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ABSTRACT

We present a probabilistic 3D generative model, named Generative Cellular Au-
tomata, which is able to produce diverse and high quality shapes. We formulate
the shape generation process as sampling from the transition kernel of a Markov
chain, where the sampling chain eventually evolves to the full shape of the learned
distribution. The transition kernel employs the local update rules of cellular au-
tomata, effectively reducing the search space in a high-resolution 3D grid space by
exploiting the connectivity and sparsity of 3D shapes. Our progressive generation
only focuses on the sparse set of occupied voxels and their neighborhood, thus
enabling the utilization of an expressive sparse convolutional network. We propose
an effective training scheme to obtain the local homogeneous rule of generative
cellular automata with sequences that are slightly different from the sampling chain
but converge to the full shapes in the training data. Extensive experiments on
probabilistic shape completion and shape generation demonstrate that our method
achieves competitive performance against recent methods.

1 INTRODUCTION

Probabilistic 3D shape generation aims to learn and sample from the distribution of diverse 3D shapes
and has applications including 3D contents generation or robot interaction. Specifically, learning the
distribution of shapes or scenes can automate the process of generating diverse and realistic virtual
environments or new object designs. Likewise, modeling the conditional distribution of the whole
scene given partial raw 3D scans can help the decision process of a robot, by informing various
possible outputs of occluded space.

The distribution of plausible shapes in 3D space is diverse and complex, and we seek a scalable
formulation of the shape generation process. Pioneering works on 3D shape generation try to regress
the entire shape (Dai et al. (2017)) which often fail to recover fine details. We propose a more
modular approach that progressively generates shape by a sequence of local updates. Our work takes
inspiration from prior works on autoregressive models in the image domains, such as the variants of
pixelCNN (van den Oord & Kalchbrenner (2016); van den Oord et al. (2016; 2017)), which have
been successful in image generation. The key idea of pixelCNN (van den Oord et al. (2016)) is to
order the pixels, and then learn the conditional distribution of the next pixel given all of the previous
pixels. Thus generating an image becomes the task of sampling pixel-by-pixel in the predefined order.
Recently, PointGrow (Sun et al. (2020)) proposes a similar approach in the field of 3D generation,
replacing the RGB values of pixels with the coordinates of points and sampling point-by-point in
a sequential manner. While the work proposes a promising interpretable generation process by
sequentially growing a shape, the required number of sampling procedures expands linearly with the
number of points, making the model hard to scale to high-resolution data.

We believe that a more scalable solution in 3D is to employ the local update rules of cellular automata
(CA). CA, a mathematical model operating on a grid, defines a state to be a collection of cells that
carries values in the grid (Wolfram (1982)). The CA repeatedly mutates its states based on the
predefined homogeneous update rules only determined by the spatial neighborhood of the current
cell. In contrast to the conventional CA where the rules are predefined, we employ a neural network
to infer the stochastic sequential transition rule of individual cells based on Markov chain. The
obtained homogeneous local rule for the individual cells constitutes the 3D generative model, named
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Figure 1: Sampling chain of shape generation. Full generation processes are included in the supple-
mentary material.

Generative Cellular Automata (GCA). When the rule is distributed into the group of occupied cells
of an arbitrary starting shape, the sequence of local transitions eventually evolves into an instance
among the diverse shapes from the multi-modal distribution. The local update rules of CA greatly
reduce the search space of voxel occupancy, exploiting the sparsity and connectivity of 3D shapes.

We suggest a simple, progressive training procedure to learn the distribution of local transitions
of which repeated application generates the shape of the data distribution. We represent the shape
in terms of surface points and store it within a 3D grid, and the transition rule is trained only on
the occupied cells by employing a sparse CNN (Graham et al. (2018)). The sparse representation
can capture the high-resolution context information, and yet learn the effective rule enjoying the
expressive power of deep CNN as demonstrated in various computer vision tasks (Krizhevsky et al.
(2012); He et al. (2017)). Inspired by Bordes et al. (2017), our model learns sequences that are
slightly different from the sampling chain but converge to the full shapes in the training data. The
network successfully learns the update rules of CA, such that a single inference samples from the
distribution of diverse modes along the surface.

The contributions of the paper are highlighted as follows: (1) We propose Generative Cellular
Automata (GCA), a Markov chain based 3D generative model that iteratively mends the shape to a
learned distribution, generating diverse and high-fidelity shapes. (2) Our work is the first to learn
the local update rules of cellular automata for 3D shape generation in voxel representation. This
enables the use of an expressive sparse CNN and reduces the search space of voxel occupancy by fully
exploiting sparsity and connectivity of 3D shapes. (3) Extensive experiments show that our method
has competitive performance against the state-of-the-art models in probabilistic shape completion
and shape generation.

2 3D SHAPE GENERATION WITH GENERATIVE CELLULAR AUTOMATA

Let Zn be an n-dimensional uniform grid space, where n = 3 for a 3D voxel space. A 3D shape is
represented as a state s ⊂ Z3, which is an ordered set of occupied cells c ∈ Z3 in a binary occupancy
grid based on the location of the surface. Note that our voxel representation is different from the
conventional occupancy grid, where 1 represents that the cell is inside the surface. Instead, we only
store the cells lying on the surface. This representation can better exploit the sparsity of 3D shape
than the full occupancy grid.

The shape generation process is presented as a sequence of state variables s0:T that is drawn from the
following Markov Chain:

s0 ∼ p0 st+1 ∼ pθ(st+1|st) (1)
where p0 is the initial distribution and pθ is the homogeneous transition kernel parameterized by θ.
We denote the sampled sequence s0 → s1 → · · · → sT as a sampling chain. Given the data set D
containing 3D shapes x ∈ D, our objective is to learn the parameters θ of transition kernel pθ, such
that the marginal distribution of final generated sample p(sT ) =

∑
s0:T−1 p0(s0)

∏
0≤t<T pθ(s

t+1|st)
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Figure 2: Overview of GCA. The top shows a probabilistic shape completion sampling chain of a
chair starting from the partial input. Bottom figures show an illustrative figure of a single transition.
Starting from state st of occupied voxels, we apply sparse CNN to obtain the neighborhood occupancy
probability. Then we aggregate the probabilities by cell-wise averaging and sample the next state.

is close to the data distribution. The initial state s0 can be defined differently depending on the task
to solve. For the task of probabilistic shape completion, s0 is given as the partial input shape. For
shape generation, we set the initial state s0 to be the most simple state we can think of, a single cell
{c}. Figure 1 presents examples of sampling chains of shape generation, where the starting shape s0
is merely a single cell.

The GCA further splits the transition kernel pθ(st+1|st) to be the combination of local update rules
on individual occupied cells ci ∈ st, as depicted in Figure 2. The cellular transition is implemented
with the sparse convolution, which is translation invariant if implemented with a fully convolutional
network, and outputs the distribution of local occupied cells. Then individual predictions are
aggregated by cell-wise averaging, resulting in the binary probability distribution for occupancy of
each cell that follows the Bernoulli distribution:

pθ(s
t+1|st) =

∏
c∈Zn

pθ(c|st). (2)

The next state st+1 is sampled independently for individual cells from the obtained distribution and
the sampling chain continues to the next time step.

For each transition pθ(st+1|st), we limit the search space of the occupied cells by confining our
predictions within the neighborhood of the occupied cells. The underlying assumption is that the
occupied cells of a valid shape are connected and a successful generation is possible by progressive
growing into the immediate neighborhood of the given state. Specifically, the output of the sparse
convolution is the occupancy probability of neighborhood cells pi = pθ(N (ci)|st), where the
neighborhood cells are those that fall within a radius r ball centered at the cell, N (ci) = {c′ ∈
Zn| d(ci, c′) ≤ r} given a distance metric d. Other cells are ignored assuming they have probability
0 of occupancy. If the input state has M occupied cells st = {c1, · · · , cM}, the sparse convolution
predicts the occupancy probability of individual cells with N -dimension vectors P = {p1, · · · , pM},
where N is the number of neighborhood cells fixed by the distance threshold r within the uniform
grid Zn. After the cell-wise averaging step, the aggregated probability is nonzero for coordinates
in N (st) =

⋃
c∈st N (c). Then the cell-wise sampling in Eq. (2) is performed only within N (st),

instead of the full grid Zn, leading to an efficient sampling procedure.

The stochastic local transition rule pθ(N (ci)|st) changes the state of a cell’s immediate neighborhood
N(ci), but the inference is determined from a larger perception neighborhood. In contrast, classical
cellular automata updates a state of a cell determined by a fixed rule given the observation of the
cell’s immediate neighborhood. The large perception neighborhood of GCA is effectively handled by
deep sparse convolutional network, and results in convergence to a single consistent global shape out
of diverse possible output shapes as further discussed in the appendix F.
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3 TRAINING GENERATIVE CELLULAR AUTOMATA

We aim to learn the parameters for the local transition probability pθ(N (ci)|st), whose repetitive
application generates shape that follows the complex distribution of the data set. If we have sequences
of sampling chains, then all current and next states can serve as the training data. Because we
only have the set of complete shapes D, we emulate the sequence of sampling chain and obtain the
intermediate states.

The emulated sequence of a sampling chain may start from an arbitrary state, and needs to converge
to the full shape x ∈ D after local transitions to the neighbor of the previous state. A naive method
would be to sample the next state st from the sampling chain and maximize pθ(x ∩N (st)|st), the
probability of the shape that is closest to x among reachable forms from the current state1, similar
to scheduled sampling (Bengio et al. (2015)). While this approach clearly emulates the inference
procedure, it leads to learning a biased estimator as pointed out in Huszár (2015). More importantly,
the emulated sequence cannot consistently learn the full shape x as it is not guaranteed to visit the
state s such that x ⊂ N (s).

We instead employ the use of infusion training procedure suggested by Bordes et al. (2017). Specifi-
cally, the infusion chain, denoted as s̃0 → s̃1 → ...→ s̃T , is obtained as following:

s̃0 ∼ q0(s̃0|x) qt(s̃t+1|s̃t, x) =
∏

c̃∈N (s̃t)

(1− αt)pθ(c̃|s̃t) + αtδx(c̃) (3)

where q0 indicates the initial distribution of infusion chain, and qt is the infusion transition kernel
at time step t. For probabilistic shape completion s̃0 is sampled as a subset of x, while for shape
generation s̃0 is a single cell c ∈ x. The transition kernel qt is defined for cells in the neighborhood
c̃ ∈ N (s̃t) as the mixture of pθ(c̃|s̃t) and δx(c̃), which are the transition kernel of the sampling
chain and the infusion of the ground shape x, respectively. δx(c̃) is crucial to guarantee the sequence
to ultimately reach the ground truth shape, and is formulated as the Bernoulli distribution with
probability 1, if c̃ ∈ x, else 0. We set the infusion rate to increase linearly with respect to time step,
i.e., αt = max(wt, 1), where w > 0 is the speed of infusion rate as in Bordes et al. (2017).

We can prove that the training procedure converges to the shape x in the training data if it is composed
of weakly connected cells. We first define the connectivity of two states.

Definition 1. We call a state s̃′ to be partially connected to state x, if for any cell b ∈ x, there is
a cell c0 ∈ s̃′ ∩ x, and a finite sequence of coordinates c0:Tb in x that starts with c0 and ends with
cTb = b, where each subsequent element is closer than the given threshold distance r, i.e., for any
b ∈ x, ∃c0:Tb , such that ci ∈ x, d(ci, ci+1) ≤ r , 0 ≤ i ≤ Tb and c0 ∈ s̃′, cTb = b.

The shape x is partially connected to any s̃′ 6= ∅ if we can create a sequence of coordinates between
any pair of cells in x that is composed of local transitions bounded by the distance r. This is a very
weak connectivity condition, and any set that overlaps with x is partially connected to x for shapes
with continuous surfaces, which include shapes in the conventional dataset.

Now assuming that the state s̃t
′

is partially connected to the state x, we recursively create a sequence
by defining s̃t+1 = N (s̃t) ∩ x, which is the next sequence of infusion chain with infusion rate 1.
Since we use a linear scheduler for infusion rate, we can assume that there exists a state s̃t

′
such that

infusion rate αt
′
= 1. The following proposition proves that the sequence (s̃t)t≥t′ converges to x

with local transitions.

Proposition 1. Let state s̃t
′

be partially connected to state x, where x has a finite number of occupied
cells. We denote a sequence of states s̃t

′:∞, recursively defined as s̃t+1 = N (s̃t) ∩ x. Then, there
exists an integer T ′ such that s̃t = x, t ≥ T ′.

Proof. The proof is found in the appendix A.

The proposition states that the samples of infusion chain eventually converge to the shape x, and thus
we can compute the nonzero likelihood p(x|s̃T ) during training if T is large enough. One can also
interpret the training procedure as learning the sequence of states that converges to x and is close to

1Since we defined a state as a set of occupied cells, union (∪), intersection (∩), and subset (⊂) operations
can be defined as regular sets.
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Figure 3: Qualitative comparison of probabilistic
shape completion.

Figure 4: Samples from shape generation.

the sampling chain. We empirically observe that most of the training samples converge to the shape x
before the infusion rate becomes 1.

The training procedure can be summarized as the following:

1. Sample infusion chain s̃0:T from s̃0 ∼ q0(s̃0|x), s̃t+1 ∼ qt(s̃t+1|s̃t, x).
2. For each state s̃t, maximize the log-likelihood that has the closest form to x via gradient

descent, i.e., θ ← θ + η ∂ log pθ(x∩N (s̃t)|s̃t)
∂θ .

The full training algorithm utilizes a data buffer to de-correlate the gradients of subsequent time steps,
and accelerates the process by controlling the time steps based on the current state. More details
regarding the full training algorithm can be found in the appendix B.

4 EXPERIMENTS

We demonstrate the ability of GCA to generate high-fidelity shapes in two tasks: probabilistic shape
completion (Sec. 4.1) and shape generation (Sec. 4.2).

State-of-the-art works on both tasks generate shapes using point cloud whereas ours uses grid structure.
For comparison, we extract high-resolution points from the CAD model and map them into 643 voxel
grid. Individual shapes in the dataset are centered and uniformly scaled to fit within the cube [−1, 1]3.
We also present additional analysis on how the sparse representation and local transition of GCA can
successfully learn to generate fine resolution shapes with continuous geometry (Sec. 4.3). Details
regarding the training settings and baselines are reported in the appendix G.

4.1 PROBABILISTIC SHAPE COMPLETION

Dataset and implementation details. The probabilistic shape completion is tested with PartNet (Mo
et al. (2019)) and PartNet-Scan (Wu et al. (2020)) dataset, where objects in ShapeNet(Chang et al.
(2015)) are annotated with instance-level parts. For each instance, we identify the input partial object
by randomly choosing parts from the complete shape, and generating a diverse set of complete shapes.
PartNet-Scan dataset simulates the real-world situation where partial scans suffer from part-level
incompleteness by randomly selecting parts from the PartNet and virtually scanning the remaining
parts. We validate our approach on chair, lamp, and table categories following Wu et al. (2020). We
use neighborhood radius r = 3, T = 70 with infusion speed w = 0.005 for all datasets. Following
the work of Wu et al. (2020), for each partial shape in the test set, we generate ten completion results
and sample 2,048 points from occupied cells.

We compare the performance of probabilistic shape completion of GCA against cGAN (Wu et al.
(2020)), cGAN and its variations (cGAN-im-l2z and cGAN-im-pc2z) 2 , with 3D-IWGAN (Smith

2We would like to acknowledge that, when training, cGAN only requires the partial set and complete shape set
without any explicit pairing between each of the instances in the set. However, we report cGAN as the baseline
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PartNet MMD (quality, ↓) TMD (diversity, ↑) UHD (fidelity, ↓)
Method Chair Lamp Table Avg. Chair Lamp Table Avg. Chair Lamp Table Avg.

3D-IWGAN 1.94 3.57 8.18 4.56 0.99 3.58 1.52 2.03 6.89 8.86 8.07 7.94
cGAN-im-l2z 1.74 2.36 1.68 1.93 3.74 2.68 3.59 3.34 8.41 6.37 7.21 7.33
cGAN-im-pc2z 1.90 2.55 1.54 2.00 1.01 0.56 0.51 0.69 6.65 5.40 5.38 5.81
cGAN 1.52 1.97 1.46 1.65 2.75 3.31 3.30 3.12 6.89 5.72 5.56 6.06

GCA 1.28 1.85 1.13 1.42 4.74 9.38 4.50 6.20 6.21 5.96 5.60 5.92
GCA (joint) 1.33 1.89 1.14 1.45 3.69 13.49 4.55 7.24 6.14 6.31 5.59 6.01

PartNet-Scan MMD (quality, ↓) TMD (diversity, ↑) UHD (fidelity, ↓)
Method Chair Lamp Table Avg. Chair Lamp Table Avg. Chair Lamp Table Avg.

cGAN-im-l2z 1.79 2.58 1.92 2.10 3.85 3.18 4.75 3.93 7.88 6.39 7.40 7.22
cGAN-im-pc2z 1.65 2.75 1.84 2.08 1.91 0.50 1.86 1.42 7.50 5.36 5.68 6.18
cGAN 1.53 2.15 1.58 1.75 2.91 4.16 3.88 3.65 6.93 5.74 6.24 6.30

GCA 1.55 1.97 1.57 1.70 1.73 10.61 2.89 5.20 6.15 5.86 5.54 5.85

Table 1: Quantitative comparison of probabilistic shape completion results on PartNet (top) and
PartNet-Scan (bottom). The best results trained in single class are in bold. Note that MMD (quality),
TMD (diversity) and UHD (fidelity) presented in the tables are multiplied by 103, 102 and 102,
respectively. GCA (joint) denotes GCA trained on all categories combined, but evaluated individually.

& Meger (2017)) The qualitative results in Figure 3 and the appendix H clearly show that our high-
resolution completion exhibits sophisticated geometric details compared to the state-of-the-art. Our
superior performance is further verified in the quantitative results reported in Table 1 with three
metrics: minimal matching distance (MMD), total mutual difference (TMD), and unidirectional
Hausdorff distance (UHD). MMD and TMD are reported after generated samples are centered due to
translation invariant nature of our model. The detailed description regarding the evaluation metrics
are found in the appendix G.3.

We outperform all other methods in MMD and TMD on average, and achieve comparable or the
best results in UHD. The results indicate that we can generate high fidelity (MMD) yet diverse
(TMD) shapes while being loyal to the given partial geometry (UHD). We observe an extremely
large variation of completion modes in the lamp dataset, which is the dataset with the most diverse
structure while having a high level of incompleteness in the input partial data. This is because the
lamp dataset contains fragmented small parts that could be selected as an highly incomplete input.
We include further discussion about the diversity in the lamp dataset in the appendix E.

Multiple category completion. While previous works on shape completion are trained and tested
individual categories separately, we also provide the results on training with the entire category,
denoted as GCA (joint) in Table 1. The performance of jointly trained transition kernel does not
significantly differ to those of independently trained, demonstrating the expressiveness and high
capacity of GCA. In addition, interesting behavior arises with the jointly trained GCA. As shown in
the left image of Figure 5, given ambiguous input shape, the completed shape can sometimes exhibit
features from categories other than that of the given shape.

Furthermore, GCA is capable of completing a scene composed of multiple objects although it is
trained to complete a single object (Figure 5, right). We believe that this is due to the translation
invariance and the local transition of GCA. As discussed in Section 2, the deep network observes
relatively large neighborhood, but GCA updates the local neighborhood based on multiple layers of
sparse convolution which is less affected by distant voxels. The information propagation between
layers of sparse convolutional network (Graham et al. (2018)) is mediated by occupied voxels, which
effectively constrains the perception neighborhood to the connected voxels. As a result, the effect of
separated objects are successfully controlled. We also include additional examples in the appendix D
on how the GCA trained in one category completes the unseen category.

4.2 SHAPE GENERATION

Dataset and implementation details. We test the performance of shape generation using the
ShapeNet (Chang et al. (2015)) dataset, focusing on the categories with the most number of shapes:

to our method, since this is the most recent probabilistic shape completion. cGAN-im-l2z and cGAN-im-pc2z
are variants of cGAN that implicitly model the multi-modality for probabilistic shape completion.
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Figure 5: Shape completion results when jointly trained with multiple categories of shapes. Given an
ambiguous input shape, features from different categories co-exist (top: lamp + table, bottom: lamp +
chair) in the completed shape (left). Even though GCA is trained to complete a single object, it can
complete a scene with multiple partial shapes of different categories (right).

ShapeNet 1-NNA (distance of distributions, ↓) COV (diversity, ↑) MMD (quality, ↓)
Method Airplane Car Chair Avg. Airplane Car Chair Avg. Airplane Car Chair Avg.

r-GAN 95.80 99.29 84.82 93.30 38.52 8.24 19.49 22.08 1.66 6.23 18.19 8.69
GCN 95.16 - 86.52 - 9.38 - 6.95 - 2.62 - 23.10 -
Tree-GAN 95.06 - 74.55 - 44.69 - 40.33 - 1.47 - 16.15 -
3D-IWGAN 94.70 76.60 63.62 78.31 38.02 42.90 45.17 42.03 1.53 4.33 15.71 7.19
PointFlow 83.21 68.75 67.60 73.19 39.51 39.20 40.94 39.88 1.41 4.21 15.03 6.88
ShapeGF 85.06 65.48 66.16 72.23 47.65 44.60 46.37 46.21 1.29 4.09 14.82 6.73
GCA 90.62 65.06 65.71 74.85 35.80 46.31 44.56 40.79 1.25 4.19 16.89 7.44

Train set 72.10 52.98 53.93 59.67 45.43 48.30 50.45 48.06 1.29 4.21 15.89 7.13

Table 2: Quantitative comparison results of shape generation on ShapeNet. The best results are in
bold. Note that MMD is multiplied by 103.

airplane, car, and chair, as presented in Yang et al. (2019). We use the same experimental setup as Cai
et al. (2020), and sample 2,048 points from the occupied cells of the generate shape and center the
shape, due to translation invariant aspect of our model, for a fair comparison. We use neighborhood
size r = 2 with L1 distance metric, T = 100 inferences, infusion speed w = 0.005 for airplane and
car dataset, and r = 3 for chair category, which tend to converge better.

The quantitative results of shape generation are reported in Table 2. We compare the performance of
our approach against recent point cloud based methods: r-GAN (Achlioptas et al. (2018)), GCN-GAN
(Valsesia et al. (2019)), Tree-GAN (Shu et al. (2019)), Pointflow (Yang et al. (2019)), ShapeGF (Cai
et al. (2020)), a voxel-based method: 3D-IWGAN (Smith & Meger (2017)), and training set. The
scores assigned to training set can be regarded as an optimal value for each metric. We evaluate
our model on three metrics, 1-nearest-neighbor-accuracy (1-NNA), coverage (COV), and minimal
matching distance (MMD) as defined in the appendix G.3.

Our approach achieves the state-of-the-art results on 1-NNA of car category. As remarked by Yang
et al. (2019), 1-NNA is superior on measuring the distributional similarity between generated set and
test set from the perspective of both diversity and quality. Our method also achieves state-of-the-art
results on COV of car, implying that our method is able to generate diverse results. Note we are
using a homogeneous transition kernel confined within the local neighborhood of occupied cells,
but can still achieve noticeable performance on generating a rich distribution of shape. MMD is a
conventional metric to represent the shape fidelity, but some results achieve scores better than the
training set which might be questionable (Yang et al. (2019)). We visualize our shape generation
results in Figure 4 and in the appendix I.

4.3 ANALYSIS ON NEIGHBORHOOD AND CONNECTIVITY

GCA makes high-resolution predictions by only handling the occupied voxels and their neighborhood,
thus overcoming the limitation of memory requirement of voxel-based representation of 3D shape. In
Figure 6, we empirically analyze the required search space during the shape generation process that
starts from a single cell and evolves to the full shape. The occupied voxels take approximately 2% of
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Figure 6: Search space visualization. The graph
shows the percentage of the occupied voxels
(solid lines) and the searched neighborhood vox-
els (dashed lines) during 100 time steps of shape
generation process.

Figure 7: Completing disconnected shapes.
Top, front, and side views of generation pro-
cess are shown with r = 3, L1 metric neigh-
borhood, where the diameter of the lamp-
shade is over 30. Given the partial shape of
the shade, GCA is able to generate the body of
the lamp that is disconnected from the input.

the total volume (solid lines), and their neighborhood adds up to 2-8% (dashed lines). After a certain
amount of time steps, the growing speed of the search space gradually decreases, implying that our
method tends to converge and maintain the generated shape.

The large structural variation observed in the lamp dataset leads to interesting observation on the
neighborhood size of GCA and the connectivity of the shape. When r = 1, nearly 10% of the infusion
chain data fails to meet the stopping condition (cover more than 95% of x, see the training detail in
the appendix B) with time step T = 100. This is because GCA trained on a small neighborhood size,
while enabling the transition kernel to be trained quickly, lacks the flexibility to model disconnected
shapes even after large time steps. On the other hand, increased neighborhood size can capture disjoint
parts at the expense of larger search space and instability. When r = 10, the trained transition kernel
generates output that is noisy or unrelated to the input partial shape. We believe that the transition
kernel can not be trained to cover the entire search space as the neighborhood size increases cubic
to r. A few bad sampling steps can lead to a state that is far from the previous state or unobserved
during training. The effects of hyperparameters are further discussed in the appendix C.

We also clarify the notion of connectivity in relation to the neighborhood size. While we mostly
demonstrate the performance of GCA generating 3D shapes with continuous surface, GCA can surely
generate disjoint parts as long as the distance between parts is within the radius r. Besides, GCA
is flexible enough to learn to generate parts that are farther than r. r is merely the distance of cells
between adjacent steps, and it is possible to learn the sequence of states that generates a temporary
bridge to reach disconnected parts after a few steps. Figure 7 shows an observed sequence of a
sampling chain that generates a temporary bridge from the shade to the body of the lamp further than
the neighborhood size. After the sampling chain reaches the main body, GCA removes the bridge
and successfully generates the full shape.

5 RELATED WORKS

5.1 GENERATIVE MODELS

Autoregressive models. PixelCNN and its variants (van den Oord & Kalchbrenner (2016); van den
Oord et al. (2016)) sequentially sample a single pixel value at a time, conditioned on the previously
generated pixels. PointGrow (Sun et al. (2020)) extends the idea to 3D by sampling the coordinates
of points in a sequential manner. While these approaches lead to tractable probabilistic density
estimation, inferring one pixel/point with a single inference is not scalable to high resolution 3D
voxel space. GCA, on the other hand, can grow to the shape occupying any number of voxels in the
neighborhood at each inference.
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Markov chain models. Previous works learn the transition kernel of Markov chain operating on the
input space which eventually produces samples matching the data distribution (Sohl-Dickstein et al.
(2015); Anirudh et al. (2017); Bordes et al. (2017)). The diffusion-based models (Sohl-Dickstein
et al. (2015); Anirudh et al. (2017)) start from a random noise distribution and incrementally denoise
the input to generate the data. They learn the reverse of a diffusion process, which begins from the
data and gradually adds noise to become a factorial noise distribution. On the other hand, the work of
infusion training (Bordes et al. (2017)) slightly infuses data to input dimension during training, and
learns the chain biased towards the data. This removes the process of inverting the diffusion chain
and allows the chain to start from any distribution. The training of GCA utilizes the technique of
infusion, enabling to train on both shape generation and completion.

3D generative models. Recent works on 3D generative models (Yang et al. (2019); Cai et al. (2020);
Wu et al. (2020)) achieve noticeable success with point cloud based representation. They are based on
PointNet (Qi et al. (2016)), one of the most widely-used neural network architecture consuming point
cloud. PointNet condenses the 3D shape into a single global feature vector to achieve permutation
invariance, but in turn lacks the representation power of local context observed in deep neural
architecture. On the other hand, voxel-based generation methods (Wu et al. (2016); Smith & Meger
(2017)) can capture local features by directly adapting a CNN-based architecture, but suffer from
immense memory consumption in high-resolution. Recent works of sparse CNN (Graham et al.
(2018); Choy et al. (2019)) solves the problem of voxel representation by exploiting sparsity, and
outperforms other methods by a significant margin in the field of 3D semantic segmentation. To
the best of our knowledge, we are the first to utilize the expressive power of sparse CNN to learn a
probabilistic 3D generative model in a high-resolution 3D grid.

5.2 CELLULAR AUTOMATA

Cellular automata (CA) is introduced to simulate biological or chemical systems (Wolfram (1982);
Markus & Hess (1990)). CA consists of a grid of cells where individual cells are repeatedly updated
with the rule depending only on the state of neighborhood cells. Each cell is updated with the same
set of local rules, but when the update is repeatedly distributed in the entire grid, complex and
interesting behavior can emerge. However, CA requires a fixed rule to be given. Wulff & Hertz
(1992) learn simple rules with a neural network and model the underlying dynamics of CA. Neural
Cellular Automata (Mordvintsev et al. (2020)) shows an interesting extension of CA that incorporates
neural network to learn the iterative update rule and successfully generates a pre-specified image.
While the benefits of CA are not clear in the image domain, we show that the local update rule of CA
can excel in generating 3D shape, which is sparse and connected, by achieving near state-of-the-art
performance.

There is one major difference of GCA compared to the classical CA. The transition kernel employs
the deep sparse CNN and the effective perception neighborhood is much larger than the update
neighborhood. With the extension, GCA has the capacity to perceive the complex context and
concurrently generates high-fidelity local shape as demonstrated by multi-category and multi-object
generation in Figure 5.

6 CONCLUSION AND FUTURE WORK

In this work, we present a probabilistic 3D generative model, named GCA, capable of producing
diverse and high-fidelity shapes. Our model learns a transition kernel of a Markov chain operating
only on the spatial vicinity of an input voxel shape, which is the local update rules of cellular
automata. We effectively reduce the search space in a high resolution voxel space, with the advantage
of employing a highly expressive sparse convolution neural network that leads to state-of-the-art
performance in probabilistic completion and yields competitive results against recent methods in
shape generation.

Although our experiments are mainly focused on shape generation, we believe our framework is
capable of modeling a wide range of sequential data, which tends to be sparse and connected. For
instance, particle-based fluid simulation models continuous movement of fluid particles, where the
local update rules of our approach can be applied.
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A PROOF OF PROPOSITION 1

We present the proposition in Sec. 3 and its proof.

Proposition 1. Let state s̃t
′

be partially connected to state x, where x has a finite number of occupied
cells. We denote a sequence of states s̃t

′:∞, recursively defined as s̃t+1 = N (s̃t) ∩ x. Then, there
exists an integer T ′ such that s̃t = x, t ≥ T ′.

Proof. If s̃T
′
= x, s̃T

′+1 = N (s̃T
′
) ∩ x = x and s̃t = x for t ≥ T ′. Now we show that there exists

an integer T ′ such that s̃T
′
= x by showing s̃T

′ ⊂ x and s̃T
′ ⊃ x. We first prove the former by

showing that sequence of states s̃t
′:∞ is an increasing sequence bounded by x. ∀t > t′,

s̃t = s̃t ∩ x
⊂ N(s̃t) ∩ x
= s̃t+1

⊂ x

Now we show s̃T
′ ⊃ x to complete the proof. Recall the definition partially connected.

Definition 1. We call a state s̃′ to be partially connected to state x, if for any cell b ∈ x, there is
a cell c0 ∈ s̃′ ∩ x, and a finite sequence of coordinates c0:Tb in x that starts with c0 and ends with
cTb = b, where each subsequent element is closer than the given threshold distance r, i.e., for any
b ∈ x, ∃c0:Tb , such that ci ∈ x, d(ci, ci+1) ≤ r , 0 ≤ i ≤ Tb and c0 ∈ s̃′, cTb = b.

By definition, there exists a sequence of coordinates cb0:Tb for each coordinate b ∈ x. Now we show
cbt ∈ s̃t

′+t using mathematical induction. cb0 ∈ s̃t
′
. Assuming cbt ∈ s̃t

′+t for t > 0,

cbt+1 ∈ N (cbt) ∩ x

⊂ N (s̃t
′+t) ∩ x

= s̃t
′+t+1

So cbTb = b ∈ s̃t′+Tb . If we set T ′ = maxb∈x Tb, x ⊂
⋃
b∈x s̃

Tb ⊂ s̃T
′

holds, where the second
subset holds due to the increasing property of s̃t

′:∞ proven above, i.e., s̃t1 ⊂ s̃t2 for t1 < t2. Thus
we conclude that x ⊂ s̃T ′ .

B FULL DESCRIPTION OF TRAINING PROCEDURE

The training procedure described in Sec. 3 introduces the infusion chain and provides high-level
description of the training procedure. When the training data is sampled from the infusion chain, we
utilizes the data buffer B as presented in experience replay (ji Lin (1992)). Sequential state transitions
of the same data point, including our proposed infusion chain, are highly correlated and increase the
variance of updates. With the data buffer B, we can train the network with a batch of state transitions
from different data points, and de-correlate gradients for back-propagation.

The overall training procedure is described in Algorithm 1. The buffer B carries tuples that consists of
current state s, the whole shape x, and the time step t. Given the maximum budget |B|, the buffer is
initialized by the tuples (s̃0, x, 0) where s̃0 ∼ q0(s̃0|x) for a subset of data x ∈ D. For probabilistic
shape completion q0(s̃0|x) is a subset of x, and for shape generation we sample just one cell {c} ⊂ x.
Then each training step utilizes M tuples of mini-batch popped from the buffer B. We update the
parameters of neural network by maximizing the log-likelihood of the state that is closest to x among
the neighborhood of the current state, i.e., argmaxθ log pθ(x ∩N(s̃t)|s̃t). Then we sample the next
state from the infusion chain as defined in Eq. (3). If the next state does not meet the stopping
criterion, then the tuple with the next state (s̃ti+1

i , xi, ti + 1) is pushed back to the buffer. Else the
buffer samples new data from the dataset.

While the stopping criterion (line 9) should reflect the convergence to the whole shape x, the amount of
time steps needed to generate the complete shape varies significantly depending on the incompleteness
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Algorithm 1 Training GCA

1: Given dataset D, neural network parameter θ
2: Initialize buffer B with maximum budget |B| from D
3: repeat
4: Pop mini-batch (s̃tii , xi, ti)i=1:M from buffer B
5: L = 0
6: for each index i in mini-batch do
7: L ← L+ log pθ(xi ∩N(s̃tii )|s̃

ti
i )

8: s̃ti+1
i ∼ qti(s̃ti+1

i |s̃tii , xi)
9: if s̃ti+1

i does not meet stopping criterion then
10: Push (s̃ti+1

i , xi, ti + 1) into buffer B
11: else
12: Sample xi ∈ D
13: Sample s̃0i ∼ q0(s̃0i |xi)
14: Push (s̃0i , xi, 0) into buffer B
15: end if
16: end for
17: Update parameters θ ← θ + η ∂L∂θ
18: until convergence of training or early stopping
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Figure 8: Ablation study on the effects of neighborhood radius r, infusion speed w, and time step
T (from left to right) tested with probabilistic shape completion on lamp dataset. Note that MMD
(quality), TMD (diversity) and UHD (fidelity) presented in the figures are multiplied by 103, 102 and
102, respectively.

of the initial shape, the efficiency of the stochastic transitions, and the complexity of the full shape.
In addition, we need to learn to stay at the complete state once it is reached. We propose a simple
solution with an adaptive number of training steps for each data: When s̃t contains 95% of the x
for the first time, we train only constant T̂ more time steps. The additional T̂ steps lead to learn
a transition kernel similar to that of identity, implicitly learning to stay still after the generation is
completed as in Anirudh et al. (2017).

GCA framework is successfully trained to generate a wide range of shapes even though our transition
kernel is confined within its local neighborhood. Over 99% of the training data in generation and
completion experiments satisfies the stopping criterion, except for lamp in PartNet-Scan dataset on
shape completion, in which 97% of data satisfies the stopping criterion.

C ABLATION STUDY ON HYPERPARAMETERS

In this section, we further investigate the effects of hyperparameters of neighborhood radius r,
infusion speed w, and time step T , with probabilistic shape completion on lamp dataset. The default
hyperparameters are set to r = 3, w = 0.005, T = 70, and for each ablation study, only the
corresponding feature is changed. For the study on neighborhood radius and infusion speed, the
networks were retrained with the matching hyperparameters, while the ablation study on time steps
show the result of the model trained on default hyperparameter but tested with the variation of time
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Figure 9: Completion results on unseen initial states. The model is trained on chair, but the initial
state of lamp is given as input.

step T . The Figure 8 shows the effects of r, w and T on MMD (quality), TMD (diversity), and UHD
(fidelity).

The effect of the neighborhood radius r. The neighborhood radius r is the size of update neigh-
borhood of the probabilistic distribution for individual cells, N (ci) = {c′ ∈ Zn| d(ci, c′) ≤ r}.
When the radius r is too small (r = 1, 2), the MMD (quality) is considerably high compared to
when r = 3, 4. Since the size of update is small, models require more time steps to reconstruct the
whole shape, and are not able to generate the disconnected lamps as shown in Figure 7. When the
neighborhood size is adequate (r = 3, 4), GCA produces fine reconstructed shapes with reasonable
scores on all metrics. However, when the radius is too high (r = 5, 10), the model yields shapes that
are considerably irrelevant to the given initial state, resulting in a high TMD and UHD scores. Due to
the large possible transition states, few bad samplings lead to states that are irrelevant to the initial
state, resulting in the degradation of performance.

The effect of the infusion speed w. The infusion speed controls how likely the groudtruth shape is
injected (αt = max(wt, 1) in Eq. (3)) with the increasing time step. When the infusion speed is too
low, the infusion chain is close to the sampling chain, but it is less likely to visit a state that observes
the whole complete state. Also, as Huszár (2015) said, the model learns a biased estimator, which
implies that GCA may not converge to the correct model. The results in Figure 8 show that MMD and
UHD are high when the infusion speed w = 0, 0.001 compared to when w = 0.005. This indicates
that small w generates shapes with worse quality and fidelity. On the other hand, when the infusion
speed is set too high (w = 0.03, 0.05), the discrepancy between the infusion chain and sampling
chain increases. We noticed the diverging behavior of GCA, when the infusion speed was set too
high. Bordes et al. (2017) state that the optimal value for the infusion speed differs depending on the
time step T . We empirically saw that w = 0.005 produced the best result for both shape generation
and completion with T = 100 and T = 70.

The effect of the number of time step T . The time step T indicates the number of state transitions
performed to generate the shape s0 → s1 → ... → sT . The right plot of Figure 8 shows the
performance of GCA with different time steps trained on the default hyperparameter. Even though
MMD is lowest when T=30, some lamps fail to complete the shape in the given time steps. As the
time steps increase, all scores tend to increase by morphing the initial state to the complete state.
However, we would like to emphasize that the scale of the plot is relatively small and the model is
able to keep the MMD (quality) below 0.002 even when ran on 200 time steps. This is substantially
low considering that the MMD of cGAN (Wu et al. (2020)) is 0.00197. This demonstrates that GCA
is able to maintain the quality of shapes, being robust to increasing time steps.

D COMPLETION RESULTS ON UNSEEN INITIAL STATES

We investigate the behavior of GCA when an unseen input is given as the initial state. The Figure 9
shows the result of GCA trained on chair completion, but a partial lamp is given as the input. The
behavior can be classified largely into three classes. First, the model respects the initial state and is
able to generalize to a novel shape as in Figure 9 (a). Second, as in Figure 9 (b) and (c) which are
the most common cases, the model deforms the initial state into a trained state and generates results
learned during training. The final state contains a state similar to the initial, but deformed to a shape
that belongs to the trained category. Lastly, like in Figure 9 (d), if the initial state is dissimilar to the
visited state, it fails to generalize and starts diverging.
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Figure 10: Qualitative comparison against cGAN (Wu et al. (2020)) for lamp with small partial input.

Figure 11:
Failure case.

Figure 12: Probability heatmap of chair completion. The probability of next state
of occupancy is presented at a horizontal cross section, immediately below the
input chair seat. We also present the current state st.

E DIVERSITY ANALYSIS ON LAMP DATASET

Among the results presented in Sec. 4, our diversity score (TMD) for shape completion is significantly
higher than the state-of-the-art with lamp dataset (Table 1). By further investigating instances with
high TMD scores in lamp dataset, we could observe that the input part is small and highly incomplete.
The input partial data is created by randomly selecting a part from the instance, and the part labels in
lamp dataset are fragmented and diverse with less regular structure with many small parts. A typical
example with high TMD score is shown in Figure 10. The input is a small part of a lamp, and our
completion results cover a wide variety of lamps including table lights and ceiling lights, and still
exhibit fine geometry. In contrast, cGAN (Wu et al. (2020)) handles the ambiguity with consistently
blurry output. The TMD score for this specific example is 20.45 for GCA, while the cGAN achieves
6.592.

F CONVERGING TO A SINGLE MODE

Our scalable formulation can generate multiple voxels at a single inference time. This is a unique
characteristic of our formulation compared to other autoregressive models (van den Oord et al.
(2016); Sun et al. (2020)) and the key to handle high-resolution 3D shapes. Specifically, the multiple
voxels of the next state are sampled from a conditionally independent occupancy for each cell,
i.e., pθ(st+1|st) =

∏
c∈N (st) pθ(c|st). While we gain efficiency by making multiple independent

decisions in a single inference, there is no central algorithm that explicitly controls the global shape.
In other words, we can view the generation process of GCA as morphogenesis of an organism, but
there is no unified ‘DNA’ to eventually move towards a single realistic shape. We indeed encounter
rare failure cases that make multiple conflicting decisions on the global structure, as presented in
Figure 11.

However, for most of the cases, our model is capable of generating a globally consistent shapes,
converging to a single mode out of multi-modal data distribution. For example, when a chair seat is
given as the partial input shape as in Figure 12, there are multiple possible modes of shape completion,
including four-leg chairs or swivel chairs. The ambiguity is present in s2:6, where both the center and
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Figure 13: Architecture of U-Net. The parenthesis denotes the stride of the sparse convolution /
deconvolution. Every convolution is followed by batch normalization.

the corners have high probability of chair legs. GCA eventually picks a mode and decides to erase
the legs at the corners and only grow towards the center, creating a swivel chair. As shown in this
example, the transition kernel of GCA observes the change in the context and eventually converges to
a globally consistent mode even with independent samples of individual cells.

G EXPERIMENTAL DETAILS

G.1 NEURAL NETWORK ARCHITECTURE AND IMPLEMENTATION DETAILS

All experiments conducted use a variant of U-Net (Ronneberger et al. (2015)) architecture imple-
mented with sparse convolution library MinkowskiEngine (Choy et al. (2019)), depicted in Figure 13.
We train our method using the Adam (Kingma & Ba (2015)) optimizer with an initial learning rate of
5e-4 and batch size of 32. The learning rate decays by 0.5 every 100k steps. All experiments are run
on RTX 2080 ti 11GB GPU, except for the analysis on the neighborhood size with r = 10, which ran
on Titan RTX 24GB GPU.

G.2 BASELINES

All experiments in Table 1 and Table 2 are excerpted from Wu et al. (2020) and Cai et al. (2020)
except for the results of 3D-IWGAN (Smith & Meger (2017)). 3D-IWGAN was trained on the
dataset same as ours for 4000 epochs using the author’s offical code: https://github.com/
EdwardSmith1884/3D-IWGAN, with the default hyperparameters. Since the original code only
supports 32 x 32 x 32 voxel resolution, we added extra convolution / deconvolution layer for the
GAN’s discriminator, generator and VAE, generating 64 x 64 x 64 voxel resolution.

G.3 EVALUATION METRICS

We provide a more detailed explanation regarding quantitative metrics for evaluation of our approach.
Since we compare our method against recent point cloud based methods, we convert voxels into point
clouds simply by treating the coordinates of occupied voxels as points.

For all of the evaluations, we use the Chamfer distance (CD) to measure the similarity between shapes
represented as point clouds. Chamfer distance between two sets of point cloud X and Y is formally
defined as

dCD(X,Y ) =
∑
x∈X

min
y∈Y
‖x− y‖22 +

∑
y∈Y

min
x∈X
‖x− y‖22. (4)

Probabilistic Shape Completion. We employ the use of minimal matching distance (MMD), total
mutual difference (TMD), and unidirectional Hausdorff distance (UHD), as in Wu et al. (2020).

Let Sp be the set of input partial shapes and Sc be the set of complete shapes in the dataset. For each
partial shape P ∈ Sp, We generate k = 10 complete shapes CP1:k. Let G = {CP1:k} be the collection
of the entire generated set started from all elements in Sp.

• MMD measures the quality of the generated set. For each complete shape in the test set, we
compute the distance to the nearest neighbor in the generated set G and average it, which is
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formally defined by

MMD =
1

|Sc|
∑
Y ∈Sc

min
X∈G

dCD(X,Y ). (5)

• TMD measures the diversity of the generated set. We average the Chamfer distance of all
pairs of the generated set for the same partial input, formally defined by

TMD =
1

|Sp|
∑
P∈Sp

2

k(k − 1)

∑
1≤i<k

∑
i<j≤k

dCD(C
P
i , C

P
j ). (6)

• UHD measures the fidelity of the completed results against the partial inputs. We average
the unidirectional Hausdorff distance dHD from the partial input to each of the k completed
results, formally defined as

UHD =
1

|Sp|
∑
P∈Sp

1

k

∑
1≤i≤k

dHD(P,C
P
i ). (7)

Shape Generation. We employ the use of 1-nearest-neighbor-accuracy (1-NNA), coverage (COV,
and minimal matching distance (MMD)) as in Cai et al. (2020). Since MMD was introduced above,
we state the definition of 1-NNA and COV. Let Sg be the set of generated shapes and Sr be the set of
reference shapes.

• 1-NNA, proposed by Lopez-Paz & Oquab (2016), evaluates whether two distri-
butions are identical. For shape X , we denote the nearest neighbor as NX =
argminY ∈S−X dCD(X,Y ), where S−X represents the set including the entire generated
and reference shapes except itself, S−X = Sr ∪ Sg −X . 1-NNA is defined to be

1-NNA(Sg, Sr) =

∑
X∈Sg 1NX∈Sg +

∑
Y ∈Sr 1NY ∈Sr

|Sg|+ |Sr|
, (8)

where 1 is an indicator function. The optimal value of 1-NNA is 50%, when the distribution
of two sets are equal, unable to distinguish the two sets.
• COV measures the proportion of shapes in the reference set that are matched to at least one

shape in the generated set, formally defined by

COV(Sg, Sr) =
|{argminY ∈Sr dCD(X,Y )|X ∈ Sg}|

|Sr|
. (9)
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H ADDITIONAL SAMPLES ON PROBABILISTIC COMPLETION

Figure 14: Qualitative comparison against cGAN (Wu et al. (2020)) of probabilistic shape completion
on chair.
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Figure 15: Qualitative comparison against cGAN (Wu et al. (2020)) of probabilistic shape completion
on table.

Figure 16: Qualitative comparison against cGAN (Wu et al. (2020)) of probabilistic shape completion
on lamp.
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I ADDITIONAL SAMPLES ON SHAPE GENERATION

Figure 17: Samples from shape generation on airplane dataset.

Figure 18: Samples from shape generation on chair dataset.
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Figure 19: Samples from shape generation on car dataset.
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