
Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing

Sanae Amani
samani@ucla.edu

University of California, Los Angeles

Khushbu Pahwa
khushbu16pahwa@g.ucla.edu

University of California, Los Angeles

Vladimir Braverman
vb21@rice.edu

Rice University

Lin F. Yang
linyang@ee.ucla.edu

University of California, Los Angeles

ABSTRACT

Recently, DARPA launched the ShELL program, which aims to ex-
plore how experience sharing can benefit distributed lifelong learning
agents in adapting to new challenges. In this paper, we address this
issue by conducting both theoretical and empirical research on dis-
tributed multi-task reinforcement learning (RL), where a group of
𝑁 agents collaboratively solves 𝑀 tasks without prior knowledge of
their identities. We approach the problem by formulating it as lin-
early parameterized contextual Markov decision processes (MDPs),
where each task is represented by a context that specifies the transi-
tion dynamics and rewards. To tackle this problem, we propose an
algorithm called DistMT-LSVI. First, the agents identify the tasks,
and then they exchange information through a central server to de-
rive 𝜖-optimal policies for the tasks. Our research demonstrates that
to achieve 𝜖-optimal policies for all 𝑀 tasks, a single agent using
DistMT-LSVI needs to run a total number of episodes that is at most
Õ(𝑑3𝐻6(𝜖−2 + 𝑐−2

Sep) ·𝑀/𝑁), where 𝑐Sep > 0 is a constant represent-
ing task separability, 𝐻 is the horizon of each episode, and 𝑑 is the
feature dimension of the dynamics and rewards. Notably, DistMT-
LSVI improves the sample complexity of non-distributed settings
by a factor of 1/𝑁 , as each agent independently learns 𝜖-optimal
policies for all 𝑀 tasks using Õ(𝑑3𝐻6𝑀𝜖−2) episodes. Additionally,
we provide numerical experiments conducted on OpenAI Gym Atari
environments that validate our theoretical findings.

ACM Reference Format:

Sanae Amani, Khushbu Pahwa, Vladimir Braverman, and Lin F. Yang. 2023.
Scaling Distributed Multi-task Reinforcement Learning with Experience
Sharing. In KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA,
USA.. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, there has been a growing interest in the develop-
ment of distributed learning agents, which refer to multiple agents
collaborating and communicating to collectively solve learning or
decision-making problems with improved efficiency [5, 26]. Con-
currently, the field of multi-task learning has emerged, focusing on
agents that face multiple tasks and aim to learn policies that optimize
performance across all tasks [10, 11, 41]. The intersection of these
two research areas presents scenarios where multiple learning agents
cooperate to build multi-purpose embodied intelligence, such as
robots operating in weakly structured environments [29]. Motivated
by these developments, the Defense Advanced Research Projects
Agency (DARPA) has launched the Shared-Experience Lifelong
Learning (ShELL) program. The program seeks to address how ex-
perience sharing can assist distributed lifelong learning agents in
effectively adapting to new challenges [12]. This research aims to
explore the potential benefits of collaborative learning approaches in
enhancing the capabilities of distributed agents in dynamic environ-
ments.

In this work, we delve into the theoretical and empirical aspects of
distributed multi-task reinforcement learning (RL) [22, 25]. In this
setting, a group of 𝑁 agents collaboratively tackles𝑀 tasks in a pure
exploration manner, with the task identifications initially unknown.
It is assumed that the tasks exhibit variations in rewards and transi-
tion dynamics, but share the same state and action spaces [30]. In
consecutive learning rounds, the agents are assigned tasks drawn
from a uniform distribution (Unif([𝑀])). The ultimate objective is
for the agents to cooperate effectively, ensuring that by the end of the
exploration phase, they all possess 𝜖-optimal policies for all tasks,
while minimizing the total number of episodes required during the
exploration phase to execute a policy.

Formally, we consider an episodic setup based on the framework
of contextual MDP [1, 16]. It repeats the following steps: 1) At
the beginning of each learning round, each agent receives an un-
known context specifying the assigned task. 2) Each agent initially
spends certain number of episodes interacting with the correspond-
ing task’s environment, which together with communications with
others through the server, help it identify the task and whether it has
been solved by any other agents before. 3) If the agent determines

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

that the task has already been solved, it obtains the necessary statis-
tics from the agent who previously solved the task to determine the
task’s 𝜖-optimal policy. Otherwise, it initiates the learning process
for the 𝜖-optimal policy from scratch.

The performance of each agent is evaluated based on the total number
of episodes required for it to interact with the unknown environments
of assigned tasks and communicate with other agents through the
server, ultimately gaining access to 𝜖-optimal policies for all𝑀 tasks.
To maximize the benefits of the collaborative learning process, we
aim for this number to scale as 𝑀

𝑁𝜖2 , ensuring efficient utilization of
the agents’ cooperative nature. Remarkably, this scaling results in a
multiplicative reduction of exploration episodes by a factor of 1/𝑁
compared to non-distributed settings.

On the multi-task side, the closest lines of work are Abbasi-Yadkori
and Neu [1], Hallak et al. [16], Kakade et al. [20], Modi et al.
[27], Modi and Tewari [28] for contextual MDP and Abels et al.
[4], Wu et al. [34] for the dynamic setting of multi-objective RL,
which study the sample complexity for arbitrary task sequences;
however, they either assume the problem is tabular with finite state
and action spaces or require a model-based planning oracle with
unknown complexity. Importantly, none of the existing works prop-
erly addresses the need for a distributed learning framework, which
creates a large gap between the abstract setup and practice need of
speeding up the learning process.

In this paper, we aim to establish a foundation for designing agents
meeting these practically important requirements. As the first step,
here, we study distributed multi-task RL with linear representa-
tion. We suppose that the contextual MDP is linearly parameter-
ized [19, 36] and agents need to learn a multi-task policy based on
this linear representation. However, the fact that tasks’ identities are
unknown to the agents make the efficient communications challeng-
ing. To overcome this hurdle, tasks must possess distinguishable
features that enable agents to identify them and effectively share
knowledge by communicating specific measurements related to the
environments/tasks they interact with. In particular, we introduce a
task-separability assumption, which is sufficient to ensure that the
agents are able to distinguish between their assigned tasks through-
out the learning process so that they can share information only
when needed and when a task has already been solved. Under these
assumptions, we propose a provably efficient distributed multi-task
RL algorithm, Distributed Multi-Task Least Value Iteration (DistMT-
LSVI). We show that in order to obtain 𝜖-optimal policies for all
𝑀 tasks, the total number of episodes a single agent needs to run
DistMT-LSVI is at most Õ(𝑑3𝐻6(𝜖−2 + 𝑐−2

Sep) ·𝑀/𝑁), where 𝑐Sep > 0
is a constant characterizing task separability, 𝐻 is horizon of each
episode and 𝑑 is the feature dimension of the dynamics and rewards.
Remarkably, DistMT-LSVI improves the sample complexity of non-
distributed settings, where each agent separately learns all 𝑀 tasks’
𝜖-optimal policies using Õ(𝑑3𝐻6𝑀𝜖−2) episodes, by a factor of 1/𝑁 .

Finally, we present numerical experiments on OpenAI Gym Atari
environments that corroborate our theoretical findings.

Notation. Throughout, we use lower-case letters for scalars, lower-
case bold letters for vectors, and upper-case bold letters for matrices.
The Euclidean norm of x is denoted by∥x∥2. We denote the transpose

of any column vector x by x⊤. For any vectors x and y, we use ⟨x, y⟩
to denote their inner product. Let A be a positive semi-definite 𝑑 × 𝑑
matrix and 𝝂 ∈ R𝑑 . The weighted 2-norm of 𝝂 with respect to A
is defined by ∥𝝂 ∥A =

√
𝝂⊤A𝝂 . For a positive integer 𝑛, [𝑛] denotes

the set {1, 2, . . . , 𝑛}. Finally, we use standard Õ notation for big-O
notation that ignores logarithmic factors.

2 PROBLEM FORMULATION

Finite-horizon contextual MDP.. We consider the problem of learn-
ing 𝑀 tasks, each of which is modeled by an MDP. Each task𝑚 ∈
[𝑀] is associated with an MDP 𝑀𝑐𝑚 = (S,A, 𝐻, P𝑚, 𝑟𝑚), where
the state space S, the action space A, and the horizon 𝐻 (length of
each episode) are shared amongst all tasks, and P𝑚 = {P𝑚,ℎ}𝐻ℎ=1 are
the unknown transition probabilities, and 𝑟 = {𝑟𝑚,ℎ}𝐻ℎ=1 are the un-
known reward functions specific to task𝑚. For (𝑚,ℎ) ∈ [𝑀] × [𝐻],
𝑟𝑚,ℎ(𝑠, 𝑎) denotes the reward function of task 𝑚 at step ℎ, whose
range is assumed to be in [0, 1], and P𝑚,ℎ(𝑠′ |𝑠, 𝑎) denotes the proba-
bility of transitioning to state 𝑠′ upon playing action 𝑎 at state 𝑠 while
solving task𝑚 at step ℎ. To simplify the notation, for any function
𝑓 , we write P𝑚,ℎ[𝑓](𝑠, 𝑎) B E𝑠′∼P𝑚,ℎ(. |𝑠,𝑎)[𝑓 (𝑠′)].

Policy and value functions. A policy 𝜋 = {𝜋ℎ}𝐻ℎ=1 is a se-
quence where 𝜋ℎ : S → A determines the agent’s action at
step ℎ. Given 𝜋 , we define state value function of task 𝑚 as
𝑉 𝜋
𝑚,ℎ

(𝑠) B E[∑𝐻
ℎ′=ℎ 𝑟𝑚,ℎ′

(
𝑠ℎ′ , 𝜋ℎ′ (𝑠ℎ′))|𝑠ℎ = 𝑠

]
, where the expecta-

tion is with respect to policy 𝜋 and transition probability P𝑚 . We
also define its action-value function as 𝑄𝜋

𝑚,ℎ
(𝑠, 𝑎) B 𝑟𝑚,ℎ(𝑠, 𝑎) +

P𝑚,ℎ[𝑉 𝜋
𝑚,ℎ+1(.)](𝑠, 𝑎), where 𝑄𝜋

𝑚,𝐻+1 = 0. We denote the optimal pol-

icy of task𝑚 as 𝜋∗
𝑚,ℎ

(𝑠) B sup𝜋 𝑉 𝜋𝑚,ℎ(𝑠), and let 𝑉 ∗
𝑚,ℎ
B 𝑉 𝜋

∗

𝑚,ℎ
and

𝑄∗
𝑚,ℎ
B 𝑄𝜋

∗

𝑚,ℎ
denote the optimal value functions associated with

task𝑚. Lastly, we recall the Bellman equation of the optimal policy:

𝑄∗
𝑚,ℎ

(𝑠, 𝑎) = 𝑟𝑚,ℎ(𝑠, 𝑎) + P𝑚,ℎ[𝑉 ∗
𝑚,ℎ+1(.)](𝑠, 𝑎), 𝑉 ∗

𝑚,ℎ
(𝑠) = max

𝑎∈A
𝑄∗
𝑚,ℎ

(𝑠, 𝑎).

(1)

Interaction protocol. We consider a network of 𝑁 agents acting
cooperatively to efficiently solve the above-stated 𝑀 tasks. The
learning framework consists of multiple learning rounds, each of
which consists of multiple episodes. At each round 𝑡 , each agent
𝑖 ∈ [𝑁] is given a task𝑚𝑖,𝑡 ∼ Unif([𝑀]), whose ID is not known to
the agent. Agent 𝑖 interacts with task𝑚𝑖,𝑡 in a number of episodes
and collects trajectory 𝑠𝑘,𝑡1,𝑖 , 𝑎

𝑘,𝑡
1,𝑖 , 𝑟

𝑘,𝑡
1,𝑖 , 𝑠

𝑘,𝑡
2,𝑖 , 𝑎

𝑘,𝑡
2,𝑖 , 𝑟

𝑘,𝑡
2,𝑖 , . . . , 𝑠

𝑘,𝑡
𝐻,𝑖
, 𝑎
𝑘,𝑡
𝐻,𝑖
, 𝑟
𝑘,𝑡
𝐻,𝑖

at episode 𝑘, where the initial state 𝑠𝑘,𝑡1,𝑖 is a fixed initial state 𝑠0.
The agents are also allowed to communicate with each other via a
central server. Both policies and the communicated information of
each agent may only depend on previously observed rewards and
communication received from other agents.

Linear Function Approximation. We focus on MDPs with linear tran-
sition kernels and reward functions [19, 32, 36] that are encapsulated
in the following assumption.

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Definition 1. 𝑀𝑐 = (S,A, 𝐻, P, 𝑟) is a linear MDP with feature
map 𝝓 : S × A → R𝑑 if for any ℎ ∈ [𝐻], there exist a vec-
tor 𝜼ℎ and 𝑑 measures 𝝁ℎ B [𝜇ℎ (1), . . . , 𝜇ℎ

(𝑑)]⊤ over S such that
Pℎ(.|𝑠, 𝑎) =

〈
𝝁ℎ(.), 𝝓(𝑠, 𝑎)

〉
and 𝑟ℎ(𝑠, 𝑎) =

〈
𝜼ℎ, 𝝓(𝑠, 𝑎)

〉
, for all (𝑠, 𝑎) ∈

S × A. Without loss of generality,

𝝓(𝑠, 𝑎)

2 ≤ 1,

𝝁ℎ(𝑠)

2 ≤
√
𝑑,

and

𝜼ℎ

2 ≤

√
𝑑 for all (𝑠, 𝑎, ℎ) ∈ S × A × [𝐻].

ASSUMPTION 1 (LINEAR MDPS). For each task𝑚 ∈ [𝑀], 𝑀𝑐𝑚 =
(S,A, 𝐻, P𝑚, 𝑟𝑚) is a linear MDP with feature map 𝝓 : S × A →
R𝑑 .

Here, we introduce a task-separability assumption that allows agents
to distinguish and identify different tasks they are assigned through-
out the learning process.

ASSUMPTION 2 (TASK SEPARABILITY). There exists a known
positive constant 𝑐Sep > 0, such that for any task pair (𝑚,𝑚′) ∈
[𝑀] × [𝑀],𝑚 ̸=𝑚′ it holds that

���𝑉 ∗
𝑚,1(𝑠0) −𝑉 ∗

𝑚′,1(𝑠0)
��� > 𝑐Sep.

Goal. We say a policy 𝜋 is 𝜖-optimal with respect to task 𝑚 if
𝑉 𝜋
𝑚,1(𝑠0) ≥ 𝑉 ∗

𝑚,1(𝑠0) − 𝜖. The goal is to design a cooperative and
exploratory algorithm that will be run by all the agents in parallel
and when it stops, all the agents have access to 𝜖-optimal policies
for all tasks while it minimizes the total number of episodes during
the exploration phase at which a policy must be executed.

3 DISTRIBUTED MULTI-TASK LSVI

In this section, we give a description of our algorithm, Distributed
Multi-Task Least Value Iteration (DistMT-LSVI), presented in Al-
gorithm 1 for a single agent 𝑖, and is run in parallel by all 𝑁 agents.
This algorithm is inspired by the exploration phase for the reward-
free setting in Wang et al. [32]. At the beginning of each round, after
task allocation, every agent first needs to determine if its assigned
task has been already solved or not. However, since the task labels
are unknown, communicating task labels is not an option to figure
out whether a task has been solved or not. Therefore, agents need
to communicate another measure that under Assumption 2 will po-
tentially help agents distinguish and identify tasks. In view of this,
when tasks are allocated at the beginning of learning round 𝑡 , each
agent 𝑖 first needs to spend 𝐾1 episodes to calculate certain statistics
of its corresponding task’s unknown parameters (Lines 3 and 4).
These statistics then will be shared with the server, who relying on
Assumption 2 and checking a certain separability measure (Line 6),
informs agent 𝑖 whether its assigned task has been solved before,
and if so, lets it know of its task’s label. In such cases, agent 𝑖 will
screen the look-up table 𝐹 , which is continuously being updated and
shared with all the agents by the server to find its task’s label and its
corresponding 𝜖-optimal policy. If the server determines that a task
assigned to agent 𝑖 has not been solved before, it lets agent 𝑖 know
that it needs to spend another 𝐾2 episodes of exploration to learn the
𝜖-optimal policy of this new task (Lines 11 and 12). Agent 𝑖 then
share the necessary statistics to calculate this policy with the server.
At the end of round 𝑡 , when the server has gathered the necessary
information from all the agents, it updates two look-up tables 𝐺 ,
which includes statistics determining task-separability and 𝐹 , which
includes task labels and statistics determining their corresponding

𝜖-optimal policies (Line 15). Finally, agent 𝑖 will receive all the
changes made to 𝐹 by the server.

Algorithm 1: DistMT-LSVI (𝛿, 𝜖) for agent 𝑖

1 Set: 𝛽1 = 𝑐𝛽1𝐻𝑑
√︃

log(𝑑𝐻𝑀𝛿−1𝑐−1
Sep) for some 𝑐𝛽1 > 0,

𝐾1 = 𝑐𝐾1𝑑
3𝐻6 log(𝑑𝐻𝑀𝛿−1𝑐−1

Sep)/𝑐2
Sep for some 𝑐𝐾1 > 0,

𝛽2 = 𝑐𝛽2𝐻𝑑
√︁

log(𝑑𝐻𝑀𝛿−1𝜖−1) for some 𝑐𝛽1 > 0,
𝐾2 = 𝑐𝐾2𝑑

3𝐻6 log(𝑑𝐻𝑀𝛿−1𝑐−1
Sep)/𝜖2 for some 𝑐𝐾2 > 0,

𝑇 = 6𝑀 log(𝑀/𝛿)
𝑁

, ℓ = 0, 𝐺𝑚 = 𝐹𝑚 = ∅, ∀𝑚 ∈ [𝑀]
2 for rounds 𝑡 = 1, . . . ,𝑇 do
3 D1,𝑡

𝑖
= ExpPh(𝛽1, 𝐾1) with unknown parameters

P𝑚𝑖,𝑡
and 𝑟𝑚𝑖,𝑡

4

(
{(𝜽 1,𝑡

ℎ,𝑖
,Λ1,𝑡
ℎ,𝑖

)}ℎ∈[𝐻],𝑉
1,𝑡
1,𝑖 (𝑠0)

)
= Planning(D1,𝑡

𝑖
)

5 Send
(
{(𝜽 1,𝑡

ℎ,𝑖
,Λ1,𝑡
ℎ,𝑖

)}ℎ∈[𝐻],𝑉
1,𝑡
1,𝑖 (𝑠0)

)
to the server

6 if ∃𝑚 ∈ [ℓ] such that for all 𝑉 ∈ 𝐺𝑚 ,���𝑉 −𝑉 1,𝑡
1,𝑖 (𝑠0)

��� ≤ 𝑐Sep/2 then
7 Server informs agent 𝑖 of the task label𝑚𝑖,𝑡 =𝑚

Agent has already access to the 𝜖-optimal policy for
task𝑚𝑖,𝑡

8 Let {(𝜽ℎ,Λℎ)}ℎ∈[𝐻] = 𝐹𝑚
9 Return policy 𝜋𝑡

𝑖
= {𝜋𝑡

ℎ,𝑖
}𝐻
ℎ=1, where

𝜋𝑡
ℎ,𝑖

(.) = arg max𝑎∈A 𝑄ℎ(., 𝑎),
𝑄ℎ(., .) = min

{
⟨𝜽ℎ, 𝝓(., .)⟩ + 𝑢ℎ(., .), 𝐻

}
,

𝑢ℎ(., .) = min
{
𝛽2

𝝓(., .)

Λ−1
ℎ

, 𝐻

}
.

10 else
11 D2,𝑡

𝑖
= ExpPh(𝛽2, 𝐾2) with unknown parameters

P𝑚𝑖,𝑡
and 𝑟𝑚𝑖,𝑡

12

(
{(𝜽 2,𝑡

ℎ,𝑖
,Λ2,𝑡
ℎ,𝑖

)}ℎ∈[𝐻],𝑉
2,𝑡
1,𝑖 (𝑠0)

)
= Planning(D2,𝑡

𝑖
)

13 Send {(𝜽 2,𝑡
ℎ,𝑖
,Λ2,𝑡
ℎ,𝑖

)}ℎ∈[𝐻] to the server

14 Return policy 𝜋𝑡
𝑖

= {𝜋𝑡
ℎ,𝑖

}𝐻
ℎ=1, where

𝜋𝑡
ℎ,𝑖

(.) = arg max𝑎∈A 𝑄ℎ(., 𝑎),

𝑄ℎ(., .) = min
{
⟨𝜽 2,𝑡
ℎ,𝑖
, 𝝓(., .)⟩ + 𝑢ℎ(., .), 𝐻

}
,

𝑢ℎ(., .) = min
𝛽2

𝝓(., .)

(

Λ2,𝑡
ℎ,𝑖

)−1 , 𝐻


15 Server updates {𝐺𝑚}𝑀

𝑚=1, {𝐹𝑚}𝑀
𝑚=1, 𝑓 =

Group({𝐺𝑚}𝑀
𝑚=1, {𝐹𝑚}𝑀

𝑚=1, ℓ, 𝑡)
16 Receive {𝐹𝑚}ℓ+𝑓

𝑚=ℓ+1 from the server.
17 ℓ = ℓ + 𝑓

THEOREM 1. Let Assumptions 1 and 2 hold. Let 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1),
𝑇 = 6𝑀 log(𝑀/𝛿)/𝑁 , 𝐾1 = 𝑐𝐾1𝑑

3𝐻6 log(𝑑𝐻𝑀𝛿−1𝑐−1
Sep)/𝑐2

Sep for suf-

ficiently large 𝑐𝐾1 > 0, and 𝐾2 = 𝑐𝐾2𝑑
3𝐻6 log(𝑑𝐻𝑀𝛿−1𝑐−1

Sep)/𝜖2 for
sufficiently large 𝑐𝐾2 > 0. Then, if all the agents run Algorithm 1 in
parallel, with probability at least 1 − 𝛿 , every agent 𝑖 ∈ [𝑁] at every
round 𝑡 ∈ [𝑇] returns an 𝜖-optimal policy 𝜋𝑡

𝑖
of a given task with

unknown label𝑚𝑖,𝑡 and at the end of 𝑇 rounds, every agent 𝑖 ∈ [𝑁]

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

has access to all the tasks’ 𝜖-optimal policies using a total number
of at most 𝑇 (𝐾1 + 𝐾2) episodes.

3.1 Proof Sketch of Theorem 1

In this section, we give a proof sketch for Theorem 1. We start
by introducing the following lemmas, which are the foundation of
our analysis, and whose complete proofs are given in Appendix
B. The following lemma shows that the estimated value functions
are optimistic with high probability and close to the optimal value
functions. It confirms that the condition in Line 6 of Algorithm 1
enable agents to identify the tasks and prevents them from solving a
task that has already been solved, and an agent can directly inquire
about an 𝜖-optimal policy of such a task from the server.

LEMMA 1. Under the setting of Theorem 1, for all (𝑖, 𝑡) ∈ [𝑁]× [𝑇],
with probability at least 1 − 𝛿 , it holds that

0 ≤ 𝑉 1,𝑡
1,𝑖 (𝑠0) −𝑉 ∗

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝑐Sep/8. (2)

Using Lemma 1, in the following lemma, we design the condition in
Line 6.

LEMMA 2. Let 𝐾1 be chosen as in Lemma 1. Then, conditioned on
the event introduced in Lemma 1, if

���𝑉 1,𝑡
1,𝑖 (𝑠0) −𝑉 1,𝑡 ′

1, 𝑗 (𝑠0)
��� > 𝑐Sep/2,

then𝑚𝑖,𝑡 and𝑚 𝑗,𝑡 ′ are two different tasks; otherwise, they are the
same tasks.

LEMMA 3. Under the setting of Theorem 1, and conditioned on the
event defined in Lemma 2, for all (𝑖, 𝑡) ∈ [𝑁] × [𝑇], with probability
at least 1 − 𝛿 , it holds that

0 ≤ 𝑉 ∗
𝑚𝑖,𝑡 ,1(𝑠0) −𝑉 𝜋

𝑡
𝑖

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝜖. (3)

LEMMA 4. Under the setting of Theorem 1, with probability at least
1 − 𝛿 , after 𝑇 rounds all the tasks have been solved by at least one
agent.

Conditioned on the events introduced in Lemmas 2, 3, and 4, only
𝑇 = 6𝑀 log(𝑀/𝛿)/𝑁 rounds of learning are sufficient such that all
the agents have access to the 𝜖-optimal policies of all tasks𝑚 ∈ [𝑀],
which proves the second part of the Theorem 1’s statement.

4 EXPERIMENTS

The experiments use the OpenAI Gym Atari environments for train-
ing and evaluation. Our task setting consists of 𝑁 = 20 agents and
𝑀 = 10 tasks. Following our proposed algorithm, DistMT-LSVI, the
agents share information among each other through a central server
which we also refer to as the hub. As discussed earlier, the objective
is to design a cooperative algorithm so that when the algorithm stops,
each agent has access to the 𝜖-optimal policies for all the tasks.

In the learning stage, each agent learns a sequence of 10 randomly
assigned tasks. The number of learning rounds (𝑇) equals 10. Each
agent runs Algorithm 1 in parallel. At the beginning of each round,
each agent is assigned a task. The agent first needs to check if
the assigned task has already been completed by other agents or
not. Under Assumption 2, we achieve this by letting each agent
measure task similarity by using a small neural network, which we

refer to as SimNet. SimNet is a small Deep Q-Network (DQN) that
consists of only two linear layers with one ReLU in between. Before
an agent learns a new task, it always initializes SimNet from the
same set of parameters. This allows the agent to be trained to rapidly
capture patterns of the new task for 10,000 frames within one minute.
Then, we use the updated parameters to compare similarity between
parameters of other SimNets shared by neighboring agents on their
own past tasks with distance metrics,such as Euclidean distance of
parameter matrices. In this fashion, we find out the most similar
tasks to our current tasks. The agent then queries features such as
replay buffers of those learned tasks to train a Lifelong Learning
model.

The Lifelong Learning property of the algorithm is implemented by
combining an Elastic Weight Consolidation (EWC) module, which
is a continual learning algorithm that effectively slows down cata-
strophic forgetting of past tasks during the convergence of an ongo-
ing task by selectively retaining elasticity of important parameters,
and a DQN algorithm. In particular, in the beginning of the training
of a new task, the agent first obtains the experience dataset and
initialization parameters for a similar task from its own experience
or from other agents, then the agent continues to train its model
by interacting with the environment. The existing experience will
greatly reduce the training time of the new task. For each new task
the agent receives, the agents are able to obtain a concise feature
map of the task, and use it to query the central server, i.e., obtain the
experience from the neighboring agents who have already seen the
task. Each agent queries the central server that hosts the neighbors’
SimNet parameters to compare the task similarity with its own Sim-
Net, deciding which relevant task information to acquire from the
server. Having obtained a list of “similar” agents to communicate
with, the agent decompresses learning representations of those tasks
for continual learning its model. If there is no similar task available,
the LL agent trains the new task from scratch. Otherwise, it lever-
ages learnable information from neighbors to perform LL. The LL
agent frees up memory consumed by shared information. In this
way, our proposed approach prevents the agents from solving a task
that has already been solved, and an agent can directly inquire about
an 𝜖-optimal policy of a task that has already been solved by other
agents from the hub.

Before learning each task, every agent encounters one of the follow-
ing scenarios: 1) If neither the agent nor its neighbors has encoun-
tered a new task before, the agent needs to interact with the Atari
server for at least 10000 frames for learning samples to train the
Lifelong Learning model. This is equivalent to single-agent training
where the agent needs to train each task from scratch. 2) If the task
has been learned by its peers, our agent requests the experience
replay buffers (ERB). It leverages learnable information, e.g. by
performing memory replay on borrowed ERB locally instead of
interacting with the Atari-server, saving large amounts of time in
learning from more data in a short frame of time.

We implement our RL algorithm with a deep Q-learning (DQN)
framework. In this framework, a deep neural network stores the
value of a Q-function, which represents the value of a possible move
given an observation. The Q-function takes input a game state (e.g.,

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

N
or

m
al

iz
ed

A
R

Number of agents, 𝑁

(a) Normalized Agent Reward

N
or

m
al

iz
ed

A
T

Number of agents, 𝑁

(b) Normalized Agent Time

Figure 1: Normalized AR and AT.

an image, or an internal memory of the Atari game) and an action
(e.g., a button on the game sticker), and outputs a value of the action.

To train an RL agent, we need an initialization parameter for the
Q-function and an experience dataset of a given task. The dataset
consists of tuples of 1) observation embeddings, 2) action, 3) reward,
4) termination status of the current state, and 5) observation embed-
dings of the next state e.g. RoadRunner imported from OpenAI Gym
library.

The experiments include comparison of the following two baselines:
(i) Isolated agent: In this baseline, a single agent performs the con-
ventional lifelong RL to sequentially learn the Atari environments,
i.e. without sharing of experience replay buffers. (ii) DistMT-LSVI
Agent: In addition to performing lifelong RL on each agent, these
agents also share experiences across each other, and hence learning
the optimal policies faster.

In order to evaluate our experiment, we use two metrics, defined
as Agent Time (AT) and Agent Reward (AR). Assume there are 𝑁
agents that collaboratively learn 𝑀 distinct tasks. Each agent learns
a unique sequence of these M tasks. More formally, AT and AR are
defined as follows: 1) Agent Time (AT) refers to the average time of
each of the 𝑁 agents to achieve 90% of average normalized scores
of all tasks over a permutation of sequences of 𝑀 distinct tasks. This
metric is proportional to the notion of sample complexity for which
we provide an upper bound in Theorem 1. 2) Agent Reward (AR)
refers to the average reward of 𝑁 agents after being trained for a
fixed amount of time on each of the 𝑀 distinct sequential tasks.

We have conducted the following experiments to evaluate the per-
formance improvement of the DistMT-LSVI agent over the Isolated
Lifelong Learning agent. The goal of this experiment is to demon-
strate the increase of Agent Reward when the number of agents
is increasing. We use different numbers of agents that interpolate
between 1 and 20. The case of one agent corresponds to the Isolated
agent case.

Figure 1a shows the difference in normalized average reward result
with different numbers of agents. In normalizing the reward, we take
the reward in the random setting as 0 and the isolate agent as 1. We
can see that across all games, the DistMT-LSVI system achieves

a linear increase across different numbers of agents in normalized
Agent Reward. In general, the DistMT-LSVI agent is able to achieve
a 0.88𝑁 scaling on the reward. In this procedure: 1) We train the sin-
gle agent (isolated Continual/Lifelong Learning) agent on a random
permutation of 10 tasks. 2) We repeat this experiment 5 times with 5
different random seeds. At the end of 10 tasks, we save the final/last
model. 3) We then use the 5 last saved models and evaluate the per-
formance for each task for instance Alien. 4) We finally report the
results after evaluation on the best model (out of the 5 runs). 5) We
emulate the above experiment setting for DistMT-LSVI experiments
(3 agents, 5 agents, 7 agents, 10 agents, and 20 agents), and report
the normalized AR.

N
um

be
ro

ff
ra

m
es

Number of agents, 𝑁

Figure 2: Number of frames required by DistMT-LSVI agents
to reach x% {20, 40, 60, 80, 99} of the Single Agent reward

We also demonstrate the decrease of Agent Time when the number
of agents is rising. The agent time is measured by the percentage of
number of frames for the agent on average to reach the reward in the
Isolated agent that performs single agent lifelong learning. We use
different numbers of agents that interpolate between 1 and 20 with
the following specifications: 1) Hypothesis: increasing the number
of agents will decrease the agent time to reach the desired reward on
each game. 2) Independent variable: Number of agents (1, 3, 5, 7,
10, 15, 20), Atari environments 3) Dependent variable: Agent Time
(AR) - Percentage of number of frames to reach the reward of the

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

isolated agent 4) Procedure: Randomly sample 10 unique tasks from
the 20 total tasks.Run training on the DistMT-LSVI system with
different iterations per epoch (1, 3, 5, 7, 10, 15, 20) and train all 10
tasks.

Figure 1b shows the difference in AT with different numbers of
agents. We can see that across all games, our proposed DistMT-LSVI
system achieves a continuous decrease across different numbers of
agents in Agent Time.

Figure 2 indicates the Agent Time (measured in terms of num-
ber of frames at the time of training). The frame rate is 60 fps
(frames/second). Here we show that scaling the number of agents
leads to speedup of performance. On the y-axis, we have the num-
ber of frames. On the x-axis, we have the isolated agent (Lifelong
Learning agent without experience sharing), 3 agents DistMT-LSVI,
5 agents DistMT-LSVI, 7 agents DistMT-LSVI, 10 agents DistMT-
LSVI, and 20 agents DistMT-LSVI. The following procedure has
been adopted to achieve the above plot: 1) We log the agent reward
from the single agent (Lifelong Learning agent without experience
sharing) experiment along with the number of frames. We then per-
form the DistMT-LSVI experiment for 3 agents, 5 agents, 7 agents,
10 agents, 15 agents, and 20 agents. 2) In each DistMT-LSVI ex-
periment, we measure the number of frames taken to achieve 20% ,
40%, 60%, 80% and 99% of the isolated agent reward, and we plot .
3) This plot will help us guide new design experiments to balance
the trade-off between utility and computational time.

5 RELATED WORK

We consider the sample-complexity setup of distributed multi-task
RL under the contextual MDP framework, where 𝑁 agents receive
tasks specified by unknown contexts from a pool of 𝑀 tasks and
they share information with each other through a server. Below, we
contrast our work with related work in the literature.

Multi-task RL and Lifelong RL.. Multi-task RL studied in Brunskill
and Li [8], Fifty et al. [15], Hessel et al. [17], Sodhani et al. [30],
Yang et al. [37], Zhang and Wang [38] assumes that tasks are chosen
from a known finite set, and in Brunskill and Li [8], Sun et al. [31],
Wilson et al. [33], Yang et al. [37], tasks are sampled from a fixed
distribution, and in both, task identities are assumed to be known.
By contrast, our setting provides theoretical guarantees for task
sequences whose identities are unknown. Another closely related
line of work is lifelong RL, which studies how to learn to solve a
streaming sequence of tasks. Historically many works on lifelong
RL [2, 3, 6, 9, 23] assume that the tasks are i.i.d. (similar to multi-
task RL). There are works for adversarial sequences, but they all
assume the tasks are known when assigned to the agent and most of
them are purely empirical [35]. The work by Isele et al. [18] uses
contexts to enable zero-shot learning like here, but it (as well as most
works above) does not provide formal regret or sample-complexity
guarantees.

Distributed/Multi-agent RL.. Distributed/Multi-agent RL is a do-
main with a relatively long history, beginning from classical algo-
rithms in the fully-cooperative setting [7], where all agents share
identical reward functions to setting with multi-agent MDPs [21]

and it has recently re-emerged due to advances in single-agent RL
techniques. In the most closely related line of work, Dubey and Pent-
land [14], Zhang et al. [39, 40] study a more general heterogeneous
reward setting, where each agent has unique rewards. However, from
a multi-task learning viewpoint, in all these works, each agent is
assigned to only one fixed task, i.e., 𝑀 = 𝑁 , and its goal is to learn
optimal policy for only that task. In contrast, in our work, 𝑀 and
𝑁 are not necessarily the same, and the goal is for all 𝑁 agents to
achieve 𝜖-optimal policies for all 𝑀 tasks.

Contextual MDP and multi-objective RL.. Our setup is closely re-
lated to the exploration problem studied in the contextual MDP liter-
ature. Most contextual MDP works allow adversarial contexts, but a
majority of them focuses on the tabular setup [1, 16, 24, 27, 28, 34],
whereas our setup allows continuous state and action spaces. Kakade
et al. [20] and Du et al. [13] allow continuous state and action spaces,
but the former assumes a planning oracle with unclear computational
complexity and the latter focuses on only LQG problems.

6 CONCLUSION

Motivated by DARPA’s ShELL program, we conducted a compre-
hensive theoretical and empirical study on distributed multi-task
RL. In this framework, 𝑁 agents collaborate to solve a set of 𝑀
tasks, without prior knowledge of the task identities. To address this
challenge, we formulated the problem using linearly parameterized
contextual MDPs, where each task is represented by a context that
specifies its transition dynamics and rewards. To tackle this problem,
we introduced a novel algorithm called DistMT-LSVI that enables
agents to first identify the tasks and then leverage a central server to
facilitate information sharing, ultimately obtaining 𝜖-optimal poli-
cies for all 𝑀 tasks. Our theoretical analysis establishes that the total
number of episodes required for a single agent to execute DistMT-
LSVI is bounded by Õ(𝑑3𝐻6(𝜖−2 + 𝑐−2

Sep) · 𝑀/𝑁), where 𝑐Sep > 0
is a constant characterizing task separability, 𝐻 is horizon of each
episode and 𝑑 is the feature dimension of the dynamics and rewards.
Notably, DistMT-LSVI significantly improves the sample complex-
ity compared to non-distributed settings by a factor of 1/𝑁 . In the
non-distributed approach, each agent independently learns 𝜖-optimal
policies for all 𝑀 tasks, necessitating Õ(𝑑3𝐻6𝑀𝜖−2) episodes per
agent. Our extensive numerical experiments using OpenAI Gym
Atari environments provided empirical evidence supporting the effi-
cacy and performance of our proposed methodology. That said, our
work’s limitations motivate further investigations in the following
directions: 1) extension to more general class of MDPs, potentially
using general function approximation/representation tools, 2) study-
ing settings with adversarial streaming sequence of tasks.

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

REFERENCES
[1] Yasin Abbasi-Yadkori and Gergely Neu. 2014. Online learning in MDPs with side

information. arXiv preprint arXiv:1406.6812 (2014).
[2] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. 2018. State

abstractions for lifelong reinforcement learning. In International Conference on
Machine Learning. PMLR, 10–19.

[3] David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman.
2018. Policy and value transfer in lifelong reinforcement learning. In International
Conference on Machine Learning. PMLR, 20–29.

[4] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckel-
macher. 2019. Dynamic weights in multi-objective deep reinforcement learning.
In International Conference on Machine Learning. PMLR, 11–20.

[5] Maryam Alavi, George M Marakas, and Youngjin Yoo. 2002. A comparative
study of distributed learning environments on learning outcomes. Information
Systems Research 13, 4 (2002), 404–415.

[6] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. 2014. Online
multi-task learning for policy gradient methods. In International conference on
machine learning. PMLR, 1206–1214.

[7] Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision
processes. In TARK, Vol. 96. Citeseer, 195–210.

[8] Emma Brunskill and Lihong Li. 2013. Sample complexity of multi-task reinforce-
ment learning. In Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence. 122–131.

[9] Emma Brunskill and Lihong Li. 2014. Pac-inspired option discovery in lifelong
reinforcement learning. In International conference on machine learning. PMLR,
316–324.

[10] Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997), 41–75.
[11] Michael Crawshaw. 2020. Multi-task learning with deep neural networks: A

survey. arXiv preprint arXiv:2009.09796 (2020).
[12] Darpa. 2021. Shared-Experience Lifelong Learning (ShELL). https://sam.gov/

opp/1afbf600f2e04b26941fad352c08d1f1/view#general.
[13] Simon S Du, Ruosong Wang, Mengdi Wang, and Lin F Yang. 2019. Continuous

control with contexts, provably. arXiv preprint arXiv:1910.13614 (2019).
[14] Abhimanyu Dubey and Alex Pentland. 2021. Provably efficient cooperative

multi-agent reinforcement learning with function approximation. arXiv preprint
arXiv:2103.04972 (2021).

[15] Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn.
2021. Efficiently identifying task groupings for multi-task learning. Advances in
Neural Information Processing Systems 34 (2021).

[16] Assaf Hallak, Dotan Di Castro, and Shie Mannor. 2015. Contextual markov
decision processes. arXiv preprint arXiv:1502.02259 (2015).

[17] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,
and Hado van Hasselt. 2019. Multi-task deep reinforcement learning with popart.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 3796–
3803.

[18] David Isele, Mohammad Rostami, and Eric Eaton. 2016. Using Task Features for
Zero-Shot Knowledge Transfer in Lifelong Learning.. In IJCAI, Vol. 16. 1620–
1626.

[19] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. 2020. Provably
efficient reinforcement learning with linear function approximation. In Conference
on Learning Theory. 2137–2143.

[20] Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and
Wen Sun. 2020. Information theoretic regret bounds for online nonlinear control.
Advances in Neural Information Processing Systems 33 (2020), 15312–15325.

[21] Martin Lauer and Martin Riedmiller. 2004. Reinforcement learning for stochastic
cooperative multi-agent systems. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 3. Citeseer,
1516–1517.

[22] Alessandro Lazaric and Mohammad Ghavamzadeh. 2010. Bayesian multi-task re-
inforcement learning. In ICML-27th international conference on machine learning.
Omnipress, 599–606.

[23] Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson,
and Michael L Littman. 2021. Lipschitz Lifelong Reinforcement Learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8270–
8278.

[24] Orin Levy and Yishay Mansour. 2022. Learning Efficiently Function Approxima-
tion for Contextual MDP. arXiv preprint arXiv:2203.00995 (2022).

[25] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating distributed reinforcement learning with in-switch
computing. In Proceedings of the 46th International Symposium on Computer
Architecture. 279–291.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[27] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. 2018. Markov
decision processes with continuous side information. In Algorithmic Learning

Theory. PMLR, 597–618.
[28] Aditya Modi and Ambuj Tewari. 2020. No-regret exploration in contextual

reinforcement learning. In Conference on Uncertainty in Artificial Intelligence.
PMLR, 829–838.

[29] Nicholas Roy, Ingmar Posner, Tim Barfoot, Philippe Beaudoin, Yoshua Bengio,
Jeannette Bohg, Oliver Brock, Isabelle Depatie, Dieter Fox, Dan Koditschek, et al.
2021. From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence. arXiv preprint arXiv:2110.15245 (2021).

[30] Shagun Sodhani, Amy Zhang, and Joelle Pineau. 2021. Multi-task reinforce-
ment learning with context-based representations. In International Conference on
Machine Learning. PMLR, 9767–9779.

[31] Yanchao Sun, Xiangyu Yin, and Furong Huang. 2021. TempLe: Learning Template
of Transitions for Sample Efficient Multi-task RL. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 9765–9773.

[32] Ruosong Wang, Simon S Du, Lin Yang, and Russ R Salakhutdinov. 2020. On
reward-free reinforcement learning with linear function approximation. Advances
in Neural Information Processing Systems 33 (2020).

[33] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2007. Multi-task
reinforcement learning: a hierarchical bayesian approach. In Proceedings of the
24th international conference on Machine learning. 1015–1022.

[34] Jingfeng Wu, Vladimir Braverman, and Lin Yang. 2021. Accommodating picky
customers: Regret bound and exploration complexity for multi-objective reinforce-
ment learning. Advances in Neural Information Processing Systems 34 (2021),
13112–13124.

[35] Annie Xie and Chelsea Finn. 2021. Lifelong Robotic Reinforcement Learning by
Retaining Experiences. arXiv preprint arXiv:2109.09180 (2021).

[36] Lin Yang and Mengdi Wang. 2019. Sample-optimal parametric Q-learning using
linearly additive features. In International Conference on Machine Learning.
PMLR, 6995–7004.

[37] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. 2020. Multi-task rein-
forcement learning with soft modularization. Advances in Neural Information
Processing Systems 33 (2020), 4767–4777.

[38] Chicheng Zhang and Zhi Wang. 2021. Provably efficient multi-task reinforcement
learning with model transfer. Advances in Neural Information Processing Systems
34 (2021).

[39] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. 2018. Networked multi-agent
reinforcement learning in continuous spaces. In 2018 IEEE conference on decision
and control (CDC). IEEE, 2771–2776.

[40] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. 2018.
Fully decentralized multi-agent reinforcement learning with networked agents. In
International Conference on Machine Learning. PMLR, 5872–5881.

[41] Yu Zhang and Qiang Yang. 2018. An overview of multi-task learning. National
Science Review 5, 1 (2018), 30–43.

https://sam.gov/opp/1afbf600f2e04b26941fad352c08d1f1/view##general
https://sam.gov/opp/1afbf600f2e04b26941fad352c08d1f1/view##general

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

A OMITTED ALGORITHMS

Algorithm 2: ExpPh (𝛽, 𝐾)

1 Unknown parameters: P, 𝑟
2 Set: 𝑄𝑘

𝐻+1(., ., .) = 0, ∀𝑘 ∈ [𝐾]
3 for 𝑘 = 1, . . . , 𝐾 do
4 Observe the initial state 𝑠𝑘1 = 𝑠0
5 for ℎ = 𝐻,𝐻 − 1, . . . , 1 do
6 Λ𝑘

ℎ
= I𝑑 + ∑𝑘−1

𝜏=1 𝝓𝜏
ℎ
𝝓𝜏
ℎ
⊤

7 𝑢𝑘
ℎ

(., .) = min
𝛽

𝝓(., .)

(
Λ𝑘
ℎ

)−1 , 𝐻


8 Define the exploration-driven reward function 𝑢̃𝑘

ℎ
(., .) = 𝑢𝑘

ℎ
(., .)/𝐻

9 𝜽𝑘
ℎ

= (Λ𝑘
ℎ

)−1 ∑𝑘−1
𝜏=1 𝝓𝜏

ℎ
[𝑉𝑘
ℎ+1(𝑠𝜏

ℎ+1)]

10 𝑄𝑘
ℎ

(., .) = min
{
⟨𝜽𝑘
ℎ
, 𝝓(., .)⟩ + 𝑢𝑘

ℎ
(., .) + 𝑢̃𝑘

ℎ
(., .), 𝐻

}
and 𝑉𝑘

ℎ
(.) = max𝑎∈A 𝑄𝑘

ℎ
(., 𝑎)

11 𝜋𝑘
ℎ

(.) = arg max𝑎∈A 𝑄𝑘
ℎ

(., 𝑎)

12 for ℎ = 1, 2, . . . , 𝐻 do
13 Take action 𝑎𝑘

ℎ
= 𝜋𝑘

ℎ
(𝑠𝑘
ℎ

), and observe 𝑠𝑘
ℎ+1 ∼ P𝑘

ℎ
(.|𝑠𝑘

ℎ
, 𝑎𝑘
ℎ

) and 𝑟𝑘
ℎ

= 𝑟ℎ(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ

)

14 Return: D = {(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, 𝑟𝑘
ℎ

)}(ℎ,𝑘)∈[𝐻]×[𝐾]

Algorithm 3: Planning ({(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, 𝑟𝑘
ℎ

)}(ℎ,𝑘)∈[𝐻]×[𝐾])

1 for ℎ = 𝐻,𝐻 − 1, . . . , 1 do
2 Λℎ B I𝑑 + ∑𝐾

𝜏=1 𝝓
𝜏
ℎ
𝝓𝜏
ℎ
⊤

3 𝑢ℎ(., .) = min
{
𝛽

𝝓(., .)

Λ−1
ℎ

, 𝐻

}
4 𝜽ℎ = (Λℎ)−1 ∑𝐾

𝜏=1 𝝓
𝜏
ℎ

[𝑟𝜏
ℎ

+𝑉ℎ+1(𝑠𝜏
ℎ+1)]

5 𝑄ℎ(., .) = min
{
⟨𝜽ℎ, 𝝓(., .)⟩ + 𝑢ℎ(., .), 𝐻

}
and 𝑉ℎ(.) = max𝑎∈A 𝑄ℎ(., 𝑎)

6 Return:
(
{(𝜽ℎ,Λℎ)}ℎ∈[𝐻],𝑉1(𝑠0)

)

Algorithm 4: Group for the server({𝐺𝑚}𝑀
𝑚=1, {𝐹𝑚}𝑀

𝑚=1, ℓ, 𝑡)

1 Initialization: 𝑓 = 0
2 for 𝑖 = 1, . . . 𝑁 do
3 if ∃𝑚 ∈ [ℓ] such that for all 𝑉 ∈ 𝐺𝑚 ,

���𝑉 −𝑉 1,𝑡
1,𝑖 (𝑠0)

��� ≤ 𝑐Sep/2 then
4 Add 𝑉 1,𝑡

1,𝑖 (𝑠0) to 𝐺𝑚 .

5 else
6 ℓ = ℓ + 1, 𝑓 = 𝑓 + 1

7 Add 𝑉 1,𝑡
1,𝑖 (𝑠0) to 𝐺ℓ and add

(
{(𝜽 2,𝑡

ℎ,𝑖
,Λ2,𝑡
ℎ,𝑖

)}ℎ∈[𝐻], ℓ
)

to 𝐹ℓ .

8 Return {𝐺𝑚}𝑀
𝑚=1, {𝐹𝑚}𝑀

𝑚=1, 𝑓

B PROOFS OF SECTION 3

In order to prove Theorem 1, and Lemmas 1 and 3, we first state the following lemma.

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

LEMMA 5. Fix 𝛿 ∈ (0, 1) and 𝜖 ∈ (0, 1) and 𝛽 = 𝑐𝛽𝐻𝑑
√︁

log(𝑑𝐻𝑀𝛿−1𝜖−1) for some 𝑐𝛽 > 0, 𝐾 = 𝑐𝐾𝑑3𝐻6 log(𝑑𝐻𝑀𝛿−1𝜖−1)/𝜖2 for some 𝑐𝐾 > 0.
Let D = {(𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
, 𝑟𝑘
ℎ

)}(ℎ,𝑘)∈[𝐻]×[𝐾] be the dataset generated in Algorithm 2 in an environment defined with MDP 𝑀𝑐 = (S,A, 𝐻, P, 𝑟) with

unknown parameters P and 𝑟 and be the input to the Algorithm 3. Let Λ𝑘
ℎ

, 𝑢𝑘
ℎ

, 𝜽𝑘
ℎ

, 𝑄𝑘
ℎ

, 𝑉𝑘
ℎ

be defined as in Algorithm 2 and Λℎ , 𝑢ℎ , 𝜽ℎ , 𝑄ℎ , 𝑉ℎ
be defined as in Algorithm 3 and 𝜋ℎ(.) = arg max𝑎∈A 𝑄ℎ(., 𝑎). Then with probability at least 1 − 𝛿 , it holds that

𝑉 ∗
1 (𝑠0) ≤ 𝑉1(𝑠0) (4)

and

𝑉1(𝑠0) −𝑉 𝜋1 (𝑠0) ≤ 𝜖. (5)

PROOF. .

First part:

We define the backups as

𝜽̃ℎ B 𝜼ℎ +
∫
S
𝑉ℎ+1(𝑠′)𝑑𝝁ℎ(𝑠′), (6)

Thanks to the linear MDP structure in Assumption 1, it holds that

𝑟ℎ(𝑠, 𝑎) + Pℎ
[
𝑉ℎ+1(.)

]
(𝑠, 𝑎) =

〈
𝜽̃ℎ, 𝝓(𝑠, 𝑎)

〉
. (7)

𝜽̃ℎ − 𝜽ℎ = 𝜽̃ℎ − Λ−1
ℎ

𝐾∑︁
𝜏=1

𝝓𝜏
ℎ

[𝑟𝜏
ℎ

+𝑉ℎ+1(𝑠𝜏
ℎ+1)]

= Λ−1
ℎ

(
Λℎ𝜽̃ℎ −

𝐾∑︁
𝜏=1

𝝓𝜏
ℎ

[𝑟𝜏
ℎ

+𝑉ℎ+1(𝑠𝜏
ℎ+1)]

)
= Λ−1

ℎ
𝜽̃ℎ︸ ︷︷ ︸

q1

−Λ−1
ℎ

(
𝐾∑︁
𝜏=1

𝝓𝜏
ℎ

(
𝑉ℎ+1(𝑠𝜏

ℎ+1) − Pℎ[𝑉ℎ+1(.)](𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
))

︸ ︷︷ ︸
q2

.

Thus, in order to upper bound

𝜽̃ℎ − 𝜽ℎ

Λℎ

, we bound

q1

Λℎ

and

q2

Λℎ

separately.

From Lemma Assumption 1, we have

q1

Λℎ
=

𝜽̃ℎ

Λ−1

ℎ

≤

𝜽̃ℎ

2

≤ 𝐻
√
𝑑. (8)

Thanks to Lemma 6, for all ℎ ∈ [𝐻], with probability at least 1 − 𝛿 , it holds that

q2

Λℎ
≤

 𝐾∑︁
𝜏=1

𝝓𝜏
ℎ

(
𝑉ℎ+1(𝑠𝜏

ℎ+1) − Pℎ[𝑉ℎ+1(.)](𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
)

Λ−1
ℎ

≤ 𝑐0𝐻𝑑
√︃

log((𝑐𝛽 + 1)𝑑𝐻𝐾/𝛿), (9)

where 𝑐0 and 𝑐𝛽 are two independent absolute constants. Combining (8) and (9), for all ℎ ∈ [𝐻], with probability at least 1 − 𝛿 , it holds that

𝜽ℎ − 𝜽̃ℎ

Λℎ

≤ 𝑐𝐻𝑑
√︁

log(𝑑𝐻𝐾/𝛿) = 𝛽

for some absolute constant 𝑐 > 0. Therefore, for all ℎ ∈ [𝐻], with probability at least 1 − 𝛿 , it holds that���𝑟ℎ(𝑠, 𝑎) + Pℎ
[
𝑉ℎ+1(.)

]
(𝑠, 𝑎) − ⟨𝜽ℎ, 𝝓(𝑠, 𝑎)⟩

��� =
���⟨𝜽̃ℎ − 𝜽ℎ, 𝝓(𝑠, 𝑎)⟩

���
≤ 𝛽

𝝓(𝑠, 𝑎)

Λ−1
ℎ

. (10)

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

Note that conditioned on the event defined in (10) for all (𝑠, 𝑎) ∈ S × A, it holds that����〈𝜽ℎ, 𝝓(𝑠, 𝑎)
〉
−𝑄𝜋

ℎ
(𝑠, 𝑎) − Pℎ

[
𝑉ℎ+1(.) −𝑉 𝜋

ℎ+1(.)
]

(𝑠, 𝑎)
����

=
���〈𝜽ℎ, 𝝓(𝑠, 𝑎)

〉
− 𝑟ℎ(𝑠, 𝑎) − Pℎ

[
𝑉ℎ+1(.)

]
(𝑠, 𝑎)

���
≤ 𝛽

𝝓(𝑠, 𝑎)

(

Λ𝑘
ℎ

)−1 , (11)

for any policy 𝜋 . Now, we are ready to prove the first part of the lemma by induction. The statement holds for𝐻 because𝑄𝐻+1(., .) = 𝑄∗
𝐻+1(., .) =

0 and thus conditioned on the event defined in (11), for all (𝑠, 𝑎) ∈ S × A, we have

���〈𝜽𝐻 , 𝝓(𝑠, 𝑎)
〉
−𝑄∗

𝐻 (𝑠, 𝑎)
��� ≤ 𝛽

𝝓(𝑠, 𝑎)

Λ−1
𝐻

.

Therefore, for all (𝑠, 𝑎) ∈ S × A, we have

𝑄∗
𝐻 (𝑠, 𝑎) ≤

〈
𝜽𝐻 , 𝝓(𝑠, 𝑎)

〉
+ 𝛽

𝝓(𝑠, 𝑎)

Λ−1
𝐻

.

Since 𝑄∗
𝐻

(𝑠, 𝑎) ≤ 𝐻 , we have

𝑄∗
𝐻 (𝑠, 𝑎) ≤ min

{〈
𝜽𝐻 , 𝝓(𝑠, 𝑎)

〉
+ min

{
𝛽

𝝓(𝑠, 𝑎)

Λ−1
𝐻

, 𝐻

}
, 𝐻

}
= 𝑄𝐻 (𝑠, 𝑎),

which implies that

𝑉 ∗
𝐻 (𝑠) = max

𝑎∈A
𝑄∗
𝐻 (𝑠, 𝑎) ≤ max

𝑎∈A
𝑄

(
𝐻
𝑠, 𝑎) = 𝑉𝐻 (𝑠).

Now, suppose the statement holds at time-step ℎ + 1 and consider time-step ℎ. Conditioned on the event defined in (11), for all (𝑠, 𝑎) ∈ S × A,
we have

0 ≤
〈
𝜽ℎ, 𝝓(𝑠, 𝑎)

〉
−𝑄∗

ℎ
(𝑠, 𝑎) − Pℎ

[
𝑉ℎ+1(.) −𝑉 ∗

ℎ+1(.)
]

(𝑠, 𝑎) + 𝛽

𝝓(𝑠, 𝑎)

Λ−1
ℎ〈

𝜽ℎ, 𝝓(𝑠, 𝑎)
〉
−𝑄∗

ℎ
(𝑠, 𝑎) + 𝛽

𝝓(𝑠, 𝑎)

Λ−1
ℎ

. (Induction assumption)

Since 𝑄∗
ℎ

(𝑠, 𝑎) ≤ 𝐻 , we have

𝑄∗
ℎ

(𝑠, 𝑎) ≤ min

{〈
𝜽ℎ, 𝝓(𝑠, 𝑎)

〉
+ min

{
𝛽

𝝓(𝑠, 𝑎)

Λ−1
ℎ

, 𝐻

}
, 𝐻

}
= 𝑄ℎ(𝑠, 𝑎),

which means that

𝑉 ∗
ℎ

(𝑠) = max
𝑎∈A

𝑄∗
ℎ

(𝑠, 𝑎) ≤ max
𝑎∈A

𝑄
(
ℎ
𝑠, 𝑎) = 𝑉ℎ(𝑠).

This completes the proof.

Second part:

From Lemma 3.2 in [32], with probability at least 1 − 𝛿 , it holds that

𝑉 ∗
1 (𝑠0, 𝑢/𝐻) ≤ 𝑐′

√︃
𝑑3𝐻4 log(𝑑𝐾𝐻/𝛿)/𝐾, (12)

for some absolute constant 𝑐′ > 0.

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Note that

𝑉1(𝑠0) −𝑉 𝜋1 (𝑠0) = 𝑄1(𝑠0, 𝜋1(𝑠0)) −𝑄𝜋1 (𝑠0, 𝜋1(𝑠0))

≤ E𝑠2∼P1(. |𝑠0,𝜋1(𝑠0))
[
𝑉2(𝑠2) + 2𝑢1(𝑠0, 𝜋1(𝑠0)) −𝑉 𝜋2 (𝑠2)

]
≤ 𝐸𝑠3∼P2(. |𝑠1,𝜋2(𝑠1))𝐸𝑠2∼P1(. |𝑠0,𝜋1(𝑠0))

[
𝑉3(𝑠3) −𝑉 𝜋3 (𝑠3) + 2𝑢1(𝑠0, 𝜋1(𝑠0)) + +2𝑢2(𝑠2, 𝜋2(𝑠2))

]
...

≤ 𝑉 𝜋1 (𝑠0, 𝑢)
≤ 𝑉 ∗

1 (𝑠0, 𝑢)
= 𝐻𝑉 ∗

1 (𝑠0, 𝑢/𝐻)

≤ 𝑐′
√︃
𝑑3𝐻6 log(𝑑𝐾𝐻/𝛿)/𝐾. (Eqn (12))

Therefore, by taking 𝐾 = 𝑐𝐾𝑑3𝐻6 log(𝑑𝐻𝑀𝛿−1𝜖−1)/𝜖2 for some 𝑐𝐾 > 0, we have

𝑉1(𝑠0) −𝑉 𝜋1 (𝑠0) ≤ 𝑐′
√︃
𝑑3𝐻6 log(𝑑𝐾𝐻/𝛿)/𝐾 ≤ 𝜖, (13)

which completes the proof. □

B.1 Proof of Lemma 1

Both inequalities in Lemma 1 can be proven using Lemma 5. Note that for every (𝑖, 𝑡) ∈ [𝑁] × [𝑇], 𝑉 1,𝑡
1,𝑖 is computed based on output quantities

of Algorithm 3 whose input is a dataset generated by interacting with task𝑚𝑖,𝑡 environment (see Lines 3 and 4 in Algorithm 1). Thus, from (4),
with probability at least 1 − 𝛿 , it holds that

0 ≤ 𝑉 1,𝑡
1,𝑖 (𝑠0) −𝑉 ∗

𝑚𝑖,𝑡 ,1(𝑠0). (14)

Now, let 𝜋̃𝑡
𝑖

= {𝜋̃𝑡
ℎ,𝑖

}𝐻
ℎ=1, where 𝜋̃𝑡

ℎ,𝑖
(.) = arg max𝑎∈A 𝑄ℎ(., 𝑎), 𝑄ℎ(., .) = min

{
⟨𝜽 1,𝑡
ℎ,𝑖
, 𝝓(., .)⟩ + 𝑢ℎ(., .), 𝐻

}
, 𝑢ℎ(., .) = min

𝛽1

𝝓(., .)

(
Λ1,𝑡
ℎ,𝑖

)−1 , 𝐻

.

Therefore, from (5), with probability at least 1 − 𝛿 , it holds that

𝑉
1,𝑡
1,𝑖 (𝑠0) −𝑉 ∗

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝑉 1,𝑡
1,𝑖 (𝑠0) −𝑉 𝜋̃

𝑡
𝑖

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝑐Sep/8, (15)

which completes the proof.

B.2 Proof of Lemma 2

First, we prove that if
���𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0)

��� > 𝑐Sep/2, then𝑚𝑖,𝑡 and𝑚 𝑗,𝑡 ′ are two different tasks. We have���𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) −𝑉 ∗
1,𝑚 𝑗,𝑡 ′

(𝑠0)
��� =

���𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) −𝑉 1,𝑡
1,𝑖 (𝑠0) +𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0) +𝑉 1,𝑡 ′

1, 𝑗 (𝑠0) −𝑉 ∗
1,𝑚 𝑗,𝑡 ′

(𝑠0)
���

≥
���𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0)

��� −���𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) −𝑉 1,𝑡
1,𝑖 (𝑠0)+

��� −���𝑉 1,𝑡 ′
1, 𝑗 (𝑠0) −𝑉 ∗

1,𝑚 𝑗,𝑡 ′
(𝑠0)

��� (Triangle Inequality)

> 𝑐Sep/2 − 𝑐Sep/8 − 𝑐Sep/8 = 𝑐Sep/4 (Lemma 1)

which means that 𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) ̸= 𝑉 ∗
1,𝑚 𝑗,𝑡 ′

(𝑠0), and therefore,𝑚𝑖,𝑡 and𝑚 𝑗,𝑡 ′ cannot be the same tasks.

Now, we prove that
���𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0)

��� ≤ 𝑐Sep/2, then𝑚𝑖,𝑡 and𝑚 𝑗,𝑡 ′ are the same tasks. We have���𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) −𝑉 ∗
1,𝑚 𝑗,𝑡 ′

(𝑠0)
��� =

���𝑉 ∗
1,𝑚𝑖,𝑡

(𝑠0) −𝑉 1,𝑡
1,𝑖 (𝑠0) +𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0) +𝑉 1,𝑡 ′

1, 𝑗 (𝑠0) −𝑉 ∗
1,𝑚 𝑗,𝑡 ′

(𝑠0)
���

≤
���𝑉 1,𝑡

1,𝑖 (𝑠0) −𝑉 1,𝑡 ′
1, 𝑗 (𝑠0)

��� +
���𝑉 ∗

1,𝑚𝑖,𝑡
(𝑠0) −𝑉 1,𝑡

1,𝑖 (𝑠0)+
��� +

���𝑉 1,𝑡 ′
1, 𝑗 (𝑠0) −𝑉 ∗

1,𝑚 𝑗,𝑡 ′
(𝑠0)

��� (Triangle Inequality)

≤ 𝑐Sep/2 + 𝑐Sep/8 + 𝑐Sep/8 = 3𝑐Sep/4, (Lemma 1)

which means that𝑚𝑖,𝑡 and𝑚 𝑗,𝑡 ′ cannot be two different tasks as
����𝑉 ∗

1,𝑚𝑖,𝑡
(𝑠0) −𝑉 ∗

1,𝑚 𝑗,𝑡 ′
(𝑠0)

���� is not greater than 𝑐Sep (See Assumption 2).

KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA Amani et al.

B.3 Proof of Lemma 3

Thanks to the definition of optimal policy and 𝑉 ∗
𝑚𝑖,𝑡 ,1(𝑠0), it is trivial to show the first inequality holds and 𝑉

𝜋𝑡
𝑖

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝑉 ∗
𝑚𝑖,𝑡 ,1(𝑠0). To prove the

second inequality, we use Lemma 5. Note that for every (𝑖, 𝑡) ∈ [𝑁] × [𝑇], 𝑉 1,𝑡
1,𝑖 is computed based on output quantities of Algorithm 3 whose

input is a dataset generated by interacting with task𝑚𝑖,𝑡 environment (see Lines 11 and 12 in Algorithm 1). Therefore, for all (𝑖, 𝑡) ∈ [𝑁] × [𝑇],
with probability at least 1 − 𝛿 , it holds that

𝑉 ∗
𝑚𝑖,𝑡 ,1(𝑠0) −𝑉 𝜋

𝑡
𝑖

𝑚𝑖,𝑡 ,1(𝑠0) ≤ 𝑉 2,𝑡
1,𝑖 (𝑠0) −𝑉 𝜋

𝑡
𝑖

𝑚𝑖,𝑡 ,1(𝑠0) (Eqn. (4))

≤ 𝜖, (Eqn. (5))

which completes the proof.

B.4 Proof of Lemma 4

Let I𝑚
𝑖,𝑡

be an indicator random variable, which is if task𝑚 is assigned to agent 𝑖 at round 𝑡 and 0 otherwise. Let 𝑘𝑚 = ∑
𝑖∈[𝑁]

∑
𝑡 ∈[𝑇] I

𝑚
𝑖,𝑡

be the
random variable specifying the number of times task𝑚 were assigned to an agent over the course of 𝑇 rounds. Therefore, we have

𝜇𝑚 = E[𝑘𝑚] =
𝑁𝑇

𝑀
. (16)

Using multiplicative Chernoff bound, we have

P(𝑘𝑚 < 1) ≤ 𝑒
−
(
1− 1

𝜇𝑚

)2
𝜇𝑚

2 . (17)

Our choice of 𝑇 guarantees that

P(∃𝑚 ∈ [𝑀], 𝑘𝑚 < 1) ≤ 𝛿, (18)

which completes the proof.

C AUXILIARY LEMMAS

Notations. N𝜖 (V) denotes the 𝜖-covering number of the class V of functions mapping S to R with respect to the distance dist(𝑉 ,𝑉 ′) =
sup𝑠

��𝑉 (𝑠) −𝑉 ′(𝑠)
��.

LEMMA 6 (LEMMA D.4 IN JIN ET AL. [19]). Let {𝑠𝜏 }∞𝜏=1 be a stochastic process on state space S with corresponding filtration {F𝜏 }∞𝜏=0. Let
{𝝓𝜏 }∞𝜏=0 be an R𝑑 -valued stochastic process where 𝝓𝜏 ∈ F𝜏−1, and

𝝓𝜏

 ≤ 1. Let Λ𝑘 = I𝑑 + ∑𝑘−1
𝜏=1 𝝓𝜏𝝓

⊤
𝜏 . Then with probability at least 1 − 𝛿 ,

for all 𝑘 ≥ 0 and 𝑉 ∈ V such that sup𝑠∈S
��𝑉 (𝑠)

�� ≤ 𝐻 , we have

 𝑘∑︁
𝜏=1

𝝓𝜏 .
(
𝑉 (𝑠𝜏) − E

[
𝑉 (𝑠𝜏)|F𝜏−1

])

2

Λ−1
𝑘

≤ 4𝐻2
(
𝑑

2
log

(
𝑘 + 𝜆
𝜆

)
+ log

(
N𝜖 (V)
𝛿

))
+

8𝑘2𝜖2

𝜆
.

LEMMA 7. For any 𝜖 > 0, the 𝜖-covering number of the Euclidean ball in R𝑑 with radius 𝑅 > 0 is upper bounded by (1 + 2𝑅/𝜖)𝑑 .

LEMMA 8. For a fixed𝑤 , let V denote a class of functions mapping from S to R with following parametric form

𝑉 (.) = min
{
max
𝑎∈A

〈
y, 𝝓(., 𝑎)

〉
+ 𝛽

√︁
𝝓(., 𝑎)⊤Y𝝓(., 𝑎), 𝐻

}
,

where the parameters 𝛽 ∈ R, y ∈ R𝑑 , and Y ∈ R𝑑×𝑑 satisfy 0 ≤ 𝛽 ≤ 𝐵,

y

 ≤ 𝑦, and ∥Y∥ ≤ 𝜆−1. Assume

𝝓(𝑠, 𝑎)

 ≤ 1 for all (𝑠, 𝑎) ∈ S × A.
Then

log
(
N𝜖 (V)

)
≤ 𝑑 log(1 + 4𝑦/𝜖) + 𝑑2 log

(
1 + 8𝐵2√𝑑

𝜆𝜖2

)
.

PROOF. First, we reparametrize V by letting Ỹ = 𝛽2Y. We have

𝑉 (.) = min
{
max
𝑎∈A

〈
y, 𝝓(., 𝑎)

〉
+

√︃
𝝓(., 𝑎)⊤Ỹ𝝓(., 𝑎), 𝐻

}
,

Scaling Distributed Multi-task Reinforcement Learning
with Experience Sharing KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

for

y

 ≤ 𝑦 and

Ỹ

 ≤ 𝐵2

𝜆
. For any two functions 𝑉1,𝑉2 ∈ V with parameters

(
y1, Ỹ1

)
and

(
y2, Ỹ2

)
, respectively, we have

dist(𝑉1,𝑉2) ≤ sup
(𝑠,𝑎)∈S×A

����� [〈y1, 𝝓(𝑠, 𝑎)
〉

+
√︃
𝝓(𝑠, 𝑎)⊤Ỹ1𝝓(𝑠, 𝑎)

]
−

[〈
y2, 𝝓(𝑠, 𝑎)

〉
+

√︃
𝝓(𝑠, 𝑎)⊤Ỹ2𝝓(𝑠, 𝑎)

] �����
≤ sup

𝝓:∥𝝓∥≤1

����� [〈y1, 𝝓
〉

+
√︃
𝝓⊤Ỹ1𝝓

]
−

[〈
y2, 𝝓

〉
+

√︃
𝝓⊤Ỹ2𝝓

] �����
≤ sup

𝝓:∥𝝓∥≤1

����〈y1 − y2, 𝝓
〉���� + sup

𝝓:∥𝝓∥≤1

√︄����𝝓⊤ (
Ỹ1 − Ỹ2

)
𝝓

���� (because
���√𝑎 − √

𝑏

��� ≤ √︁
|𝑎 − 𝑏 | for 𝑎, 𝑏 ≥ 0)

=
√︂

Ỹ1 − Ỹ2

≤

y1 − y2

 +

√︂

Ỹ1 − Ỹ2

𝐹
. (19)

Let Cy be 𝜖/2-covers of {y ∈ R𝑑 :

y

 ≤ 𝑦} with respect to the 2-norm and CY be an 𝜖2/4-cover of {Y ∈ R𝑑×𝑑 : ∥Y∥𝐹 ≤ 𝐵2
√
𝑑

𝜆
}, with respect to

the Frobenius norm. By Lemma 7, we know ��Cy
�� ≤ (1 + 4𝑦/𝜖)𝑑 , |CY | ≤

(
1 + 8𝐵2√𝑑

𝜆𝜖2

)𝑑2

.

According to (19), it holds that N𝜖 (V) ≤
��Cy

��|CY |, and therefore

log
(
N𝜖 (V)

)
≤ 𝑑 log(1 + 4𝑦/𝜖) + 𝑑2 log

(
1 + 8𝐵2√𝑑

𝜆𝜖2

)
.

□

	Abstract
	1 Introduction
	2 Problem formulation
	3 Distributed Multi-Task LSVI
	3.1 Proof Sketch of Theorem 1

	4 Experiments
	5 Related Work
	6 Conclusion
	References
	A Omitted Algorithms
	B Proofs of Section 3
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Lemma 3
	B.4 Proof of Lemma 4

	C Auxiliary lemmas

