
Under review at ICLR 2023 ML4Materials workshop

LATENT CONSERVATIVE OBJECTIVE MODELS FOR
OFFLINE DATA-DRIVEN CRYSTAL STRUCTURE PREDIC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

In computational chemistry, crystal structure prediction (CSP) is an optimization
problem that involves discovering new crystal structures. This problem is challeng-
ing for machine learning (ML) methods: it requires discovering globally optimal
designs that attain the smallest energy in complex non-Euclidean manifolds. One
approach to tackle this problem involves building simulators based on density
functional theory (DFT), but these simulators are painfully slow. More recent
approaches are exploring the alternate paradigm of relying on learned graph neural
networks (GNNs) surrogate models as a proxy for simulation. We propose a method
that leverages GNNs to reduce the complexity of the problem. Concretely, we
reduce the non-Euclidean optimization search space to a standard vector one with
Graph Variational Autoencoders (GVAEs), and we combine that with techniques
from offline model-based optimization. This prevents the optimization procedure
from producing unstable structures that erroneously appear to have low energies
under the learned model. We show that this procedure outperforms current alterna-
tives, both in terms of success rate of structure prediction, and computational cost.
In addition, it provides a generic recipe to apply offline optimization techniques for
optimizing in non-Euclidean spaces.

1 INTRODUCTION

Data-driven optimization problems arise in many areas of science and engineering. In these settings,
we have an unknown function that we would like to optimize with respect to its inputs, provided only
with a dataset of input-output pairs. Examples include drug design, where inputs might be molecules
and outputs are the efficacy of a drug, protein design, where inputs correspond to protein sequences
and outputs are some metric such as fluorescence (Sarkisyan et al., 2016) or, as in our experiments,
prediction of crystal structures, where inputs consist of crystal structures and outputs correspond to
their formation energy. Such data driven optimization problems present several challenges. First,
naı̈vely training a predictive model to predict the output from the input and then optimizing against
such a model may lead to exploitation and adversarial examples: a sufficiently strong optimizer can
typically discover inputs that lead any learned model to extrapolate erroneously, and then exploit
these errors to find inputs that “fool” the model into making the desired predictions. Second, even
if a model can be suitably robustified against such exploitation, many of the most important design
and optimization problems in science and engineering, including crystal structure prediction, require
optimizing over complex constrained sets and non-Euclidean manifolds, such that naı̈vely applying
gradient-based methods in the input space is unlikely to lead to good results.

In this paper, we study these challenges in the context of crystal structure prediction (CSP) Woodley
& Catlow (2008). Crystals are a class of solid-state materials characterized by the periodic place-
ment of atoms. These structures form the basis of a wide variety of applications such as designing
super-conductors, batteries Yamashita et al. (2016), and solar cells Walsh et al. (2012). Computa-
tionally identifying stable crystal geometries given a particular molecule is an important problem
for practitioners, and typically involves minimizing (an estimate of) the crystal’s formation energy
to find the minimal energy structure. Conventional approaches to this problem rely on slow and
compute-intensive DFT simulators Chermette (1998), but more recent machine learning approaches
dispense with DFT-based simulators and use databases of structures and their corresponding energies
to train models that estimate crystal formation energy directly Gasteiger et al. (2021); Klicpera
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et al. (2020). However, the CSP problem suffers from both issues outlined above: crystal structures
typically exhibit highly complex geometries characterized by periodicity of the lattice that forms the
crystal and discrete (e.g., number and types of atoms in the chemical compound) and continuous
features (e.g., positions of atoms in 3D space), which make it hard to produce reliable estimates
of energies across the entire manifold of possible structures. Optimizing the structure using such
inaccurate models then bears the risk of the optimization procedure “exploiting” these inaccuracies,
resulting in structures that erroneously appear promising in this learned model but do not actually
attain stable energies. Even if we can avoid such errors locally around existing structures, our goal is
to discover globally optimal structures reliably, which still remains hard.

In this paper, we aim to develop a data-driven optimization algorithm that can overcome these
challenges. First, to avoid the complexities associated with optimization over non-Euclidean spaces,
our optimization procedure utilizes advances in variational graph auto-encoders (VGAEs) Kipf &
Welling (2016) to convert crystal structures into smooth latent representations, which are much more
amenable to simple gradient-based optimization methods. Second, to prevent the optimizer from
getting “fooled” by the errors in the learned surrogate model, we apply a robustification procedure to
our learned energy prediction function that explicitly pushes down on erroneously over-estimated
out-of-distribution inputs in the latent space. Using a combination of these techniques, we develop a
method for finding stable crystal structures that alleviates the time and compute costs associated with
using DFT simulators, while also addressing the inaccuracies in a purely ML-driven approach for
designing crystal structures.

Our main contribution is a data-driven optimization algorithm that operates on the latent space of a
variational graph auto-encoder (VGAE), applied to the problem of crystal structure prediction for
solid materials. Our method leverages both advances in generative modeling over periodic solid-state
materials for latent space learning and recent advances in model-based optimization for robustifying
the learned model to make it amenable to direct optimization of formation energies. We summarize
the method in Figure 1. We instantiate our method, which we refer to as latent conservative objective
models (LCOMs), using crystal diffusion variational auto-encoders (CD-VAE) Xie et al. (2021)
for learning the latent space and conservative objective models (COMs) Trabucco et al. (2021b)
for optimization. We show that this strategy gives us crystal structures with accuracy of 17/25,
using 25 typical compounds for testing. This not only matches the state-of-art method for molecule
optimizations, but it also improves on them in terms of computational time. A single optimization
cycle in our framework takes an average of 20 minutes and, thanks to the architecture of modern
CPUs and GPUs which are highly efficient at vectorized operations, in a single optimization cycle we
can optimize over more 100 compounds (in our experiments we worked with a batch size of 256).
That allows our model to provide predictions for more than 100 compounds in 20 minutes, which is a
timing that no other previous work can compare to.

2 BACKGROUND AND DEFINITIONS FOR CRYSTAL STRUCTURES AND
MATERIALS

In this section, we present the background definitions and terminology associated with crystals and
solid-state materials and then discuss the crystal structure prediction problem (CSP) that we study in
this work in the next section.

A crystal is a solid-state material characterized by a periodic placement of its constituents, which
are chemical elements. The stoichiometry or the composition of a crystal, like NaCl, consists of the
elements that make up the solid-state material (i.e., Na and Cl in this case) and in what ratio. In
real-world applications of solid-state materials it is not enough to develop a material with a suitable
chemical composition, but we must also account for the crystalline periodic structure of the solid and
the atoms’ positions with respect to it to assess the synthesizability and stability of a given compound.

Mathematically, we can describe the periodic structure of a material via characterizing its lattice L in
the 3D space, a set of points that repeat themselves periodically. To characterize a lattice, we define
its base vectors v,w, z. Every point in the lattice is a linear combination of the three vectors using
only integers coefficients.

p ∈ L ⇐⇒ ∃n,m, k ∈ Z | p = nv +mw + kz. (1)
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Figure 1: Overview of LCOMs. We train a graph-based VAE to construct a latent space the represents
crystal structure, conditioned on the molecular structure of the compound. Different points in this latent space
correspond to different crystal structures, and we can then optimize the structure with simple gradient-based
optimization methods within this latent space. The formation energy is predicted based on the position in the
latent space, and the energy prediction model is trained via a conservative optimization strategy that makes it
robust on out-of-distribution inputs, preventing the optimizer from discovering latent space points far from the
training data for which the energy predictions might extrapolate and yield erroneously low energies. Since the
entire optimization is performed in the latent space, the comparatively complex encoder and decoder only need
to be used once during optimization (to encode the initial structure guess and decode the final one).

Given a lattice L, the unit cell is the volume of 3D space contained between the base vectors, defined
formally as follows: {

p ∈ R3 | ∃x, y, z ∈ [0, 1] , p = xv + yw + zz
}
. (2)

We can obtain the global geometry of a crystal by periodically repeating this unit cell in 3D space,
which gives rise to the entire lattice.

Given a lattice in 3D space, a crystal is additionally characterized by how many atoms n are in
the unit cell. We observe that the number n is always a multiple of the number of elements in the
chemical composition of the material. For example, for a formula MgO3, which consists of 4 atoms,
we can have 4, 8, 12, or generally 4k elements in a unit cell (one element corresponding to one atom),
but not 3 or 6 elements, which are not a multiple of 4.

Finally, we can describe atoms’ types and positions with two matrices A ∈ Rn×128, X ∈ Rn×3. The
matrix A identifies different atoms in the unit cell with a one-hot encoding strategy. Specifically,
Ai is a vector with a 1 at position Z corresponding to the atomic number of the i-th element, and 0
everywhere else. The matrix X provides fractional coordinates for the atoms. These are coordinates
between 0 and 1 with respect to the basis defined by the lattice base vectors. More specifically, the
vector Xi tells us that the i-th element is at X1

i v +X2
i w +X3

i z in the unit cell.

To summarize, a crystal is defined by three quantities: (1) A 3× 3 matrix L representing the crystal
lattice, the rows of which corresponding to the base vectors of the lattice; (2) number (n) and types
(A ∈ Rn×128) in the chemical; and (3) atoms positions X ∈ Rn×3, which is specified in terms of
fractional coordinates between 0 and 1.

In the following discussion, we will denote a crystal with the variable x and we will use subscripts
when need to refer, respecitvely, to its lattice parameters xL, atoms’ types xA, and fractional
coordinates xX .

3 PROBLEM STATEMENT, DATASET AND EVALUATION

Majority of crystal and lattice configurations for a given chemical compound are “unstable”: this
means that its formation energy is neither at a local minimum nor a global minimum. Consequentially,
if such structure is synthesized, this crystal would have the affinity to quickly collapse to a different,
more stable lattice structure. It would be idea if we restricted our study to only stable structures,
but such a subspace is complex and not easily characterizable. When we sample a crystal by taking
a random lattice matrix and random atoms types and coordinates, the result is almost certainly an
unstable design.
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Crystal structure prediction (CSP) is the problem of finding a crystal of a given chemical composition
(e.g. NaCl, or MgO3) that is “synthesizable”. While it is not yet possible to precisely quantify what
makes a crystal synthesizable, it is conventionally believed that a synthesizable crystal is one that
forms a global minimum of the formation energy and thus cannot collapse into other structures once
synthesized. Therefore, with the goal of discovering a synthesizable crystal, CSP aims to discover
such a structure for a chemical composition that attains the smallest formation energy.

[Crystal structure prediction] Given a chemical composition c, find the crystal x∗ = (L∗, A∗, X∗)
of lattice matrix, atoms’ types, atoms’ coordinates whose represented crystal globally minimizes the
formation energy function E.

x∗ = argminx E (x, c) .

Why is solving CSPs hard? Note that only one or very few crystal structures are actually synthe-
sizable for a given chemical compound, which makes this equivalent to searching for a “needle in a
haystack”. The difficulty of solving a CSP is further compounded by the fact that the search space for
all possible crystal structures for a given chemical composition is non-Euclidean. This is because
there is no one-to-one correspondence between 3× 3 matrices and lattices L. Given a lattice matrix
L, every other matrix that is rotationally or permutation-equivalent to it represents the same lattice.
Moreover, reducing the search space from all possible structures to only stable ones is a procedure
that changes the manifold of designs considerably.

We intend to solve this problem using only a static dataset of that shows several (sub-optimal) crystal
structures for a variety of chemical compounds along with their corresponding formation energies.
With no access to the simulator, our goal is to find a globally optimal crystal structure for a new,
previously unseen chemical compound. We describe our procedure for constructing the dataset to
train on and our evaluation protocol next.

3.1 DATASETS FOR TRAINING

For training, we use the OQMD dataset (Saal et al., 2013), which consists of the crystal structures and
formation energies for more than 1 million materials, obtained via DFT simulations. Every sample of
the dataset represents a stable crystal x which has been obtained through relaxation using the VASP
simulator Hafner (2008), together with its chemical composition c and formation energy E (x, c).
We chose this dataset for our task because of its large size, and the availability of more than one
stable structure per chemical composition, all of which are not at their global optimum.

3.2 HELD-OUT EVALUATION DATASETS

We will evaluate our data-driven, offline optimization approach in terms of its efficacy in discovering
the globally optimal structure for a given chemical compound. Hence, to validate the efficacy of our
method, we want to construct a held-out test set that consists of globally optimal crystal structures
for a held-out set of compounds. Additionally we also want this held-out test dataset to provide us
with a locally optimal structure that could be used for kickstarting our iterative offline optimization
procedure.

While in principle, we could have utilized a subset of samples from the OQMD dataset or the materials
project database (Jain et al., 2013) as the initial designs for our optimization procedure, this however,
leads to evaluations that are biased and unreliable. The reason is that samples from these databases
are already highly optimized structures and hence, these samples already present strong starting point,
that they leave little room for finding an improved crystal structure. To overcome the problem, as part
of our work, we have collected a new dataset of stable structures for a variety of different compounds.
We utilize these structures serve as our initial samples for kickstarting data-driven optimization.
To build this dataset, we used the GPAW Enkovaara et al. (2011) simulator, an open-source DFT
simulator fully integrated into python packages for chemistry like ase and pymatgen. We utilized
the following protocol for collecting this dataset: (i) for every compound, we first select the number
of atoms corresponding to the optimal compound design as listed in the materials project database,
(ii) we then randomly initialize the lattice matrix and the atom coordinates, and (iii) we then run the
process of structure relaxation in the simulator to obtain the closest local minimum (i.e., a closeby
structure that is stable).
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3.3 EVALUATION PROTOCOL

The evaluation protocol of our model follows the same procedure as prior works Xie et al. (2021);
Cheng et al. (2022). With particular reference to the second work, we test our method on 25 typical
compounds of the 29 compounds in Cheng et al. (2022), where the 4 remaining compounds are
omitted because they cannot be simulated with GPAW. The compounds are listed in Table 1.

For each of these compounds, we run our optimization process to convergence and check the final
energy of the optimized design. We compare the optimized energy against the known global minimum
energy. The optimal crystal structure is successfully predicted if the final energy recovers that of the
know global minimum, up to a predefined threshold of noise.

4 LCOMS: LATENT CONSERVATIVE OBJECTIVE MODELSA FOR STRUCTURE
PREDICTION

To be able to acquire crystal structures with the lowest possible energy entirely from a dataset of
previously-conducted energy measurements, we aim to utilize techniques from the area of data-
driven offline model-based optimization. Directly applying these techniques for optimizing crystal
structures is non-trivial as conventional techniques for offline optimization (Trabucco et al., 2021b;
Yu et al., 2021; Qi et al., 2022) typically employ some sort of optimization schemes that iteratively
make local changes to the design (e.g., gradient-based updates or random mutations) to optimize a
surrogate estimate of the objective function. Such iterative procedures are more prone to fall short
when optimizing over non-smooth geometries and non-Euclidean manifolds like that of crystals. To
alleviate this issue, in this section, we present a data-driven optimization approach that first aims to
learn a latent vector representation for a crystal structure, then performs data-driven optimization in
this vector space, and finally maps back the resulting outcome to a valid crystal structure.

4.1 TRANSFORMING CRYSTAL STRUCTURES TO A LATENT SPACE

Which kinds of latent representations are more suitable for data-driven offline optimization for
crystals? Since one of the biggest challenges with optimizing crystal structures is that the optimizers
are likely to find high-energy, unstable or potentially even infeasible structures, it is very desirable
if our latent representations only encode valid and stable structures. Learning such a latent space
presents two benefits: (1) once we learn such a space, we can directly perform offline optimization in
this latent space, and potentially surpass the difficulties of optimizing in the space of crystal structures
that lie on complex manifolds, and (2) if we can ensure that every possible latent vector corresponds
to a stable crystal structure, then we are guaranteed to at least prune out the possibility of finding
infeasible structures during the optimzation process.

To this end, we train a crystal diffusion variational auto-encoder (CD-VAE) on a database of stable
crystal structures for various chemical compositions and then run offline optimization in the latent
space of this auto-encoder. By construction, the decoder of a CD-VAE is guaranteed to decode
any latent representation into a valid stable structure, which reduces the fidelity requirement on the
optimizer thereby attaining the benefits mentioned above.

Formally, a CD-VAE is composed of three components: a GNN encoder PGNNENC that takes
a crystal x as input and outputs a latent vector representation, an NN predictor MLPAGG that
outputs lattice parameters xL from its encoded representation PGNNENC (x, c), and a GNN diffusion
denoiser PGNNDEC that takes a random noisy crystal x̃ and a latent encoding PGNNENC (x, c) as
inputs, and outputs forces to apply on the atoms coordinates x̃X to build the original crystal x by
a diffusion process. More in detail, the encoder PGNNENC is a DimeNet++ Klicpera et al. (2020)
architecture. The decoder PGNNDEC is a GemNet-dQ Gasteiger et al. (2021) architecture and it
works by initializing a structure with random lattice and coordinates, and using Langevyn dynamics
Song & Ermon (2019) to gradually recover the stable structure represented by the latent vector.

To make the notation less cumbersome in the following, we will refer to the PGNNENC as ϕ, and
thus the latent representation of a crystal x with chemical composition c will be denoted by ϕ(x, c).
Moreover, with a slight abuse of notation, we will use the notation PGNNDEC (z) to denote the
structure obtained after applying the denoising process with latent vector z.
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The three components are trained in an unsupervised fashion, by looking at the crystal structures x,
but not their formation energy. The loss function for training the model is a combination of three
quantities LAGG, LKL, and LDEC.

The objective LAGG is an MSE between ground-truth and predicted lattice parameters

LAGG (MLPAGG (ϕ(x, c)) ,xL) = ∥xL − ϕ(x, c)∥2. (3)

The objective LKL is the KL divergence loss term for the VAE Kingma & Welling (2013) part of the
model

LKL (ϕ(x, c)) = DKL (N (ϕ(x, c)) || N (0, 1)) . (4)

Where by N (ϕ(x, c)) we mean the normal distribution with mean and variance estimated from
observations of ϕ for different crystals x.

Lastly, the objective LDEC is a denoising loss

LDEC (x̃,x, ϕ(x, c)) =
1

2L

L∑
j=1

[
Eσj∥PGNNDEC (x̃, ϕ(x, c))−

d (xX , x̃X)

σj
∥
]
. (5)

Where {σj}Lj=1 are scalars in a geometric sequence whose factor is greater than 1.

We remark that the objective functions we have used and reported are slightly different from the ones
in the original CD-VAE article, in that they do not include loss terms for the number xn and types
of atoms xA. That is because we want our model to be conditional on those quantities, rather than
encoding them in the latent representation.

4.2 CONSERVATIVE OPTIMIZATION IN LATENT SPACE

Once a latent space is learned, we can then train a surrogate model Êθ(ϕ(x, c), c), via supervised
regression, to approximately predict the formation energy E of a crystal structure x for a given
chemical composition, c, by using a neural network parameterized on top of the learned representation
ϕ(x, c). However, as prior works (Kumar et al., 2020; Trabucco et al., 2021b) note, this naı̈ve strategy
often falls to succeed at finding optimized designs due to the exploitation of errors in the learned
surrogate model by the optimization procedure. To address this issue, we utilize the conservative
objective models (COMs) technique from Trabucco et al. (2021b) for optimizing crystals in the
learned latent space.

Training latent space conservative models. To prevent the optimization procedure from exploiting
inaccuracies in this learned surrogate model, we apply an additional regularizer from Trabucco et al.
(2021b); Kumar et al. (2021) to robustify the surrogate model. This regularizer mines for adversarial
vectors in the latent space, z+ that appear to have very low energies Êθ(z

+, c) under the learned
surrogate model and regularizes the model Êθ(z

+, c) output to be larger on such z+. Following
the COMs approach (Trabucco et al., 2021b), we interleave the training of the learned surrogate
model Êθ with an optimization procedure Opt(Êθ, c) that seeks to find adversarial vectors z+ that
optimize the current snapshot for the surrogate model, for a given chemical composition c. Once such
adversarial examples are obtained, our method regularizes the learned model Êθ(z

+, c) to explicitly
learn higher energy values on such adversarial points. To compensate the effects of increasing the
learned values in an unbounded manner, we additionally balance the regularizer by pushing down the
energy values on the latent representations induced by crystal structures in the data. This idea can be
formalized into the following loss for training Êθ:

min
θ

Ec,x∼D

[(
Êθ(ϕ(x, c), c)− E(x, c)

)2
]

(6)

− α
(
Ec,x∼D

[
Ez+∼Opt(Êθ,c)

[Êθ(z
+, c)]− Êθ(ϕ(x, c), c)

])
.

We will discuss the precise formulation for Opt below.

Optimizing in the latent space. Once a conservative surrogate model Êθ(z, c) is obtained using
the above training procedure, we must now optimize this model to obtain learned structures. The
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optimization procedure, Opt that was used to obtain adversarial latent vectors in Equation 6 can be
repurposed to obtain optimized latent vectors once the latent conservative model is trained. Since
the latent space z is a continuous Euclidean vector space, for any given chemical composition c, our
choice of Opt is to run T rounds of gradient descent on the surrogate energy Êθ(z, c) with respect to
the latent vector z starting from the latent vector z0 obtained by encoding a randomly chosen crystal
structure from the dataset. For a given c, this procedure can be formalized as follows:

zk+1 ← zk − α∇zÊθ(z, c), (7)
where z0 ∼ ϕ(x0, c), x0 ∼ D.

Once we run this optimization procedure is run for T steps, we pass the final latent vector zT to the
decoder of the pre-trained CD-VAE to obtain the optimized crystal structure: x̂∗ = PGNNDEC(zT ).

Implementation details. The encoder and decoder are trained independently from the optimization
model. DimeNet++ adapted for periodicity is used for the encoder and GemNet-dQ is used for
for the decoder. The training for encoder/decoder is followed with the implementation in Xie
et al. (2021). Then the molecule structures from dataset OQMD are encoded to vectors, as inputs
for the optimization model training. For training LCOMs, we model a conservative objective
model Êθ(ϕ(x, c), c) as a neural network with two hidden layers of size 2048 each and leaky
ReLU activations. The optimizer choice is followed in Trabucco et al. (2021b). When training the
Êθ(ϕ(x, c), c), we follow the loss function in Equation 6. For computing z+, we do one gradient
descent step over vector z from input latent space. Finally, for optimization, we encode a group
of molecules with certain compositions and stable but maybe not optimal structures. We do 50
gradient steps and get a group of optimized vectors representing optimal structures in latent space.
The decoder is then used to decode them, producing corresponding optimal molecules with the same
compositions as inputs but better structures which achieve lower energy.

Figure 2: Optimization curves comparing LCOMs, MSE, and ground-truth energy for known structures.
LCOMs (blue curve) enables the optimized structures to achieve lower energies after gradient descent, and the
final structures are approaching the ground-truth optimal results. Gradient descent with the non-conservative
MSE model quickly increases the true energy values, as the optimizer exploits flaws in the model.

5 RELATED WORK

Our work combines methods from offline model-based optimization, representation learning with
graph neural networks, and crystal structure prediction (CSP). Before the widespread use of modern
deep networks, one widely studied optimization approach to CSP focused on genetic algorithms Lonie
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Compounds RAS PSO BO LCOMs MSE

LiF
NaF
KF
RbF
LiCl
NaCl
KCl
RbCl
CsCl
BeO
MgO
CaO
SrO
BaO
ZnO
CdO
BeS
MgS
CaS
SrS
BaS
ZnS
CdS

C
Si

Accuracy 17/25 6/25 16/25 17/25 5/25

Table 1: Comparison of LCOMs (our approach) and prior crystal structure prediction methods for 25
typical compounds. Check marks indicate successful recovery as per the criteria in the text.

& Zurek (2011); Oganov et al. (2011). One important work in that direction is USPEX Glass et al.
(2006), an algorithm that uses three variation strategies for evolving new structures at each generation.
Heredity takes parts of two structures and combines them; mutation applies a slight variation to the
lattice parameters of a single structure; permutation exchanges atoms’ types and positions. During
the evolutionary process in USPEX, every candidate is relaxed with simulators to guarantee that
the search space operates on only stable structures. The extensive use of simulation makes such
approaches computationally very expensive, and is part of the reason why more recent works have
sought to explore ML-based techniques.

More recent work has applied ML techniques and deep network to CSP, in part spurred by the
availability of public datasets like the Materials Project Database, or the Open Catalyst Project
Chanussot et al. (2021). In terms of methods, Cheng et al. (2022) is particularly relevant, being
an overview of different optimization algorithms built on top of a GNN predictor: random search,
particle swarm optimization Clerc (2010), and Bayesian optimization Pelikan et al. (1999). The main
difference from our work is that the authors leverage GNNs only as a surrogate model for estimating
energy. The sampling of crystals in the search space is performed independently and depending on
the optimization strategy employed.

The work of Kim et al. (2020) is an approach to the problem based on GANs rather than VAEs.
However, this work proposes a generative model, but not an optimization strategy. The querying of a
property like formation energy is still done with DFT simulators.

A number of other works have investigated GNNs and other related models in the context of
computational chemistry. Much of this research studies prediction of formation energy with GNNs,
together with some other properties when available in the training dataset. The main architectures that
we cite are the Crystal Graph Convolutional Network Xie & Grossman (2018), DimeNet Gasteiger
et al. (2020), DimeNet++ (which we use as the encoder for the CD-VAE) Klicpera et al. (2020),
and GemNet (which we use as the decoder for the CD-VAE) Gasteiger et al. (2021). A significant
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Figure 3: Comparisons of energy improvements achieved with LCOMs and the non-conservative MSE baseline.
Note that with LCOMs, most structures achieve better formation energy after optimization, while the non-
conservative MSE model actually leads to structures with worse energy values (negative improvement). These
results indicate that conservative training is essential for successfully instantiating a method with gradient-based
latent space optimization for CSP.

distinction with our work is that we focus not on proposing a new architecture for modeling formation
energy, but an algorithm for optimizing crystal structures that combines state-of-the-art architectures
and conservative model-based optimization algorithms.

Model-based optimization (MBO) refers to the problem of optimizing an unknown function by
constructing a surrogate model. Bayesian optimization represents one of the most widely known
classes of MBO methods (Snoek et al., 2015), but classically MBO methods require iteratively
sampling new function values, which can be very expensive when evaluating a crystal structure’s
energy requires an expensive simulation process. More recently, offline MBO methods, sometimes
referred to as data-driven optimization, have been proposed to optimize designs based entirely on
previously collected static datasets (Brookes et al., 2019; Trabucco et al., 2021a; Kumar & Levine,
2019; Trabucco et al., 2021b). Our work builds on these methods, and is most closely related to the
COMs algorithm proposed by Trabucco et al. (2021b). However, while prior offline MBO methods
focus on robustifying the surrogate model while optimizing in the original design space, we integrate
these approaches with a latent space optimization method that makes it possible to optimize over
the complex and non-Euclidean design space of crystal structures, while using simple and efficient
gradient descent methods.

6 EXPERIMENTS

In this section, we provide an empirical evaluation of LCOMs for crystal structure prediction.
In designing the experiments, we aim at answering to the following questions: (1) Can LCOMs
successfully optimize in the latent representation space? (2) Does LCOMs manage to recover the
optimal energy up to a pre-defined threshold of accuracy? (3) How do the hyperparameters of
LCOMs influence its performance? To answer these questions, we evaluate LCOMs as well as
baseline methods following the protocol detailed in Section 3.

Comparing LCOMs with baselines and prior methods. We compare LCOMs with three methods
from prior work Cheng et al. (2022), including random searching (RAS), particle-swarm optimization
(PSO) and Bayesian optimization (BO). We also include one additional baseline method, where the
design is optimized with gradient descent in the latent space of the CD-VAE, as in our method, but the
energy prediction model is trained without any conservatism, but rather with standard mean-squared
error (MSE), to evaluate the importance of conservative training. We evaluate these methods on the
25 chemical compounds in our evaluation dataset, and present the results in Table 1. We mark each
crystal structure as recovered successfully if the energy reported for the recovered structure is close
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to the energy of the ground truth structure according to the simulator, with the threshold defined as
(E(x, c∗)− E(x, ĉ)) /|E(x, c∗)| to account for imprecision in the simulator, where c∗ is the ground
truth optimal crystal and ĉ is the model optimized crystal.

Our method optimizes the crystal structure in the latent space of the CD-VAE, using simple gradient
descent methods. One advantage of this approach is computational efficiency, since the complex
graph-based component of the pipeline is only used during the encoding and decoding stages at
the beginning and end of the optimization, rather than at each optimization step. The conservatism
term in LCOMs ensures that this process does not produce out-of-distribution adversarial inputs
into the formation energy prediction model. The results in Table 1 show that our method improves
significantly over naı̈vely optimizing in the CD-VAE latent space without conservative training
(MSE), and also that it is competitive with the prior state-of-the-art methods RAS, PSO, and BO,
exceeding the performance of the PSO and BO baselines and matching RAS. Considering the benefit
of efficiency for our method, it has huge potential usage in molecule structure optimization.

How does conservative training influence optimization? In the next set of experiments, we aim
to understand how conservative training of the formation energy prediction model influences the
behavior of gradient descent optimization in the CD-VAE latent space. If the energy model is trained
naı̈vely (i.e., with standard empirical risk minimization methods), it will be liable to make arbitrarily
erroneous predictions on out-of-distribution inputs that differ too much from the training data. Some
of these errors will be positive, and some negative, and therefore a strong optimizer would be able
to exploit these errors to find points in the latent space for which the model erroneously predicts
arbitrarily favorable energies. To compare how conservative and naı̈ve models behave during latent
space optimization, we train both types of models, and then perform 50 gradient steps on the learned
energy models starting from an initial structure. Although our full method only decodes the structure
at the end, in this experiment we save out the decoded structure after every gradient step for analysis,
and evaluate their energy according to the simulator (which we treat as the ground truth). The results
are shown in Figure 3, where improvement is given by (E(x, c0)− E(x, ĉ)) /|E(x, c0)|, where
c0 denotes the initialization structure and ĉ denotes the model optimized structure, and the larger
improvement values are better.

The results in Figure 3 show that LCOMs generally produces positive improvement, while the non-
conservative MSE model leads to negative improvement – i.e., the optimized structures are generally
worse than the starting point. This indicates that conservative training is critical for latent space
optimization to work. To provide more fine-grained analysis, we plot the energy for each method at
each of the 50 gradient steps for a few example compounds in Figure 2. The orange line, representing
the non-conservative MSE model, shows that the energy increases over the course of optimization
(lower is better), while the blue curve corresponding to LCOMs is much closer to the result from
optimizing the ground-truth energy (shown in red).

7 DISCUSSION

In this work, we presented a method for data-driven optimization that uses the latent space of a
variational graph autoencoder to perform smooth gradient-based optimization of complex structures,
with application to crystal structure prediction. Our method combines concepts from conservative
objective models, which robustify predictive models to make them amenable to gradient-based
optimization over their inputs, with variational graph autoencoders, which provide us with a latent
space over crystal structures that overcomes the complex geometry of the design space, enabling
simple gradient-based methods to be used. Our method can optimize crystal structures after training
on a static dataset of previously collected structure-energy tuples.

Empirical evaluation shows that our method can successfully optimize the formation energy and
recover the optimal structure of a chemical compound with a good level of accuracy, comparing
favorably with existing approaches. Moreover, aside from the training dataset, our pipeline is based
entirely on deep neural networks and does not make use of simulators or other external models. This
enables our method to perform optimization in a much more rapid and parallelizable way, effectively
leveraging the compute capacity of modern hardware.
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uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint
arXiv:2011.14115, 2020.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. NeurIPS,
2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey Levine. Data-driven
offline optimization for architecting hardware accelerators. arXiv preprint arXiv:2110.11346,
2021.

11

http://proceedings.mlr.press/v97/brookes19a.html


Under review at ICLR 2023 ML4Materials workshop

David C Lonie and Eva Zurek. Xtalopt: An open-source evolutionary algorithm for crystal structure
prediction. Computer Physics Communications, 182(2):372–387, 2011.

Artem R Oganov, Andriy O Lyakhov, and Mario Valle. How evolutionary crystal structure prediction
works and why. Accounts of chemical research, 44(3):227–237, 2011.
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