
Published as a conference paper at ICLR 2021

LEARNING TO REACH GOALS
VIA ITERATED SUPERVISED LEARNING

Dibya Ghosh∗
UC Berkeley

Abhishek Gupta∗
UC Berkeley

Ashwin Reddy
UC Berkeley

Justin Fu
UC Berkeley

Coline Devin
UC Berkeley

Benjamin Eysenbach
Carnegie Mellon University

Sergey Levine
UC Berkeley

ABSTRACT

Current reinforcement learning (RL) algorithms can be brittle and difficult to use,
especially when learning goal-reaching behaviors from sparse rewards. Although
supervised imitation learning provides a simple and stable alternative, it requires
access to demonstrations from a human supervisor. In this paper, we study RL
algorithms that use imitation learning to acquire goal reaching policies from scratch,
without the need for expert demonstrations or a value function. In lieu of demon-
strations, we leverage the property that any trajectory is a successful demonstration
for reaching the final state in that same trajectory. We propose a simple algorithm
in which an agent continually relabels and imitates the trajectories it generates to
progressively learn goal-reaching behaviors from scratch. Each iteration, the agent
collects new trajectories using the latest policy, and maximizes the likelihood of
the actions along these trajectories under the goal that was actually reached, so
as to improve the policy. We formally show that this iterated supervised learning
procedure optimizes a bound on the RL objective, derive performance bounds of the
learned policy, and empirically demonstrate improved goal-reaching performance
and robustness over current RL algorithms in several benchmark tasks.

1 INTRODUCTION

Reinforcement learning (RL) provides an elegant framework for agents to learn general-purpose
behaviors supervised by only a reward signal. When combined with neural networks, RL has enabled
many notable successes, but our most successful deep RL algorithms are far from a turnkey solution.
Despite striving for data efficiency, RL algorithms, especially those using temporal difference learning,
are highly sensitive to hyperparameters (Henderson et al., 2018) and face challenges of stability and
optimization (Tsitsiklis & Van Roy, 1997; van Hasselt et al., 2018; Kumar et al., 2019b), making
such algorithms difficult to use in practice.

If agents are supervised not with a reward signal, but rather demonstrations from an expert, the
resulting class of algorithms is significantly more stable and easy to use. Imitation learning via
behavioral cloning provides a simple paradigm for training control policies: maximizing the likelihood
of optimal actions via supervised learning. Imitation learning algorithms using deep learning are
mature and robust; these algorithms have demonstrated success in acquiring behaviors reliably from
high-dimensional sensory data such as images (Bojarski et al., 2016; Lynch et al., 2019). Although
imitation learning via supervised learning is not a replacement for RL – the paradigm is limited by
the difficulty of obtaining kinesthetic demonstrations from a supervisor – the idea of learning policies
via supervised learning can serve as inspiration for RL agents that learn behaviors from scratch.

In this paper, we present a simple RL algorithm for learning goal-directed policies that leverages the
stability of supervised imitation learning without requiring an expert supervisor. We show that when
learning goal-directed behaviors using RL, demonstrations of optimal behavior can be generated from
sub-optimal data in a fully self-supervised manner using the principle of data relabeling: that every
trajectory is a successful demonstration for the state that it actually reaches, even if it is sub-optimal

∗First two authors contributed equally. Correspondence at dibya.ghosh@berkeley.edu

1

Published as a conference paper at ICLR 2021

for the goal that was originally commanded to generate the trajectory. A similar observation of
hindsight relabelling was originally made by Kaelbling (1993), more recently popularized in the
deep RL literature (Andrychowicz et al., 2017), for learning with off-policy value-based methods and
policy-gradient methods (Rauber et al., 2017). When goal-relabelling, these algorithms recompute
the received rewards as though a different goal had been commanded. In this work, we instead notice
that goal-relabelling to the final state in the trajectory allows an algorithm to re-interpret an action
collected by a sub-optimal agent as though it were collected by an expert agent, just for a different
goal. This leads to a substantially simpler algorithm that relies only on a supervised imitation learning
primitive, avoiding the challenges of value function estimation. By generating demonstrations using
hindsight relabelling, we are able to apply goal-conditioned imitation learning primitives (Gupta et al.,
2019; Ding et al., 2019) on data collected by sub-optimal agents, not just from an expert supervisor.

We instantiate these ideas as an algorithm that we call goal-conditioned supervised learning (GCSL).
At each iteration, trajectories are collected commanding the current goal-conditioned policy for some
set of desired goals, and then relabeled using hindsight to be optimal for the set of goals that were
actually reached. Supervised imitation learning with this generated “expert” data is used to train an
improved goal-conditioned policy for the next iteration. Interestingly, this simple procedure provably
optimizes a lower bound on a well-defined RL objective; by performing self-imitation on all of
its own trajectories, an agent can iteratively improve its own policy to learn optimal goal-reaching
behaviors without requiring any external demonstrations and without learning a value function. While
self-imitation RL algorithms typically choose a small subset of trajectories to imitate (Oh et al., 2018;
Hao et al., 2019) or learn a separate value function to reweight past experience (Neumann & Peters,
2009; Abdolmaleki et al., 2018; Peng et al., 2019), we show that GCSL learns efficiently while
training on every previous trajectory without reweighting, thereby maximizing data reuse.

The main contribution of our work is GCSL, a simple goal-reaching RL algorithm that uses supervised
learning to acquire policies from scratch. We show, both formally and empirically, that any trajectory
taken by the agent can be turned into an optimal one using hindsight relabelling, and that imitation
of these trajectories (provably) enables an agent to (iteratively) learn goal-reaching behaviors. That
iteratively imitating all the data from a sub-optimal agent leads to optimal behavior is a non-trivial
conclusion; we formally verify that the procedure optimizes a lower-bound on a goal-reaching RL
objective and derive performance bounds when the supervised learning objective is sufficiently
minimized. In practice, GCSL is simpler, more stable, and less sensitive to hyperparameters than
value-based methods, while still retaining the benefits of off-policy learning. Moreover, GCSL can
leverage demonstrations (if available) to accelerate learning. We demonstrate that GCSL outperforms
value-based and policy gradient methods on several challenging robotic domains.

2 PRELIMINARIES

Goal reaching. The goal reaching problem is characterized by the tuple 〈S,A, T , ρ(s0), T, p(g)〉,
where S andA are the state and action spaces, T (s′|s, a) is the transition function, ρ(s0) is the initial
state distribution, T the horizon length, and p(g) is the distribution over goal states g ∈ S . We aim to
find a time-varying goal-conditioned policy π(·|s, g, h): S × S × [T]→ ∆(A), where ∆(A) is the
probability simplex over the action space A and h is the remaining horizon. We will say that a goal is
achieved if the agent has reached the goal at the end of the episode. Correspondingly, the learning
problem is to acquire a policy that maximizes the probability of achieving the desired goal:

J(π) = Eg∼p(g)
[
Pπg (sT = g)

]
. (1)

Notice that unlike a shortest-path objective, this final-timestep objective provides no incentive to find
the shortest path to the goal. We shall see in Section 3 that this notion of optimality is more than a
simple design choice: hindsight relabeling for optimality emerges naturally when maximizing the
probability of achieving the goal, but does not when minimizing the time to reach the goal.

The final timestep objective is especially useful in practical applications where reaching a particular
goal is challenging, but once a goal is reached, it is possible to remain at the goal. When reaching the
goal is itself challenging, forcing the agent to reach the goal as fast as possible can make the learning
problem unduly difficult. In contrast, this objective just requires the agent to eventually reach, and
then stay at the goal, a more straightforward learning problem. In addition, the final timestep objective
is useful when trying to learn robust solutions that potentially take longer over shorter solutions that

2

Published as a conference paper at ICLR 2021

Figure 1: Goal-conditioned supervised learning (GCSL): The agent learns how to reach goals by
sampling trajectories, relabeling the trajectories to be optimal in hindsight and treating them as expert
data, and then performing supervised learning via behavioral cloning.

have a lower probability of success. There are certain drawbacks to this formulation: it is not as
appropriate when the environment stochasticity prevents the agent from remaining at a goal, and it
requires knowing an upper bound on the time it takes to reach a goal.

Goal-conditioned RL. The goal reaching problem can be equivalently defined using the nomen-
clature of RL as a collection of Markov decision processes (MDPs) {Mg}g∈S . Each MDPMg is
defined as the tuple 〈S,A, Tg, rg, ρ, T 〉, where the state space, action space, initial state distribution,
and horizon as above. For each goal, a reward function is defined as rg(s) = 1(s = g). Using this
notation, an optimal goal-conditioned policy maximizes the return in an MDPMg sampled according
to the goal distribution,

J(π) = Eg∼p(g)
[
Eτ∼πg [rg(sT)]

]
. (2)

Since the transition dynamics are equivalent for different goals, off-policy value-based methods
can use transitions collected for one goal to compute the value function for arbitrary other goals.
Namely, Kaelbling (1993) first showed that if the transition (s, a, s′, r) was witnessed when reaching
a specific goal g, it can be relabeled to (s, a, s′, rg′(s)) for an arbitrary goal g′ ∈ S if the underlying
goal reward function is known. Hindsight experience replay (Andrychowicz et al., 2017) considers a
specific case of relabeling to when the relabeled goal is another state further down the trajectory.

Goal-conditioned imitation learning. If an agent is additionally provided expert demonstrations
for reaching particular goals, behavioral cloning is a simple algorithm to learn the optimal policy
by maximizing the likelihood of the demonstration data under the policy. Formally, demonstrations
are provided as a dataset of expert behavior D∗ = {τ1, τ2, . . . } from an expert policy π∗, where
each trajectory τi = {si0, ai0, si1, ai1,s1

T } is optimal for reaching the final state in the trajectory.
Given a parametric class of stochastic, time-varying policies Π, the behavioral cloning objective is to
maximize the likelihood of actions seen in the data when attempting to reach this desired goal,

πBC = arg max
π∈Π

Eτ∼π∗ [log π(at|s = st, g = sT , h = T − t)] for 0 ≤ t ≤ T .

3 LEARNING GOAL-CONDITIONED POLICIES WITH SELF-IMITATION

In this section, we show how imitation learning via behavior cloning with data relabeling can be
utilized in an iterative procedure that optimizes a lower bound on the RL objective. The resulting
procedure, in which an agent continually relabels and imitates its own experience, is not an imitation
learning algorithm, but rather an RL algorithm for learning goal-reaching from scratch without any
expert demonstrations. This algorithm, illustrated in Fig. 1, is simple and allows us to perform
off-policy reinforcement learning for goal reaching without learning value functions.

3.1 GOAL-CONDITIONED SUPERVISED LEARNING

We can attain the benefits of behavioral cloning without the dependence on human supervision by
leveraging the following insight: under last-timestep optimality (Equation 1), a trajectory that fails to
reach the intended goal is nonetheless optimal for reaching the goal it actually reached. As a result, a
trajectory from a sub-optimal agent can be re-interpreted by goal-conditioned behavior cloning as
an optimal trajectory for reaching a potentially different goal. This insight will allow us to convert
sub-optimal trajectories into optimal goal reaching trajectories for different goals, without the need
for any human supervision.

3

Published as a conference paper at ICLR 2021

Algorithm 1 Goal-Conditioned Supervised Learning (GCSL)

1: Initialize policy π1(· | s, g, h)
2: Initialize dataset D((s, a, g, h))
3: for k = 1, 2, 3, . . . do
4: Sample g ∼ p(g), collect data with πk(· | ·, g).
5: Log trajectory τ = (s0, a0, s1, a1, . . . sT , aT)
6: Add tuples Dτ to dataset D . see Eq. 3
7: πk+1 ← arg maxπθ ED [log πθ(a | s, g, h)]
8: end for

More precisely, consider a trajectory τ = {s1, a1, s2, a2, . . . , sT , aT } obtained by commanding the
policy πθ(a | s, g, h) to reach some goal g. For any time step t and horizon h, the action at in state
st is likely to be a good action for reaching st+h in h time steps (even if it is not a good action
for reaching the originally commanded goal g), and thus can be treated as expert supervision for
πθ(· | st, st+h, h). To obtain a concrete algorithm, we can relabel all time steps and horizons in a
trajectory to create an expert dataset according to

Dτ = {(st, at, g = st+h, h) : t, h > 0, t+ h ≤ T}, (3)

with states st, corresponding actions at, the corresponding goal set to future state st+h and matching
horizon h. Because the relabeling procedure is valid for any horizon, we can use any valid combination
of (st, at, st+h, h) tuples as supervision, for a total of

(
T
2

)
optimal datapoints of (s, a, g, h) from a

single trajectory. This idea is related to data-relabeling for estimating the value function (Kaelbling,
1993; Andrychowicz et al., 2017; Rauber et al., 2017), but our work shows that data-relabelling can
also be used to re-interpret data from a sub-optimal agent as though the data came from an optimal
agent (with a different goal).

We then use this relabeled dataset for goal-conditioned behavior cloning. Algorithm 1 summarizes
the approach: (1) Sample a goal from a target goal distribution p(g). (2) Execute the current
policy π(a|s, g, h) for T steps in the environment to collect a potentially suboptimal trajectory τ .
(3) Relabel the trajectory (Equation. 3) to add

(
T
2

)
new expert tuples (st, at, st+h, h) to the training

dataset. (4) Perform supervised learning on the entire dataset to update the policy π(a|s, g, h) via
maximum likelihood. We term this iterative procedure of sampling trajectories, relabeling them, and
training a policy until convergence goal-conditioned supervised learning (GCSL). This algorithm can
use all of the prior off-policy data in the training dataset because this data continues to remain optimal
under the notion of goal-reaching optimality that was defined in Section 2, but does not require any
explicit value function learning.Perhaps surprisingly, this procedure optimizes a lower bound on an
RL objective, as we will show in Section 3.2.

The GCSL algorithm (as described above) can learn to reach goals from the target distribution p(g)
simply using iterated behavioral cloning. This goal reaching algorithm is off-policy, optimizes a
simple supervised learning objective, and is easy to implement and tune without the need for any
explicit reward function engineering or demonstrations. Additionally, since GCSL uses a goal-
conditioned imitation learning algorithm as a sub procedure, if demonstrations or off-policy data are
available, it is easier to incorporate this data into training than with off-policy value function methods.

3.2 THEORETICAL ANALYSIS

We now formally analyze GCSL to verify that it solves the goal-reaching problem, quantify how
errors in approximation of the objective manifest in goal-reaching performance, and understand how
it relates to existing RL algorithms. Specifically, we derive the algorithm as the optimization of a
lower bound of the true goal-reaching objective, and we show that under certain conditions on the
environment, minimizing the GCSL objective enables performance guarantees on the learned policy.

We start by describing the objective function being optimized by GCSL. For ease of presentation, we
make the simplifying assumption that the trajectories are collected from a single policy πold, and that
relabelling is only done with goals at the last timestep (g = sT). GCSL performs goal-conditioned
behavioral cloning on a distribution of trajectories πold(τ) = Eg∼p(g)[πold(τ |g)], resulting in the
following objective:

4

Published as a conference paper at ICLR 2021

JGCSL(π) = Eτ∼πold(τ)

[
T∑
t=0

log π(a = at|s = st, g = sT , h = T − t)

]
.

Our main result shows that, under certain assumptions about the off-policy data distribution, optimiz-
ing the GCSL objective JGCSL(π) optimizes a lower bound on the desired objective, J(π).
Theorem 3.1. Let JGCSL and J be as defined above. Then,

J(π) ≥ JGCSL(π)− 4T (T − 1)α2 + C.

Where α = maxs,g,hDTV (π(·|s, g, h)‖πold(·|s, g, h)) and C is a constant independent of π.

The proof is in Appendix B.1. This theorem provides a lower-bound on the goal-reaching objective
with equality for the optimal policy; akin to many proofs for direct policy search methods, the
strongest guarantees are provided under on-policy data collection (α = 0). The analysis raises two
questions: can we quantify the tightness of the bound given by Theorem 3.1, and what does an
optimal solution to the GCSL objective imply about performance on the true objective?

The tightness of the bound depends on two choices in the algorithm: how off-policy data from πold
is used to optimize the objective, and how the relabeling step adjusts the exact distribution of data
being trained on. We find that the looseness induced by the relabeling can be controlled by two
factors: 1) the proportion of data that must be relabeled, and 2) the distance between the distribution
of trajectories that needed to be relabeled and the distribution of trajectories that achieved the desired
goal and were not relabeled. If either of these quantities is minimized to zero, the looseness of the
bound that stems from relabeling also goes to zero. We present this analysis formally in Appendix B.2.

Even when data is collected from an off-policy distribution, optimizing the GCSL objective over
the full state space can provide guarantees on the performance of the learned policy. We write
π∗ to denote a policy that maximizes the true performance J(π), and π̃∗ to denote the policy that
maximizes the GCSL objective JGCSL(π) over the set of all policies. The following theorem provides
such a performance guarantee for deterministic environments (proof in Appendix B.3):
Theorem 3.2. Consider an environment with deterministic dynamics and a data-collection policy
πold with full support. If maxs,g,hDTV (π(a|s, g, h), π̃∗(a|s, g, h)) ≤ ε, then J(π∗)− J(π) < εT .

This theorem states that in an environment with deterministic transitions, the policy that maximizes
the GCSL objective JGCSL(π) also maximizes the true performance J(π). Furthermore, if the GCSL
loss is approximately minimized, then performance guarantees can be given as a function of the
error across the full state space. Whereas Theorem 3.1 shows that GCSL always optimizes a lower
bound on the RL objective when iteratively re-collecting data with the updated policy, Theorem 3.2
shows that in certain environments, simply optimizing the GCSL objective from any off-policy data
distribution without iterative data collection can also lead to convergence.

4 RELATED WORK

Our work studies the problem of goal-conditioned RL (Kaelbling, 1993) from sparse goal-reaching
rewards. To maximize data-efficiency in the presence of sparse rewards, value function methods use
off-policy hindsight relabeling methods such as hindsight experience replay (Andrychowicz et al.,
2017) to relabel rewards and transitions retroactively (Schaul et al., 2015; Pong et al., 2018). Despite
the potential for learning with hindsight, optimization of goal-conditioned value functions suffers
from instability due to challenging critic estimation. Rauber et al. (2017) extends hindsight relabelling
to policy gradient methods, but is hampered by high-variance importance weights that emerge from
relabelling. Our method also relabels trajectories in hindsight, but does so in a completely different
way: to supervise an imitation learning primitive to learn the optimal policy. Unlike these methods,
GCSL does not maintain or estimate a value function, enabling a more stable learning problem, and
more easily allowing the algorithm to incorporate off-policy data.

GCSL is inspired by supervised imitation learning (Billard et al., 2008; Hussein et al., 2017) via
behavioral cloning (Pomerleau, 1989). Recent works have also considered imitation learning with
goal relabeling for learning from human play data (Lynch et al., 2019; Gupta et al., 2019) or
demonstrations (Ding et al., 2019). While GCSL is procedurally similar to Lynch et al. (2019) and
Ding et al. (2019), it differs crucially on the type of data used to train the policy — GCSL is trained

5

Published as a conference paper at ICLR 2021

Figure 2: Evaluation Tasks: We study the following goal-reaching tasks: (from left to right)
2D navigation, robotic pushing, Lunar Lander, robotic door opening, dexterous object manipulation.

on data collected by the agent itself from scratch, not from an expert or (noisy) optimal supervisor.
The fact that the same algorithmic procedure for training on optimal demonstrations can be applied
iteratively using data from a sub-optimal agent to learn from scratch is non-trivial and constitutes one
of our contributions.

GCSL has strong connections to direct policy search and self-imitation algorithms. Direct policy
search methods (Mannor et al., 2003; Peters & Schaal, 2007; Theodorou et al., 2010; Goschin
et al., 2013; Norouzi et al., 2016; Nachum et al., 2016) selectively weight policies or trajectories by
their performance during learning, as measured by the environment’s reward function or a learned
value function, and maximize the likelihood of these trajectories using supervised learning. Similar
algorithmic procedures have also been studied in the context of learning models for planning (Pathak
et al., 2018; Savinov et al., 2018; Eysenbach et al., 2019). GCSL is also closely related to self-
imitation learning, where a small subset of trajectories are chosen to be imitated alongside an RL
objective (Oh et al., 2018; Hao et al., 2019), often measured using a well-shaped reward function.
However, GCSL neither relies on a hand-shaped reward function nor chooses a select group of elites,
instead using goal relabeling to imitate every previously collected trajectory for higher data re-use
and sample efficiency. Goal-conditioned self-imitation learning methods when combined with a
meta-controller, have been shown by Ecoffet et al. (2020) to learn policies much faster in a single-task
sparse reward setting. This line of work presents an avenue for using GCSL to aid learning in the
single-task setting as well.

5 EXPERIMENTAL EVALUATION

In our experiments, we comparatively evaluate GCSL on a number of goal-conditioned tasks. We
focus on answering the following questions:

1. Does GCSL effectively learn goal-conditioned policies from scratch?
2. Can GCSL learn behaviors more effectively than standard RL methods?
3. Is GCSL less sensitive to hyperparameters than value-based methods?
4. Can GCSL incorporate demonstration data more effectively than value-based methods?

5.1 EXPERIMENTAL FRAMEWORK

We evaluate GCSL on five simulated control environments for goal-reaching: 2D room navigation,
object pushing with a robotic arm, the classic Lunar Lander game, opening a door with a robotic arm,
and object manipulation with a dexterous 9 DoF robotic hand (referred to as claw manipulation),
shown in Figure 2 (Environments from Nair et al., 2018; Ghosh et al., 2019; Ahn et al., 2019, details in
Appendix A.3). These tasks allow us to study the performance of our method under a variety of system
dynamics, in settings with both easy and difficult exploration. For each task, the target goal distribution
corresponds to a uniform distribution over reachable configurations. Performance is quantified by
the distance of the agent to the goal at the last timestep. We present details about the environments,
evaluation protocol, hyperparameters, and an extended set of results in Appendix A. We have
additionally open-sourced our implementation at https://github.com/dibyaghosh/gcsl.

For the practical implementation of GCSL, we parameterize the policy as a neural network that takes
in state, goal as input, ignoring the horizon, and outputs a distribution over actions. Although in
general, the optimal policy does vary with the horizon, in environments where it is possible to stay at
the goal, a Markovian policy that reaches, then stays at the goal can be near-optimal. Empirically, we
also find that Markovian policies exhibit more coherent exploratory behavior than horizon-varying

6

https://github.com/dibyaghosh/gcsl

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
1e5

0.25

0.50

D
is

ta
nc

e

Four Rooms

0.0 0.5 1.0
1e6

0.05

0.10

0.15

Sawyer Pushing

0.0 0.5 1.0 1.5 2.0
1e5

0

1

Lunar Lander

0.0 0.5 1.0
Timesteps 1e6

0.0

0.2

0.4

D
is

ta
nc

e

Door Opening

0.0 0.5 1.0
Timesteps 1e6

0.5

1.0

1.5

Claw Manipulation

GCSL
PPO
TD3-HER

Figure 3: On a majority of tasks, GCSL performs well or better compared to more complex RL
algorithms like PPO (Schulman et al., 2017) or TD3-HER (Andrychowicz et al., 2017). Shaded
regions denote the standard deviation across 5 random seeds (lower is better).

policies. In our main results, the GCSL policy network ignores the horizon provided to the policy, a
design decision we ablate in Section 5.3. Implementation details for GCSL are in Appendix A.1.

5.2 LEARNING GOAL-CONDITIONED POLICIES

We first evaluate the effectiveness of GCSL for reaching goals on the domains visualized in Figure 2,
covering a variety of control problems spanning robotics and video games. To better understand the
performance of our algorithm, we provide comparisons to value-based methods utilizing hindsight
experience replay (HER) (Andrychowicz et al., 2017), and policy-gradient methods, two well
established families of RL algorithms for solving goal-conditioned tasks. In particular, we compare
against TD3-HER, an off-policy temporal difference RL algorithm that combines TD3 (Fujimoto
et al., 2018) (an improvement on the DDPG method used by Andrychowicz et al. (2017)) with HER.
TD3-HER requires significantly more machinery than GCSL: while GCSL only maintains a policy,
TD3-HER maintains a policy, a value function, a target policy, and a target value function, all of
which are necessary for good performance. We also compare with PPO (Schulman et al., 2017),
a state-of-the-art on-policy policy gradient algorithm that does not leverage data relabeling, but is
known to provide more stable optimization than off-policy methods and perform well on typical
benchmark problems. Details for the training procedure for these comparisons, hyperparameter and
architectural choices, as well as some additional comparisons are presented in Appendix A.2.

The results in Figure 3 show that GCSL generally performs as well or better than the best performing
prior RL method on each task, only losing out slightly to PPO on the door opening task, where
exploration is less of a challenge. GCSL outperforms both methods by a large margin on the pushing
and claw tasks, and by a small margin on the lunar lander task. These empirical results suggest
that GCSL, despite its simplicity, represents a stable and appealing alternative to significantly more
complex RL methods, without the need for separate critics, policy gradients, or target networks.

5.3 ANALYSIS OF LEARNING PROGRESS AND LEARNED BEHAVIORS

To analyze GCSL, we evaluate its performance in a number of scenarios, varying the quality and
quantity of data, the policy class, and the relabeling technique (Figure 5). Full details for these
scenarios and results for all domains are in Appendix A.4.

First, we study how varying the policy class can affect the performance of GCSL. In Section 5.1, we
hypothesized that GCSL with a Markovian policy would outperform a time-varying policy. Indeed,
allowing policies to be time-varying (“Time-Varying Policy” in Figure 5) speeds up training on
domains like Lunar Lander; on domains requiring more exploration like the Sawyer pushing task,
exploration using time-varying policies is ineffective and degrades performance.

7

Published as a conference paper at ICLR 2021

Four Rooms Sawyer Pushing Claw Manipulation Lunar Lander Door Opening
env

0.0

0.5

1.0

Su
cc

es
s

R
at

io
GCSL
TD3

Figure 4: Hyperparameter Robustness: Distribution of final performance of GCSL and TD3-HER
across nine hyperparameter configurations in each environment (see Section 5.4 for details). Higher
values indicate better performance, and tightly clustered distributions indicate lower sensitivity to
hyperparameters. GCSL is more performant and robust to hyperparameters than TD3-HER.

To investigate the impact of the data-collection policy, we consider variations that collect data using a
fixed policy or train only on on-policy data. When collecting data using a fixed policy (“Fixed Data
Collection” in Figure 5), the algorithm learns much slower, suggesting that iterative data collection
is crucial for GCSL. By forcing the data to be on-policy (“On-Policy” in Figure 5), the algorithm
cannot utilize all data seen during training. GCSL still makes progress in this case, but more slowly.
We additionally consider limited-horizon relabeling, in which only states and goals that are at most
3 steps apart are relabeled, similar to proposals in prior work (Pathak et al., 2018; Savinov et al.,
2018). Limiting the horizon degrades performance (“Limited relabeling” in Figure 5), indicating that
multi-horizon relabeling is important.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.0

0.2

0.4

0.6
D

is
ta

nc
e

(m
)

 GCSL
Fixed Data Collection
Limited Relabeling
On Policy
Time-Varying Policy

Lunar Lander: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.025

0.050

0.075

0.100

0.125

0.150

D
is

ta
nc

e
(m

)

Sawyer Pushing: Ablations

Figure 5: Ablations of GCSL on Lunar Lan-
der and pushing. Other domains in Appendix
A.4.

Finally, we discuss the concern that since GCSL uses
final-timestep optimality, it may provide significantly dif-
ferent behaviors than shortest-path optimality. While in
theory, GCSL can learn round-about trajectories or oth-
erwise exhibit pathological behavior, we find that on our
empirical benchmarks, GCSL learns fairly direct goal-
reaching behaviors (visualized in Appendix C.2). Since
even the time-varying policy shares network parameters
for different horizons, we hypothesize that the policy is
constrained to produce behaviors that are roughly con-
sistent through time, resulting in directed behaviors that
resemble shortest-path optimality.

5.4 ROBUSTNESS TO HYPERPARAMETERS

Our next experiment tests the hypothesis that GCSL is
more robust to hyperparameters than value-based RL
methods like TD3-HER. The intuition is that, while dy-
namic programming methods are known to be quite sen-
sitive to hyperparameters (Henderson et al., 2018), su-
pervised learning techniques seem more robust. We
ran a sweep across nine hyperparameter configurations,
varying network capacity (size of the hidden layers in
[250, 500, 1000]) and frequency of gradient updates (gra-
dient updates per environment step in [1, 2, 4]). We com-
pared both GCSL and TD3-HER and plotted the distribu-
tion of final timestep performance across all possible configurations in Fig. 4. We observe that the
distribution of performance for GCSL is more tightly clustered than for TD3-HER, indicating lower
sensitivity to hyperparameters. We emphasize that GCSL has fewer hyperparameters than TD3-HER;
since GCSL does not learn a value function, it does not require parameters for the value function
architecture, target update frequency, discount factor, or actor update frequency.

5.5 INITIALIZING WITH DEMONSTRATIONS

As GCSL can relabel and imitate trajectories from arbitrary sources, the algorithm is amenable to
initialization from logs of previously collected trajectories or from demonstration data collected by

8

Published as a conference paper at ICLR 2021

an expert. In this section, we compare the performance of GCSL bootstrapped from expert demon-
strations to TD3-HER. Both methods can in principle utilize off-policy demonstrations; however, our
results in Figure 6 show that GCSL benefits substantially more from these demonstrations. While
value-based RL methods are known to struggle with data that is far off-policy (Kumar et al., 2019a),
the simple supervised learning procedure in GCSL can take advantage of such data easily.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
is

ta
nc

e
(m

)

GCSL
TD3-HER

Sawyer Pushing with Demos

Figure 6: Demonstrations: GCSL incorpo-
rates expert demonstrations more effectively
than TD3-HER.

In this experiment, we provide the agent with a set of
demonstration trajectories, each for reaching a different
goal. GCSL adds this data to the initial dataset, without
any other modifications to the algorithm. For TD3-HER,
we incorporate demonstrations following the setup of Ve-
cerik et al. (2017). Even with these measures, the value
function in TD3-HER still suffers degraded performance
and error accumulation during pre-training. When expert
demonstrations are provided for the robotic pushing envi-
ronment (Figure 6), GCSL progressively improves faster
than when from scratch, but TD3 is unable to improve
substantially beyond the original behavioral-cloned policy.
We hypothesize that the difference in performance largely
occurs because of the instability and optimism bias present
when training value functions using demonstrations.

6 DISCUSSION

We proposed GCSL, a simple algorithm that uses supervised learning on its own previously collected
data to iteratively learn goal-reaching policies from scratch. GCSL lifts several limitations of previous
goal-reaching methods: it does not require a hand-defined reward, expert demonstrations, or the
need to learn a value function. GCSL often outperforms more complex RL algorithms, is robust
to hyperparameters, uses off-policy data, and can incorporate expert demonstrations when they are
available. The current instantiation of GCSL is limited in exploration, since it relies primarily on the
stochasticity of the policy to explore; a promising future direction would be to selectively reweight
the sampled rollouts to promote novelty-seeking exploration. Nonetheless, GCSL is simple, scalable,
and readily applicable — a step towards the fully autonomous learning of goal-directed agents.

ACKNOWLEDGEMENTS

This research was supported by an NSF graduate fellowship, Berkeley DeepDrive, the National
Science Foundation, the Office of Naval Research, and support from Google, Amazon, and NVIDIA.
We thank Karol Hausman, Ignasi Clavera, Aviral Kumar, Marvin Zhang, Vikash Kumar for thoughtful
discussions, insights and feedback on paper drafts.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. Robel: Robotics benchmarks for learning with low-cost robots, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Robot programming by
demonstration. Springer handbook of robotics, pp. 1371–1394, 2008.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,

9

Published as a conference paper at ICLR 2021

and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. URL
http://arxiv.org/abs/1604.07316.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Yiming Ding, Carlos Florensa, Mariano Phielipp, and Pieter Abbeel. Goal conditioned imitation
learning. In Advances in Neural Information Processing Systems, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return then
explore, 2020.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal
conditioned policies. In International Conference on Learning Representations, 2019.

Sergiu Goschin, Ari Weinstein, and Michael Littman. The cross-entropy method optimizes for
quantiles. In International Conference on Machine Learning, pp. 1193–1201, 2013.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learn-
ing: Solving long-horizon tasks via imitation and reinforcement learning. CoRR, abs/1910.11956,
2019. URL http://arxiv.org/abs/1910.11956.

Xiaotian Hao, Weixun Wang, Jianye Hao, and Y. Yang. Independent generative adversarial self-
imitation learning in cooperative multiagent systems. In AAMAS, 2019.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):21, 2017.

Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1094–1098, 1993.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, ICML ’02, pp.
267–274, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1-55860-873-7.
URL http://dl.acm.org/citation.cfm?id=645531.656005.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. CoRR, abs/1906.00949, 2019a.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019b.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. arXiv preprint arXiv:1903.01973, 2019.

Shie Mannor, Reuven Y Rubinstein, and Yohai Gat. The cross entropy method for fast policy
search. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp.
512–519, 2003.

Ofir Nachum, Mohammad Norouzi, and Dale Schuurmans. Improving policy gradient by exploring
under-appreciated rewards. arXiv preprint arXiv:1611.09321, 2016.

10

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1910.11956
http://dl.acm.org/citation.cfm?id=645531.656005

Published as a conference paper at ICLR 2021

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018.

Gerhard Neumann and Jan R Peters. Fitted q-iteration by advantage weighted regression. In Advances
in neural information processing systems, pp. 1177–1184, 2009.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. In Advances In
Neural Information Processing Systems, pp. 1723–1731, 2016.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, pp. 3875–3884, 2018.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
2050–2053, 2018.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750. ACM, 2007.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural
information processing systems, pp. 305–313, 1989.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Juergen Schmidhuber. Hindsight policy
gradients. arXiv preprint arXiv:1711.06006, 2017.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k
(eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-
tics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort Lauderdale, FL,
USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.press/v15/ross11a.
html.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for
navigation. arXiv preprint arXiv:1803.00653, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control approach
to reinforcement learning. journal of machine learning research, 11(Nov):3137–3181, 2010.

John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in neural information processing systems, pp. 1075–1081, 1997.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Modayil.
Deep reinforcement learning and the deadly triad. ArXiv, abs/1812.02648, 2018.

11

http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html

Published as a conference paper at ICLR 2021

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

12

Published as a conference paper at ICLR 2021

A EXPERIMENTAL DETAILS

A.1 GOAL-CONDITIONED SUPERVISED LEARNING (GCSL)

GCSL iteratively performs maximum likelihood estimation using a dataset of relabeled trajectories
that have been previously collected by the agent. Here we present details about the policy class, data
collection procedure, and other design choices.

We parameterize a time-invariant policy using a neural network which takes as input state and goal
(not the horizon), and returns probabilities for a discretized grid of actions of the action space. The
neural network concatenates the state and goal together, and passes the concatenated input into a
feedforward network with two hidden layers of size 400 and 300 respectively, outputting logits for
each discretized action. Empirically, we have found GCSL to perform much better with larger choices
of neural networks; however, we use this two-layer neural network for fair comparisons to TD3-HER.
The GCSL loss is optimized using the Adam optimizer with learning rate α = 5× 10−4, with a batch
size of 256, taking one gradient step for every step in the environment.

When executing in the environment, the first 10000 environment steps are taken according to
uniform random action selection, after which the data-collection policy is the greedy policy:
a = arg maxa π(a|s, g). The replay buffer stores trajectories and relabels on the fly, with the
size of the buffer subject only to memory constraints. To clarify, instead of explicitly relabeling and
storing all

(
T
2

)
possible tuples from a trajectory, we instead save the trajectory and relabel at training

time. When sampling from the dataset, a trajectory is chosen at random, a start index t and goal
index t′ > t are sampled uniformly at random, and the tuple corresponding to this state and goal are
relabelled and sampled.

A.2 RL COMPARISONS

We provide comparisons to two goal-reaching RL methods: TD3-HER and PPO. While GCSL is able
to efficiently optimize the last-timestep objective, RL methods that learn value functions perform
poorly when optimizing this objective. We include results of RL methods optimizing the last-timestep
objective for completeness in Figure 9, but our main RL comparisons instead optimize the classical
discounted sum of returns:

J(π) = Eg∼p(g)[Eτ∼πg [
∑
t≤T

γtrg(st)]], (4)

where reaching the goal leads to termination, the reward function remains the same, rg(s) = 1(s = g)
and we use γ = 0.99. We log other metrics for these algorithms in Figure 12, and have included a
variety of possible metrics.

TD3-HER (Fujimoto et al., 2018; Andrychowicz et al., 2017): To efficiently learn a value func-
tion, we use hindsight relabelling. Specifically, a transition ((s, g), a, (s′, g)) gets relabeled to
((s, g′), a, (s′, g′)), where g′ = g with probability 0.1, g′ = s′ with probability 0.5, and g′ = st
for some future state in the trajectory st with probability 0.4. As described in Section 2, the agent
receives a reward of 1 and the trajectory ends if the transition is relabeled to g′ = s′, and 0 otherwise.
Under this formalism, the optimal value function, V ∗(s, g) ∝ γT (s,g), where T (s, g) is the minimum
expected time to go from s to g. Both the Q-function and the actor for TD3 are parametrized as neural
networks, with the same architecture (except final layers) for state-based domains as those for GCSL.
We found the default values of learning rate, target update period, and number of critic updates to be
the best amongst our hyperparameter search across the domains (single set of hyperparameters for all
domains). Since GCSL uses discretized actions, we additionally compared to a version of TD3-HER
that also uses discretized actions (results in Figure 12). The performance of TD3-HER w/ discretized
actions decreases performance on the Claw task, increases on the Door Opening task, and has the
same performance on the other three environments.

PPO (Schulman et al., 2017): Because PPO is an on-policy RL algorithm, we cannot relabel goals,
unlike in GCSL or TD3-HER. Instead, we provide a surrogate ε-ball indicator reward function:
r(s, g) = 1(d(s, g) < ε), where ε is chosen appropriately for each environment. We emphasize that
this reward function makes the policy optimization problem for PPO much easier, since while the
other two methods only can check if two states are exactly equal, PPO also has access to the distance

13

Published as a conference paper at ICLR 2021

(within an ε-ball). To maximize the data efficiency of PPO, we performed a coarse hyperparameter
sweep over the batch size for the algorithm. Just as with TD3, we mimic the same neural network
architecture for the parametrizations of the policies as GCSL.

A.3 TASK DESCRIPTIONS

For each environment, the goal space is identical to the state space; each trajectory in the environment
lasts for 50 timesteps.

2D Room Navigation (Ghosh et al., 2019) This environment requires an agent to navigate to
points in an environment with four rooms that connect to adjacent rooms. The state space has two
dimensions, consisting of the cartesian coordinates of the agent. The agent has acceleration control,
and the action space has two dimensions. The distribution of goals p(g) is uniform on the state space,
and the agent starts in a fixed location in the bottom left room.

Robotic Pushing (Ghosh et al., 2019) This environment requires a Sawyer manipulator to move a
freely moving block in an enclosed play area with dimensions 40 cm × 20 cm. The state space is
4-dimensional, consisting of the Cartesian coordinates of the end-effector of the sawyer agent and
the Cartesian coordinates of the block. The Sawyer is controlled via end-effector position control
with a three-dimensional action space. The distribution of goals p(g) is uniform on the state space
(uniform block location and uniform end-effector location), and the agent starts with the block and
end-effector both in the bottom-left corner of the play area.

Lunar Lander (Brockman et al., 2016) This environment requires a rocket to land in a specified
region. The state space includes the normalized position of the rocket, the angle of the rocket, whether
the legs of the rocket are touching the ground, and velocity information. Goals are sampled uniformly
along the landing region, either touching the ground or hovering slightly above, with zero velocity.

Door Opening: (Nair et al., 2018) This environment requires a Sawyer manipulator to open a small
cabinet door, initially shut closed, sitting on a table to a specified angle. The state space consists of
the Cartesian coordinates of the Sawyer end-effector and the door’s angle. As in the Robotic Pushing
task, the three-dimensional action space controls the position of the end-effector. The distribution of
goals p(g) is uniform on door angles from 0 (completely closed) to 0.83 radians.

Claw Manipulation: (Ahn et al., 2019) A 9-DOF ”claw”-like robot is required to turn a valve to
various positions . The state space includes the positions of each joint of each claw (3 joints on 3
claws) and embeds the current angle of the valve in Cartesian coordinate (θ 7→ (sin θ, cos θ)). The
robot is controlled via joint angle control. The goal space consists only of the claw angle, which is
sampled uniformly from the unit circle.

A.4 ABLATIONS

In Section 5.3, we analyzed the performance of the following variants of GCSL (Figure 7).

1. Limited relabeling - This model relabels only states and goals that are at most three steps
apart: {(st, at, st+h, h) : t > 0, h ≤ 3}

2. On-Policy Only the most recent 10000 transitions are stored and trained on.

3. Fixed Data Collection Data is collected according to a uniform policy over actions.

4. Time-Varying Policy Policies are conditioned on the remaining horizon. Alongside the
state and goal, the policy gets a reverse temperature encoding of the horizon as input.

14

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
nc

e
(m

)

 GCSL
Fixed Data Collection
Limited Relabeling
On Policy
Time-Varying Policy

Four Rooms: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.025

0.050

0.075

0.100

0.125

0.150

D
is

ta
nc

e
(m

)

Sawyer Pushing: Ablations

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

D
is

ta
nc

e
(m

)

Lunar Lander: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
is

ta
nc

e
(m

)

Claw Manipulation: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e
(m

)

Door Opening: Ablations

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
Su

cc
ee

de
d

 GCSL
Fixed Data Collection
Limited Relabeling
On Policy
Time-Varying Policy

Four Rooms: Average Success Ratio

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
Su

cc
ee

de
d

Sawyer Pushing: Average Success Ratio

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
Su

cc
ee

de
d

Lunar Lander: Average Success Ratio

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n
Su

cc
ee

de
d

Claw Manipulation: Average Success Ratio

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
Su

cc
ee

de
d

Door Opening: Average Success Ratio

Figure 7: Performance across variations of GCSL (Section 5.3) for all experimental domains.

In addition, we also performed an ablation to measure how the performance of GCSL depends on
the ratio of gradient steps to environment steps being collected. A larger number of gradient updates
indicate higher levels of data re-use. Our results indicate that GCSL is robust to this hyperparameter.

0.0 0.5 1.0 1.5 2.0
1e5

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
nc

e
(m

)

1 Gradient Step
2 Gradient Steps
4 Gradient Steps

Four Rooms: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.025

0.050

0.075

0.100

0.125

0.150

D
is

ta
nc

e
(m

)

Sawyer Pushing: Ablations

0.0 0.5 1.0 1.5 2.0
1e5

0.1

0.2

0.3

0.4

D
is

ta
nc

e
(m

)

Lunar Lander: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.25

0.50

0.75

1.00

1.25

1.50

D
is

ta
nc

e
(m

)

Claw Manipulation: Ablations

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.1

0.2

0.3

D
is

ta
nc

e
(m

)

Door Opening: Ablations

Figure 8: Policy update frequency: Performance when varying the ratio of policy update steps to
environment steps. GCSL performs well even when significantly more gradient steps are taken on the
replay buffer data.

Finally, we compared the performance of our RL comparisons, TD3-HER and PPO, when optimizing
for the final-timestep objective in Equation 2 compared to optimizing the discounted return objective
in Equation 4. To faithfully optimize the final-timestep objective, the policy and value networks for
TD3-HER and PPO also take the remaining horizon as input. Our results indicate that TD3-HER and
PPO learn slower (and sometimes not at all) when optimizing the final-timestep objective than the
discounted return objective. Therefore, for the most fair evaluation, we compare the performance of
GCSL to the RL methods that optimize the discounted return objective.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.2

0.4

0.6

D
is

ta
nc

e
(m

)

PPO (Discounted)
PPO (Final Step)
TD3-HER (Discounted)
TD3-HER (Final Step)

Four Rooms: Average Final Distance

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.10

0.12

0.14

0.16

D
is

ta
nc

e
(m

)

Sawyer Pushing: Average Final Distance

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Lunar Lander: Average Final Distance

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.50

0.75

1.00

1.25

1.50

1.75

D
is

ta
nc

e
(m

)

Claw Manipulation: Average Final Distance

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e
(m

)

Door Opening: Average Final Distance

Figure 9: Optimizing discounted return vs final-timestep objective: Performance of TD3-HER
and PPO when optimizing for the final time-step objective and the discounted return objective, as
measured by median final distance to the goal. Both RL methods perform better with the discounted
return objective uniformly across environments, so we use the discounted-return comparisons in the
main paper.

A.5 INITIALIZING WITH DEMONSTRATIONS

We train an expert policy for robotic pushing using TRPO with a shaped dense reward function, and
collect a dataset of 200 trajectories, each corresponding to a different goal. To train GCSL using
these demonstrations, we simply populate the replay buffer with these trajectories at the beginning
of training, and optimize the GCSL objective using these trajectories to warm-start the algorithm.
Initializing a value function method using demonstrates requires significantly more attention: we

15

Published as a conference paper at ICLR 2021

perform the following procedure. First, we perform goal-conditioned behavior cloning to learn an
initial policy πBC . Next, we collect 200 new trajectories in the environment using a uniform data
collection scheme. Using this dataset of 400 trajectories, we perform policy evaluation on πBC
to learn QπBC using policy evaluation via bootstrapping. Having trained such an estimate of the
Q-function, we initialize the policy and Q-function to these estimates, and run the appropriate value
function RL algorithm.

A.6 HINDSIGHT POLICY GRADIENTS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e

GCSL
HPG

Fetch Reach

Figure 10: GCSL converges faster and
learns a more accurate goal-reaching policy
than HPG (Rauber et al., 2017)

We compared GCSL to hindsight policy gradients
(HPG) (Rauber et al., 2017) on the Fetch-Reach task
from Andrychowicz et al. (2017). Whereas GCSL uses re-
labelling in conjunction with supervised imitation learning,
HPG performs reward relabeling with a policy gradient
algorithm, introducing importance weights to correct for
the distribution shift. As shown in Fig. 10, GCSL solves
the task faster than HPG and converges to a policy that
gets closer to the goal. HPG required more than 1 mil-
lion samples to run reliably on Fetch-Reach, a task far
easier to solve than any of our benchmark environments
(Andrychowicz et al., 2017)

A.7 SIMPLE EXPLORATION STRATEGIES

0.0 0.5 1.0 1.5 2.0
Timesteps 1e5

0.2

0.4

0.6

0.8
Su

cc
es

s
R

at
e

Default Exploration
Exploration Strategy

Figure 11: Exploration strategies: When
combined with the exploration strategy from
Ecoffet et al. (2020), GCSL explores more
and learns a more accurate goal-reaching pol-
icy when navigating a 2x larger four-rooms
domain.

Since GCSL learns via self-imitation, like many other self-
imitation methods, it faces challenges of poor exploration
and converging to sub-optimal points (Oh et al., 2018).
However, since GCSL can learn with off-policy data, we
can deal with exploration challenges by using a directed
exploration strategy or by injecting noise into the data
collection process.

As a simple demonstration, we combined GCSL with an
exploration strategy akin to Go-Explore (Ecoffet et al.,
2020). This exploration strategy takes greedy actions with
the policy for the first 90% of the trajectory, and then
takes random actions for the remainder. Intuitively, this
can be seen as a crude implementation of first getting to
the fringe states, and then randomly exploring beyond the
fringe. The main difference with this intuition is that we
do not actually adjust the goal sampling strategy to only
reach goals within the fringe. We tested this exploration
strategy on a 2x larger version of the four rooms domain,
where greedy exploration is insufficient to reach all regions
in the space. GCSL with the default exploration strategy is unable to reach all the goals, but when
combined with this new exploration strategy, is able to learn faster in this environment and reach 15%
more goals.

16

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

Fi
na

l
D

is
ta

nc
e

Four Rooms

0.0 0.5 1.0
1e6

0.05

0.10

0.15

Sawyer Pushing

0.0 0.5 1.0 1.5 2.0
1e5

0

1

Lunar Lander

0.0 0.5 1.0
Timesteps 1e6

0.0

0.2

0.4

Fi
na

l
D

is
ta

nc
e

Door Opening

0.0 0.5 1.0
Timesteps 1e6

0.5

1.0

1.5

Claw Manipulation

GCSL
PPO
TD3-HER
TD3-HER (Discrete)

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.2

0.4

M
in

im
um

D
is

ta
nc

e

Four Rooms

0.0 0.5 1.0
1e6

0.05

0.10

0.15

Sawyer Pushing

0.0 0.5 1.0 1.5 2.0
1e5

0

1

Lunar Lander

0.0 0.5 1.0
Timesteps 1e6

0.0

0.2

0.4

M
in

im
um

D
is

ta
nc

e

Door Opening

0.0 0.5 1.0
Timesteps 1e6

0

1

Claw Manipulation

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

1.0

Fi
na

l
Su

cc
es

s
R

at
e

Four Rooms

0.0 0.5 1.0
1e6

0.25

0.50

Sawyer Pushing

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

Lunar Lander

0.0 0.5 1.0
Timesteps 1e6

0.0

0.5

1.0

Fi
na

l
Su

cc
es

s
R

at
e

Door Opening

0.0 0.5 1.0
Timesteps 1e6

0.0

0.5

Claw Manipulation

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

1.0

An
yt

im
e

Su
cc

es
s

R
at

e

Four Rooms

0.0 0.5 1.0
1e6

0.25

0.50

0.75
Sawyer Pushing

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

1.0
Lunar Lander

0.0 0.5 1.0
Timesteps 1e6

0.0

0.5

1.0

An
yt

im
e

Su
cc

es
s

R
at

e

Door Opening

0.0 0.5 1.0
Timesteps 1e6

0.0

0.5

1.0
Claw Manipulation

Figure 12: Alternative Evaluation Metrics: Here we present plots reporting (1) median distance to
goal at the final timestep, (2) median minimum distance to goal within a trajectory (3) proportion
of trajectories that were at the desired goal at the final timestep (3) proportion of trajectories that
were at the desired goal at any timestep. As mentioned in Appendix A.2, we additionally provide
comparisons to a version of TD3-HER that uses discretized actions. See Table 1 for time to goal
metrics

17

Published as a conference paper at ICLR 2021

B THEORETICAL ANALYSIS

B.1 PROOF OF THEOREM 4.1

We will assume a discrete state space in this proof, and denote a trajectory as τ =
{s0, a0, . . . , sT , aT }. Let the notation G(τ) = sT denote the final state of a trajectory, which
represents the goal that the trajectory reached. As there can be multiple paths to a goal, we let
τg = {τ : G(τ) = g} denote the set of trajectories that reach a particular goal g. We abbreviate a
policy’s trajectory distribution as π(τ |g) = p(s0)

∏T
t=0 π(at|st, g)T (st+1|st, at). The target goal-

reaching objective we wish to optimize is the probability of reaching a commanded goal, when goals
are sampled from a pre-specified distribution p(g).

J(π) = Eg∼p(g),τ∼π(τ |g)[1[G(τ) = g]]

GCSL optimizes the following objective, where the log-likelihood of the actions conditioned on
the goals actually reached by the policy, G(τ). The distribution of trajectories used to optimize the
objective is collected through a different policy, πold. We write πold(τ) = Eg∼p(g)[πold(τ |g)] to
concisely represent the marginalized distribution of trajectories from πold.

JGCSL(π) = Eτ∼πold(τ)

[
T∑
t=0

log π(at|st,G(τ))

]
To analyze how this objective relates to J(π), we first analyze the relationship between J(π) and a
surrogate objective, given by

Jsurr(π) = Eg∼p(g),τ∼πold(τ |g) [1[G(τ) = g] log π(τ |g)]

Theorem 1 from Schulman et al. (2015) states that

J(π) ≥ Jsurr(π)− 4γε

(1− γ)2
α2,

where γ is a discount factor, ε is the maximum advantage over all states and actions, and α is the total
variation distance between π and πold . It is straightforward to show that the bound can be rewritten
in the finite-horizon undiscounted case in terms of the horizon T , following Kakade & Langford
(2002); Ross et al. (2011), to obtain the bound

J(π) ≥ Jsurr(π)− 4T (T − 1)εα2,

where T is the horizon of the task. In the setting where data is collected from multiple policies, for
example with a replay buffer, the bound cannot rely on the distance between policies at each state,
but rather more generally the total variation distance between the trajectory distributions,

J(π) ≥ Jsurr(π)− εDTV (π(τ), πold(τ)). (5)
Since our reward function is 1[G(τ) = g], the return for any trajectory is bounded between 0 and 1,
allowing us to bound ε above by 1. This leaves α, which is the total variation divergence between π
and πold. This divergence may be high if the data collection policy is very far from the current policy,
but is low if the data was collected via a recent policy.

We can now lower-bound the surrogate objective with the GCSL objective via the following:
Jsurr(π) = Eg∼p(g),τ∼πold(τ |g) [1[G(τ) = g] log π(τ |g)]

=
∑
g

p(g)
∑
τ

πold(τ |g) log π(τ |G(τ))1[G(τ) = g]

=
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)1[G(τ) = g]

=
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)−
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)1[G(τ) 6= g]

(6)

≥
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)

= Eτ∼Eg [πold(τ |g)][log π(τ |G(τ))].

18

Published as a conference paper at ICLR 2021

The final line is our goal-relabeling objective: we train the policy to reach goals we reached. The
inequality holds since log π(τ) is always negative. The inequality is loose by a term related to the
probability of not reaching the commanded goal, which we analyze in the section below.

Since the initial state and transition probabilities do not depend on the policy, we can simplify
log π(τ |G(τ)) as (by absorbing non π-dependent terms into C2):

Eτ∼πold(τ)[log π(τ |G(τ))] = Eτ∼πold(τ)

[
log p(s0) +

T∑
t=0

log π(at|st,G(τ)) + log T (st+1|st, at)

]

= Eτ∼πold(τ)]

[
T∑
t=0

log π(at|stG(τ))

]
+ C2

= JGCSL(π) + C2.

Combining this result with the bound on the expected return completes the proof:
J(π) ≥ JGCSL(π) + C1 + C2 − 4T (T − 1)α2

Note that in order for J(π) and JGCSL(π) to be vacuously zero, the probability of reaching a goal
under πold must be non-zero. This assumption is reasonable, and matches the assumptions on
”exploratory data-collection” and full-support policies that are required by Q-learning and policy
gradient convergence guarantees.

B.2 QUANTIFYING THE QUALITY OF THE APPROXIMATION

The tightness of the bound presented above is controlled from two locations: the off-policyness of
πold with respect to π and the bound introduced by the lower bound in the theorem. The first is
well-studied in policy gradient methods; in particular, when the data is on-policy, the gap between
Jsurr(π) and J(π) is known to be a policy-independent constant. We seek to better understand the
gap introduced by Equation 6 in the analysis above.

We define Pπold(G(τ) 6= g) to be the probability of failure under πold, and additionally define
pwrong(τ) and pright(τ) to be the conditional distribution of trajectories under πold given that it did not
reach and did the commanded goal respectively.

In the following section, we show that the gap introduced by Equation 6 can be controlled by the
probability of making a mistake, Pπold(G(τ) 6= g), and DTV (pwrong(τ), pright(τ)), a measure of the
difference between the distribution of trajectories that must be relabeled and those not.

We rewrite Equation 6 as follows:

Jsurr(π) =
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)−
∑
τ

log π(τ |G(τ))
∑
g

p(g)πold(τ |g)1[G(τ) 6= g]

= Eτ∼πold [log π(τ |G(τ))]− Pπold (G(τ) 6= g))Eτ∼pwrong(τ) [log π(τ |G(τ))]

Define D to be the Radon-Nikodym derivative of pwrong(τ) wrt πold(τ)

= Eτ∼πold(τ)[log π(τ |G(τ))]− Pπold (G(τ) 6= g))Eτ∼πold(τ) [D log π(τ |G(τ))]

= (1− Pπold (G(τ) 6= g))Eτ∼πold(τ)[log π(τ |G(τ))]

+ Pπold (G(τ) 6= g))Eτ∼πold(τ) [(1−D) log π(τ |G(τ))]︸ ︷︷ ︸
Relevant Gap

The first term is affine with respect to the GCSL loss, so the second term is the error we seek to
understand.
|Relevant Gap| = Pπold (G(τ) 6= g)

∣∣Eτ∼πold(τ) [(1−D) log π(τ |G(τ))]
∣∣

≤ Pπold(G(τ) 6= g)Eτ∼πold [|1−D|]Eτ∼πold(τ)[log π(τ |G(τ))]

= 2Pπold(G(τ) 6= g)DTV (Eg[πold(τ |g)], pwrong(τ))Eτ∼πold(τ)[log π(τ |G(τ))]

= 2Pπold(G(τ) 6= g)(1− Pπold(G(τ) 6= g))DTV (pright(τ), pwrong(τ))Eτ∼πold(τ)[log π(τ |G(τ))]

19

Published as a conference paper at ICLR 2021

The inequality is maintained because of the nonpositivity of log π(τ), and the final step holds because
πold(τ) is a mixture of pwrong(τ) and pright(τ). This derivation shows that the gap between Jsurr and
JGCSL (up to affine consideration) can be controlled by (1) the probability of reaching the wrong
goal and (2) the divergence between the conditional distribution of trajectories which did reach the
commanded goal (do not need to be relabeled) and those which did not reach the commanded goal
(must be relabeled). As either term goes to 0, this bound becomes tight.

B.3 PROOF OF THEOREM 3.2

In this section, we now prove that sufficiently optimizing the GCSL objective over the full state space
causes the probability of reaching the wrong goal to be bounded close to 0, and thus bounds the gap
close to 0.

Suppose we collect trajectories from a policy πold. Following the notation from before, we define
πold(τ) = Eg∼p(g)[πdata(τ |g)]. For convenience, we define π∗(at|st, g) ∝

∫
τ\at πdata(τ)1(G(τ) =

g)1(st(τ) = st) to be the conditional distribution of actions for a given state given that the goal g is
reached at the end of the trajectory. If this conditional distribution is not defined, we let π∗(at|st, g)
be uniform, so that π∗(at|st, g) is well-defined for all states, goals, and timesteps. The notation
for π∗ is suggestive: in fact, it can be easily shown that under the assumptions of the theorem, full
data coverage and deterministic dynamics, the induced policy π∗ is in fact the optimal policy for
maximizing the probability of reaching the goal.

To show that the GCSL policy also incurs low error, we provide a coupling argument, sim-
ilar to Schulman et al. (2015); Kakade & Langford (2002); Ross et al. (2011). Because
DTV (π(at|st, g), π∗(at|st, g)) ≤ ε, we can define a (1 − ε)-coupled policy pair (π, π∗), which
take differing actions with probability ε. By a union bound over all timesteps, the probability that
π and π∗ take any different actions throughout the trajectory is bounded by εT , and because of the
assumptions of deterministic dynamics, take the same trajectory with probability 1− εT . Now, since
the two policies take different trajectories with probability at most εT , a simple bound shows that
the probability that πGCSL reaches the goal is at most εT less than π∗, leading to our result that
the performance gap J(π∗)− J(π) < εT . In environments in which every state is reachable from
every other state in the desired horizon, this provides a global performance bound indicating that the
optimal GCSL policy will reach the goal with probability at least 1− εT .

20

Published as a conference paper at ICLR 2021

C DIRECTNESS OF POLICIES LEARNED BY GCSL

C.1 QUANTITATIVE ANALYSIS

We measure how direct the policies learned by GCSL are. To do so, we evaluate the following
objective:

ShortestTime(π) = Eg∼p(g)[Eτ∼πg [γT (τ,g,ε)]] T (τ, g, ε) = inf{t ∈ N : d(st, g) < ε} (7)

In other words, if the policy reaches the goal in t timesteps, then the performance is γt, and if the
agent does not, then the performance is 0 (t =∞). We choose this metric, as compared to exactly
measuring the time taken to reach the goal, because it more cleanly handles the situation when the
goal is not reached by the agent. We use γ = 0.99.

We additionally train an oracle agent using PPO to maximize a shaped reward r(s, g) = −d(s, g) for
3 million timesteps. While the performance of this oracle agent and GCSL aren’t directly comparable,
since the oracle agent has privileged distance information, it serves as an rough upper bound on how
fast an agent can reach the goal.

It may seem surprising that the GCSL policy learns to reach the goal so quickly, especially given that
it optimizes the final-timestep optimality objective, and not the shortest-path objective. This is due to
two factors. First, all the environments support the ”reach the goal and stay at goal” behavior – if it
were not possible to remain at the goal, then GCSL would not exhibit this type of behavior. Second,
the policy we train ignores the horizon, and at a state, takes the same action at any timestep. This
inductive bias on the policy prevents it from learning behaviors that remain still for a long period of
time, and then go to the goal right before the time horizon is reached.

Environment Name Oracle GCSL PPO TD3-HER

Four Rooms 0.81 0.74 0.68 0.40
Sawyer Pushing 0.53 0.61 0.20 0.33
Lunar Lander 0.65 0.52 0.66 0.30
Door Opening 0.93 0.58 0.95 0.21
Claw Manipulation 0.70 0.68 0.45 0.55

Table 1: Shortest-Time Objective (higher is better): Values of ShortestTime(π) for the final
trained policy for each algorithm. ShortestTime(π) is a smooth measure of how long it takes the
agent to first reach the goal. GCSL reaches the goal nearly as quickly as the oracle policy on all the
environments but the door opening task. The oracle expert policy is trained on a dense reward signal
with PPO for significantly longer.

C.2 QUALITATIVE ANALYSIS

Figure 13 below shows parts of the state along trajectories produced by GCSL. In Lunar Lander, this
state is captured by the rocket’s position, and in 2D Room Navigation it is the agent’s position. While
these trajectories do not always take the shortest path to the goal, they do often take fairly direct paths
to the goal from the initial position avoiding very roundabout trajectories.

Figure 13: Examples of trajectories generated by GCSL for the Lunar Lander and 2D Room
environments. Stars indicate the goal state.

21

	Introduction
	Preliminaries
	Learning Goal-Conditioned Policies with Self-Imitation
	Goal-Conditioned Supervised Learning
	Theoretical Analysis

	Related Work
	Experimental Evaluation
	Experimental Framework
	Learning Goal-Conditioned Policies
	Analysis of Learning Progress and Learned Behaviors
	Robustness to Hyperparameters
	Initializing with Demonstrations

	Discussion
	Experimental Details
	Goal-Conditioned Supervised Learning (GCSL)
	RL Comparisons
	Task Descriptions
	Ablations
	Initializing with Demonstrations
	Hindsight Policy Gradients
	Simple Exploration Strategies

	Theoretical Analysis
	Proof of Theorem 4.1
	Quantifying the Quality of the Approximation
	Proof of Theorem 3.2

	Directness of Policies Learned by GCSL
	Quantitative Analysis
	Qualitative Analysis

