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Abstract

A cappella music presents unique challenges for source separation due to its diverse
vocal styles and the coexistence of harmonic and percussive voices. Current a
cappella datasets are limited in size and diversity, hindering the development
of robust source separation models. In this paper, we present ACappellaSet, a
collection of 55 professionally recorded a cappella songs performed by three
professional groups. In addition, we present experimental results showing that fine-
tuning HTDemucs on ACappellaSet substantially improves vocal percussion (VP)
separation, raising VP SDR from 5.22 dB to 7.62 dB, and enabling scalable multi-
stem modeling. Finally, we discuss future work on AI-driven dataset augmentation
and supporting tools for asynchronous a cappella rehearsals.

1 Introduction

A cappella is a music genre performed solely by the human voice and body [12]. Unlike large choral
ensembles, a cappella groups typically feature one singer per part and perform diverse vocal styles [5].
A distinctive feature is vocal percussion (VP), or beatboxing, which provides a rhythmic backbone by
“imitating existing drum sounds” but is rarely notated [5], limiting the effectiveness of score-informed
separation methods. These characteristics position a cappella between traditional choirs and pop
bands, demanding source separation techniques capable of handling both intricate harmonies and
percussive vocal effects.

A significant challenge in developing source separation models for a cappella music is the scarcity of
large, high-quality datasets with isolated vocal stems. Existing a cappella datasets [11, 17, 16] contain
only 20–40 songs totaling 100–200 minutes of audio, which is insufficient for training robust models.
To address this limitation, we present ACappellaSet, a repository of 55 a cappella songs performed by
three professional groups. We present statistics and potential applications of the golden dataset. We
also present a comparison between our dataset and other existing music separation datasets.

Based on our dataset, we conducted experiments with HTDemucs [14], demonstrating that fine-
tuning on ACappellaSet significantly improves vocal percussion separation performance and extends
effectively to multi-stem configurations. Inspired by Sarkar et al.’s work with synthetic data for
chamber ensemble separation [15], we also explore AI-driven dataset expansion through voice cloning
and synthesis, particularly for underrepresented vocal parts. Finally, we discuss potential applications
and the importance of a cappella source separation.
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2 ACappellaSet: A Multilingual A Cappella Dataset

2.1 Dataset Statistics and Applications

ACappellaSet contains 55 professionally recorded a cappella songs performed by three vocal groups,
each captured in isolated stems corresponding to soprano (S), alto (A), tenor (T), bass (B), and vocal
percussion (VP), with occasional mezzo-soprano (M) or baritone (Bar) parts.

The collection totals 2 hours 37 minutes 30 seconds on 55 unique songs (Figure 1a). Recordings
were made with either a single microphone in studio or a multi-microphone setup (up to five
microphones), enabling clean isolation of individual voice parts when multiple microphones were
used. All files were exported as stereo WAV files at 44.1 kHz, 24-bit resolution. For ensemble
synchrony, click tracks were used in most sessions, though some rough recordings preserve natural
timing variation. This design allows for both clean source separation benchmarks and more realistic
“in-the-wild” conditions.

Each song is available in up to 3 production stages. The rough recordings are minimally edited and
captured in a casual setting, preserving natural imperfections. The dry mixes undergo post-processing
steps such as tuning, equalization, and balancing to create a more refined version while maintaining
clarity. Finally, the wet mixes represent polished studio-style productions, enhanced with effects,
reverb, and spatial panning.

Together, these versions produce 110 files totaling approximately 5 hours and 11 minutes of audio.

The dataset includes 11 original arrangements, 37 covers, and 7 medleys, performed in 6 languages
(Mandarin, English, Hakka Chinese, Taiwanese, Korean, and non-lyrical vocalizations; Figure 1b).
Ensemble configurations are dominated by SATB+VP but also include others such as ATBarB and
SMAB (Figure 1c). Figure 2 illustrates the distribution of different recording stages across the corpus.

Potential Applications. Beyond source separation, ACappellaSet enables studies in voice-part
classification, automatic arrangement analysis, and cross-lingual style modeling. The inclusion
of rough, dry, and wet versions allows investigation of how production quality influences learning-
based models. By combining controlled isolation with real ensemble variability, the dataset provides
a practical foundation for AI-driven a cappella research and rehearsal applications.

2.2 Comparison with Existing Datasets

Compared with widely used music separation datasets such as MUSDB18 [13] and MedleyDB [2],
which primarily feature instrumental mixtures, ACappellaSet is designed specifically for purely vocal
ensembles. It also differs from existing corpora in several aspects:

• Style and structure: ACappellaSet captures contemporary small-group a cappella pop perfor-
mances, where singers frequently switch lead melodies across parts (S, A, T, B). This arrangement
style is common in modern a cappella but presents greater separation difficulty due to overlapping
timbres and dynamic role changes. In contrast, the JaCappella Corpus [11] features Japanese
children’s songs arranged for six parts (lead, S, A, T, B, and VP), where a fixed lead vocal stem
consistently carries the melody.

• Expanded stem configuration: ACappellaSet includes isolated vocal percussion (VP) tracks,
enabling full SATB+VP modeling. Choral datasets such as CSD [4] and Cantoria [3] instead feature
large ensembles with multiple singers per part and no percussive voices.

• Multilingual and production-aware: ACappellaSet spans six languages and three production
stages, facilitating cross-lingual and production-conditioned learning.

3 Experiments and Results

We evaluate Hybrid Transformer Demucs (HTDemucs) [14, 8], a state-of-the-art time-domain
source separation model, on our curated golden dataset (§2), focusing on the challenge of isolating
vocal percussion (VP) from other voice parts.
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(a) Song durations (b) Languages (c) Ensemble types

Figure 1: Dataset statistics: (a) song durations, (b) language distribution, and (c) ensemble types.

Table 1: SDR (dB) for pretrained and fine-tuned HTDemucs models. Fine-tuning substantially
improves VP separation.

Model VP Other All

Pretrained (official) 5.22 10.66 7.94
Pretrained (drum) 3.66 9.24 6.45
Fine-tuned (ours) 7.62 11.63 9.62

3.1 Experimental Setup and Results

We used 49 songs (103 files) from the golden dataset, split into 40 for training, 4 for validation, and
5 for testing (Appendix B, Table 4). Each song may have up to three production versions (rough,
dry, wet), totaling 4:46:55 of audio. Evaluation used the SDR metric from the MDX 2021 definition
(NSDR) [19, 18].

We compared two pretrained HTDemucs variants—(i) the official general-purpose htdemucs and
(ii) a drum-fine-tuned version—to test whether VP behaves more like percussion or requires targeted
adaptation. HTDemucs, originally trained for four stems (drums, bass, vocals, other), was reconfig-
ured for two stems: VP (mapped from drums) and Other (all remaining voices). We tuned learning
rate and stem-weight configurations; full settings are listed in Appendix B, Table 5.

Table 1 shows that the official model outperformed the drum-fine-tuned variant, confirming that VP
is acoustically distinct from conventional drums. Our fine-tuned model further improved VP SDR
from 5.22 dB to 7.62 dB (+46% relative), while also raising scores for Other and overall—without
degrading harmonic separation.

The test split (five songs, 14 files) includes the only two Korean tracks in the dataset, enabling
zero-shot cross-lingual evaluation. Because all test songs include rough, dry, and wet versions,
we also analyzed robustness to production conditions. Table 2 shows that wet mixes degraded
performance, with VP SDR dropping to 4.84 dB versus 8.73 dB for dry mixes, consistent with prior
findings that reverberation smears temporal and spectral cues [10, 6, 7]. Dry and rough versions
yielded stronger results, indicating that minimally processed audio benefits separation.

3.2 Multi-Stem and Two-Stage Evaluation

To further assess the scalability of our approach, we conducted additional experiments on multi-stem
separation using the same pretrained family of HTDemucs models. Specifically, we compared:

• (i) one-stage separation using a 6-stem model fine-tuned on ACappellaSet to predict {VP, Bass (B),
Soprano (S), Alto (A), Tenor (T), Baritone (Bar)} simultaneously, and

• (ii) a two-stage pipeline where a 2-stem model first isolates VP, followed by a 5-stem model that
separates the remaining harmonic voices.

The two-stage configuration yielded clear gains across most stems, with VP improving from −0.6 dB
to 6.8 dB and Bass from 1.7 dB to 7.1 dB. Isolating VP first reduces spectral overlap and rhythmic
interference in harmonic voices, leading to cleaner downstream separation. Interestingly, the 5-stem
model—trained purely on vocal mixtures—generalized better than the 6-stem variant that retained
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Table 2: SDR (dB) by recording condition for the fine-tuned HTDemucs. Wet versions consistently
degrade quality.

Condition VP Other All

Dry 8.73 12.13 10.43
Rough 6.01 14.56 10.28
Wet 4.84 10.08 7.46

Table 3: Comparison of one-stage vs. two-stage a cappella separation (NSDR [dB]).
Method VP B S A T Bar

(i) one-stage (6s) 5.2 5.5 3.0 2.2 4.9 0.6
(ii) two-stage (2s→5s) 6.8 7.1 2.9 2.7 5.0 0.7

unused instrumental heads, suggesting that domain-specific fine-tuning benefits from simplified
architectures.

4 Future Work

Exploring Generative AI-powered Data Augmentation To expand the dataset, we plan to aug-
ment the recordings in the following ways.

• Pitch shifting: We will generate versions of each track in the “golden dataset” shifted by –1 and
+1 semitone. This augmentation triples the number of available audio tracks for each song.

• Voice cloning: Using voice cloning techniques [1], we will convert each audio track (including
the pitch-shifted variants) into a different timbre. This process doubles the number of tracks and
enables the creation of both all-AI mixes (where all parts are cloned) and hybrid mixes (where
AI-cloned and original human voices are combined).

• Voice synthesis: We experimented with AI singing voice synthesizers (e.g., VOCALOID6 and
Synthesizer V Studio 2 Pro ) that transform a MIDI file with annotated syllables into an AI singing
voice. We input MIDI files of each voice part to generate a cappella recordings. The resulting
quality was satisfactory, with Synthesizer V Studio 2 Pro producing more lifelike results for English
a cappella songs. AI voice synthesis allows us to augment our dataset by adding additional songs.

• Symbolic Data: We will include a symbolic dataset comprising a cappella arrangements in MIDI
and MusicXML formats. These arrangements are sourced from MuseScore and include the songs
present in both the “golden dataset” and the AI voice synthesis dataset.

ACAMate: Towards AI-assisted A Capella Rehearsal Tools Curating a dataset for a cappella
source separation is valuable because of its potential to support rehearsals, particularly for novice
singers in collegiate a cappella groups. Collegiate a cappella groups are typically small and lack a
conductor [5], and may even be non-auditioned, with members who have little singing experience
[9]. As a result, these groups often struggle to access professional guidance. During rehearsals,
singers must monitor their own voices and identify mistakes in real time. A source separation–based
rehearsal tool could allow them to review separated voice parts after group singing, making it easier
to detect and learn from errors. Such a tool could also analyze and provide feedback on separated
voice parts, helping singers understand concrete next steps for improvement.

The lack of professional guidance is even more challenging in individual practice. A cappella
arrangements are rhythmically and harmonically interdependent, and singers rely on vocal cues from
others to stay synchronized. Without those cues, novices may struggle to grasp how their part fits
within the ensemble. Source separation could address this by enabling singers to practice with either
group or reference recordings in which voice parts are isolated (see figure 3A). They could then
create customized practice materials by adjusting or remixing individual parts.

Therefore, a cappella source separation forms the foundation for rehearsal-support systems. Given a
mixed recording, such a system could first separate the parts and then allow users to manipulate them
(e.g., by muting or unmuting a line) and receive feedback through analysis of the separated voices.
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A More Dataset Statistics

Figure 2: Version availability matrix showing rough, dry, and wet versions for each song.

B Implementation Details

B.1 Dataset Split

Table 4: Dataset split by songs. Each song may have up to three production versions (rough/dry/wet),
yielding 103 files in total.

Split Song Count Duration

Train 40 1:53:49
Valid 4 0:11:18
Test 5 0:11:54

Total 49 2:17:01

B.2 Fine-tuning Configurations

Table 5: Fine-tuning configurations of htdemucs. Best-performing run (e76885f2) achieved VP SDR
of 7.62 dB.

ID Epochs LR Weights VP SDR Other SDR All SDR

959da2b8 20 3e-4 [1.2, 0.5, 0.5, 1.0] 7.21 11.27 9.24
e76885f2∗ 20 3e-4 [1.5, 0.3, 0.3, 1.0] 7.62 11.63 9.62
704097c5 20 3e-4 [1.0, 0.7, 0.7, 1.0] 7.26 11.39 9.32
86f19ed3 20 3e-4 [1.3, 0.4, 0.4, 1.0] 7.20 11.51 9.36
4dea81d0 20 3e-4 [1.0, 1.0, 1.0, 1.0] 7.19 11.28 9.23
cb1aef50 10 2e-5 [1.0, 1.0, 1.0, 1.0] 6.55 10.68 8.61
f3fab4cf 10 1e-4 [1.0, 1.0, 1.0, 1.0] 4.43 9.89 7.16
a935fdf0 10 3e-5 [1.0, 1.0, 1.0, 1.0] 6.25 10.61 8.43
8038f405 10 4e-2 [1.0, 1.0, 1.0, 1.0] 0.28 4.15 2.21
∗ Best performing configuration.
Weights correspond to the stems [VP, dummy1, dummy2, other].

B.3 Additional 4-Stem (SATB) Evaluation

For completeness, we also fine-tuned an HTDemucs-4s model to separate the four classical voice
parts—Soprano (S), Alto (A), Tenor (T), and Bass (B)—on ACappellaSet. Table 6 reports mean
NSDR (dB) for each stem. The model achieved solid separation quality across all parts, with higher
scores for lower voices, consistent with prior observations that lower-frequency stems (e.g., Bass)
exhibit less spectral overlap than higher-pitched ones.

These results (mean NSDR = 6.72 dB) demonstrate that the same dataset supports both multi-
stem harmonic separation and VP-inclusive configurations, highlighting its flexibility for different a
cappella modeling setups.
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Table 6: NSDR (dB) for fine-tuned 4-stem (SATB) HTDemucs model.
Stem S A T B

NSDR (dB) 4.05 4.41 7.91 10.50

C Proposed Workflow of ACAMate

Figure 3: Workflow of ACAMate. Users iteratively practice during an individual A cappella rehearsal.
Before singing (A), ACAMate separates the group recording into different voice parts, allowing users
to create flexible and authentic mixes. During singing (B), ACAMate highlights musical patterns to
help users perceive relationships between their part and others. After singing (C), ACAMate delivers
intuitive feedback on pitch, rhythm, and dynamics. To facilitate iterative practice (D), ACAMate
analyzes weak segments, offers suggestions, and sets practice goals for users.
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