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Abstract

Recognizing symbols in architectural CAD drawings is critical for various advanced
engineering applications. In this paper, we propose a novel CAD data annotation
engine that leverages intrinsic attributes from systematically archived CAD draw-
ings to automatically generate high-quality annotations, thus significantly reducing
manual labeling efforts. Utilizing this engine, we construct ArchCAD-400k, a
large-scale CAD dataset consisting of 413,062 chunks from 5538 standardized
drawings, making it over 26 times larger than the largest existing CAD dataset.
ArchCAD-400k boasts an extended drawing diversity and broader categories, of-
fering line-grained annotations. Furthermore, we present a new baseline model
for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It
incorporates an adaptive fusion module to enhance primitive features with com-
plementary image features, achieving state-of-the-art performance and enhanced
robustness. Extensive experiments validate the effectiveness of DPSS, demonstrat-
ing the value of ArchCAD-400k and its potential to drive innovation in architectural
design and construction.

1 Introduction

For a long time, CAD drawings have served as the universal language of architectural design,
enabling seamless communication among designers, engineers, and construction personnel through
standardized graphical primitives such as arcs, circles, and polylines. Accurate perception of these
primitives in 2D CAD drawings is essential for various downstream applications, including automated
drawing review and 3D building information modeling (BIM) [} [2, 13 4]], as this ability enables
the optimization of CAD-based workflows while enhancing efficiency and precision in architectural
design and construction processes(S} 16].

Building upon earlier research in symbol spotting [7, (8, 9, 10], pioneering work formally defined the
task of panoptic symbol spotting [[11]] for floor plan CAD drawings and established the benchmark
dataset FloorPlanCAD [[11} 12} [13} 14, [15} [16]. However, the manual annotation of line-grained
labels is a highly time-consuming and labor-intensive process, severely limiting the dataset’s scale
and diversity. This bottleneck restricts the ability to train models that can generalize across diverse
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(a) Raw CAD Drawings (b) Panoptic labeled Drawings

Figure 1: An example of annotated drawings in ArchCAD-400k. Each geometric primitive is assigned both
semantic and instance labels, with distinct semantic categories represented by different colors and instances
visualized through convex hull masks. The chunks are extracted from complete drawings.

building types, varying spatial scales, complex layouts, and a wide range of architectural component
categories, thereby hindering their applicability to real-world scenarios.

To address these limitations, we propose an efficient annotation pipeline for line-grained labels,
reducing annotation cost from 1,000 person-hours for 16K data to 800 hours for 413K. The core idea
is to leverage the structured organization of floor plan drawings, including layers and blocks, to enable
scalable and cost-effective large-scale annotation. Layers support bulk labeling via semantic grouping
(e.g., doors, windows), while blocks allow instance reuse for repeated elements. As shown in Figure@
the layer-block structure, inherently designed to enforce drawing standards and ensure consistency
in architectural documentation, forms the foundational framework for our automated annotation
pipeline. To ensure high data quality, we use completed drawings from top design institutions and a
fully vectorized annotation workflow, with expert review of automated outputs.

Based on the efficient and accurate data engine,
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and commercial facilities forming the majority.

The average area of drawings in ArchCAD-400k spans 11,000 m?, significantly larger than Floor-
PlanCAD’s 1,000 m? average, with 51.9% ranging from 1,000 to 10,000 m? and 4.4% exceeding
100,000 m2. Furthermore, ArchCAD-400k introduces a comprehensive semantic categorization,
including 27 categories such as structural components (e.g., columns, beams), non-structural elements
(e.g., doors, windows), and drawing notations (e.g., axis lines, labels), with 14 categories each
containing over 1 million primitives. This extensive scale, diversity, and detailed annotation make
ArchCAD-400k a robust resource for advancing Al models in construction industry. An example
from ArchCAD-400k is illustrated in Figure[l]

We further propose a novel framework for panoptic symbol spotting, named Dual-Pathway Symbol
Spotter (DPSS), which incorporates an adaptive fusion module to effectively enhance primitive
features with complementary image features. This design enables the model to achieve superior
performance and enhanced robustness compared to existing methods while demonstrating strong
scalability and generalization capabilities on larger-scale datasets. In summary, our work presents the
following contributions:

(1) We develop a highly efficient annotation pipeline specifically designed for floor plan CAD
drawings, which generates high-quality annotations with improved efficiency compared to image-



based manual annotation, significantly reducing the annotation cost from 1,000 person-hours for 16K
data to 800 person-hours for 413K data.

(2) We introduce ArchCAD-400k, a large-scale floor plan CAD drawing dataset that surpasses the
current largest FloorPlanCAD dataset by an order of magnitude in size and exhibits greater diversity
in terms of building types, spatial scales, and architectural component categories.

(3) We propose DPSS, a novel framework for panoptic symbol spotting that achieves state-of-the-art
performance on FloorPlanCAD and ArchCAD-400k, surpassing the second-best method by 3% and
10%, respectively, with exceptional accuracy, robustness, and scalability.

2 Related Works

2.1 Floor Plan Datasets

Several datasets have been developed for floor plan analysis. SESYD [9] comprises 1,000 synthetic
vectorized documents with ground truth annotations. FPLAN-POLY [10] contains 42 floor plans
derived from images [17] for spatial relationship analysis. Cubicasa [3] provides 5,000 floor plan
images annotated with over 80 object categories, focusing on residential layouts. RFP [18]] includes
2,000 annotated floor plans with detailed room-level information for Asian residential buildings.
FloorPlanCAD [11] offers 16,103 vector-graphic floor plans in “.svg" format, annotated across 35
object categories. LS-CAD [16] introduces a test set of 50 full-size CAD drawings with an average
area of 1,000 square meters. However, these datasets are limited in scale and rely on labor-intensive
annotation, hindering large-scale training.

2.2 Large-scale Vision Datasets

Large-scale vision datasets have significantly advanced deep learning models for complex visual
understanding tasks[[19} 120} 21} 22, 23] 24,125, 126, 1277]], including floor plan recognition. Image-based
datasets such as ImageNet [[19]] (14M images, 21K categories) and COCO [20] (300K images with
object detection, segmentation, and captioning labels) have been instrumental in developing state-
of-the-art models for object recognition, classification, and scene understanding. These datasets
provide rich annotations that enhance model generalization, improving performance across general
and domain-specific tasks. Nevertheless, large-scale vector-based datasets and efficient annotation
processes for floor plan understanding remain scarce.

2.3 Panoptic Symbol Spotting

The panoptic symbol spotting task, initially proposed in [[L1], involves the simultaneous detection
and classification of architectural symbols (e.g., doors, windows, stairs) in floor plan CAD drawings.
While traditional methods [7] focus on countable instances (e.g., windows, tables), Fan et al. [[L1]]
extended this to uncountable objects (e.g., walls, railings), inspired by [28]. They introduced
PanCADNet, which integrates Faster R-CNN [29] for countable instances and Graph Convolutional
Networks [30] for uncountable elements. Subsequently, Fan et al. [12] proposed CADTransformer,
utilizing HRNetV2-W48 [31] and Vision Transformers [32]] for primitive tokenization and embedding
aggregation. Zheng et al. [15] adopted graph-based representations with Graph Attention Networks
for semantic and instance-level predictions. Liu et al. [14] introduced SymPoint, exploring point set
representations, later enhanced by SymPointV?2 [13]] through layer feature encoding and position-
guided training. In contrast, CADSpotting [16]] densely samples points along primitives and employs
Sliding Window Aggregation for efficient panoptic segmentation of large-scale CAD drawings. While
these methods perform well on FloorPlanCAD, they struggle on our more diverse, complex, and
large-scale dataset, highlighting the need for robust and scalable solutions.

3 Annotation pipeline of ArchCAD-400k

We carefully gathered over 11917 complete CAD drawings from the industry, covering a wide range
of building types. From the initial drawings, 5,538 drawings were validated as strictly conforming
to the layer-block organizational standards. Through automated annotation combined with expert
refinement, we generated approximately 413,062 chunks with line-grained annotations, each sized
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Figure 3: Overall pipeline of the annotation process. Primitives are labeled by automated methods followed by
manual modification.

at 14mx14m, aligning with the design of FloorPlanCAD [11]]. The overall annotation pipeline of
ArchCAD-400k is shown in Figure [3|and detailed below.

3.1 Annotation Format

The ArchCAD-400k employs a structured annotation format tailored for the panoptic symbol spotting
task, as defined in [11]. Each graphical primitive (e.g., line, arc, circle) in the drawing is characterized
by a dual-identifier pair, (Ix, z) ), where [}, denotes its semantic category and zj, represents the instance
identifier. Primitives sharing the same zj;, value are considered to be part of the same instance.

3.2 Layer-Block Standardization Screening

Manual annotation of floor plans is inefficient due to crowded layouts and inconsistent symbols.
Standardized drawings use layers for bulk annotation (e.g., door layer) and blocks for identifying
repeated instances, clarifying topological and semantic relationships for automation.

However, the feasibility of automated annotation depends on the standardization level of the drawings.
Non-standard drawings can have ambiguous layer names and mixed primitives, leading to semantic
confusion. Notably, professional design institutes typically maintain internal layering standards,
which can be normalized and processed to establish machine-interpretable structures. Thus, we
restrict our data to completed drawings from leading design institutions and apply a layer naming
validation algorithm against a reference table, discarding drawings with over 5% deviation. This
dual quality control ensures standardization of the input data, providing a solid foundation for future
automated annotation based on layer-block standardization. The reference table is provided in
Appendix A.

3.3 Automated Annotation with Expert Refinement

The automated annotation process based on layer-block standardization greatly reduces manual
workload and enables large-scale annotation. However, its accuracy is limited, especially with
non-standard drawings that escape standardization. Semantic ambiguities and mixed primitives
within layers often cause errors, necessitating human correction. To improve accuracy, we engaged
10 experienced architectural drafters with over 3 years of experience to refine annotations using
a vector-based interface. Unlike typical image-based annotation methods such as bounding boxes
or polygons, direct vector editing avoids raster-to-vector conversion errors and resolves issues like
overlapping instances.

We adopted a two-stage annotation system as shown in Figure 3| In the semantic stage, layers
are categorized by names and content, with their semantics displayed in for expert review and
correction. In the instance stage, key categories are isolated and instance masks are proposed from
block information, then manually refined. We also developed tools to automatically check layer-block
compliance, flagging errors for quick human correction. Using this system, we annotated 5,538



Table 1: Comparison of ArchCAD-400k to existing CAD drawing datasets.

Scale Data Format Annotation Elements
Dataset Source - -
Size Total Area Raster  Vector Type Method Architectural ~ Structural Notation
FPLAN-POLY Internet 48 <5 x 10* m? v/ X Instance Human v X X
SESYD [9] Synthetic 1000 <5 x 10° m? v v Instance Human v X X
FloorPlanCAD [11] Industry 16K 1.6 x 10°m? v v Panoptic Human v X X
ArchCAD-400k Industry 413K 8.1x10"m> / /  Panoptic Auto & Human v 4 4

drawings in 800 hours, which is over 10 times more efficient than the FloorPlanCAD dataset while
maintaining high accuracy and reliability.

Ethical and Copyright Considerations. The dataset used in this work is derived from architectural
or design drawings, which may contain potentially sensitive or proprietary information. To ensure
compliance with ethical and copyright standards, we apply strict data anonymization before training
or release, including removal of identifiable text and irreversible obfuscation of metadata, so that the
original content of any individual project cannot be reconstructed. All data is used solely for research
under academic fair use, and no raw data that may infringe copyright or IP rights is released. These
measures ensure compliance with ethical standards and protection of PIIL.

4 Exploring ArchCAD-400k

We compare our ArchCAD-400k with existing datasets, as summarized in Table[T} Publicly available
datasets, such as SESYD [9]], FPLAN-POLY [[10], and FloorPlanCAD [11]], exhibit limitations in
terms of source, scale, data format, annotation type and method, as well as the range of elements
included in floor plans. These constraints affect their applicability to real-world architectural analysis.

4.1 Extended Building Diversity

Previous floor plan datasets predominantly originated from residential buildings, with a primary
emphasis on indoor layouts. This limitation constrained their applicability in analyzing a wider variety
of project types. In contrast, our dataset is curated from a more diverse array of buildings, as illustrated
in Figure fa] with residential structures comprising only 14% of the total. A substantial portion
consists of large-scale public and commercial buildings, including office complexes, industrial parks,
and other expansive facilities. This diverse composition provides a richer and more representative
architectural dataset, enabling applications across a wider variety of building scenarios.
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Figure 4: (a) Different project types of drawings; (b) Area distribution of drawings; (¢) Number of annotated
primitives for 27 semantic classes, where bar colors match each class’s visualization.



4.2 Larger Data and Spatial Scale

ArchCAD-400k stands out for its unprecedented scale, comprising 5,538 complete drawings and
413,062 chunks, surpassing FloorPlanCAD’s 15,663 chunks by over 26 times. This substantial scale
significantly enhances the robustness and generalization capabilities of models for the spotting task.

In addition to the data scale, ArchCAD-400k features much larger drawings compared to existing
datasets, which are generally restricted to small areas under 1,000 m?. The average drawing in
our dataset spans 11,000 m?, closely reflecting real-world architectural dimensions. As shown in
Figure 51.9% of the drawings cover areas between 1,000 and 10,000,m?2, while 4.4% exceed
100,000 m?, representing a wide spectrum of building areas and configurations.

4.3 Diverse Element Types

Traditional floor plan datasets typically focus on common non-structural elements, such as furniture,
equipment, and decorative features. While such categorizations are sufficient for residential interior
layouts, they often fail to capture critical components when applied to more diverse building types,
particularly in complex architectural or industrial settings.

To address this limitation, our ArchCAD-400k adopts a comprehensive semantic categorization
that extends beyond traditional architectural elements. Specifically, we introduce annotations for
structural components (e.g., columns, beams, and holes) and drawing notations (e.g., axis lines,
labels, and markers) in addition to non-structural elements. Structural components are fundamental
to reconstructing the overall building structure as they define the load-bearing framework and spatial
organization of the architectural design. In contrast, drawing notations are ubiquitous in real-world
drawings and play a critical role in ensuring accurate interpretation and practical implementation.
This tripartite categorization, encompassing non-structural, structural, and notation elements, enables
a broader range of applications, including indoor navigation, architectural design, and structural
analysis.

ArchCAD-400k provides detailed annotations for 27 categories, with the distribution of primitives
across these categories visually represented in Figure Notably, 14 of these categories each
encompass more than 1 million primitives, underscoring the extensive scale of our dataset. Addi-
tionally, our dataset includes 7 countable instance categories. While this count is fewer than that of
FloorPlanCAD, our dataset surpasses it in terms of diversity and complexity within each category,
presenting a more formidable challenge. For instance, we consolidate various fine-grained furniture
types from FloorPlanCAD, such as chair, table, and bed, into a single unified “furniture" category.
Visual examples of the categories can be found in Appendix A.

5 Method

To enhance panoptic symbol spotting on large-scale datasets, we propose Dual-Pathway Symbol
Spotter (DPSS), a robust framework free from prior knowledge like color or layer cues. As shown in
Figure[5] DPSS employs a dual-path feature extractor: an image branch encodes rendered graphics for
global context, while a point cloud branch captures geometric details by treating primitives as points.
An adaptive fusion module aligns these multimodal features, and a transformer decoder performs
panoptic segmentation for precise symbol spotting in complex diagrams.

5.1 Two-stream Primitive Encoding Module

The extraction of high-quality features for vector graphic panoramic segmentation is crucial as it
directly affects segmentation performance. Unlike raster images, vector graphics consist of primitives,
yet research on their modeling remains limited, highlighting the need for better feature extraction
methods. CADTransformer [12] rasterizes vector graphics and samples features at the primitive
centers, while SymPoint [[14]] encodes primitives as points using geometric attributes and a point cloud
encoder[33]]. Image-based approaches capture semantics well but struggle with fine-grained tasks,
whereas point-based methods handle instances effectively but are less suited for sparse structures
like walls. To address this, we combine visual and geometric encoding. Our visual encoder, based
on HRNetV2 [34], extracts feature maps from rendered images. Meanwhile, a Point Transformer-
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Figure 5: The overall architecture of the proposed Dual-Pathway Symbol Spotter (DPSS). CAD drawings
are encoded through both point backbone and image backbone. Features from dual pathways are aligned and
fused in adaptive fusion module, then pass through a transformer decoder to generate mask predictions and
classifications at primitive level.

inspired point cloud encoder generates geometric features for each primitive, ensuring a more
comprehensive representation.

5.2 Adaptive Fusion Module

We use an image sampler to extract semantic features for each primitive. Given the primitive center
(x.,y.) and the feature map F € R¥*WXC the sampler produces point-wise image features V.
Since sampling points may fall between pixels, bilinear interpolation is applied:

Vo = K(Fnw), (1)

where V), is the extracted feature, K is the interpolation function, and Fy(,/) denotes neighboring
pixels. The combination of primitive and image features is challenging due to size variations, noise,
and overlapping. To address this, we introduce a geometry-guided fusion layer. First, graphic features
X, and image features V), are transformed via an MLP, then concatenated and pass through an
activation function . A weight matrix w is computed as:

w = O'(Wltanh(WgXp + ngp)), (2)
where W7y, Wy, W3 are learnable parameters. Finally, the weighted features yield the representation:

U, = concat(X,, wV},). 3

5.3 Decoder and Loss Function

The decoder is designed based on the architectures of DETR [35]] and Mask2Former [36], achieving
panoptic symbol spotting by predicting primitive-level masks along with their categories. The loss
function is composed of a standard cross-entropy loss (L;s) for class predictions, a binary cross-
entropy loss (Lyce), and a Dice loss (Lg;ce) [37] for mask predictions. The overall loss is formulated
as a weighted sum of the three losses L = AgjsLeis + Apce Lbce + Adice Ldice, Where Aejs, Apee, and
Adice denote the weight for each loss term respectively.

6 Experiments

We split our ArchCAD-400k dataset into training, validation, and test sets using a 7:1:2 ratio, ensuring
that each drawing and its corresponding annotations appear in only one split. This results in 289,144
annotated samples for training, 41,306 for validation, and 82,612 for testing. Following the definition
of panoptic symbol spotting, we evaluate the model performance using Panoptic Quality (PQ),
Segmentation Quality (SQ), and Recognition Quality (RQ). The formulation of these metrics can be
found in [11]. To evaluate model performance on ArchCAD-400k, we compare existing methods and
our proposed method DPSS, with detailed results presented below.



Table 2: Panoptic symbol spotting results on FloorplanCAD [11] dataset

Additional Total Thing Stuff
Method P

priorinpuls  po Q. RQ  PQ  SQ RQ PQ  SQ RQ
SymPointV2[13] w/ 90.1 963 93.6 908 96.6 940 80.8 90.9 889
CADSpotting[16] w/ 889 956 93.0 89.7 962 932 80.6 89.7 89.8
DPSS w/ 89.5 962 93.1 904 966 935 797 91.1 875
CADTransformer[12] w/o 689 883 733 785 940 835 586 819 715

GAT-CADNet[15] w/o 7377 914 80.7 - - - - - -
SymPoint[14] w/o 833 914 91.1 841 947 888 482 695 694
SymPointV2[13] w/o 83.2 91.3 91.1 858 925 927 493 703 70.1
DPSS w/o 86.2 930 92,6 88.0 941 935 647 830 779

6.1 Implement Details

We adopt HRNetW48 [31]] pretrained on COCO-Stuff [38] as the backbone for the visual branch.
The point cloud branch uses the PointTransformerV2 [39] encoder pretrained on ScanNetV?2 [40]].
The model is trained on 8 NVIDIA A800 GPUs and the optimizer is AdamW. On FloorplanCAD [[11]]
dataset, we set a batch size of 2 per GPU and with a learning rate of 2 x 10~* and a weight decay of
0.1. The model is trained for 50 epochs. On ArchCAD-400k, we set a batch size of 4 per GPU and
train the model for 10 epochs with a learning rate of 2 x 10~ and the same weight decay. Other
baseline methods on ArchCAD-400k are trained for 10 epochs under their default configurations. All
models were confirmed to have converged before evaluation to ensure fair performance comparison.

6.2 Quantitative Evaluation

Table 3: Semantic and instance spotting results on FloorPlanCAD

Method Additional  Semantic spotting Instance spotting
1] P
e priormputs gy wF1 AP50 AP75 mAP
SymPointV2 [13] w/ 89.5 88.3 713  60.7 60.1
CADSpotting [16] w/ 93.5 93.9 722 69.1 69.0
DPSS w/ 93.1 93.2 748 71.0 70.8
DeepLabv3+R101 [41] w/o 68.8 71.4 - - -
DINO [42] w/o - - 649 549 475
CADTransformer [[11] w/o 82.2 80.1 - - -
SymPoint [[14] w/o 86.8 85.5 66.3 557 528
SymPointV2 [13] w/o 87.0 86.3 664 577 575
DPSS w/o 92.0 93.2 670 618 615

Quantitative comparison on FloorPlanCAD. We evaluate multiple methods on the FloorPlanCAD
dataset (Tables E] and E]), under two scenarios: with and without prior information (such as layers and
color). This distinction reflects how CAD drawings encode semantics—primitives in the same layer
or with similar colors often share categories.

SymPointV2 improves on SymPointV1 by adding layer encoding, while CADSpotting samples
primitives based on color and position. As shown in Table[2] DPSS performs comparably to these
methods when priors are present. Without them, however, SymPointV2 suffers a notable drop,
whereas DPSS stays robust—achieving 3% higher overall PQ and 15% higher "Stuff" PQ than
SymPointV2, demonstrating better generalization. In Table 3} DPSS also clearly outperforms others
in Semantic and Instance Spotting without priors, including some classical semantic segmentation
and instance detection algorithms.

While our method benefits from prior information, we prioritize performance without it, as this better
reflects real-world scenarios where such metadata is often unavailable.

Quantitative comparison on ArchCAD-400k. We evaluate various methods on our ArchCAD-
400k dataset (Table EII), comparing DPSS with CADTransformer, SymPoint, and SymPointV2, all
without using layer or color priors, to better reflect real-world conditions. Compared to FloorPlanCAD,
ArchCAD-400k is more challenging, leading to overall lower performance. For instance, SymPointV?2
drops from 83.2% PQ on FloorPlanCAD to 60.5% on ArchCAD-400k —a decrease of over 22%.



Table 4: Panoptic, semantic, and instance symbol spotting results on ArchCAD-400k

Method Total Thing Stuff Semantic Spotting Instance Spotting
t
etho PQ SQ RQ PQ SQ RQ PQ SQ RQ Fl wF1 AP50 AP75 mAP
CADTransformer[12] 60.0 89.7 669 525 83.6 627 70.1 96.7 725 84.1 83.4 — — —
SymPoint[14] 476 86.1 553 514 919 559 399 739 540 768 62.0 36.1 309 308
SymPointV2[13] 60.5 880 688 624 91.7 681 528 737 717 69.8 69.3 449 402 397
DPSS 70.6 902 782 656 924 709 776 878 884 878 84.1 456  41.1 407

DPSS shows clear advantages in scalability and robustness. In semantic spotting, it achieves an F1 of
87.8%, outperforming CADTransformer (84.1%), SymPoint (76.8%), and SymPointV2 (69.8%). In
instance spotting, it reaches 40.7% mAP, surpassing SymPointV2 (39.7%) and SymPoint (30.8%).
For panoptic symbol spotting, DPSS attains a total PQ of 70.6%, significantly ahead of SymPointV2
(60.5%) and SymPoint (47.6%). Notably, its Stuff PQ reaches 77.6%, 24.8% higher than SymPointV2.

In summary, DPSS consistently outperforms baselines across all tasks, even without prior information.
Its strong performance on the more complex ArchCAD-400k highlights its scalability, robustness,
and practical applicability to real-world CAD scenarios.

6.3 Ablations

Ablation studies on DPSS. To demonstrate the effectiveness of the proposed DPSS, we conducted
ablation studies focusing on different encoding strategies. Specifically, we evaluated the impact of
using only the primitive encoder, only the image encoder, and the combination of both, as shown
in Table[5] (Lines 1-3). The integration of both the image encoder and the primitive encoder yields
a 1.3% improvement in PQ compared to using the primitive encoder alone, and a 2.1% gain over
using only the image encoder. These results highlight the complementary nature of the two encoding
branches. Furthermore, we investigated the role of the adaptive fusion module by replacing it with a
simple concatenation strategy for combining image and primitive features, as shown in Table 5] (Lines
3-4). The results show that incorporating our adaptive fusion leads to a significant 3.2% increase in
PQ, underscoring its effectiveness in enhancing feature integration.

Table 5: Ablation experiments on FloorPlanCAD

Primitive Image Adaptive
Encoder Encoder Fusion PQ RQ SQ
v 81.7 90.1 90.6
80.9 89.4 90.6
v v 83.0 90.1 92.1
v v v 86.2 93.0 92.6

Generalization ability of ArchCAD-400k. To validate the generalization ability of ArchCAD-400k,
We implement DPSS on FloorPlanCADJ11] dataset with a dual-pathway encoder pretrained on
ArchCAD-400k. Results are illustrated in Figure [6a] The pre-trained model achieves faster and more
stable convergence, surpassing the performance of non-pre-trained models at 50 epochs within 30
epochs. It suggests that ArchCAD-400k covers FloorPlanCAD and furthermore has more diverse
patterns and properties for models to generalize across datasets.

Scaling performance of ArchCAD-400k. We conducted experiments to validate the scaling law in
the context of panoptic symbol spotting. Using a subset of our ArchCAD-400k and adopting DPSS
as the baseline network, we evaluated the training performance across different data scales, ranging
from 10K samples to the full 400K samples. As demonstrated in Figure [6b|and [6c] within 10K to
400K data range, doubling the dataset size consistently reduces the loss by 2.33 and improves the PQ
metric by 6.40% in average. The results indicate that, for panoptic symbol spotting tasks, large-scale
datasets significantly enhance model performance.

6.4 Qualitative Results

The qualitative results on our ArchCAD-400k are illustrated in Figure|/| In the presented cases,
DPSS demonstrates superior performance than SymPointV2 [13]]. In architectural diagrams (row 1),
characterized by a diversity of component types and numerous interfering lines, DPSS is capable
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Figure 7: Qualitative comparison between DPSS and SymPointV2 [13]] on FloorPlanCAD(Linel) and ArchCAD-
400k (Line2).

of filtering out such disturbances to achieve precise spotting results. In structural drawings (row
2), where the shapes of components exhibit high similarity, DPSS effectively integrates contextual
information to discern semantic differences between analogous components.

7 Conclusion

In this work, we address the challenges in panoptic symbol spotting for architectural CAD drawings
by introducing an efficient annotation pipeline, a large-scale dataset (ArchCAD-400k), and a novel
framework (DPSS). Our pipeline reduces annotation costs, enabling the creation of ArchCAD-400k,
which surpasses existing datasets in scale and diversity. With 413,062 annotated chunks from 5,538
drawings, ArchCAD-400k covers diverse building types and spatial scales, advancing Al models in
architectural design. DPSS, equipped with an adaptive fusion module to effectively enhance primitive
features with complementary image features, achieves state-of-the-art performance on FloorPlanCAD
and ArchCAD-400k, demonstrating superior accuracy, robustness, and scalability. We hope that our
ArchCAD-400k will catalyze further progress in this domain.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introducton, we make the relevent claims on the new
large-sacle CAD dataset and new baseline on panoptic symbol spotting as backed by our
dataset and experiment sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations and potential future work of this project in
Appendix C.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: There is no theoretical results associated with this work.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient details in section [5]to allow reproduction of the main
results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Currently, the code and dataset are publicly available at github and huggingface
respectively.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section [6.1] we clearly demonstrated various experimental settings, includ-
ing hyperparameters, model settings, etc.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Due to the high cost of training, we do not repeat the same experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed descriptions of the compute resources used for our
experiments. Details are included in section [6]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss potential societal impacts in Section[7} The proposed dataset
and method can enhance automation and efficiency in CAD-based design workflows by
reducing manual effort and improving symbol recognition accuracy. The dataset used in this
study has been properly anonymized, with all private or personal information removed. To
the best of our knowledge, this research does not pose any explicit negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets (including code, data, and models) used in this work have
been properly attributed to their original creators, with full compliance to their respective

licenses and terms of use. The dataset is released under the CC-BY-NC 4.0 license, and the
code is available under the CC-BY 4.0 license.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The newly released dataset and algorithm are well documented for the open-
sourced version, ensuring clarity, reproducibility, and ease of use for the research community.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our research does not employ LLMs as part of the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Information About the ArchCAD-400k

A.1 Detailed description of categorization

In Figure[8] we present some visual examples of content from each category. Engineering symbols
from different categories can share great similarity. For example, simple rectangles can represent
columns, holes, foundation, or furniture. Similarly, pairs of parallel lines might denote a pipeline,
beam, or wall. At the same time, some instances can be drawn in diverse forms. As illustrated in
Figure 8] there are at least six different ways to represent a door, and the appearance of stairs can vary
greatly in different scenarios.
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Figure 8: Visual examples of content in each category.
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A.2 Additional information about the annotation pipeline

Our annotation pipeline adopts regex matching to map layer names to semantic classes. The layer
names in standardized drawings have a hierarchical format like [Discipline]-[Category]-[Modifier].
In Table[6] we list part of the standardized naming table for doors, walls, and stairs. Categories can
be matched through the keyword in the table.

Table 6: Examples of correspondence between layer names and semantics

Semantic label ~ Standard layer specifications

Content description

A-DOOR
A-DOOR-FRAM

The surface structure of the door.
The internal steel frame supporting the door.

Door A-DOOR-HEAD The line indicating the position of the door beam.
A-DOOR-ROLL The layout or design of the fireproof roller shutter.
A-WALL-BLOK Masonry block wall for structural stability.
A-WALL-CONC Concrete wall with high strength and fire resistance.
A-WALL-STUD Lightweight partition with stud framing and drywall.
A-WALL-PRHT Partial-height wall for spatial division.
A-WALL-SCRN Metal wall for electromagnetic shielding.
A-WALL-FINI Final surface treatment or cladding of a wall.
Wall A-WALL-INSU Insulation layer for thermal or acoustic performance.
A-WALL-TPTN Partial-height wall for restroom privacy.
A-WALL-EXPL Reinforced wall to withstand blast pressures.
S-WALL-LINE The outline or framework of a wall in structural drawings.
S-WALL-HATCH Represents the filling or material pattern of a wall in structural drawings.
A-STRS-TREA Stepping surface and vertical connector in stair construction.
A-STRS-ESCL Mechanical moving stairs for vertical transportation between floors.
Stairs A-STRS-HRAL Safety rails along stair edges for fall prevention.
S-STRS-LINE Outline representing stair geometry in structural drawings.
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A.3 Additional examples of ArchCAD-400k

An example of well-labeled large architectural drawings exists in the main text. We further show two
labeled drawings in our dataset in FigureEl Each of them covers an area over 8000 m?, with various
types of components.
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Figure 9: Additional example of the annotated drawings.
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B More Evaluations

B.1 Analysis on Computational Efficiency

To evaluate the computational efficiency of the proposed method, we conducted additional experi-
ments measuring inference latency across representative approaches. Our model operates on images
with a resolution of 700x700, which introduces only a moderate computational overhead. Compared
with SymPoint-V2 [13]], the proposed method increases inference latency by approximately 30%,
while achieving 3.0% and 10.1% higher panoptic quality on ArchCAD-400K and FloorPlanCAD,
respectively. These results indicate that the proposed approach attains a favorable balance between

computational efficiency and segmentation accuracy.

Table 7: Comparison with existing methods on FloorPlanCAD and ArchCAD-400K.

Method PQ (FloorPlanCAD) PQ (ArchCAD-400K) Average Latency
CADTransformer [12] 68.9 60.0 159ms
SymPoint [14] 83.3 47.6 66ms
SymPoint-V2 [13] 83.2 60.5 95ms
DPSS (ours) 86.2 70.6 121ms
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B.2 Additional Quantitative Evaluations

We present the detailed experimental results of various methods on the ArchCAD-400k, including the
panoptic quality (PQ) for each category as well as the mean IoU (Intersection over Union) for each
category. The IoU for each category is obtained by calculating the intersection over union between
the predicted panoptic segmentation masks and the ground truth masks. Different methods excel
at handling different types of objects, DPSS achieves higher PQ and IoU metrics. For the current
spotting results, there is still significant room for improvement.

Table 8: Quantitative results for panoptic symbol spotting of each category on ArchCAD-400k

; DPSS CADTransformer [11] SymPoint [14] SymPointV2 [13]

s U PQ  IoU PQ U PQ  IoU  PQ
symbol 84.4 89.8 62.4 70.7 76.4 80.9 74.2 79.3
axis 90.8 854 23.2 329 58.3 56.2 71.8 83.7
door 64.4 75.9 53.2 64.9 63.9 75.6 82.6 79.1
floor slab 40.8 85.6 14.4 80.3 20.9 82.8 47.7 69.4
elevator 45.6 77.6 26.5 63.9 54.6 73.3 28.0 69.2
stairs 60.4 65.4 353 452 41.3 55.4 43.7 78.0
furniture 72.5 88.7 66.5 73.3 63.2 83.9 434 54.0
hole 61.1 70.2 32.1 40.0 59.6 53.8 50.2 60.7
window 47.8 57.2 524 55.0 64.7 68.4 57.8 70.8
curtain wall 65.9 83.7 48.8 61.4 50.3 72.6 339 39.1
wall 734 75.6 39.1 45.9 52.7 57.7 42.3 70.7
concrete column  65.8 83.6 59.5 66.8 64.4 71.6 63.9 69.8
steel column 48.6 80.3 50.7 71.8 52.9 82.8 51.1 79.2
concrete beam 81.8 81.7 43.8 45.0 61.5 62.1 48.3 77.9
steel beam 79.1 73.0 19.7 349 47.5 52.2 71.5 77.4
parking spot 66.8 73.2 57.9 76.9 46.0 79.3 72.1 69.0
roof 3.5 28.7 3.7 39.1 5.7 50.1 55.6 76.1
base 85.0 90.3 65.8 75.2 71.2 83.1 16.3 21.3
bracing 19.6 33.8 7.8 20.0 20.2 232 67.6 81.1
rebar 72.7 93.1 394 69.4 56.5 81.1 53.5 75.9
equipment 37.2 45.8 1.0 7.0 30.8 31.8 284 20.1
handrail 73.6 65.9 31.2 31.0 40.2 42.7 70.3 85.8
pipe 444 48.3 329 344 51.7 41.7 52.5 42.4
window curtain ~ 50.4 80.3 58.6 72.1 49.2 67.7 46.3 47.5

construction joint 0.0 5.3 0.0 0.3 2.5 4.8 4.1 3.7

embedment 0.0 0.0 0.0 0.0 0.0 0.0 1.2 2.8
hydrant 70.7 71.7 68.6 64.5 74.1 69.4 49.5 34.0
overall 70.6 67.04 47.6 49.1 60.5 59.1 60.0 60.8

C Limitations and Future Work

Although the proposed DPSS demonstrates strong performance on the panoptic symbol spotting task,
some limitations remain. Notably, the current approach cannot process an entire vector drawing in a
single pass, which leads to high computational overhead. With the availability of the ArchCAD-400k
dataset, more complex and comprehensive research questions related to panoptic symbol spotting
and the analysis of engineering line drawings can be explored. For example, future directions include
the pre-trained models tailored for CAD vector graphics, and efficient inference strategies to handle
large scale real-world drawings.
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