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ABSTRACT

Modern Large Language Model (LLM) systems typically rely on Retrieval Aug-
mented Generation (RAG) which aims to gather context that is useful for response
generation. These RAG systems typically optimize strictly towards retrieving
context that is maximally relevant to the query. However, conventional theory
suggests that retrieval systems which seek to maximize context relevance without
any additional explicit criteria can create information bottlenecks. We reaffirm this
finding in the modern age of LLM’s by showing that in standard RAG pipelines,
maximizing for context relevance alone can degrade downstream response quality.
In response, we show evaluations of existing RAG methods which account for
both context relevance and answer quality. These evaluations introduce a novel
finding that existing RAG systems scale poorly with inference time compute usage
when considering our combined metric. We introduce "RErank BEyond reLevance
(REBEL)", which enables RAG systems to scale with inference-time compute via
injection of multi-criteria optimization using Chain-of-Thought prompting (and
optionally Multi-Turn dialogue). Ultimately, this enables a new performance/speed
tradeoff curve, where RAG systems are able to achieve both higher relevance of
retrieved contexts and superior answer quality as inference time increases. 1 2

1 INTRODUCTION

Large Language Models (LLMs) have significantly advanced the field of natural language processing,
enabling a wide range of applications from text generation to question answering. However, these
models often rely solely on knowledge embedded in datasets involved during training, which limits
their ability to generate responses informed by dynamic, fine-grain, or recent information. Retrieval-
Augmented Generation (RAG) has emerged as a transformative paradigm to address this limitation.
In a typical RAG workflow, relevant external documents are retrieved and added to a generative
model’s input context. This integration enhances the utility of LLMs across diverse applications, from
customer support to academic research, by grounding their outputs in up-to-date and context-specific
knowledge. See Appendix Figure 3 for a high-level overview of a typical RAG pipeline.

A key challenge in RAG systems lies in selecting which documents to retrieve and how to rank them
effectively. While many systems prioritize maximizing relevance, our findings demonstrate that
doing so without considering secondary criteria leads to a tradeoff: methods that optimize solely for
relevance may boost context relevance yet degrade the overall quality of the generated answer. For
instance, our experiments show that while Cohere and LLM Rerank achieve high retrieval relevance,
they do so at the expense of answer quality. These observations build upon results reported in works
such as Eibich, Nagpal, and Fred-Ojala (2024), where the highest-performing RAG systems in terms
of retrieval relevance often exhibited the lowest answer quality, and various modifications to RAG
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1Code for the implementation of our method in llama-index can be found at the following PR:

https://github.com/run-llama/llama_index/pull/17590
2Code for running experiments using this llama-index implementation can be found at

https://github.com/microsoft/REBEL.
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Figure 1: (Left) Comparison of retrieval methods showing retrieval precision versus answer similarity,
with error bars indicating 95% confidence intervals. The dashed best-fit lines represent the previously
posited information bottleneck (blue) and the surpassing of that bottleneck by our multi-criteria
rerankers (red). The one-turn version uses five fixed criteria (depth, diversity, clarity, authoritativeness,
and recency) to achieve both higher retrieval relevance and answer quality than vanilla RAG (No
Rerank). The two-turn version further improves performance by adapting criteria to each query
through a two-turn prompting process. (Right) Visualization of system quality (measured by the
multiplication of answer similarity and retrieval precision) and system inference speed (measured
by generated output characters per second) for each method. We note that existing relevance-only
methods are not able to achieve higher system quality at efficient inference speed rates, while our
multi-criteria methods enable a new RAG tradeoff curve where inference compute can be leveraged
to greatly increase system quality.

pipelines uniformly increased the retrieval relevance while decreasing answer quality for all RAG
pipelines evaluated. This aligns with theoretical results from information theory (Tishby, Pereira, and
Bialek, 1999), multi-criteria decision making (Figueira, Greco, and Ehrgott, 2005), and information
retrieval (Robertson, 1977), and also aligns with more classical multi-criteria information retrieval
methods such as Maximum Marginal Relevance (Carbonell and Goldstein, 1998), xQuAD (Santos,
Macdonald, and Ounis, 2010), and PM-2 (Dang and Croft, 2013). Our experiments reaffirm in the
modern age their earlier findings that optimizing for a single criterion (like relevance) can create
information bottlenecks and fail to capture important properties of optimal solutions. See Appendix B
for detailed analysis of the theoretical foundations.

In contrast, our one-turn multi-criteria reranker defies the conventional relevance/quality tradeoff by
incorporating secondary criteria without significant additional inference speed, as compared to LLM
Rerank and Cohere Rerank. Moreover, we show that query-dependent selection of secondary criteria
allows further improvements at the cost of additional inference time.

Our contributions are as follows:

1. Single-Criterion Relevance/Answer Quality Tradeoff Demonstration: We reaffirm in
the modern age of LLM’s the prior mentioned theoretical foundations that posit the tradeoff
between relevance and answer quality when secondary criteria are ignored. Specifically, we
demonstrate that methods optimizing solely for relevance, such as Cohere and LLM Rerank,
achieve higher retrieval precision while significantly degrading answer quality.

2. One-Turn Multi-Criteria Reranking: We show that a one-turn multi-criteria LLM rerank-
ing prompt can defy this relevance/quality tradeoff. By measuring secondary qualities that
are essential for evaluating context to an LLM - in addition to relevance - our one-turn
approach is able to achieve both higher relevance of retrieved contexts and higher answer
similiarity as compared to a system with no reranking.

3. Two-Turn Multi-Criteria Strategy: We introduce a two-turn meta-prompting strategy
that dynamically infers query-dependent criteria, leading to the highest answer quality and
context relevance at the cost of additional inference speed.

4. New Inference-Time-Compute/Quality Tradeoff Curve In RAG Systems: Ultimately,
along with no reranking, our one-turn and two-turn methods enable a new tradeoff curve in
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Figure 2: The two-turn version of REBEL Rerank enhances RAG systems by generating query-
dependent reranking prompts that guide document selection based on both relevance and secondary
criteria (such as authoritativeness, diversity, and recency) inferred from the user query. The Reranking
Prompt Generator creates custom prompts that help the Reranker evaluate retrieved documents using
a comprehensive scoring system that extends beyond simple relevance matching. Our experiments
show that this approach maintains high retrieval relevance while significantly improving end-to-end
answer quality, challenging the conventional assumption that maximizing relevance alone leads to
optimal results. This finding suggests that the quality of RAG-generated responses depends not just
on the topical relevance of retrieved documents, but on a broader set of contextual criteria that vary
by query type and domain.

RAG systems, where there now exists a trade off between inference speed and overall system
quality as measured by both increased context relevance and improved answer quality.

2 OUR METHOD

REBEL introduces two complementary approaches that incorporate chain-of-thought prompting into
the reranking process. First, a one-turn multi-criteria reranking prompt measures qualities in addition
to relevance to defy the conventional relevance/quality tradeoff. Second, a dynamic two-turn strategy
adapts to individual queries by inferring query-specific criteria.

2.1 ONE-TURN MULTI-CRITERIA STRATEGY

The foundation of our one-turn approach is a fixed prompt that instructs the reranking LLM to
evaluate documents based on predefined secondary criteria in addition to mere topical relevance:

1. Secondary Criteria Evaluation: The prompt defines a set of criteria beyond basic relevance
that capture qualities essential for LLM context evaluation:

• Depth of Content: Measuring thoroughness and comprehensive coverage of the topic.
• Diversity of Perspectives: Evaluating the representation of multiple viewpoints or

angles.
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• Clarity and Specificity: Assessing how clearly and precisely the document presents
information and addresses the query.

• Authoritativeness: Measuring source credibility and expertise.
• Recency: Evaluating temporal relevance.

2. Comprehensive Scoring Rubric: The prompt provides detailed scoring guidelines:
• Relevance scores (0-10) assess topical alignment
• Secondary criteria scores (0-5) evaluate each additional property

3. Weighted Composite Score: Documents receive a final score computed as:

Final Score = Relevance +
∑
i

wi × (Propertyi),

where wi represents the weight for each secondary criterion. This weighting allows for
control over how much significance is given to each component in the equation. wi = 0.5 in
all of our experiments. We leave tuning of these weights to future work.

4. Chain-of-Thought Process: The prompt guides the LLM through explicit reasoning steps:
(a) Analyzing document content thoroughly
(b) Assigning scores independently for each secondary property
(c) Computing the weighted composite score
(d) Sorting and filtering documents based on weighted composite score

5. Strict Output Format: The prompt enforces a consistent structure for reranking outputs
that matches traditional LLM reranker formats.

We include in Appendix Section E.2 our one-turn multi-criteria reranking prompt for reference.

2.2 TWO-TURN MULTI-CRITERIA STRATEGY

Building on the one-turn approach, our dynamic strategy adapts the reranking criteria to each query
through a two-turn process:

1. Query-Dependent Reranking Prompt Generation: The system first infers secondary
criteria relevant to the user query via chain-of-thought and develops a reranking prompt.
This includes:
(a) Analyzing query intent and requirements
(b) Identifying which secondary criteria are most appropriate and stating their definitions

in detail
(c) Specifying appropriate weighting schemes for each secondary criteria
(d) Defining the weighted composite score
(e) Instructing the reranking LLM to sort and filter documents based on the weighted

composite score, with outputs adherent to the traditional LLM reranking output format.
2. Reranking: The reranking LLM takes as input the generated query-dependent reranking

prompt, along with a set of documnents, and produces an ordering for these documents.

A key component of our two-turn approach is the inclusion of k-shot examples directly within the
meta prompt. Specifically, we provide several sample user queries, each followed by an illustrative
reranking prompt that demonstrates:

• How to identify relevant secondary criteria for different types of queries
• How to define scoring rubrics for both relevance and secondary criteria
• How to formulate weighted composite scores that balance relevance with secondary criteria
• How to maintain consistent output formats matching typical LLM rerankers

For the complete multi-criteria meta-prompt including k-shot examples, see Appendix Section E.1.

For a diagram illustrating how our two-turn method fits into a RAG system, see Appendix Figure 2.

4



3 EVALUATION METRICS AND MOTIVATION

The evaluation of retrieval systems typically relies on metrics such as Mean Reciprocal Rank (MRR),
precision@k, and recall@k (Manning, Raghavan, and Schütze, 2008), which assess relevance. While
these metrics are suitable for traditional retrieval tasks, they fall short in evaluating end-to-end
performance in RAG systems (Chen et al., 2023), where the ultimate goal is to enable high-quality
LLM-generated answers. The quality of these answers, our findings show, are often paradoxically
degraded when RAG systems effectively retrieve highly relevant chunks if secondary criteria are
ignored. This necessitates a reevaluation of how retrieval systems are measured and optimized.

3.1 END-TO-END SYSTEM EVALUATIONS

The primary goal of our work is to improve the quality of answers generated by RAG systems. To
this end, we adopt answer similarity (Tonic AI, 2024) as our primary evaluation metric. Answer
similarity estimates how well the generated answer aligns with a reference answer via a rubric-based
LLM - on a scale from 0 to 5. As a rubric-based metric, it provides a reliable assessment of end-to-end
system performance - as has been shown in Kim et al. (2023) which reports that LLM evaluators
achieve Pearson correlations upwards of 90% with human evaluators on rubric-based tasks.

By focusing on answer similarity, we move beyond the traditional view that RAG components to
an LLM system can be evaluated in a vacuum. Instead, we assess their holistic contribution to the
overall quality of generated answers. This shift aligns with the ultimate objective of RAG systems:
helping LLM’s deliver answers that are not only accurate but also contextually nuanced and aligned
with user expectations.

For our rationale on the choice of answer similarity over alternative approaches to answer quality
such as ROUGE (Lin, 2004), BLEU (Papineni et al., 2002), BERTScore (Zhang et al., 2020), and
complex multi-metric frameworks (Karpukhin et al., 2020; Khattab and Zaharia, 2020; Lewis et al.,
2020), see Appendix Section F.

3.2 BALANCING SECONDARY CRITERIA WITH RELEVANCE

To measure context relevance, we include retrieval precision (Tonic AI, 2024) as a secondary metric.
Retrieval precision measures the proportion of retrieved contexts that are topically relevant to the
query (as estimated by an LLM evaluator). Specifically, the LLM evaluator estimates for each piece
of context a binary relevance score. The retrieval precision is then the average of the contexts’ binary
relevance scores. See Appendix Figure 5 for a more detailed view of retrieval precision.

3.3 ENSURING APPLES-TO-APPLES COMPARISONS

To isolate the effects of our method and avoid confounding factors, we ensure an apples-to-apples
comparison by using the same dataset and LLM evaluator for both answer similarity and retrieval
precision. This eliminates potential biases introduced by differences in evaluation models or dataset
distributions. For instance, if we had instead evaluated relevance on a different dataset, this could
introduce doubt that perhaps our method merely performs well on our selected answer similarity
dataset across any given metric, and the explanation for high answer similarity from our method on
our evaluation dataset despite moderate relevance on a different dataset is merely due to a difference
in these evaluation datasets in terms of method preference; to remove this doubt, we use the same
evaluation dataset for both answer similarity and retrieval precision. We additionally use the same
LLM evaluator for evaluating both generation quality (answer similarity) and context relevance
(retrieval precision) - as opposed to using an LLM evaluator for one and human labels (or a different
LLM evaluator) for the other. This is in order to remove doubt that perhaps our chosen LLM evaluator
simply prefers answers from generations produced on contexts selected by our method across any
given evaluation metric estimated by that LLM, and our results are merely due to that LLM evaluator
preference towards our method; we therefore use the same LLM evaluator (rather than human labels
or a different LLM evaluator) to measure both relevance and answer similarity.
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4 EXPERIMENTAL SETUP

The following setup (and textual description) is largely taken from Eibich, Nagpal, and Fred-Ojala
(2024):

4.1 RAG DATA SOURCES

This study utilizes a tailored dataset derived from the AI ArXiv collection, accessible via Hugging
Face (Calam, 2023). The dataset consists of 423 selected research papers centered around the
themes of AI and LLMs, sourced from arXiv. This selection offers a comprehensive foundation for
constructing a database to test the RAG techniques and creating a set of evaluation data to assess their
effectiveness.

4.1.1 RAG DATABASE CONSTRUCTION

For the study, a subset of 13 key research papers was selected for their potential to generate specific,
technical questions suitable for evaluating Retrieval-Augmented Generation (RAG) systems. Among
the selected papers were significant contributions such as RoBERTa: A Robustly Optimized BERT
Pretraining Approach (Liu et al., 2019) and BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding (Devlin et al., 2018). To better simulate a real-world vector database
environment, where noise and irrelevant documents are present, the database was expanded to include
the full dataset of 423 papers available. The additional 410 papers act as noise, enhancing the
complexity and diversity of the retrieval challenges faced by the RAG system.

4.1.2 CHUNKING APPROACH

A TokenTextSplitter was employed with a chunk size of 2000 tokens and an overlap of 200 tokens.
This approach split the documents into smaller chunks while maintaining context by allowing for
overlapping text between chunks. We note that we deliberately do not use Sentence Window Retrieval
because, much like in the analysis of Eibich, Nagpal, and Fred-Ojala (2024), it uniformly decreased
answer similarity in our experiments. It was then excluded for brevity. Experimental results on the
effects of Sentence Window Retrieval can be founded in Eibich, Nagpal, and Fred-Ojala (2024).

4.1.3 EVALUATION DATA PREPARATION

The evaluation dataset comprises 107 question-answer (QA) pairs generated with the assistance of
GPT-4. The generation process was guided by specific criteria to ensure that the questions were
challenging, technically precise, and reflective of potential user inquiries sent to a RAG system.
Each QA pair was then reviewed by humans to validate its relevance and accuracy, ensuring that the
evaluation data accurately measures the RAG techniques’ performance in real-world applications. The
QA dataset is available in the ARAGOG (Eibich, Nagpal, and Fred-Ojala, 2024) Github repository
that originally proposed this experimental setup.

For information on why we chose this dataset over more established ones, please see Appendix
Section A.

4.1.4 EMBEDDING MODEL

In all experiments, we use OpenAI’s embedding model text-embedding-3-large for populating our
vector database.

4.2 MITIGATING LLM OUTPUT VARIABILITY

To address the inherent variability of LLM outputs, the methodology included conducting 10 runs for
each RAG technique. This strategy was chosen to balance the need for statistical reliability against
the limitations of computational resources and time. Associated boxplots (including error bars) are
included for full transparency into the effects of LLM output variability on the various metrics in the
different RAG pipelines.
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4.3 LLM

We use GPT-4o as our LLM in all inference capacities. This includes using GPT-4o as the LLM that
takes in the meta prompt and produces reranking prompts, the LLM that takes in the reranking prompt
along with the retrieved contexts and reranks the contexts, and the LLM that takes in the contexts
along with the user query and produces the ultimate answer. We GPT-4 as the LLM evaluator when
calculating answer similarity and retrieval precision. We chose GPT-4 and GPT-4o because of their
cost-effectiveness and ease of implementation. We acknowledge that using o1 or o1-pro could
have led to better reranking prompts, more accurate reranking, higher quality generated answers, and
more precise grading - although at a significantly higher cost. We note that we use GPT-4 as the
LLM evaluator (and deliberately do not use GPT-4o in this capacity) as to avoid one LLM grading
its own outputs.

5 RESULTS

For our experimental results, see Figure 1. Information about other methods involved in these
experiments can be found in Appendix Section C.

5.1 IMPACT OF MULTI-CRITERIA RERANKING

Our experiments show that both versions of REBEL, along with no reranking, establish a new
relationship that defies the information bottleneck of existing single-criteria relevance-only RAG
methods. In this new relationship, answer quality increases as context relevance increases. We further
note that in this new relationship, increased inference compute allows for both retrieval precision and
answer similarity to improve.

5.2 REAFFIRMING THE IMPORTANCE OF MULTI-CRITERIA INFORMATION RETRIEVAL IN THE
MODERN AGE OF LLM’S

Aside from underscoring the efficacy of our method, we also note that the plotted Relevance-Only
Information Bottleneck (blue line) reaffirms past theories and findings (Eibich, Nagpal, and Fred-
Ojala, 2024; Tishby, Pereira, and Bialek, 1999; Figueira, Greco, and Ehrgott, 2005; Robertson, 1977)
- now updated for the modern age of LLM’s - that maximizing relevance alone can be detrimental
to answer quality. REBEL’s multi-criteria rerankers address this by balancing relevance with other
important factors, thereby enhancing the overall utility of the generated answers.

6 LIMITATIONS

Since our experimental setup is largely copied from Eibich, Nagpal, and Fred-Ojala (2024), some of
the below limitations are similar to theirs:

• Model selection: We used GPT-4 for evaluating responses due to the constraints of Tonic
Validate, which requires the use of OpenAI models. The choice of GPT-4, while cost-
effective, may not offer the same depth of analysis as more advanced models like o1.

• Data and question scope: The study was conducted using a singular dataset and a set of
107 questions, which may affect the generalizability of the findings across different LLM
applications. Expanding the variety of datasets and questions could potentially yield more
comprehensive insights.

• Evaluation metrics: The lack of a clear consensus on the optimal metrics for evaluating
RAG systems means our chosen metrics—Retrieval Precision and Answer Similarity—are
not agreed upon as the best ways to evaluate end-to-end LLM generating systems. This
highlights an area for future research to solidify such evaluation framework.
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7 FUTURE WORK

7.1 SAFETY IMPLICATIONS AND APPLICATIONS

The ability to infer and optimize for secondary criteria beyond relevance opens promising avenues
for enhancing LLM safety in RAG systems. Current safety approaches often focus on model-level
interventions like constitutional AI (Bai et al., 2022) or RLHF (Ouyang et al., 2022), but our work
suggests that context selection itself can serve as an additional safety mechanism.

Specifically, REBEL could be extended to incorporate safety-focused secondary criteria such as:

• Factual Verifiability: Prioritizing documents with clear citations, empirical evidence, or
verifiable claims to reduce hallucination and misinformation risks.

• Bias Detection: Including criteria that assess documents for potential demographic or
ideological biases, helping ensure balanced context selection.

• Content Safety: Evaluating documents for harmful content, extremist viewpoints, or unsafe
instructions that could influence model outputs.

• Source Credibility: Weighting authoritative and peer-reviewed sources more heavily for
sensitive topics like medical or legal advice.

This approach is particularly promising because it operates orthogonally to existing safety measures -
by curating safer context, we can enhance safety regardless of the base model’s training or architecture.

Furthermore, the transparency of our reranking prompts provides an auditable trail for safety-critical
applications. Unlike black-box safety filters, stakeholders can inspect and modify the safety criteria
being used via the query-dependent reranking prompt, enabling domain-specific safety customiza-
tion. This aligns with recent calls for interpretable and controllable safety measures in AI systems
(Weidinger et al., 2022). One could also imagine a version of this process which outputs not only
scores, but also justifications as to what elements of (un)desirability/(un)safeness led to the scores
associated with the corresponding contexts for further transparency and explainability into how the
system moderates contexts.

7.2 ENHANCING CRITERIA INFERENCE THROUGH ADVANCED CHAIN-OF-THOUGHT AND
MULTI-TURN TECHNIQUES

Given that both versions of REBEL use Chain-of-Thought prompting, and our two-turn version uses
multi-turn techniques, several promising avenues for improvement emerge from recent advances in
Chain-of-Thought and multi-turn prompting. These are outlined for in Appendix Section G.

8 CONCLUSION

We have presented RErank BEyond reLevance (REBEL), a framework that enhances retrieval-
augmented generation through two complementary approaches to multi-criteria reranking. We show
that incorporation of both fixed and dynamic secondary criteria beyond relevance improves RAG
systems, both measured in a vacuum and as part of a larger end-to-end system. Both approaches
demonstrate that optimizing for relevance alone in a RAG component of a larger end-to-end LLM
system is insufficient for optimal answer generation—a finding that aligns with and empirically
validates theoretical predictions about the limitations of single-criterion optimization. These innova-
tions collectively challenge the traditional assumption that relevance alone suffices for a performant
modern RAG system, paving the way for more sophisticated and effective retrieval methods - and
ultimately establishing a new paradigm where inference-time compute can help RAG components of
LLM systems achieve higher context relevance and answer quality simultaneously.

We hope that REBEL will inspire further advancements in the field.
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Appendix

A WHY OUR DATASET?

While numerous established datasets exist for evaluating RAG systems—including Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), SQuAD (Rajpurkar et al., 2016), MS
MARCO (Nguyen et al., 2016), HotpotQA (Yang et al., 2018), and WebQuestions (Berant et al.,
2013) — we deliberately chose to work with this specialized AI ArXiv dataset and corresponding
evaluation set. This choice was motivated by a critical limitation in conventional RAG evaluation
datasets: their focus on factual correctness at the expense of other important qualities that influence
user satisfaction with generated responses.

Traditional QA datasets typically feature concise, factual answers that primarily test a system’s
ability to retrieve and state correct information. For instance, Natural Questions has a median answer
length of just 4 words for short answers and 40 words for long answers (Kwiatkowski et al., 2019),
and SQuAD’s answers average 3.2 tokens (Rajpurkar et al., 2016). While MS MARCO includes
longer passages (most answers contain 15-40 words), its evaluation still focuses primarily on factual
correctness rather than qualitative aspects of the responses.While such datasets excel at evaluating
factual accuracy, they are less effective at distinguishing between systems that produce equally correct
but qualitatively different responses. Specifically, when multiple RAG systems generate factually
accurate answers but vary in their alignment with user preferences (e.g., in terms of explanation
depth, perspective balance, or reasoning clarity), comparison against short reference answers fails
to meaningfully capture these qualitative differences. In contrast, our dataset features substantially
longer ground truth answers with a median length of 30 tokens, ranging from 8 to 61 tokens, with
the majority of answers containing between 25-35 tokens. This increased length allows for more
nuanced evaluation of response quality beyond mere factual accuracy, enabling better discrimination
between systems that produce technically correct but qualitatively different responses.

Our evaluation dataset addresses this limitation by incorporating longer, more comprehensive ref-
erence answers that better reflect the depth and nuance users typically expect. This design choice
enables our evaluation metrics to better distinguish between systems that are merely factually correct
and those that additionally align with user preferences for thorough, well-reasoned responses. This
capability is particularly crucial for evaluating REBEL, as our method specifically aims to enhance
response quality beyond basic factual accuracy by incorporating multiple criteria in the context
selection process.

B THEORETICAL FOUNDATIONS FOR MULTI-CRITERIA OPTIMIZATION IN
RAG

The limitations of single-criterion optimization in retrieval systems can be understood through
multiple theoretical lenses. The Information Bottleneck framework (Tishby, Pereira, and Bialek,
1999) demonstrates how optimizing for a single information measure can create representational
bottlenecks that limit the system’s ability to capture all relevant aspects of the data. In the context of
RAG systems, this suggests that focusing solely on relevance may constrain the retrieval system’s
ability to capture other important document properties that contribute to answer quality.

This aligns with fundamental results from multi-criteria decision theory (Figueira, Greco, and Ehrgott,
2005), which establish that single-criterion optimization often fails to capture Pareto-optimal solutions
in multi-objective spaces. When applied to document retrieval, this implies that Relevance-Only
Single-Turn optimization may systematically exclude documents that offer better trade-offs between
relevance and other crucial properties like authoritativeness or diversity.

In information retrieval theory specifically, the probability ranking principle (Robertson, 1977) and its
extensions have highlighted the limitations of pure relevance-based ranking. These works show that
document utility depends on multiple factors beyond topical relevance, particularly when documents
are used as context for downstream tasks. This theoretical foundation supports our empirical
finding that incorporating multiple criteria can improve end-to-end RAG system performance while
maintaining strong relevance scores.
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The optimality of multi-criteria approaches can also be understood through utility theory (Keeney
and Raiffa, 1976). Just as portfolio theory demonstrates the benefits of diversification in finance
(Markowitz, 1952), RAG systems benefit from considering multiple document properties rather than
optimizing for relevance alone. This diversification of criteria helps ensure the retrieved context better
serves the downstream generation task.

C RAG TECHNIQUES

The following text is taken directly from (Eibich, Nagpal, and Fred-Ojala, 2024). They include
more methods, as the purpose of their paper is to cast a wide net of methods to evaluate. However,
the purpose of our paper is to show the effects of including secondary criteria in reranking, and
we therefore focus principally on comparing RAG systems with widely-deployed traditional LLM
rerankers. We note that RAG systems in their evaluations that involved LLM rerankers were the
highest perforing in terms of answer similarity anyways.

Multi-Query (LangChain, 2023) did not significantly affect our results - experiments with Multi-Query
were therefore omitted for brevity, though they are included in our GitHub repository.

C.1 HYDE

The Hypothetical Document Embedding (Gao et al., 2022) technique enhances the document retrieval
by leveraging LLMs to generate a hypothetical answer to a query. HyDE capitalizes on the ability of
LLMs to produce context-rich answers, which, once embedded, serve as a powerful tool to refine
and focus document retrieval efforts. See Appendix Figure 6 for an overview of HyDE RAG system
workflow.

C.2 CROSS-ENCODER

Cross-encoders enhance RAG systems by jointly processing queries and documents to assess rele-
vance, unlike bi-encoders which encode them separately (Humeau et al., 2020; MacAvaney et al.,
2020). This architecture enables richer interaction between the query and document text, allowing
for more nuanced relevance assessment (Nogueira and Cho, 2019). Cross-encoders have shown
strong performance in reranking tasks across various domains (Gao, Dai, and Callan, 2021), though
at the cost of higher computational overhead since they must process each query-document pair. See
Appendix 4 for an overview of the reranker RAG system workflow. While effective, cross-encoders
typically require training or fine-tuning on domain-specific data to achieve optimal performance
(Thakur et al., 2021).

One tool in this domain is Cohere rerank, which uses a cross-encoder architecture to assess the
relevance of documents to the query. This approach differs from methods that process queries
and documents separately, as cross-encoders analyze them jointly, which could allow for a more
comprehensive understanding of their mutual relevance.

C.3 LLM RERANK

Following the success of cross-encoders in document reranking, LLM rerankers emerged as an
alternative approach that leverages large language models’ comprehensive language understanding
capabilities for reranking retrieved documents (Liu et al., 2023). Unlike cross-encoders which
require training or fine-tuning, LLM rerankers can perform zero-shot reranking through prompts
that guide their relevance assessment. While computationally more expensive than cross-encoders,
LLM rerankers can potentially achieve superior accuracy by utilizing their broader knowledge and
reasoning capabilities. This makes them particularly suitable for applications where reranking quality
outweighs computational efficiency considerations. The workflow shown in Appendix Figure 4 also
applied to LLM Rerankers.

C.4 TWO-TURN RELEVANCE-ONLY REBEL RERANK

To isolate the effects of multi-criteria optimization, we provide results for a variant of our two-turn
strategy where we optimize solely for relevance. In this strategy, we update our meta prompt to
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Figure 3: An overview of a Retrieval Augmented Generation (RAG) pipeline, including the usages
of user queries in retrieving documents and documents in response generation. Inspired by Eibich,
Nagpal, and Fred-Ojala (2024).

Figure 4: An overview of reranking within a RAG system. This shows how a set of k retrieved
documents are further refined to a set of n more curated set of documents, followed by these n
documents being used for generation. Inspired by Eibich, Nagpal, and Fred-Ojala (2024).

instruct the reranking prompt generator to form a reranking prompt that strictly requests that the
downstream reranking LLM measure relevance of documents to the query. This meta prompt does
not include k-shot examples of reranking prompts. This still includes Chain-of-Thought prompting
and dynamically adapting this reranking prompt to the query in terms of what to look for in order to
deem a document relevant. Our full two-turn relevance-only REBEL meta prompt can be found in
our Github repository.
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Figure 5: Detailed view of the calculation of retrieval precision. Inspired by Eibich, Nagpal, and
Fred-Ojala (2024).

Figure 6: Process flow of the Hypothetical Document Embedding (HyDE) technique within a
Retrieval Augmented Generation (RAG) system. The system takes a user query as input and leverages
a Large Language Model (LLM) to generate a hypothetical answer, which is then embedded into
a vector space. This embedding is used to perform vector search against a document database,
retrieving relevant documents. Inspired by Eibich, Nagpal, and Fred-Ojala (2024).
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D MULTI-CRITERIA AND HYBRID RERANKING APPROACHES

This section provides an overview of existing multi-criteria and hybrid reranking approaches in
information retrieval (IR). These methods have informed the development of retrieval-augmented
generation (RAG) systems but have not been fully adapted to the capabilities and demands of modern
large language models (LLMs).

D.1 LEARNING-TO-RANK (LTR) FRAMEWORKS

Learning-to-rank (LTR) methods optimize ranking functions by using supervised learning with
labeled data. Popular LTR approaches include:

• RankNet Burges et al. (2005): A neural pairwise ranking model that uses a probabilistic
cost function to learn relative document rankings.

• LambdaMART Burges (2010): An extension of LambdaRank that employs boosted deci-
sion trees and is widely used in production search engines.

While effective, these methods require domain-specific training data and do not dynamically adapt to
query-specific secondary criteria like recency or diversity.

D.2 KNOWLEDGE DISTILLATION AND HYBRID MODELS

Dense-sparse hybrid approaches and knowledge distillation techniques combine the strengths of
dense embeddings and traditional IR methods:

• DeepCT Dai and Callan (2020): Enhances sparse term-based retrieval (e.g., BM25) by
using dense embeddings to adjust term weights.

• ANCE Xiong et al. (2020): A dense retrieval model trained with hard negative samples to
improve ranking quality.

• ColBERT Khattab and Zaharia (2020): Combines token-level interactions with dense
embeddings for reranking, offering fine-grained control over relevance scoring.

While effective, these methods rely on supervised training and do not offer query-specific adaptability
without retraining.

D.3 REINFORCEMENT LEARNING FOR RANKING

Reinforcement learning (RL) methods optimize ranking policies based on user interactions or feed-
back:

• SlateQ Ie et al. (2019): Optimizes document slates (batches) by balancing multiple objec-
tives, such as relevance and diversity.

RL methods are constrained by the need for explicit reward signals, which are not always available in
RAG systems.

D.4 MULTI-OBJECTIVE OPTIMIZATION (MOO) IN IR

Multi-objective optimization (MOO) frameworks aim to balance competing objectives in ranking:

• Pareto-Optimal Reranking: Ensures rankings lie on the tradeoff curve of objectives like
relevance, diversity, and recency.

• Weighted Sum Techniques: Combines scores for multiple criteria using pre-defined static
weights.

These methods are limited by the need for static weights, which fail to account for query-specific
priorities.
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D.5 HUMAN-INSPIRED HEURISTICS

Heuristic-based approaches explicitly encode human-like priorities:

• Trust-Aware Ranking: Prioritizes credible sources, such as peer-reviewed articles or
verified authors.

• Recency-Boosting Search: Applies temporal decay functions to prioritize recent content
unless the query specifies otherwise.

While simple to implement, these heuristics are often static and cannot adapt dynamically to individual
queries.

D.6 ACTIVE LEARNING FOR MULTI-CRITERIA RANKING

Active learning frameworks iteratively refine rankings based on user feedback:

• User-in-the-loop approaches Zheng et al. (2010): Query users to adjust weights or refine
ranking criteria dynamically.

These methods introduce latency and are impractical for real-time RAG pipelines.

D.7 LIMITATIONS OF EXISTING APPROACHES

The methods discussed above provide valuable insights into multi-criteria and hybrid ranking. How-
ever, they often rely on static definitions of ranking criteria, require significant supervision or
retraining, and lack the ability to dynamically adapt to query-specific needs. These limitations
underscore the need for adaptive, lightweight methods like REBEL, which leverage the flexibility of
LLMs without requiring fine-tuning or domain-specific training data.

E PROMPTS

E.1 META PROMPT FOR RERANKING PROMPT GENERATOR IN TWO-TURN REBEL

Listing 1: Default meta prompt used to generate query-dependent reranking prompts. This prompt
guides the LLM to create customized reranking instructions that consider both relevance and inferred
secondary criteria specific to each query.

1 META_PROMPT = ’’’
2 You are a prompt generator. You will receive only a user’s query as input

. Your task is to:
3
4 Analyze the user’s query and identify additional properties beyond basic

relevance that would be desirable for selecting and ranking context
documents. These properties should be inferred from the query’s
subject matter, without the user specifying them. Such properties may
include:

5
6 Domain appropriateness (e.g., technical accuracy, authoritative sourcing,

correctness of information)
7 Perspective diversity (multiple viewpoints, ideological balance,

different theoretical frameworks)
8 Temporal relevance (up-to-date information, recent data)
9 Depth of detail and specificity (thorough coverage, multi-faceted

analysis, detailed examples)
10 Trustworthiness, neutrality, impartiality (reliable sources, unbiased

accounts)
11 Reasoning depth or conceptual complexity
12 Authoritativeness (recognition of reputable experts, institutions, or

high-quality sources)
13 After inferring these properties from the query, produce a final prompt

that instructs a large-language model re-ranker on how to:
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14
15 Take the user’s query and a set of candidate documents.
16 The documents and the query will appear after your instructions in this

format: A list of documents is shown below. Each document has a
number and a summary. The summaries may indicate the type of source,
credibility level, publication date, or the nature of the information
. After listing all documents, the user’s query will be presented on
a single line labeled "Question:". For example: Document 1: <summary
of document 1> Document 2: <summary of document 2> ... Document N: <
summary of document N> Question: <user’s query>

17 Assign each document a Relevance score (0-10) and scores for each
inferred property (0-5).

18 Compute a weighted composite score for each document. This composite
score should not just be used to break ties, but to determine the
final ordering. For instance, you may define a formula like: Final
Score = Relevance + (Weight1 * Property1) + (Weight2 * Property2) +
... The weights should be specified by you. For example, if you have
three properties, you might say: Final Score = Relevance + 0.5*(
Property1) + 0.5*(Property2) + 0.5*(Property3) This ensures that
documents which strongly exhibit the desired secondary properties can
surpass documents with slightly higher relevance but weaker

secondary property scores.
19 Filter out irrelevant documents first. For example, discard any document

with Relevance < 3.
20 Rank all remaining documents by their Final Score (based on the chosen

weights).
21 If two documents end up with the exact same Final Score, you may choose a

consistent approach to pick one over the other (e.g., prefer the
document with higher authoritativeness).

22 If no documents meet the relevance threshold, output nothing.
23 Produce only the final ranked list of chosen documents with their Final

Score, in descending order of Final Score. The format for each
selected document should be: Doc: [document number], Relevance: [
score], where [score] is actually the final score - not the relevance
score.

24 Include no commentary, explanation, or additional text beyond these lines
.

25 Your final prompt should:
26
27 Include the user’s query verbatim.
28 Enumerate and define the inferred properties in detail, clearly stating

their significance.
29 Provide the exact scoring rubric for Relevance (0-10) and each inferred

property (0-5), explaining what high and low scores mean.
30 Specify the weighted composite score formula and list the weights for

each property.
31 Give a step-by-step procedure: assign Relevance, assign property scores,

discard low-relevance documents, compute Final Scores, sort by Final
Score, handle ties if any, then output the final list.

32 State what to do if no documents qualify (output nothing).
33 Remind the re-ranker that the documents and query will be shown after

this prompt, and that the only acceptable output is the final sorted
list of documents and their relevance scores.

34
35 At the end of your prompt, you should ALWAYS NO MATTER WHAT include the

following:
36
37 "Example format: \n"
38 "Document 1:\n<summary of document 1>\n\n"
39 "Document 2:\n<summary of document 2>\n\n"
40 "...\n\n"
41 "Document 10:\n<summary of document 10>\n\n"
42 "Question: <question>\n"
43 "Answer:\n"
44 "Doc: 9, Relevance: 7\n"
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45 "Doc: 3, Relevance: 4\n"
46 "Doc: 7, Relevance: 3\n\n"
47 "Let’s try this now: \n\n"
48 "{context_str}\n"
49 "Question: {query_str}\n"
50 "Answer:\n"
51
52 Below are 5 k-shot examples demonstrating the required level of detail

and explicitness. Each example:
53
54 Presents a user query.
55 Infers multiple properties and explains their relevance.
56 Provides a scoring rubric for Relevance and the inferred properties.
57 Defines a weighted composite scoring formula that incorporates Relevance

and all secondary properties.
58 Gives step-by-step instructions for scoring, filtering, ranking, and

outputting results.
59 Explains what to do if no suitable documents remain.
60 Instructs that the final output should only be lines of the form "Doc: [

number], Relevance: [score]" with no extra text.
61 Example 1 User Query: "How do different countries’ tax policies affect

income inequality, and what arguments exist from various economic
schools of thought?"

62
63 Inferred Properties:
64
65 Perspective diversity (0-5): Documents that mention or compare multiple

economic theories or viewpoints score higher. A high score (5) means
it covers several distinct schools of thought. A low score (0) means
it is one-dimensional.

66 Authoritativeness (0-5): Documents from credible economists, reputable
research institutes, or peer-reviewed studies score higher. A 5 might
be a well-cited academic paper; a 0 might be an anonymous blog post.

67 Comparative breadth (0-5): Documents discussing tax policies in multiple
countries score higher. A 5 means it covers several countries, a 0
means it focuses on just one or does not compare countries at all.

68 Scoring Rubric: Relevance (0-10): A 10 means the document directly
addresses how tax policies influence income inequality and references
arguments from different economic viewpoints. A 0 means it is off-

topic. Perspective diversity (0-5): Assign based on how many distinct
economic perspectives are included. Authoritativeness (0-5): Assign

based on credibility and source quality. Comparative breadth (0-5):
Assign based on the number of countries or breadth of international
comparison.

69
70 Weighted Composite Score: Final Score = Relevance + 0.5*(Perspective

diversity) + 0.5*(Authoritativeness) + 0.5*(Comparative breadth)
71
72 Instructions: After this prompt, you will see: Document 1: <summary>

Document 2: <summary> ... Document N: <summary> Question: "How do
different countries’ tax policies affect income inequality, and what
arguments exist from various economic schools of thought?"

73
74 Assign Relevance to each document (0-10). Discard documents with

Relevance < 3.
75 For remaining documents, assign Perspective diversity, Authoritativeness,

and Comparative breadth (each 0-5).
76 Compute Final Score as described above.
77 Sort all remaining documents by Final Score (descending).
78 If two documents have identical Final Scores, pick consistently, for

example by preferring the one with higher Authoritativeness.
79 If no document remains, output nothing.
80 Output only: Doc: [number], Relevance: [score] for each selected document

, no commentary or explanation, where [score] is actually the final
score.
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81
82 "Example format: \n"
83 "Document 1:\n<summary of document 1>\n\n"
84 "Document 2:\n<summary of document 2>\n\n"
85 "...\n\n"
86 "Document 10:\n<summary of document 10>\n\n"
87 "Question: <question>\n"
88 "Answer:\n"
89 "Doc: 9, Relevance: 7\n"
90 "Doc: 3, Relevance: 4\n"
91 "Doc: 7, Relevance: 3\n\n"
92 "Let’s try this now: \n\n"
93 "{context_str}\n"
94 "Question: {query_str}\n"
95 "Answer:\n"
96
97
98 Example 2 User Query: "What are the latest recommended treatments for

chronic lower back pain according to recent medical research?"
99

100 Inferred Properties:
101
102 Recency (0-5): Higher if the document references recent studies, new

clinical guidelines, or up-to-date research (within the last few
years). A 5 means it is very recent, a 0 means outdated or no mention
of timeliness.

103 Authoritativeness (0-5): Higher if sourced from reputable medical
journals, recognized health organizations, or consensus guidelines.

104 Specificity (0-5): Higher if it focuses specifically on chronic lower
back pain treatments. A 5 means it precisely addresses chronic lower
back pain, a 0 means it only vaguely mentions pain or general
treatments without specificity.

105 Scoring Rubric: Relevance (0-10): A 10 means the document explicitly
discusses current recommended treatments for chronic lower back pain
based on recent research. A 0 means off-topic. Recency (0-5)
Authoritativeness (0-5) Specificity (0-5)

106
107 Weighted Composite Score: Final Score = Relevance + 0.5*(Recency) + 0.5*(

Authoritativeness) + 0.5*(Specificity)
108
109 Instructions: After this prompt: Document 1: <summary> ... Document N: <

summary> Question: "What are the latest recommended treatments for
chronic lower back pain according to recent medical research?"

110
111 Assign Relevance. Exclude Relevance < 3.
112 Assign Recency, Authoritativeness, Specificity.
113 Compute Final Score.
114 Sort by Final Score.
115 If tied, choose consistently (e.g., prefer higher Authoritativeness).
116 If none remain, output nothing.
117 Output only lines like: Doc: X, Relevance: Y, where Y is actually the

final score.
118
119 "Example format: \n"
120 "Document 1:\n<summary of document 1>\n\n"
121 "Document 2:\n<summary of document 2>\n\n"
122 "...\n\n"
123 "Document 10:\n<summary of document 10>\n\n"
124 "Question: <question>\n"
125 "Answer:\n"
126 "Doc: 9, Relevance: 7\n"
127 "Doc: 3, Relevance: 4\n"
128 "Doc: 7, Relevance: 3\n\n"
129 "Let’s try this now: \n\n"
130 "{context_str}\n"
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131 "Question: {query_str}\n"
132 "Answer:\n"
133
134
135 Example 3 User Query: "How did the policies of Emperor Qin Shi Huang

shape the political and cultural landscape of ancient China?"
136
137 Inferred Properties:
138
139 Historical depth (0-5): Higher if it provides detailed historical context

, dates, and direct evidence. A 5 is richly detailed, a 0 is very
superficial.

140 Perspective range (0-5): Higher if it references multiple historians or
scholarly opinions. A 5 means multiple perspectives, a 0 is one-sided
.

141 Cultural/political detail (0-5): Higher if it addresses both political
structures and cultural changes. A 5 is comprehensive, a 0 is minimal
detail.

142 Scoring Rubric: Relevance (0-10): A 10 means it explicitly discusses Qin
Shi Huang’s policies and their impact on both political and cultural
aspects of ancient China. Historical depth (0-5) Perspective range
(0-5) Cultural/political detail (0-5)

143
144 Weighted Composite Score: Final Score = Relevance + 0.5*(Historical depth

) + 0.5*(Perspective range) + 0.5*(Cultural/political detail)
145
146 Instructions: After this prompt: Document 1: <summary> ... Document N: <

summary> Question: "How did the policies of Emperor Qin Shi Huang
shape the political and cultural landscape of ancient China?"

147
148 Assign Relevance, discard < 3.
149 Assign Historical depth, Perspective range, Cultural/political detail.
150 Compute Final Score.
151 Sort by Final Score.
152 Tie-break by preferring more historically authoritative perspectives if

still tied.
153 If none qualify, output nothing.
154 Only output: Doc: [number], Relevance: [score], where [score] is actually

the final score.
155
156 "Example format: \n"
157 "Document 1:\n<summary of document 1>\n\n"
158 "Document 2:\n<summary of document 2>\n\n"
159 "...\n\n"
160 "Document 10:\n<summary of document 10>\n\n"
161 "Question: <question>\n"
162 "Answer:\n"
163 "Doc: 9, Relevance: 7\n"
164 "Doc: 3, Relevance: 4\n"
165 "Doc: 7, Relevance: 3\n\n"
166 "Let’s try this now: \n\n"
167 "{context_str}\n"
168 "Question: {query_str}\n"
169 "Answer:\n"
170
171
172 Example 4 User Query: "What are the main differences between various

machine learning frameworks like TensorFlow, PyTorch, and Scikit-
learn?"

173
174 Inferred Properties:
175
176 Technical accuracy (0-5): Higher if the document correctly and

specifically describes features, performance characteristics, or
typical uses. A 5 means very accurate and specific.
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177 Comparative breadth (0-5): Higher if the document compares multiple
frameworks directly, ideally all three. A 5 means it covers all three
well, a 0 means it only mentions one.

178 Authoritativeness (0-5): Higher if citing official documentation, known
ML experts, or reputable evaluation sources.

179 Scoring Rubric: Relevance (0-10): A 10 means the document explicitly
compares these ML frameworks in detail. Technical accuracy (0-5)
Comparative breadth (0-5) Authoritativeness (0-5)

180
181 Weighted Composite Score: Final Score = Relevance + 0.5*(Technical

accuracy) + 0.5*(Comparative breadth) + 0.5*(Authoritativeness)
182
183 Instructions: After prompt: Document 1: <summary> ... Document N: <

summary> Question: "What are the main differences between various
machine learning frameworks like TensorFlow, PyTorch, and Scikit-
learn?"

184
185 Assign Relevance, exclude < 3.
186 Assign Technical accuracy, Comparative breadth, Authoritativeness.
187 Compute Final Score.
188 Sort by Final Score.
189 Tie-break by preferring documents that are more authoritative or have

greater comparative breadth.
190 If none remain, output nothing.
191 Output only lines like: Doc: [number], Relevance: [score], where [score]

is actually the final score.
192
193 "Example format: \n"
194 "Document 1:\n<summary of document 1>\n\n"
195 "Document 2:\n<summary of document 2>\n\n"
196 "...\n\n"
197 "Document 10:\n<summary of document 10>\n\n"
198 "Question: <question>\n"
199 "Answer:\n"
200 "Doc: 9, Relevance: 7\n"
201 "Doc: 3, Relevance: 4\n"
202 "Doc: 7, Relevance: 3\n\n"
203 "Let’s try this now: \n\n"
204 "{context_str}\n"
205 "Question: {query_str}\n"
206 "Answer:\n"
207
208 Example 5 User Query: "What are the arguments for and against universal

basic income in modern economies?"
209
210 Inferred Properties:
211
212 Balance of perspectives (0-5): Higher if the document presents both pro

and con arguments. A 5 means thorough coverage of both sides.
213 Reasoning depth (0-5): Higher if it explains the rationale behind

arguments, providing logic or evidence.
214 Authoritativeness (0-5): Higher if referencing economists, studies, or

policy analyses from reputable sources.
215 Scoring Rubric: Relevance (0-10): A 10 means it clearly discusses UBI

arguments both for and against. Balance of perspectives (0-5)
Reasoning depth (0-5) Authoritativeness (0-5)

216
217
218 Weighted Composite Score: Final Score = Relevance + 0.5*(Balance of

perspectives) + 0.5*(Reasoning depth) + 0.5*(Authoritativeness)
219
220 Instructions: After prompt: Document 1: <summary> ... Document N: <

summary> Question: "What are the arguments for and against universal
basic income in modern economies?"

221
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222 Assign Relevance, discard < 3.
223 Assign Balance of perspectives, Reasoning depth, Authoritativeness.
224 Compute Final Score.
225 Sort by Final Score.
226 If tied, prefer documents with higher reasoning depth or

authoritativeness.
227 If none remain, output nothing.
228 Output only: Doc: [number], Relevance: [score], where [score] is actually

the final score.
229
230 "Example format: \n"
231 "Document 1:\n<summary of document 1>\n\n"
232 "Document 2:\n<summary of document 2>\n\n"
233 "...\n\n"
234 "Document 10:\n<summary of document 10>\n\n"
235 "Question: <question>\n"
236 "Answer:\n"
237 "Doc: 9, Relevance: 7\n"
238 "Doc: 3, Relevance: 4\n"
239 "Doc: 7, Relevance: 3\n\n"
240 "Let’s try this now: \n\n"
241 "{context_str}\n"
242 "Question: {query_str}\n"
243 "Answer:\n"
244
245
246 Follow these examples as a template for your final prompt. For any new

user query, do the following:
247
248 Include the user’s query verbatim.
249 Infer the relevant secondary properties and define them clearly.
250 Give a scoring rubric for Relevance and each property.
251 Specify a weighted composite score formula that combines Relevance and

the properties.
252 Provide step-by-step instructions: assign scores, filter out irrelevant

documents, compute Final Score, sort by Final Score, handle ties, and
if none qualify, output nothing.

253 Instruct the re-ranker to output only the final list of documents and
their Relevance scores, with no extra commentary.

254 Now, here is the user’s query:
255
256 [USER QUERY]
257 ’’’

E.2 ONE-TURN MULTI-CRITERIA RERANKING PROMPT

Listing 2: Default prompt used to rerank documents with a diverse set of multiple criteria.
1 DEFAULT_CHOICE_SELECT_PROMPT_TMPL = ’’’
2 You are a re-ranking system. Your task is to analyze a user’s

query and a set of candidate documents, assign scores
based on specified properties, and output the final
ranking of documents.

3
4 **Inferred Properties**
5
6 1. **Depth of Content (0-5):**
7 - Higher scores indicate thorough detail and comprehensive

coverage of the topic.
8 - A "5" is exceptionally in-depth with multiple facets

addressed; a "0" is very superficial.
9

10 2. **Diversity of Perspectives (0-5):**
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11 - Higher scores indicate that multiple viewpoints or angles
are represented.

12 - A "5" means it engages with a variety of perspectives or
sources; a "0" means it is entirely one-sided.

13
14 3. **Clarity and Specificity (0-5):**
15 - Higher scores indicate that the document presents

information clearly and addresses the query with precise,
unambiguous detail.

16 - A "5" means it is highly specific and clear, while a "0"
means it is vague or overly general.

17
18 4. **Authoritativeness (0-5):**
19 - Higher scores indicate reputable sources, expert authorship

, or recognized credibility.
20 - A "5" might be an extensively cited academic work or an

official standard; a "0" would be an unknown or dubious
source.

21
22 5. **Recency (0-5):**
23 - Higher scores indicate that the document references recent

studies, data, or developments.
24 - A "5" means it is very current and up-to-date; a "0" means

it is outdated or does not reference any time-sensitive
information.

25
26 **Scoring Rubric**
27
28 - **Relevance (0-10):**
29 - A "10" means the document directly addresses the user’s

query, covering the key subject comprehensively.
30 - A "0" means it is completely off-topic.
31
32 - **Depth of Content (0-5):** Based on how detailed or

thorough the document is.
33 - **Diversity of Perspectives (0-5):** Based on how many

viewpoints or angles are presented.
34 - **Clarity and Specificity (0-5):** Based on how clear and

precise the document is.
35 - **Authoritativeness (0-5):** Based on source credibility or

recognized expertise.
36 - **Recency (0-5):** Based on how up-to-date the document is.
37
38 **Weighted Composite Score**
39 Final Score = Relevance + 0.5*(Depth of Content) + 0.5*(

Diversity of Perspectives) + 0.5*(Clarity and Specificity
) + 0.5*(Authoritativeness) + 0.5*(Recency)

40
41 **Instructions**
42 1. Assign Relevance to each document on a scale of 0-10.

Discard any document with Relevance < 3.
43 2. For the remaining documents, assign scores for:
44 - Depth of Content (0-5)
45 - Diversity of Perspectives (0-5)
46 - Clarity and Specificity (0-5)
47 - Authoritativeness (0-5)
48 - Recency (0-5)
49 3. Compute each document’s Final Score using the formula

above.
50 4. Sort the documents by their Final Score in descending

order.
51 5. If two documents end up with the same Final Score, prefer

the one with higher Authoritativeness (or apply another
consistent tie-breaking rule).
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52 6. If no documents remain after filtering for Relevance,
output nothing.

53 7. Output only the list of selected documents with their
Relevance scores, in this format (no extra text or
commentary), where [score] is actually the Final Score
and NOT the relevance score.:

54 ‘‘‘
55 Doc: [document number], Relevance: [score]
56 ‘‘‘
57
58 **Example format:**
59 ‘‘‘
60 Document 1:
61 <summary of document 1>
62
63 Document 2:
64 <summary of document 2>
65
66 ...
67
68 Document 10:
69 <summary of document 10>
70
71 Question: <question>
72 Answer:
73 Doc: 9, Relevance: 7
74 Doc: 3, Relevance: 4
75 Doc: 7, Relevance: 3
76
77 Let’s try this now:
78
79 {context_str}
80 Question: {query_str}
81 Answer:
82 ‘‘‘
83 ’’’

F RATIONALE FOR CHOOSING ANSWER SIMILARITY OVER ALTERNATIVE
ANSWER QUALITY METRICS

Alternative answer quality evaluation approaches often fall short in multiple ways. Surface-level
metrics like ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002) can be misled by superficial text
matching, marking responses as different even when they convey identical meanings through different
words. While more sophisticated metrics like BERTScore (Zhang et al., 2020) move beyond n-gram
matching by using contextual embeddings, the semantic relationships captured by these embedding
distances remain opaque, and their uncalibrated scores lack clear interpretability - a 0.8 BERTScore
doesn’t map to any intuitive measure of answer quality. Many evaluation frameworks compound these
issues by relying on complex scoring mechanisms or multiple separate metrics that require careful
tuning of thresholds and weights (Karpukhin et al., 2020; Khattab and Zaharia, 2020; Lewis et al.,
2020), making system comparisons difficult and obscuring what matters most - whether the system
produces answers that convey the intended meaning. Our answer similarity metric addresses these
limitations through a deliberately streamlined approach, directly asking an LLM to rate semantic
similarity between generated and reference answers on a 0-5 scale. This straightforward assessment
focuses on the core question: does the generated answer convey the same meaning as the reference?
By reducing evaluation to this fundamental comparison and moving beyond both syntactic similarities
and abstract embedding spaces, we enable a clearer assessment of whether a RAG system is achieving
its fundamental goal: producing answers that convey the same meaning as high-quality reference
responses, regardless of exact wording.
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G FUTURE WORK

Given that both versions of REBEL use Chain-of-Thought prompting, and our two-turn version uses
multi-turn techniques, several promising avenues for improvement emerge from recent advances in
Chain-of-Thought and multi-turn prompting.

G.1 ENHANCING CHAIN-OF-THOUGHT PROMPTING IN BOTH VARIANTS

G.1.1 STATIC MULTI-CRITERIA RERANKING PROMPT IMPROVEMENTS

Several strategies could enhance our fixed reranking prompt:

• Empirical Weight Tuning: Following Pryzant et al. (2023), we could systematically evalu-
ate different weightings for our five fixed criteria (depth, diversity, clarity, authoritativeness,
and recency) across diverse query types. This could help identify optimal default weights
that generalize well across different scenarios.

• Criteria Definition Refinement: Drawing from Zhou et al. (2022), we could break down
each criterion into more precise sub-components with clearer scoring guidelines. For
instance, "depth" could be decomposed into measurable aspects like "number of distinct
concepts covered" and "level of technical detail."

• Scoring Rubric Optimization: Inspired by Wang et al. (2022), we could generate mul-
tiple candidate rubrics for each criterion, evaluate their effectiveness through controlled
experiments, and synthesize the most reliable scoring guidelines. This could improve the
consistency and interpretability of our scoring system.

• Cross-Criteria Interaction Analysis: Using techniques from Yao et al. (2023), we could
explore how different criteria interact and potentially modify our scoring formula to account
for these interactions. For example, we might discover that high diversity scores are more
valuable when combined with high authoritativeness.

G.1.2 META PROMPT IMPROVEMENTS

For our meta prompt that generates query-dependent reranking instructions, we identify several
potential enhancements:

• Example Diversification: Following Wei et al. (2022), we could expand our k-shot examples
to cover a broader range of query types and domains, helping the prompt generator better
adapt to diverse information needs. Min et al. (2022) suggest this could be further enhanced
by selecting examples that specifically target edge cases and challenging scenarios.

• Dynamic Weight Assignment: Inspired by Fu et al. (2023), we could enhance the meta
prompt’s ability to assign appropriate weights to inferred criteria based on query complexity
characteristics. This might involve providing explicit guidelines for weight selection based
on query features like complexity, domain, or intended use as demonstrated in Zhang et al.
(2023).

• Output Format Optimization: Following Mishra et al. (2023), we could refine how the
generated reranking prompts structure their scoring guidelines and instructions, potentially
incorporating more explicit step-by-step breakdowns to improve clarity and consistency.

These improvements could enhance both the reliability of our fixed criteria evaluation and the
adaptability of our query-dependent approach. Future work should systematically evaluate these
modifications to identify which combinations yield the most robust and effective reranking strategies.

G.2 MULTI-TURN DIALOGUE ADVANCEMENTS

Several promising avenues for improving our two-turn emerge from recent advances in multi-turn
dialogue systems and iterative prompting. These are outlined as follows:
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• Progressive Refinement: Following Diao, Song, and Wang (2023), we could implement a
step-wise refinement process where each turn builds upon and refines the criteria identified in
previous turns. This could help ensure more robust and comprehensive criteria identification.

• Recursive Prompting: Inspired by Zhou, Zhao, and Zhang (2023), we could expand our
two-turn approach into a recursive structure where each level of criteria inference informs
and refines the next. This would enable the system to explore and evaluate criteria at multiple
levels of granularity.

• Structured Turn Taking: Adapting the approach of Wu, Liu, and Chen (2023), we could
organize the multi-turn dialogue into distinct phases for criteria identification, evaluation,
and refinement. This structured approach could be particularly valuable for complex queries
requiring multiple types of criteria.

• Adaptive Turn Iteration: Drawing from Jung, Park, and Kim (2023), we could dynamically
adjust the number and nature of turns based on query complexity, allowing for more efficient
and targeted criteria inference.
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