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Abstract

Recent advances in large language models (LLMs) have led to models that tackle
diverse molecular tasks, such as chemical reaction prediction and molecular prop-
erty prediction. Large-scale molecular instruction-tuning datasets have enabled
sequence-only (e.g., SMILES or SELFIES) generalist molecular LLMs, and re-
searchers are now exploring multimodal approaches that incorporate molecular
structural information for further gains. However, a genuinely multimodal, general-
ist LLM that covers a broad spectrum of molecular tasks has yet to be fully investi-
gated. We observe that naive next token prediction training ignores graph-structural
information, limiting an LLLM’s ability to exploit molecular graphs. To address
this, we propose (i) Molecular structure Preference Optimization (MolPO), which
facilitates graph usage by optimizing preferences between pairs of correct and
perturbed molecular structures, and (ii) an advanced graph encoder with a tailored
pre-training strategy to improve the effect of graph utilization by MolPO. Building
on these contributions, we introduce Mol-LLM, the first multimodal generalist
model that (a) handles a broad spectrum of molecular tasks among molecular LLMs,
(b) explicitly leverages molecular-structure information, and (c) takes advantage
of extensive instruction tuning. Mol-LLM attains state-of-the-art or comparable
results across the most comprehensive molecular-LLM benchmark—even on out-
of-distribution datasets for reaction and property prediction, where it surpasses
prior generalist molecular LLMs by a large margin

1 Introduction

Large language models (LLMs) [1H4]] have been widely used to tackle diverse tasks across multiple
domains, such as mathematics and code generation, by leveraging their broad knowledge base. This
achievement has recently motivated interest in applying LLMs to diverse molecular tasks—including
molecular property prediction, chemical reaction prediction, description-guided molecule generation,
and molecule captioning—all of which are essential in drug discovery and materials science [SH12].
In particular, most molecular LLMs tend to leverage only one of the two key components for improved
molecular language modeling, either molecular structure information or multitask instruction-tuning,
rather than combining both. Several studies [8} 10} [11]] have moved away from conventional molec-
ular language modeling based on 1D sequence such as SMILES [13]] or SELFIES [14], and have
instead developed multimodal LLMs that incorporate 2D molecular graphs as an additional input
modality, thereby representing molecular structures and topologies more faithfully while achieving
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Figure 1: (Left) Performance comparison among generalist molecular LLMs with normalized primary
metrics. (Right) Graph utilization comparison between SFT and proposed multimodal training
(MolPO). Score closer to 1 indicate better use of graph, approaching 0.5 indicate less utilization.

better performance across diverse molecular tasks [[L5H17]. Meanwhile, other studies [SH7, 9] have
constructed instruction-tuning datasets for multiple molecular tasks and fine-tuned LLMs on these
datasets. This approach enables the models to acquire transferable and generalizable knowledge,
allowing them to understand and perform various tasks based on natural language instructions.

However, it is uncertain whether the multimodal molecular LLMs effectively use molecular structural
information when trained with naive supervised fine-tuning (SFT). To investigate this, we compare the
likelihoods of the original and perturbed molecules, comparing how well the SFT model is at proper
graph discrimination. Figure [I]shows that the SFT model hardly distinguishes between them on most
molecular tasks, indicating that its molecular graph utilization is generally limited. Moreover, despite
the potential for synergistic performance improvements by molecular graph structure utilization
and multitask instruction-tuning, few studies have fully harnessed the benefits of both approaches,
especially for a universal molecular LLM. Specifically, some recent studies [9, [11} 12, [18}[19] have
attempted to combine molecule graph structure information with instruction-tuning, however, their
instruction-tuning focuses solely on task-specific fine-tuning.

In this paper, we propose a generalist molecular LLM, called Mol-LLM, that leverages multimodal
molecule and extensive instruction-tuning, addressing the broadest range of molecular tasks. In
particular, while maintaining multimodal LLM architecture based on Q-Former [20], we introduce a
novel multimodal instruction-tuning based on Molecular structure Preference Optimization (MolPO),
where the molecular LLM learns to optimize the molecular structural preferences between the pairs
of the correct (chosen) molecular graph and the perturbed (rejected) molecular graph. By creating
rejected molecular graphs based on the substructures for molecular feature perturbation, the proposed
MolPO mitigates the tendency to overlook graph information on various molecular tasks. Additionally,
to further increase the effect of molecular graph utilization by advanced representation on a wide
variety of molecular distributions, we introduce a new graph neural network (GNN) pre-training
strategy and architecture. The proposed GNN pre-training framework combines two objectives: (i)
functional group prediction, which teaches the model to accurately distinguish functional groups—the
features that largely determine molecular properties—and (ii) SELFIES reconstruction, which helps
the model preserve the molecular structure details from the molecular graph. Upon GINE [21]],
adopted by prior multimodal molecular LLMs [8, 9], we incorporate a transformer-based GNN
named TokenGT [22], to enhance the expressive power. The resulting Mol-LLM shows strong
performance and demonstrably better graph utilization on our benchmarks across a broad range of
molecular tasks. To the best of our knowledge, Mol-LLM is not only the first versatile generalist
multimodal molecular LLM on a wide range tasks with a single generalist model, but it also surpasses
other generalist models: LlaSMol [5], ChemDFM [23]], 3D-MoLM [12] on most bencharks as shown
in Figure[I] highlighting the power of graph modality synergized with extensive instruction-tuning.

In summary, our contributions are:

1. Mol-LLM. We present Mol-LLM, which sets a new state-of-the-art on both in-distribution
and out-of-distribution molecular benchmarks relative to existing generalist models.
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Figure 2: (Left) Overall structure of Mol-LLM. Molecular graph is encoded into a fixed-length token
sequence by a hybrid graph encoder, followed by a Q-Former that outputs query embeddings to
feed LLM, with corresponding task instruction and molecular 1D sequence. (Right) Representative
downstream molecular tasks.

2. Enhanced graph utilization. To exploit 2D molecular graphs more effectively, we propose
MolPO—a fine-tuning strategy that leverages perturbed molecules—alongside a GNN
pre-training method and a hybrid graph encoder augmented with transformer architecture.

3. Extensive instruction-tuning. We construct a large, molecule-focused instruction-tuning
dataset and employ multimodal training to build a generalist model with significantly
enhanced molecular understanding.

2  Mol-LLM: Multimodal Generalist Molecular Large Language Model

This section introduces the model architecture, training strategy, and instruction-tuning dataset of
Mol-LLM, a multimodal generalist molecular LLM. As depicted in Figure |2} Mol-LLM comprises a
hybrid molecular graph encoder, a Q-Former for cross-modal projection between molecular graph
and text, and a backbone LLM. Utilizing the multimodal framework, the LLM addresses molecular
task instructions and 1D molecular sequences directly, while feeding 2D molecular graph embeddings
to the LLM through the hybrid graph encoder and Q-Former. Such multimodal architectures are
trained through three training stages, as depicted in Figure

2.1 Model Architecture

Hybrid Graph Encoder Previous studies on multimodal molecular LLMs using 2D molecular
graphs [8, 9] have adopted the GINE architecture [21], since it captures local graphical structure
efficiently. However, addressing diverse molecular tasks across various data distributions requires the
ability to process large molecules as well. This consideration led us to the simultaneous usage of
TokenGT [22] as a graph encoder, which is designed to enhance global context understanding and
mitigate over-smoothing [24] in large graphs via a transformer architecture. For a 2D molecular graph
G = (V, E), the GINE encoder f& outputs a graph embedding th € R and node embeddings

= RIVIxds where d, is the embedding dimension. Otherwise, the TokenGT encoder f7 outputs
not only a graph embedding h; € R'™% and node embeddings hT € RIVI*ds but also edge

embeddings Al € RII*4s We then concatenate all the embeddings obtained by both encoders
hS, hS hE KT, and hY along the first dimension to obtain h € REIVIHIE+2)xdg which is then

v

used as the key for the Q-Former.

Cross-modal Projector (Q-Former) Querying transformer (Q-Former) [20] is a modality-bridging
transformer that converts the varying number of concatenated embeddings for each molecular graph
into a fixed-length token sequence, enabling efficient batch processing. Specifically, structural
information is distilled via cross-attention between N, = 32 learnable query vectors | € R32%dq

initialized randomly, and the concatenated molecular embeddings h € RGIVIFIEI+2)xds ' roducing
32 tokens aligned with the text modality. The 32 tokens are concatenated with the task instruction as
well as the SELFIES string before being fed to the LLM.
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Figure 3: Overview of the three training stages and the loss function used at each stage. The training
pipeline consists of a pre-training phase (Stages 1 and 2), followed by a fine-tuning phase (Stage
3). In Stage 1, all modules are trained independently and in parallel, whereas in Stages 2 and 3, the
modules are trained in a unified architecture and loss function.

Backbone Large Language Model We adopt Mistral-7B-Instruct-v0.3 [25] as a backbone LLM,
following Yu et al. [5]. In order to improve the efficiency in solving molecular tasks, we extend the
token codebook with the 3K SELFIES vocabulary from BioT5+ [[6] and add dedicated tokens for the
digits 0-9, the decimal point, and the negative sign, thereby enabling direct number prediction for
regression tasks. Additional task-specific vocabulary covers boolean labels, textual descriptions, and
reaction routes, allowing Mol-LLM to natively produce the heterogeneous answer formats required
by downstream applications. Examples of these extra tokens appear on the right side of Figure 2]

2.2 Multimodal Training

Stage 1 - Graph Encoder and LLM Pre-training The hybrid graph encoder comprises two GNNS,
GINE and TokenGT. We pre-train these two GNNs in parallel with the LLM. The GNN pre-training
comprises two complementary tasks: functional group prediction and SELFIES reconstruction.
Functional group prediction strengthens representations of the functional groups that govern molecular
properties, whereas SELFIES reconstruction encourages the encoder to preserve global structural
information. Both tasks share the same graph-level embedding h, produced by the GNN, as illustrated
on the left side of Figure ] After discarding extremely common or extremely rare functional groups,
we retain K = 72 distinct groups (dataset construction details are given in Appendix [C.I). For

functional group prediction, h,, is passed through a three-layer MLP (1024 — 1024 — 72) f)?
and trained with the binary cross-entropy loss Leyne = — Zszl (ygfr)m log fé\’ILP(hg)(k) + (1 —

ygfr)m) log(1 — féV[LP(hg)(k)D , where superscript (k) is the value for functional group k. SELFIES

reconstruction reuses h as a context for a GPT-2 decoder 7§¥ T2 that learns to reproduce molecule’s

SELFIES string s: Liecon = — »_,10g G 2 (s; | hg, s<;). The graph encoder is optimized with
the combined loss LoNN = Ltune + Lrecon- Additional training procedures and hyperparameters are
provided in Appendix[C.2]

The LLM pre-training serves two purposes: (i) injecting molecule-specific prior knowledge and
(ii) reducing the compute required during later multimodal training. Accordingly, we pre-train the
LLM on exactly the same dataset that will be used later for fine-tuning, optimizing a token-level
cross-entropy objective. Given a training instance consisting of a task instruction ¢, a molecular
SELFIES string s, and a ground truth answer y, we minimize Lgpr = — ), log W{;LM (yt | s,q, y<t)

where ¢ indexes tokens.

Stage 2 - Q-Former Pre-training In Stage 2, only the Q-Former is updated, while both the GNN
and the LLM remain frozen. Following Liu et al. [26], we simply reuse the fine-tuning dataset, in
which molecular representations and natural language tokens appear in an interleaved format. For
each training instance (s, ¢,y), the SELFIES string s is converted into its corresponding molecular
graph g. The combined model 7y (GNN+Q-Former+LLM) is then trained for one epoch with the

loss defined as Lspr = — Y, log 7o (ve | 5,4, 9, y<t)-

Stage 3 - MolPO: Molecular Structure Preference Optimization We observed that using only
SFT training as in conventional multimodal Molecular LLMs [8} 9} [19, [12], result in a graph bypass
phenomenon (Figure[I)) in solving molecular tasks. To resolve the graph bypass issue, we propose
Molecular structure Preference Optimization (MolPO). Rather than simply inputting multimodal
molecules into the LLM without consideration for multimodal utilization, MolPO promotes the
practical utilization of multimodal molecules by learning the preferences between an original (chosen)
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Figure 4: (Left) Overview of the two graph pre-training tasks for the proposed hybrid graph encoder.
Two distinct GNN backbones, GINE and TokenGT, are trained independently. (Right) Illustration of
the MolPO training objective, which contrasts a chosen molecule with a rejected molecule.

graph g,, and a perturbed (rejected) graph gy, which is inspired by mDPO [27]]. Constructing g,
it is crucial to introduce perturbations that alter the relationship between the graph and the target.
Since molecular features can generally be identified on a substructure basis, we substitute the
substructures found in the original g, as in Figure @ right panel. This approach offers the advantage
of being applicable to any molecular task without significant computational costs or requiring task-
specific graph perturbation design (details in Appendix [C.4). Based on the reward formulation

Tw,i = % Zt log uy (yt | Gws Sy Gis y<t) and Tei = % Zt log W@(yt | ge, S, 4i, y<t) motivated from

SimPO [28]], the MolPO objective is defined as follows:

LMOIPO = E(s,qi,g,y)ND"[_ IOg U(min(rw,i — T, Aclip‘rw,iD - '72')]3 (1)

where A is coefficient, and Dy, denotes training dataset. v; = Amargin|E(q,, ,5,q:,4) [Tw,i]] 18 a task-
adaptive target reward margin for each i-th molecular task, calculated during training. The entire
training objective combined is Lsgr + cLmoipo, Where ¢ is a constant.

In developing a generalist over diverse molecular tasks, we experimentally observed that adopting
SimPO’s task-agnostic target reward margin ~y results in inappropriate log-sigmoid values due
to highly variant reward orders of magnitude across tasks. However, modeling the task-specific
reward scale as a hyperparameter is not an ideal solution either, as it adds an additional burden of
hyperparameter search for each molecular task. Instead, we introduce a task-adaptive target reward
margin with only a task-agnostic hyperparameter Amarin, Where the expectation is estimated using an
exponential moving average during training.

In addition, given that it is generally easier to lower the rejected reward than to increase the true
chosen reward, the preference reward margin can be empirically manipulated by simply reducing 7 ;
without a corresponding enhancement of 7, ;. To fully harness the benefits of preference optimization
without the drawbacks, we introduce margin clipping to appropriately control the influence of the
reward margin on parameter updates. Specifically, the margin is constrained so that it cannot exceed
a fraction, Agip of |r,, ;|. Through this simple margin clipping, the model is prevented from the
circumventing unintended effect of preference optimization by solely reducing the rejected reward.
Further details of MolPO training are provided in Appendix [C.5]

2.3 Extensive Instruction-tuning Dataset

The instruction-tuning dataset for Mol-LLM spans five major molecular task groups: property
regression, property classification, reaction prediction, description-guided molecule generation,
and molecule captioning. Property regression consists of five tasks—LogS for water solubility
(ESOL [3]), LogD for lipophilicity (Lipo [5]), HOMO [7], LUMO [7], and HOMO-LUMO gap [[7],
and property classification comprises BACE [6], BBBP [3], ClinTox [Sl], HIV [5], SIDER [3].
Reaction prediction covers forward synthesis (FS), retrosynthesis (RS), and reagent prediction (RP),
with FS and RS each divided into Mol-Instructions [7]] and SMollnstruct [S]] subsets according to
their dataset sources. The description-guided molecule generation and molecule captioning tasks are
similarly split into ChEBI-20 [29] and SMollnstruct based on their origins. In addition, to enhance
the understanding of IUPAC [30]—frequently used in molecular text captions—we incorporate an



Table 1: Performance comparison on molecular property prediction tasks from the MoleculeNet [41]]
benchmark. A superscript * indicates results evaluated with an official checkpoint, and "NA" denotes
cases where no official checkpoint is available. Boldface highlights the best scores among generalist
models. For semi-generalist models, each variant is annotated with the task group on which it is
trained. GPT-4 is evaluated with 5-shots, except for classification performances borrowed from Zhao
et al. [23]] with zero-shot.

Task LogS LogD HOMO LUMO Gap BACE BBBP ClinTox HIV SIDER
Metric RMSE () RMSE(l) MAE () MAE() MAE(]) ROC-AUC () ROC-AUC () ROC-AUC (1) ROC-AUC (1) ROC-AUC (1)
Specialist Models

InstructMol NA NA 0.0048 0.0050 0.0061 82.1 72.4 NA 68.9 NA
MolCA >100 >100 >1 >1 >1 79.8 70.0 89.5 47.0 63.0
MolXPT NA NA NA NA NA 88.4 80.0 953 78.1 71.7
Semi-Generalist Models

Mol-Instructions™ 4.81 >100 0.0210 0.0210 0.0203 41.7 58.0 47.8 49.2 48.2
BioT5+"(Cls. & Trans.) >100 >100 >1 >1 >1 81.1 65.1 83.7 67.0 437
BioT5+"(Reg. & React.) >100 >100  0.0022 0.0024  0.0028 65.5 515 51.0 58.8 5255
Generalist Models

GPT-4 (5-shot) 1.68 1.59 0.0227 0.0462 0.0395 62.5 61.5 51.6 65.9 40.5
Galactica 4.34 2.78 0.2329 0.0413 0.2497 584 535 78.4 722 55.9
3D-MoLM* 3.41 4.86 0.0299 0.0536 0.0673 555 53.8 53.7 30.6 49.7
ChemDFM* 8.19 6.21 0.1204  0.1262 0.1694 59.5 50.5 60.0 524 51.0
LlaSMol* 1.21 1.01 >1 >1 >1 46.7 82.4 715 70.3 78.4
Mol-LLM (w/o Graph) 1.36 0.95 0.0044  0.0043 0.0055 80.8 84.3 85.0 76.5 76.1
Mol-LLM 1.28 0.91 0.0044  0.0043 0.0054 80.5 81.1 824 75.1 76.3

IUPAC and SELFIES translation dataset S]] to construct an 3.3M extensive instruction-tuning dataset
(details in Appendix [D.T).

3 Experiments

3.1 Experimental Setup

Baseline Models We group the molecular LLMs compared with Mol-LLM into three broad cat-
egories. Specialist models are trained for a single molecular task; semi-generalist models cover a
specific task group within one model but do not span all task groups; and generalist models are
designed to handle every molecular task group. Representative examples are MolCA [8] for the spe-
cialist category, BioT5+ [6] for the semi-generalist category, and Galactica [31] and LlaSMol [3] for
the generalist category. Comprehensive details on all baseline models can be found in Appendix [E.2]

Evaluation Benchmark In addition to the molecular tasks described in Section 2.3} we evaluate
molecular LLM robustness to out-of-distribution (OOD) by proposing two evaluation benchmarks.
For LogS prediction, we retain high-confidence solubility labels from AqgSol [32], exclude every
molecule that also appears in ESOL, and collect molecules of high consistency among labels to
construct the OOD evaluation versus ESOL. For reaction prediction, we gather 23K FS and 59K
RS data instances from the ORDerly [33] repository except USPTO [34]], apply a scaffold split to
remove motif overlap with Mol-Instructions [7]] and SMollnstruct [5], and reserve SK examples for
evaluation in each task. Full OOD dataset construction details are provided in Appendix [D.2]

Evaluation Metrics For property prediction tasks, we report the root mean squared error (RMSE) or
mean absolute error (MAE) in regression, and in classification tasks, receiver operating characteristic
area under the curve (ROC-AUC) using the predicted probability of the positive class (i.e., True
token). For reaction prediction and description-guided molecule generation, we evaluate exact match
with the target molecule (EXACT), textual similarity (BLEU) [35]], molecular fingerprint similarity
based on RDK:it [36], MACCS keys [37], and Morgan [38]] fingerprints (RDK FTS, MACCS FTS,
and MORGAN FTS, respectively), and the proportion of generated molecules that are chemically
valid (VALIDITY). For the molecule captioning task, we measure similarity between the generated
and reference descriptions using BLEU-2, BLEU-4, ROUGE-1 [39], ROUGE-2, ROUGE-L, and
METEOR [40]. However, due to space limitations, the main paper reports only the primary metrics.
The complete results are provided in Appendix [E.3).

3.2 Results

We report the experimental results on property regression and classification, and reaction prediction
tasks. In addition, analysis of on molecule captioning and description-guided molecule generation
are illustrated in Appendix [B]



Table 2: Performance comparison for reaction prediction tasks on Mol-Instructions [[7] and SMolIn-
struct [|5]] datasets.

Dataset Mol-Instructions / SMolInstruct

Task Forward Synthesis Retrosynthesis Reagent Prediction
Metric EXACT (1) MACCSFTS (1) EXACT (1) MACCSFTS (1) EXACT (1) MACCS FTS (1)
Specialist Models

InstructMol 0.536/ NA 0.878/ NA 0.407/ NA 0.852/ NA 0.129 0.539
MoICA* 0.000 / 0.000 0.494/0.357 0.000 / 0.000 0.880/0.760 0.000 0.115
Semi-Generalist Models

Mol-Instructions™ 0.052/0.003 0.291/0.184 0.069/0.015 0.359/0.285 0.044 0.364
BioT5+*(Cls. & Trans.)  0.000/0.000 0.152/0.187 0.001 / 0.000 0.195/0.170 0.000 0.056
BioT5+"(Reg. & React.) 0.864/0.081 0.975/0.537 0.642/0.152 0.930/0.751 0.257 0.621
Generalist Models

GPT-4 (5-shot) 0.021/0.011 0.728 /0.634 0.012/0.013 0.716 / 0.686 0.000 0.228
Galactica 0.000 / 0.000 0.257/0.377 0.000 / 0.000 0.274/0.447 0.000 0.127
3D-MoLM* 0.000/ 0.000 0.391/0.296 0.000 / 0.000 0.451/0.372 0.000 0.218
ChemDFM™ 0.000 / 0.002 0.142/0.178 0.000 / 0.000 0.440/0.443 0.000 0.099
LlaSMol* 0.743/0.629 0.95570.919 0.453/0.323 0.885/0.827 0.000 0.199
Mol-LLM (w/o Graph)  0.893/0.584 0.983/0.904 0.510/0.363 0.886/0.828 0.202 0.586
Mol-LLM 0.911/0.601 0.987 / 0.908 0.538/0.377 0.893/0.832 0.225 0.600

Table 3: Evaluation of OOD generalization for reaction prediction on the ORDerly dataset, which is
non-USPTO, and LogS on the AqSol dataset.

Dataset AqSol ORDerly

Task LogS Forward Synthesis Retrosynthesis

Metric RMSE (]) EXACT (1) MACCSFTS (1) VALIDITY (1) EXACT (1) MACCS FTS (1) VALIDITY (1)
Semi-Generalist Models

BioT5+"(Reg. & React.) 1.81 0.095 0.628 1.00 0.139 0.678 1.00
Generalist Models

GPT-4 2.17 0.000 0.723 0.87 0.000 0.672 0.65
Galactica® 3.20 0.000 0.322 0.49 0.000 0.398 0.38
3D-MoLM” 2.72 0.000 0.288 0.01 0.000 0.396 0.01
ChemDFM* 6.98 0.017 0.428 0.04 0.000 0.406 0.05
LlaSMol* 1.32 0.350 0.881 1.00 0.473 0.875 0.99
Mol-LLM (w/o Graph) 1.10 0.394 0.900 1.00 0.727 0.936 1.00
Mol-LLM 1.02 0.401 0.877 1.00 0.738 0.939 1.00

Property Regression and Classification Table[I] summarizes the property regression and classifi-
cation results. On most tasks, Mol-LLM outperforms every other generalist model, except for LogS,
ClinTox, and SIDER. Notably, even Mol-LLM (w/o Graph) performs on a par with the full model.
We attribute this behavior to the small molecular sizes in MoleculeNet [41]], which allow the LLM to
infer structural information directly from the SELFIES representation.

Reaction Prediction The reaction prediction results are reported in Table[2] Except for the FS
task of SMollnstruct dataset, Mol-LLM again leads all generalist models. Since successful reaction
prediction depends on recognizing which functional groups can participate during a chemical reaction,
these results suggest that pre-training of the GNN on functional group prediction helps Mol-LLM
exploit structural cues more effectively. Consistent with this interpretation, omitting the graph input
(w/o Graph variant) noticeably degrades performances.

Generalization Performance on Out-of-distribution Datasets Table [3|reports OOD results for
AgSol. On the in-distribution training tasks (LogS and SIDER), Mol-LLM lags the generalist
baseline LlaSMol only marginally. In contrast, it is markedly superior on the OOD AqSol benchmark,
demonstrating stronger generalization. A similar trend appears in the reaction prediction FS and RS
tasks: Mol-LLM is slightly weaker on in-distribution FS of SMollnstruct but outperforms competitors
when evaluated OOD. These findings indicate that MolPO training confers broader generalization
across both tasks and input distributions, whereas the semi-generalist BioT5+, which lacks large-scale
instruction tuning, suffers a notable drop in performance.



Table 4: An ablation study on MolPO’s effect on graph utilization. We report RMSE(]) for LogS
and LogD, and EXACT(?) for FS, RS, RP, and T2M, each representing forward reaction prediction,
retrosynthesis, reagent prediction, and molecule generation. "Mol-Inst." and "SMol." denote the
Mol-Instructions and SMollnstruct datasets, respectively.

LogS LogD FS(Mol-Inst) FS(SMol) RS (Mol-Inst) RS (SMol.) RP (Mol-Inst) T2M (ChEBI-20) T2M (SMol.)

Mol-LLM (w/o MolPO) 1.36 0.96 0.907 0.598 0.529 0.368 0.220 0.426 0.355
Mol-LLM 1.28 0.91 0.911 0.601 0.538 0.377 0.225 0.443 0.368

3.3 Ablation Study

MolPO objective enhances molecular graph utilization and task performance. To examine
whether incorporating the MolPO objective Lyoipo during Mol-LLM training leads the model to
exploit molecular graph information more effectively than training with SFT alone, we first compare,
for each task 7, the log-likelihood 7, ; obtained when the model is given the chosen graph g, to
the log-likelihood 7, ; obtained when it is given the rejected graph g,. We then compute the graph
discrimination ratio GDR = Ni ZnN:1 I[ry,i(n) > re;(n)], where N; is the number of instances
in task ¢, I is the indicator function, and r, ;(n) is the log-likelihood for the n-th instance in task .
A GDR close to 1 indicates that the model can clearly identify the correct molecular graph (i.e., it
effectively exploits molecular graph information); a value near 0.5 indicates random guessing, and
a value near 0 indicates systematic confusion. Figure[I|shows the per-task GDRs—green bars for
MolPO-trained models and orange bars for models trained without Lyopo. The consistently higher
GDRs in the MolPO setting confirm that this objective helps the model make better use of molecular
graph information. We also compare the multitask fine-tuning performance obtained when Lyojpo is
combined with Lggr to that obtained when only Lsgr is used. As shown in Table leveraging the
graph modality through the MolPO objective improves performances on most tasks.

Furthermore, we demonstrate the effectiveness of the our GNN pre-training in Appendix [B

4 Related Works

Molecular Large Language Models MolT5 [29] extends T5 [42]] to bidirectional translation
between SMILES strings and natural language, whereas MolXPT [43]], built on the GPT architec-
ture [44]], unifies text—-molecule translation with property prediction. MolCA [8] and GIT-Mol [10]
fuse 2D molecular graphs with text via a Q-Former [20]], while MolLM [45] further injects 3D
geometric cues. UniMoT [[11]] discretizes Q-Former outputs into graph tokens while 3D-MolTS5 [19]]
introduces 3D structure tokens, enabling generative reasoning over conformers. Although these
models exploit molecule structures, each is tailored to a narrow set of tasks. Mol-LLM tackles
this limitation by jointly processing text and graphs and by performing translation, prediction, and
generation within a single generalist framework.

Instruction-tuning on Molecular Tasks Mol-Instructions [7]] introduced the first broad instruction-
tuning corpus, inspiring InstructMol [9] to fine-tune multimodal models with task-specific prompts
and BioT5+ [6] to perform multitask tuning without structural inputs. LlaSMol [5]] scales the idea
to 3.3M examples across ten tasks, yielding a single model that matches—or exceeds—specialists.
Subsequent work, including UniMoT [11], 3D-MolTS5 [19] and 3D-MoLM, couples instruction tuning
with 2D/3D structure encoders, yet still lacks a systematic strategy for exploiting multimodal inputs.
Consequently, models remain sensitive to task distribution shifts. Mol-LLM fills this gap by unifying
instruction tuning with structure-aware training, thereby improving robustness across in-distribution
and out-of-distribution tasks.

Preference Optimization on Different Modality DPO [46] aligns language models with hu-
man preferences by maximizing the log-probability gap between preferred and rejected outputs;
SimPO [28]] removes the expensive reference model for lighter training. As multimodal LLMs rise,
mDPO [27] adapts the idea to vision—language models by corrupting images to build preference pairs,
and numerous follow-ups [47H50] confirm its effectiveness. Yet no study has demonstrated compa-
rable gains for molecular data. Mol-LLM is the first to apply preference optimization to molecular
graphs and text jointly, showing that structure-aware preferences yield stronger generalization than
sequence-only tuning while keeping training costs manageable.



5 Conclusion

We introduced MolPO, a multimodal training objective that leverages perturbed molecules to enhance
the utility of 2D molecular graphs, together with a hybrid graph encoder pre-training strategy. We also
curated a large-scale molecule instruction tuning dataset and, using the proposed methods, developed
Mol-LLM, a multimodal generalist molecular large language model. Mol-LLM achieved state-of-the-
art performances among generalist molecular models on property regression, property classification,
reaction prediction, description-guided molecule generation, and molecule captioning tasks. We
believe our approach can be extended beyond 2D molecular graphs to incorporate 3D structural
information and molecular metadata, enabling real-world applications such as drug discovery and
novel material discovery. A detailed discussion of the limitations are described in Appendix [A]
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Table 5: Performance comparison for molecule generation and molecule captioning on ChEBI-20 [29]]
and SMollnstruct [S]] datasets.

Dataset ChEBI-20 / SMollnstruct

Task Molecule Generation Molecule Captioning

Metric EXACT (1) MACCSFTS (1) VALIDITY (1) BLEU-4 (1) ROUGE-L (1) METEOR (1)
Specialist Models

GIT-Mol 0.051/ NA 0.738/ NA 0.93/ NA 0.263/ NA 0560/ NA  0.533/ NA

InstructMol NA / NA NA / NA NA / NA 0371/ NA 0502/ NA 0509/ NA

MolT5 0.311/0.317  0.834/0.879 0.91/0.95 0.508/0.366 0.594/0.501 0.614/0.515
MolCA™ NA / NA NA / NA NA / NA 0.540/0.510 0.631/0.604 0.652/0.628
MolXPT 0.215/ NA 0.859/ NA 098/ NA 0.505/ NA 0597/ NA 0.626/ NA

Text+Chem T5 0.322/ NA 0.901/ NA 0.94/ NA 0.542/ NA 0.622/ NA 0.648/ NA

Semi-Generalist Models

Mol-Instructions 0.016/0.045 0.167/0.475 1.00/1.00 0.171/0.020 0.289/0.217 0.271/0.124
BioT5+"(Cls. & Trans.) 0.557/0.519  0.907/0.897 1.00/1.00 0.591/0.582 0.649/0.644 0.680/0.677
BioT5+"(Reg. & React.) 0.537/0.416  0.897/0.867 1.00/1.00 0.216/0.221 0.364/0.364 0.323/0.321
Generalist Models

GPT-4 (5-shot) 0.092/0.027  0.745/0.726 0.65/0.74 0.158/0.125 0.303/0.273 0.320/0.274
Galactica™ 0.000/0.000  0.264/0.271 0.70/0.61 0.000/0.000 0.006/0.006 0.004/0.005
3D-MoLM* 0.000/0.000  0.000/0.000 0.00/0.00 0.171/0.167 0.287/0.285 0.326/0.329
ChemDFM* 0.018/0.041 0.16570.297 0.19/0.13 0.031/0.035 0.101/0.108 0.078/0.085
LlaSMol* 0.274/0.180  0.871/0.845 0.95/0.93 0.333/0.328 0.464/0.465 0.466/0.470
Mol-LLM (w/o Graph)  0.431/0.362  0.903 / 0.888 1.00/1.00 0.482/0.477 0.509/0.490 0.587/0.585
Mol-LLM 0.443/0.368  0.906 / 0.887 1.00/0.99 0.493/0.482 0.439/0.433  0.599/0.589

A Limitation

Performance Degradation from Limited Molecular Distribution in Classification Tasks When
the training data lacks sufficient diversity, preference optimization approaches using input pref-
erence pairs could suffer performance degradation on test or out-of-distribution datasets. In the
case of MolPO, if the training molecular distribution is too narrow or contains spurious patterns
unrelated to the given molecular task, the model may inappropriately regard molecules in test set or
out-of-distribution (OOD) dataset as rejected molecules, based solely on their non-in-distribution
characteristics. This hypothesis is consistent with the observations in Table|l|for the classification
datasets. The classification datasets are substantially smaller than the datasets in the other task groups.
More than half of them contain only approximately 1K samples, compared with 3.3M samples in
the entire training dataset, which explains why MolPO’s performance either remained unchanged or
slightly decreased. The principled and necessary solution to this issue is basically to procure more
diverse molecular distributions. We anticipate that the research community will pay more attention to
developing diverse and comprehensive property classification datasets.

In-depth Analysis across Molecular Tasks Beyond the overall improvement in benchmark per-
formance, an in-depth analysis is needed to understand what qualitative changes occur for each
molecular task from the improved graph utilization by MolPO. It is necessary to identify trends that
cannot be determined by performance metrics alone, such as which molecular features are difficult to
capture with sequence-only approaches, and whether these identified molecular features have strong
practical impact. Such analysis could be particularly interesting for property prediction tasks where
spatial recognition of molecules is important.

Multi-step Reasoning and Multi-turn Interaction As demonstrated by recent successful LLMs [2]
3ll, impactful real-world applications of LL.Ms critically depend on multi-step reasoning capabilities
and multi-turn interactions between LLMs and users. However, research on these two aspects
remains significantly underdeveloped in the field of molecular LLMs. Such research requires
different considerations from single-turn instruction tuning, beginning with dataset construction, and
necessitates appropriate training objectives and reward modeling. It is an interesting direction to
extend molecular LL.Ms to multi-step reasoning and multi-turn interaction for practical applications.

B Additional Experimental Results

Description-guided Molecule Generation Table [5| shows the results for description-guided
molecule generation, whose input prompts contain no molecular graphs. Since both Mol-LLM
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Figure 5: Comparison of fine-tuning performances on three tasks under different GNN architectures
and initialization with (or without) pre-trained parameters. Each line is labeled as { GNN archi-
tecture }—{initialization}. Ours refers to models initialized with parameters obtained via our GNN
pre-training method, whereas Scratch denotes models trained from random initialization. The x-axis
denotes the number of training steps, and the y-axis shows the corresponding evaluation metric.

and the w/o Graph variant receive identical inputs, their scores are nearly indistinguishable. This
confirms that Mol-LLM’s ability to use graphs does not impede its instruction-following ability when
graphs are absent. On both the ChEBI-20 and SMollInstruct datasets, Mol-LLM nonetheless achieves
the best results among generalist models.

Molecule Captioning As summarized in Table 5} Mol-LLM again surpasses all baselines. Com-
pared with the w/o Graph variant, the full model obtains consistently higher BLEU and METEOR
scores but slightly lower ROUGE scores on both ChEBI-20 and SMollnstruct. The pattern implies
that Mol-LLM produces more concise captions: it captures the essential information while omitting
peripheral details. We believe MolPO training encourages the model to rely on structural cues and
focus on the core content.

Ablation study on Our GNN pre-training To clearly demonstrate the effect of our GNN pre-
training method, we frame the experiment as a single task setting and modify Mol-LLM so that,
during fine-tuning, it receives only the task instruction and the 2D molecular graph as inputs, omitting
the 1D sequence. The model is trained solely using the loss term Lggr, and its performance is then
compared with different GNN architectures and weight initializations. Figure [5|presents the learning
curves for property regression (HOMO) and reaction prediction (FS, RP). The GNN architectures
(GINE, TokenGT) and their corresponding initializations are represented as { GNN architecture }-
{initialization}. Scratch indicates that the GNN is trained from scratch without any pre-trained weights.
The model whose GNN is initialized with the proposed pre-training method (Ours) consistently
outperforms the others, indicating that it learns higher quality molecular representations. Moreover,
the existing pre-trained models—MoleculeSTM [15] and GraphCL [51]—perform either worse than
or roughly on par with the non-pretrained baseline Scratch, which is a surprising outcome.

C Implementation Details

This section discusses the details of the Mol-LLM implementation. All the necessary materials to
reproduce the results through Tables [T]to [3]and [5] including code, trained model, and test set, are
available at https://anonymous.4open.science/r/mol-11lm-neurips2025-93EB.

C.1 Functional Group Prediction Dataset for Graph Encoder Pre-training

As explained in Section [2.2] the proposed graph encoder pre-training conducts functional group
prediction of a given molecule, a kind of self-supervision task carried out only with the input molecule.
The principal challenge in constructing the functional group prediction dataset is the severe class
imbalance: some groups occur in most molecules, whereas others are exceedingly rare. Leveraging
the RDKit Fragments moduleﬂ we enumerate 87 functional groups and quantify their occurrences
across the entire PubChem database, as summarized in the top panel of Figure|6] Figure [6]illustrates
functional group imbalance, for example, fr_NHO (tertiary amines) appears in many molecules,

*https://www.rdkit.org/docs/source/rdkit.Chem.Fragments.html
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Figure 6: (Top) Distribution of functional groups present in molecules from the PubChem database.

(Middle) Distribution of functional groups in PubChem molecules after excluding groups that are

either overly common or extremely rare. (Bottom) Distribution of functional groups obtained after

sampling SM molecules from PubChem database

considering functional group sparsity. Since the

)

number of molecules differs among panels, the y-axis scale varies across plots for visualization

purposes.

whereas fr_prisulfonamd (primary sulfonamides) are scarce. This imbalance can cause overfitting
to dominant classes instead of learning general chemical knowledge. To alleviate the overfitting
problem, we remove the 11 most prevalent groups (from fr_NHO to fr_aryl_methyl) and the rarest
group (fr_prisulfonamd), retaining 72 functional groups. The middle panel of Figure [6] shows
the reduced yet still skewed distribution. To adjust the skewed distribution, we apply sparsity-aware

importance sampling as follows. Given M molecules and G retained groups, let z; , € {0, 1} indicate

M

i=1Ti,g-

2

we implement importance sampling that favors rarer groups by introducing the scaling factor

Then we can define group frequencies as c,

the presence of group g in molecule .

Here,
Sg

(cy +€) with e = 1075, resulting in the sparsity score of molecule i as

1/

o= (i)

1

g=

1 04, from which we sample

is flatter than before, which

o

Normalizing the scores yields a categorical distribution p; = o; /

5M molecules. The resulting distribution (bottom panel of Figure
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Table 6: Comparison of MAE () across different GNN training settings on the QM9 dataset.

Property Description GINE (Tuning) GINE (Frozen) GINE (Frozen MoleculeSTM)

I Dipole moment 0.5247 0.9616 1.0927
«a Isotropic polarizability 1.026 3.1919 3.3589
EHOMO Highest occupied molecular orbital energy (HOMO) 0.1558 0.2864 0.357
ELUMO Lowest unoccupied molecular orbital energy (LUMO) 0.1428 0.3555 0.4581
Ae Gap between exomo and eLumo (Gap) 0.1817 0.4003 0.3997
<R?*> Electronic spatial extent 24.7215 94.5913 103.2612
ZPVE  Zero point vibrational energy 0.0471 0.3056 0.234
Uy Internal energy at OK 9,474.99 10,302.67 10,176.77
U Internal energy at 298.15K 10,160.12 10,550.07 10,134.84
H Enthalpy at 298.15K 10,295.32 10,466.08 10,057.47
G Free energy at 298.15K 9,596.59 10,278.72 10,142.24
Cy Heat capavity at 298.15K 0.5053 1.1965 1.4149
U§™M  Atomization energy at 0K 0.9713 3.6615 3.2477
UATOM Atomization energy at 298.15K 0.8442 3.4631 3.309
HA™M  Atomization enthalpy at 298.15K 0.999 3.6308 3.2287
GATOM Atomization free energy at 298.15K 1.0225 3.5317 3.4369
A Rotational constant 0.9253 0.7283 1.0479
B Rotational constant 0.1515 0.2428 0.2511
C Rotational constant 0.0773 0.172 0.1368

enables the graph encoder to learn more unbiased chemical knowledge than when trained on the raw
PubChem molecule distribution.

C.2 Details of Graph Encoder and Pre-training

Architecture Both GNN components of the hybrid graph encoder—GINE and TokenGT—use a
hidden dimension d, = 1024 and five message-passing layers. We replace the original transformer
blocks of TokenGT with a BERT encoder implemented in FlashAttention-2 and configured
with eight attention heads, thereby maximizing GPU throughput. Within TokenGT, the node- and
edge-projection dimensions are both 64, and we adopt the graph laplacian eigenvector variant for
node positional encoding.

Pre-training GINE and TokenGT are pre-trained with the same set of hyperparameters. For
SELFIES reconstruction, sequences are truncated to a maximum length of 512 tokens; tokens beyond
this limit do not contribute to the loss calculation. The GPT-2 decoder used for reconstruction consists
of six layers, eight attention heads, and an embedding size of 1024. We train for 50 epochs with a
learning rate of 1 x 10~4, a batch size of 64, and the AdamW optimizer. Training is performed on the
5M molecule dataset described in Appendix|[C.I] further augmented only by adding the corresponding
SELFIES strings, and all experiments are run on four NVIDIA A100 GPUs.

C.3 Investigation of Graph Encoder Used in Prior Work

In Appendix [B] we show that the downstream performance of the LLM integrated with pre-trained
GNNss used in Liu et al. [8], Cao et al. [9], which are MoleculeSTM [15]] and GraphCL [51], does
not improve from that of random initialization. To further investigate the graph representation of
MoleculeSTM, we conducted an additional experiment evaluating MoleculeSTM in isolation from the
LLM on the QMO datasets. In this experiment, the graph embedding £, is obtained by mean-pooling
the node embeddings, and then passed to a simple MLP, a regression head, whose output is used for
training over MSE minimization. While tuning the regression head, we compare three GNN tuning
settings: tuning a randomly initialized GNN, freezing a randomly initialized GNN, and freezing
a GNN initialized with MoleculeSTM. Table E] reports the mean absolute error (MAE) for each
property. It turns out that, when only the regression head is trained, the gap between random and
MoleculeSTM initialization remains negligible w.r.t. the jointly training of GINE, reinforcing our
observation that the current pre-trained GNN model fails to capture useful molecular representations.
All models were trained for 1,500 epochs with a batch size of 128 using the Adam optimizer with a
learning rate of 10~* on four NVIDIA A100 GPUs.

C.4 Molecular Structure Preference Pair

To improve the graph utilization of our model, we create molecular structural preference pairs, which
are required for Molecular Structure Preference Optimization (MolPO). Specifically, as a generalist
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Table 7: Model hyperparameters used for Mol-LLM architecture, evaluation, and training stages.

(a) Q-Former, LoRA, evaluation

(b) Training hyperparameters for each stage

Parameter Value Parameter Stage 1  Stage 2 Stage 3
Q-Former max_length 512
bert_hidden_dim 768 batch_size 968 1024 1024
bert_name scibert [52] optimizer adamw
num_query_token 32 scheduler linear_warmup_cosine_lr
bert_layers 5 weight_decay 0.05
: -5
LoRA min_Ir 10
o 4 init_Ir 1074 1074 4x107°
lora:alpha 32 warmup_Ir 10~° 107  4x10°6
lora_dropout 0.1 warmup_epochs 0.25
- gradient_clip_val 0.5

Evaluation precision bf16-mixed
gen_max_len 256 c NA NA 0.25
num_beams 1 /\margm NA NA 0.25

/\clip NA NA 1.0

molecular LLM, it requires a preference pair generation method applicable across various molecular
tasks. Therefore, we employed functional group-based substructure modification, which can alter
molecular features based on only the input molecule, without requiring task-specific design. For this,
we propose Molecular ACCess System (MACCS) [37]] keys-based substructure modification method
directly modifies molecular substructures by randomly removing and adding them. This approach
first identifies the substructures of the molecule corresponding to MACCS keys, generating two lists:
one containing the MACCS keys representing functional groups present in the molecule, and the
other containing the keys for functional groups absent from the molecule. Then we sample random
keys from the present MACCS keys to remove from the original molecular graph. Subsequently, other
random keys are chosen from the list of absent MACCS keys, and functional groups corresponding to
the selected MACCS keys are attached at a random position in the molecule. We set the number of
MACCS keys randomly selected to 30 percent of the number of each molecule’s present MACCS
keys. This method effectively alters molecular structural information without task-specific design, at
the same time, it does not require heavy computation.

C.5 Details of Mol-LLM

This section describes the details of the Mol-LLM architecture and training, including the hyperpa-
rameters listed in Table[7]

Architecture When using Q-Former as the cross-modal projector, instead of using randomly
initialized weights, we initialize it, similarly to Liu et al. [8]], using the parameters of a 12-layer
pre-trained transformer encoder with an embedding dimension of 768. However, we observed that
successful multi-task learning can be achieved without fully utilizing all 12 layers of the Q-Former
while maintaining performance without significant performance degradation. Therefore, to reduce the
pre-training cost of Q-Former, we use only 5 layers instead of all 12 layers. The number of Q-Former
query tokens is set to 32 for multi-task learning, which is more than the eight used in prior work [8].
We set the LoRA rank to 64, alpha to 32, and the dropout rate to 0.1.

Three Stage Training For component ablation, we maintain identical hyperparameters for Mol-
LLM, Mol-LLM (w/o Graph), and Mol-LLM (w/o MolPO), as specified in Table[7} In Stage 1, along
with the GNN pre-training described in Appendix [C.2] we fine-tune only the LoRA parameters of
the LLM for 12 epochs. In Stage 2, we train the Q-Former for a single epoch to align the LLM and
GNN embeddings learned in Stage 1. Next, in Stage 3, as described in Section 2] we train using the
combined objective Lsrr + cLyolpo, Which combines both the SFT and MolPO objectives. Here,
the scaling factor ¢ = 0.25 is adjusted to ensure that the scales between Lggr and cLyop0 do not
differ significantly. For the hyperparameters used in Lyoipo = Es,g,.9,4)~D, [~ 10g a(min(rw,i -
4,5, Aclip|Tw,i|) — %-)}, We US€ Amargin = 0.5 and Aciip = 1.0, respectively. For Stage 3, we initially
trained the model for 6 epochs using the hyperparameters specified in Table [/} however, we observed
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Table 8: Details of Mol-LLM instruction-tuning training data and its sources.

Task Data Sources # Train  # Test #All
Property Prediction (Regression) MoleculeNet [41] 359,556 2,519 362,075
Property Prediction (Classification) MoleculeNet [41] 59,607 7,460 67,067
Forward Reaction Prediction USPTO [34] 1,079,379 5,062 1,084,441
Retrosynthesis USPTO 500MT 968,943 5,156 974,099
Reagent Prediction USPTO 500K 121,896 1,000 122,896
Molecule Captioning ChEBI-20 [53] 58,763 5,793 64,556
Description-Guided Molecule Generation ChEBI-20 58,763 5,838 64,601
Name Conversion PubChem [54] 599,767 - 599,767
Overall 3,306,674 40,757 3,347,431

that performance had not fully converged on several tasks. Therefore, we report experimental results
based on the model trained for one additional epoch using a reduced initial learning rate of 2 x 10~
(half of the original value) without a warm-up epoch.

D Molecular Instruction-tuning Dataset

This section describes the construction details of our molecular instruction-tuning dataset, whose
statistics are described in Table[§] It covers 21 tasks grouped into eight categories, comprising about
3.3M training and 40K test instances.

D.1 In-distribution Dataset Construction

We integrate molecules for each task from the molecule-oriented datasets Mol-Instructions [[8] and
SMollnstruct [5]]. During this integration process, tasks present in both datasets, such as forward
synthesis and molecule captioning, are deduplicated to ensure that molecules included in the test
set of one dataset do not appear in the training set of the combined dataset. In this process, we
exclude certain tasks that are not directly relevant (e.g., NC-I2F and NC-S2F). For tasks absent
in both datasets, such as BACE, molecules are directly extracted from the original data sources to
construct the dataset. Finally, we augment the resulting task-specific datasets with instructions using
templates adopted and extended from SMollnstruct.

D.2 Out-of-distribution Dataset Construction

LogS - AgSol Dataset To evaluate Mol-LLM on OOD LogS prediction, we use the AqSol
dataset [32], which contains multiple water solubility datasets in addition to ESOL. The AgSol
dataset is constructed by curating data from 9 different water solubility datasets for 9,982 unique
molecules. For our out-of-distribution evaluation on the ESOL dataset, we removed instances from
the AgSol dataset that overlap with the ESOL dataset based on the molecule’s InChl. Notably, it is
common for different prediction datasets to annotate different labels for the same molecule. This
occurs due to experimental errors or when LogS labels are predicted based on different prediction
models. To ensure high label reliability, we retain 925 molecules whose labels are either unique or
have an inter-dataset standard deviation < 0.1.

Reaction Prediction - ORDerly Dataset From Open Reaction Database (ORD) [33]], we collected
non-USPTO reaction data relevant to forward synthesis and retrosynthesis. Since all reactions in our
instruction-tuning dataset are derived from USPTO data, the reactions extracted from non-USPTO
sources constitute out-of-distribution (OOD) samples. Then, to ensure no duplication between
the collected reaction data and those in Mol-Instructions [[7] and SMollnstruct [5]], we filtered out
reactions from these non-USPTO sources whose input molecule scaffolds overlap with molecules
used for reaction prediction training. During this, we first extract data for the forward synthesis task
and subsequently ensure that the retrosynthesis reaction data extraction does not duplicate entries
already obtained for the forward synthesis. Finally, we apply scaffold splitting to each dataset,
resulting in 18K training samples and 5K test samples for forward synthesis, and 54K training
samples and 5K test samples for retrosynthesis.
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Table 9: Numbers of training and evaluation of impactful molecular tasks, which consist of property
classification, property regression, reaction prediction, molecule generation, and molecule captioning,
of each model. BioT5+ comprises two separate models, each trained on a distinct group of tasks.

Model # Train Tasks  # Eval Tasks
BioT5+ [6] (Mol-Instructions) 6 6
BioT5+ (ChEBI-20) 6 6
LlaSMol [5] 10 10
Mol-LLM (Ours) 23 15

Table 10: Summary of baseline models categorized by their input modality and model type.

Model Input Modality Task Coverage
InstructMol [9] 1D Sequence & 2D Graph Specialist
MolCA [8] 1D Sequence & 2D Graph Specialist
MolT5 [29]] 1D Sequence Only Specialist
MolXPT [43] 1D Sequence Only Specialist
Mol-Instructions [7] 1D Sequence Only Semi-Generalist
BioT5+ [6] 1D Sequence Only Semi-Generalist
GPT-4 (5-shot) [2] 1D Sequence Only Generalist
Galactica [31]] 1D Sequence Only Generalist
3D-MolM [12]] 1D Sequence & 3D Conformer Generalist
ChemDFM [23]] 1D Sequence Only Generalist
LlaSMol [5] 1D Sequence Only Generalist
Mol-LLM 1D Sequence & 2D Graph Generalist

E Experimental Details

This section provides supplementary information necessary for understanding and reproducing the
main experiments. In Appendix [E.T] we detail the resource requirements and execution times needed
to reproduce the main results, followed by Appendix [E.2] where we define and categorize the baseline
molecular language models based on modality and task coverage. In Appendix [E.3] we include full
experimental results, whose evaluation metrics are skipped in the main body due to the page limit.

E.1 Resources

All experiments, except for graph encoder pre-training, were conducted on 8 NVIDIA A100 80GB
GPUs and an AMD EPYC 7713 64-Core processor with 512GB of RAM. Using this hardware
configuration, Stage 1 required 6 days of training, Stage 2 required half a day, and Stage 3 required
12 days to complete. In Stage 1 graph encoder pre-training, GINE training took approximately 18
hours on 4 A100 GPUs, and TokenGT took 19 hours.

E.2 Baseline Models

As described in Section we categorize the baseline models into three groups: specialist models,
semi-generalist models, and generalist models, based on their level of specialization and task coverage.
In addition to the three model categories, we provide a classification based on the type of input
modalities. These categorizations are summarized in Table[T0]

E.2.1 Categories by Input Modalities

1D Sequence Only Models that rely solely on 1D sequences (e.g., SMILES or SELFIES), which ad-
dress molecules as strings. This category include Galactica 6.7B [31], GPT-4 [2], Mol-Instructions [7],
BioT5+[6], LlaSMol [5], MolT5 [29], MolXPT [43]], and ChemDFM [23]].

1D Sequence & 2D Graph Models integrate string-based and graph-based representations to
capture 2D molecular structure. Representative examples are InstructMol [9], MolCA [8]], and
GIT-Mol [10]. GIT-Mol additionally exploits molecular images, providing another route to leverage
structural information.
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Figure 7: Comparison of predicted outputs by generalists on forward synthesis (FS) and retrosynthesis
(RS), both in Mol-Instructions and ORDerly dataset. The upper two rows represent forward synthesis
in Mol-Instructions (InD) and ORDerly (OOD) Datasets, respectively, and the lower two rows
represent the retrosynthesis task in the same dataset order.

1D Sequence & 3D Conformer Models incorporate 3D conformers alongside sequence information
to enrich molecular 3D spatial representations 3D-MoLM [12]] belongs to this category.

E.2.2 Categories by Task Coverage

As described in Section [3.1] the baseline models are categorized as follows:

Specialist Models MolCA [8], InstructMol [9], MolXPT [43]], GIT-Mol [10]], and MolT5 [29] are
optimized for individual molecular tasks without parameter or knowledge sharing across tasks.

Semi-Generalist Models BioT5+ [[6] and Mol-Instructions [7] address related task groups within
a single framework. For instance, BioT5+ trains two separate models: one for classification and
translation, and the other for regression and reaction prediction, enabling knowledge sharing within
each group while preserving task-specific optimization.

Generalist Models Galactica 6.7B [31], GPT-4 [2], LlaSMol [5]], and ChemDFM [23]] aim for
broad generalization by simultaneously tackling all molecular task groups.

E.3 Full Experimental Results

Table [T presents the complete results corresponding to Table[2] Table[I3]and Table[I2]show the
full results for Table[5] In Figure[7] we also visualize predicted outputs by generalists, including
Mol-LLM, Galactica [31]], and LlaSMol [5] on forward reaction prediction and retrosynthesis on
both Mol-Instructions and ORDerly datasets.

F Broader Impacts

We currently anticipate no major negative social impacts from this research; nevertheless, there is a
possibility that it could be used to generate molecules harmful to humans or the environment. At
present, training is carried out on eight NVIDIA A100 GPUs, but scaling to larger LLMs would
require additional GPUs and would therefore increase carbon emissions. On the positive side, Mol-
LLM enables researchers performing chemical experiments to predict experimental outcomes in
advance.
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Table 11: Performance comparison on reaction prediction task on Mol-Instructions [7]] and SMolln-
struct [3]] datasets. FS, RS, RP each represent Forward synthesis, Retrosynthesis, and Reagent
prediction.

Task Dataset Model EXACT (1) BLEU (1) RDKFTS (1) MACCSFTS (t) MORGANFTS (1) VALIDITY (1)
Specialist Models
InstructMol 0.536 0.967 0.776 0.878 0.741 1.00
MolCA* 0.000 0.321 0.329 0.494 0.253 0.01
Semi-Generalist Models
Mol-Instructions™ 0.052 0.302 0.232 0.291 0.197 1.00
BioT5+"(Cls. & Trans.) 0.000 0.206 0.081 0.152 0.069 0.98
BioT5+"(Reg. & React.) 0.864 0.993 0.949 0.975 0.935 1.00
Mol-Instructions Generalist Models
GPT-4 (5-shot) 0.021 0.580 0.627 0.728 0.557 0.93
Galactica 0.000 0.468 0.156 0.257 0.097 0.95
3D-MoLM* 0.000 0.081 0.223 0.391 0.098 0.01
ChemDFM™ 0.000 0.028 0.104 0.142 0.077 0.07
LlaSMol* 0.743 0.835 0.920 0.955 0.910 0.95
Mol-LLM (w/o Graph) 0.893 0.963 0.968 0.983 0.960 1.00
FS Mol-LLM 0911 0.969 0.976 0.987 0.967 1.00
Specialist Models
MoICA* 0.000 0.209 0.252 0.357 0.196 0.01
Semi-Generalist Models
Mol-Instructions™ 0.003 0.149 0.139 0.184 0.111 1.00
BioT5+"(Cls. & Trans.) 0.000 0.286 0.107 0.187 0.089 0.97
BioT5+"(Reg. & React.) 0.081 0.455 0.418 0.537 0.376 1.00
SMollInstruct Generalist Models
GPT-4 (5-shot) 0.011 0.451 0.520 0.634 0.440 0.87
Galactica™ 0.000 0.241 0.292 0.377 0.202 0.36
3D-MoLM* 0.000 0.086 0.226 0.296 0.117 0.01
ChemDFM* 0.002 0.046 0.125 0.178 0.109 0.08
LlaSMol* 0.629 0.883 0.871 0.919 0.848 0.99
Mol-LLM (w/o Graph) 0.584 0.867 0.847 0.904 0.815 1.00
Mol-LLM 0.601 0.873 0.853 0.908 0.823 1.00
Specialist Models
InstructMol 0.407 0.941 0.753 0.852 0.714 1.00
MolCA* 0.000 0.652 0.936 0.880 0.722 0.01
Semi-Generalist Models
Mol-Instructions™ 0.069 0.407 0.303 0.359 0.268 1.00
BioT5+"(Cls. & Trans.) 0.001 0.095 0.114 0.195 0.104 0.97
BioT5+"(Reg. & React.) 0.642 0.969 0.897 0.930 0.866 1.00
Mol-Instructions Generalist Models
GPT-4 (5-shot) 0.012 0.573 0.531 0.716 0.506 0.77
Galactica 0.000 0.452 0.167 0.274 0.134 0.99
3D-MoLM* 0.000 0.069 0.270 0.451 0.117 0.01
ChemDFM* 0.000 0.224 0.360 0.440 0.234 0.03
LlaSMol* 0.453 0.722 0.826 0.885 0.788 0.95
Mol-LLM (w/o Graph) 0.510 0.839 0.835 0.886 0.797 1.00
RS Mol-LLM 0.538 0.845 0.843 0.893 0.808 1.00
Specialist Models
MolICA* 0.000 0.503 0.716 0.760 0.589 0.01
Semi-Generalist Models
Mol-Instructions™ 0.015 0.402 0.223 0.285 0.191 1.00
BioT5+"(Cls. & Trans.) 0.000 0.085 0.095 0.170 0.085 0.97
BioT5+"(Reg. & React.) 0.152 0.662 0.623 0.751 0.567 1.00
SMollInstruct Generalist Models
GPT-4 (5-shot) 0.013 0.523 0.499 0.686 0.465 0.76
Galactica™ 0.000 0.346 0.341 0.447 0.272 0.43
3D-MoLM* 0.000 0.162 0.220 0.372 0.128 0.01
ChemDFM* 0.000 0.257 0.304 0.443 0.252 0.03
LlaSMol* 0.323 0.759 0.749 0.827 0.699 0.99
Mol-LLM (w/o Graph) 0.363 0.772 0.752 0.828 0.699 1.00
Mol-LLM 0.377 0.779 0.760 0.832 0.707 1.00
Specialist Models
InstructMol 0.129 0.610 0.444 0.539 0.400 1.00
MolCA* 0.000 0.002 0.033 0.115 0.012 0.01
Semi-Generalist Models
Mol-Instructions 0.044 0.224 0.237 0.364 0.213 1.00
BioT5+"(Cls. & Trans.) 0.000 0.169 0.038 0.056 0.015 0.96
BioT5+"(Reg. & React.) 0.257 0.695 0.539 0.621 0.512 1.00
RP Mol-Instructions Generalist Models
GPT-4 (5-shot) 0.000 0.133 0.077 0.228 0.071 0.72
Galactica 0.000 0.141 0.036 0.127 0.051 0.99
3D-MoLM* 0.000 0.042 0.039 0.218 0.077 0.01
ChemDFM* 0.000 0.014 0.033 0.099 0.027 0.06
LlaSMol* 0.000 0.050 0.041 0.199 0.050 0.93
Mol-LLM (w/o Graph) 0.202 0.557 0.497 0.586 0.461 1.00
Mol-LLM 0.225 0.578 0.517 0.600 0.485 1.00
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Table 12: Performance comparison on description-guided molecule generation task on ChEBI-20 [29]
and SMollnstruct [5]] datasets.

Dataset Model EXACT (1) BLEU (1) RDKFTS (1) MACCS FTS (1) MORGAN FTS (1) VALIDITY (1)
Specialist Models
GIT-Mol 0.051 0.756 0.582 0.738 0.519 0.93
MolT5 0.311 0.854 0.746 0.834 0.684 091
MolXPT 0.215 NA 0.757 0.859 0.667 0.98
Text+Chem T5 0.322 0.853 0.816 0.901 0.757 0.94
Semi-Generalist Models
Mol-Instructions™ 0.016 0.042 0.132 0.167 0.090 1.00
BioT5+"(Cls. & Trans.) 0.557 0.931 0.835 0.907 0.780 1.00
ChEBI-20 BioT5+"(Reg. & React.) 0.537 0.821 0.831 0.897 0.773 1.00
Generalist Models
GPT-4 (5-shot) 0.092 0.485 0.518 0.745 0.482 0.65
Galactica™ 0.000 0.189 0.142 0.264 0.057 0.70
3D-MoLM* 0.000 0.000 0.000 0.000 0.000 0.00
ChemDFM* 0.018 0.205 0.136 0.165 0.110 0.19
LlaSMol* 0.274 0.644 0.755 0.871 0.679 0.95
Mol-LLM (w/o Graph) 0.431 0.792 0.823 0.903 0.754 1.00
Mol-LLM 0.443 0.795 0.829 0.906 0.761 1.00
Specialist Models
MolT5 0.317 NA 0.802 0.879 0.732 0.95
Semi-Generalist Models
Mol-Instructions™ 0.045 0.507 0.366 0.475 0.272 1.00
BioT5+"(Cls. & Trans.) 0.519 0918 0.822 0.897 0.757 1.00
BioT5+"(Reg. & React.) 0.416 0.819 0.782 0.867 0.706 1.00
SMollnstruct  Generalist Models
GPT-4 (5-shot) 0.027 0.404 0.482 0.726 0.368 0.74
Galactica™ 0.000 0.173 0.144 0.271 0.055 0.61
3D-MoLM* 0.000 0.000 0.000 0.000 0.000 0.00
ChemDFM* 0.041 0.069 0.230 0.297 0.189 0.13
LlaSMol* 0.180 0.718 0.712 0.845 0.623 0.93
Mol-LLM (w/o Graph) 0.362 0.759 0.797 0.888 0.716 1.00
Mol-LLM 0.368 0.761 0.800 0.887 0.721 0.99

Table 13: Performance comparison on molecule captioning task on ChEBI-20 [29]] and SMolInstruct
[5] datasets.

Model BLEU-2 (1) BLEU-4 (1) ROUGE-1 (1) ROGUE-2 (1) ROUGE-L (1) METEOR (1)
Specialist Models
GIT-Mol 0.352 0.263 0.575 0.485 0.560 0.533
InstructMol 0.475 0.371 0.566 0.394 0.502 0.509
MolT5 0.594 0.508 0.654 0.510 0.594 0.614
MolCA* 0.623 0.540 0.693 0.553 0.631 0.652
MolXPT 0.594 0.505 0.660 0.511 0.597 0.626
Text+Chem T5 0.625 0.542 0.682 0.543 0.622 0.648
Semi-Generalist Models
Mol-Instructions 0.249 0.171 0.331 0.206 0.289 0.271
ChEBI-20 BioT5+*(Cls. & Trans.) 0.666 0.591 0.709 0.583 0.649 0.680
BioT5+"(Reg. & React.) 0.249 0.216 0.387 0.302 0.364 0.323
Generalist Models
GPT-4 (5-shot) 0.261 0.158 0.286 0.188 0.303 0.320
Galactica® 0.001 0.000 0.006 0.000 0.006 0.004
3D-MoLM* 0.252 0.171 0.361 0.184 0.287 0.326
ChemDFM* 0.054 0.031 0.120 0.049 0.101 0.078
LlaSMol* 0.432 0.333 0.522 0.356 0.464 0.466
Mol-LLM (w/o Graph) 0.556 0.482 0.565 0.417 0.509 0.587
Mol-LLM 0.566 0.493 0.493 0.336 0.439 0.599
Specialist Models
MolT5 0.462 0.366 0.563 0.398 0.501 0.515
MolCA™ 0.599 0.510 0.665 0.519 0.604 0.628
Semi-Generalist Models
Mol-Instructions 0.028 0.020 0.226 0.160 0.217 0.124
BioT5+*(Cls. & Trans.) 0.656 0.582 0.702 0.576 0.644 0.677
BioT5+"(Reg. & React.) 0.257 0.221 0.387 0.301 0.364 0.321
SMollnstruct Generalist Models
GPT-4 (5-shot) 0.220 0.125 0.352 0.156 0.273 0.274
Galactica® 0.002 0.000 0.007 0.000 0.006 0.005
3D-MoLM* 0.244 0.167 0.357 0.185 0.285 0.329
ChemDFM* 0.057 0.035 0.128 0.054 0.108 0.085
LlaSMol* 0.427 0.328 0.525 0.359 0.465 0.470
Mol-LLM (w/o Graph) 0.554 0.477 0.544 0.393 0.490 0.585
Mol-LLM 0.558 0.482 0.485 0.330 0.433 0.589
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