregressive generation frequently fail to in-
clude the ball, a critical game element. This omission likely contributes to its subpar performance.

The differences in reconstructed frames, as shown in Figure 7 and Figure 8, along with the per-
formance improvements depicted in Figure 6, suggest that employing a more robust autoencoder
may aid in better handling tasks that pixel-level information is crucial. Supporting this observation,
the Drama XS model performs relatively well in Pong, as shown in Figure 9, a game that shares
similar features with Breakout (paddles and balls) but is less visually complex due to the ab-
sence of colourful bricks. While further investigation is warranted, this indicates that improving the
autoencoder could be a promising initial step in addressing performance limitations in such tasks.
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Figure 8: Drama S model’s ‘imagination’ in Breakout demonstrates significant improvements
compared to the XS model. The ball is successfully included in most of the reconstructed frames.
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Figure 9: Drama XS model’s ‘imagination’ in Pong demonstrates a notable contrast to its perfor-
mance in Breakout, as the model performs well in Pong. Although the two games share some
similarities, Pong lacks the colourful bricks present in Breakout, resulting in reduced visual com-
plexity. Consequently, the model faces less pressure in encoding frames, and the ball is included in
most of the ‘imagined’ frames.

A.8 WALL-CLOCK TIME COMPARISON OF DYNAMIC MODELS IN MBRL

As shown in Figure 10, we compare the wall-clock time of different dynamics models in the
Atari100k MBRL task. The figure highlights that both Mamba-1 and Mamba-2 are more efficient
than the Transformer during the ‘imagination’ phase for the tested sequence lengths. Regarding
training time, Mamba-2 shows a slight disadvantage with shorter training sequences but surpasses
both the Transformer and Mamba-1 when training sequences are longer. This makes Mamba-2
particularly advantageous for tasks requiring effective modelling of long sequences. All dynamics
models were tested under identical conditions with comparable training parameter sizes.
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(a)

(b)

Figure 10: Wall-clock time for training and imagining with different dynamics models in MBRL was
measured. The experiments were conducted on a laptop equipped with an NVIDIA RTX 2000 Ada
Mobile GPU. Notably, the Transformer model in this experiment utilised a KV Cache to accelerate
inference.
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