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Abstract

Foundation models, particularly Large Language Models (LLMs), have garnered
significant interest due to their wide range of applications. Yet these models
demonstrate notable weaknesses when confronted with tasks involving iterative
sub-problems or deliberately misleading content—exemplified by complex arith-
metic operations and comprehensive fake news evaluation. Conventional instruc-
tional prompting frequently produces flawed outputs in these scenarios. While
research has established that advanced techniques such as Chain-of-Thoughts
and Least-to-Most methodologies can dramatically enhance LLM performance,
emerging investigation indicates that a more streamlined divide-and-conquer (DaC)
approach—which systematically partitions input sequences into discrete compo-
nents—can yield remarkable improvements for particular problem classes like
misinformation assessment. Our investigation rigorously examines the efficacy of
DaC prompting strategies and precisely delineates the task characteristics that ben-
efit most from this methodology. Through comprehensive theoretical analysis, we
establish formal guarantees for performance enhancement in specifically identified
task categories. We validate our theoretical framework through focused empirical
studies on large integer multiplication and factual verification tasks, where experi-
mental outcomes robustly confirm our analytical predictions, demonstrating DaC’s
practical superiority in these challenging domains.

1 Introduction

Large language models (LLM) based on the Transformer architecture have led to major breakthroughs
in natural language processing and other related fields in artificial intelligence (Jiang et al., 2025;
Brown et al., 2020; Radford et al.; Touvron et al., 2023; Cao et al., 2024b). State-of-the-art general-
purpose language models have demonstrated remarkable advancements in various domains, including
question answering, graph learning, reading comprehension, text generation, and machine translation
(Darm et al., 2025; Cao et al., 2024a; Chen et al., 2024; Tan et al., 2023; Hendy et al., 2023; Mao
et al., 2023; Zong & Krishnamachari, 2023; Jia et al., 2024; Zhang et al., 2023a). Their remarkable
adaptability stems not only from architectural innovations but also from increasingly effective
prompting strategies that unlock their reasoning capabilities. These developments paves the way
towards general-purpose problem solvers (Li et al., 2024; Bubeck et al., 2023).

However, as pointed out in (Wei et al., 2022), significant challenges emerge when applying even the
most advanced LLMs to tasks involving extended solution paths, particularly those requiring sophisti-
cated mathematical reasoning or complex knowledge integration. A series theoretic works attribute
this challenge to Parallelism Tradeoff (Merrill & Sabharwal, 2023), a fundamental limitation of
Transformers. Specifically, unlike Recurrent Neural Network, whose computational depth is linear to
the input sequence length (i.e., the depth is O(n), where n is the input sequence length), Transformer
does not contain any recurrent structure. Such design, while achieving superior parallelizability than
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#Material#: Marseille, France (CNN)The French prosecutor leading an investigation into the 

crash of Germanwings Flight 9525 insisted … not aware of any video …so far no videos 

were used… He added, "A person who has such a video needs to … give it to the 

investigators.” … Jean-Marc Menichini… that the reports were "completely wrong" and …

Task: Verify the truthfulness of a summary.

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-

pilot accused of deliberately crashing the plane, had a history of severe depression and 

suicidal tendencies.

Q: You are given the above material and a summary. Please answer me: Does the 

summary contain any claim that is contradicted with the material? 

A: Based on the given material, the summary does not contain any claim that is contradicted 

with the material. The material confirms the existence of a video showing the final moments 

of Germanwings Flight 9525, as well as the history of severe depression and suicidal 

tendencies of the co-pilot, Andreas Lubitz.

Example of Entangled Problem Solving

Sub-task 1:

Q: Does the claim 1 contradict with the material? #Claim 1#: A video showing 

the final moments of Germanwings Flight 9525 has been recovered by 

investigators from the wreckage site.

A: Yes, the claim is contradicted by the material. The material states that Marseille 

prosecutor Brice Robin insisted that he was not aware of any video footage from 

onboard the plane and that no videos were used in the crash investigation. 

However, the claim states that a video showing the final moments of Germanwings 

Flight 9525 has been recovered by investigators from the wreckage site.

Sub-task 2:

Q: Does the claim 2 contradict with the material? #Claim 2#: …

A: Based on the provided document, the summary does not contain any claim. …

Sub-task 3:

Q: Does the claim 3 contradict with the material? #Claim 3#: …

A: Based on the provided document, the summary does not contain any claim. …

Example of Divide-and-Conquer Problem Solving

Figure 1: An illustrative example of hallucination detection with entangled problem solving (i.e.,
directly forward all inputs into the LLM) and divide-and-conquer problem solving (i.e., divide the
problem inputs into parallel sub-tasks and tackle them in parallel). The sentence marked with red
font in the material is the evidence that contradicts the first claim in the summary, which is marked
with red font.

RNN, makes Transformers suffer from limited expressive power. Merrill & Sabharwal proved that
the expressive power of fixed-depth log-precision Transformer, which is very close to the most com-
monly applied Transformer architecture for LLMs, is bounded by constant-depth logspace-uniform
threshold circuits. This theoretical ceiling explains why these models struggle with tasks requiring
extended sequential reasoning or precise tracking of long dependency chains, despite their impressive
performance on many natural language tasks.

To address this challenge, carefully designed prompting strategies have been developed to tackle
tasks that require stronger expressive power (Wang et al., 2025; Feng et al., 2023). A series of works
focus on prompting the LLM with instructions or context samples to output the intermediate steps
that derive the final answer in an autoregressive manner, such as Chain-of-Thoughts (CoT) (Wei et al.,
2022; Wang et al., 2022; Zhou et al.; Chen et al., 2023). Some works further apply programs to guide
LLM to strictly follow designated reasoning steps (Yao et al., 2023). Theoretically, these prompting
strategies convert the role of the Transformer from a complete problem solver to a sub-problem solver
in a dynamic programming or tree searching algorithm (Peng et al., 2024; Merrill & Sabharwal, 2024).
In this way, these prompting strategies expand the expressive power of the LLMs and successfully
improve the reasoning and searching of LLMs (Feng et al., 2023; Ye et al., 2024).

In contrast to methods that employ instructions, contextual examples, or programs to decompose
reasoning processes into sequential intermediate steps, researchers have discovered that for certain
tasks, LLM performance can be significantly enhanced through a fundamentally different approach:
dividing input sequences into multiple sub-inputs and then merging the responses generated for each
sub-input, as illustrated in Fig. 1. For example, Cui et al. proposes that in automated evaluation,
LLM’s performance can be further boosted by first dividing the input text into sentences and then
evaluating them one by one. Intuitively, this paradigm benefits the tasks in a way similar to human
brains, especially when the tasks are too hard or too complex. For example, when reviewing a
long academic paper, some reviewers produce low-quality reviews (Garcia et al., 2021; Tennant &
Ross-Hellauer, 2020; Cortes & Lawrence, 2021) containing hallucination-like intermediate errors,
such as pointing out some ‘missing baselines’ that have already been sufficiently discussed by authors.
To avoid such mistakes, experienced reviewers usually think slowly (Kahneman, 2011) to follow a
Divide-and-Conquer paradigm to handle this task. Specifically, they decompose the paper review as
examinations of multiple central opinions and then retrieve corpus to verify them respectively.

However, unlike Chain-of-Thoughts, whose advance in expressive power is supported by theoretical
analysis (Feng et al., 2023), the performance boost from the Divide-and-Conquer paradigm lacks
rigorous theoretical support. This theoretical gap leaves practitioners without clear guidance regarding
the specific conditions under which DaC prompting provides demonstrable advantages over alternative
approaches. To tackle this challenge, in this paper, we aim to understand the utility of DaC prompting.
More specifically, we attempt to answer the following two research questions:
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1. RQ1: Compared to straightforward instructional prompting, does DaC have theoreti-
cally guaranteed advantages similar as CoT and its variants?

2. RQ2: Compared CoT and its variants, what utility and limitations does DaC have?

To answer these questions, we first provide a theoretical paradigm that can help us analyze how the
divide-and-conquer strategy expands the expressive power of fixed-depth log-precision Transformer
on a given task. In this way, we provide a framework that can provide a theoretical guarantee to the
DaC paradigm in various tasks. In this way, we present some conditions under which DaC have
advantages compared to other prompting strategies. We then empirically evaluate DaC prompting and
representative baselines on tasks that satisfy the proposed conditions and are challenging to existing
prompting strategies even on state-of-the-art LLMs: Large Integer Multiplication, Hallucination
Detection, Article-level Fact Verification (Cheng & Zhang, 2023; Li et al., 2023a; Wadden et al.,
2020; Hu et al., 2024; Wu et al., 2023). These tasks either require very long reasoning paths (e.g.,
large integer multiplication) or contain deceptive contents (e.g., hallucination detection and fact
verification), making existing methods like Chain-of-Thought prompting prone to intermediate errors.
Importantly, these empirical findings align precisely with our theoretical predictions, confirming
that DaC’s advantages manifest most strongly in tasks featuring independent subtasks prone to
intermediate errors—exactly as our theoretical framework anticipates.
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Figure 2: The comparison between DaC and the existing methods for prompting. The ellipse
marks represent sub-tasks, the right-angled rectangles represent sub-task solutions, and the rounded
rectangles represent intermediate steps that entangle sub-task and sub-solutions. The different shades
in Tree of Thoughts (subfigure D) indicate the rates of different search directions. In CoT (Chain-
of-Thoughts), CoT-SC, and ToT, the Large Language Models must simultaneously generate and
resolve sub-tasks. Least-to-Most (also Decomposed Prompting) disentangles sub-task generation and
resolution. However, its sub-task resolution and resolution assembly process are intertwined as it
sequentially attaches new sub-tasks onto the previous resolution. Different from them, DaC totally
disentangles the sub-task generation, sub-task resolution, and resolution assembly process.

2 Related Work

2.1 Expressive Power of Transformer

As discussed in previous works (Merrill & Sabharwal, 2023; Young, 2025; Feng et al., 2023; Yang
et al., 2024), the expressive power of fixed-length log-precision transformers, which are widely
applied in modern Pre-trained Large Language Models, is actually much more limited than people’s
expectations. Merrill & Sabharwal gives a theoretical proof that the expressive power of fixed-length
log-precision transformers is upper-bounded with TC0. Feng et al. further extends their analysis to
explain that a lot of common problems exceed the expressive power of fixed-length log-precision
transformers. Such results explain why the powerful LLM may make some ridiculous mistakes and
how CoT improves the performance.

2.2 Prompting Strategies of LLM

In this sub-section, we introduce the existing prompting and discuss their limitations and drawbacks.
Following the notations in (Yao et al., 2023), we denote the Large Language Models with parameter
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θ as pθ and use lower case letters x, y, z to denote input sequence, result, and intermediate steps,
respectively.

Input-Output (IO) Prompting is the standard prompting strategy that attach input x with instructions
and/or few-shot in-context-learning examples to aqcuaire a prompt, denoted as prompt(x) (Yao et al.,
2023). The LLM takes prompt(x) as input and predict result, i.e. y ∼ pθ(y|prompt(x)).

Chain-of-Thought (CoT) Prompting (Wei et al., 2022) aims at simulating humans’ thinking process
that handles complicated tasks (e.g., combinational reasoning and mathematical calculation) in a
step-by-step manner. More specifically, the LLM is guided to output a series of intermediate steps
z1, z2, ..., zn (also known as thoughts) autoregressively, i.e. zi ∼ pθ(zi|prompt(x), z1, ..., zi−1). Then
the LLM output the prediction of result y based on the thoughts, i.e. y ∼ pθ(zi|prompt(x), z1, ..., zn).

Exploration-of-Thought (EoT) Prompting and Program-guided Prompting are two variants
of CoT. EoT includes a series of CoT’s variants, such as Self-consistency with CoT (CoT-SC),
prompting (Wang et al., 2022) and Tree-of-Thoughts (ToT), prompting (Yao et al., 2023), which aim
at addressing the limitation of CoT in exploration. Their common central idea is to generate multiple
chains of thought through sampling or proposing prompting, and then ensembling them to acquire a
final prediction. Program-guided Prompting aims at controlling the LLM’s generation process with
symbolic programs or pre-defined procedures (Zhu et al., 2023; Jung et al., 2022; Zhou et al.; Khot
et al., 2023; Creswell & Shanahan, 2022; Gao et al., 2023). Among them, the Least-to-Most (LtM)
Prompting (Zhou et al.) and Decomposed Prompting (Khot et al., 2023) are close to this work. They
are the earliest attempts that explicitly prompt the LLM to decompose the task as a series of sub-tasks
and sequentially tackle them. LtM prompts an LLM to iteratively raise sub-tasks and sequentially
solve them to acquire the final resolution. Decomposed Prompting can be regarded as an upgraded
version of LTM. It introduces special notations into the prompt to represent program states and thus
can call itself (i.e., recursion) or other modules (i.e., hierarchical decomposition), endowing it with
stronger expressive power. Such a design increased the compositional generalization ability of LLMs
in different areas, such as symbolic manipulation and multi-hop QA (Khot et al., 2023).

The aforementioned CoT and EoT families incorporate LLM with stronger expressive power than
IO prompting. However, a critical issue of them is that, they could miss or ignore some important
intermediate steps or contents (Paeng & Kwon, 2024; Liu et al., 2023). This problem is even worse
when we are handling tasks involving long input (e.g., long documents and large numbers). Typical
examples include large number arithmetic calculations and fact verification in long documents.
Compared to them, Least-to-Most prompting and Decomposed Prompting introduce explicit task
decomposition to enumerate sub-tasks. However, their task decomposers are based on multi-round
conversation or question-answering, which navigate the LLM through the deceptive content’s flow
sequentially, and propagate the hallucination/deception in the contexts (Dziri et al., 2024; Yang &
Ettinger, 2023), leading to decreased performance.

3 Preliminary of Divide-and-Conquer Prompting
In this section, we summarize and formalize Divide-and-Conquer prompting strategy. Unlike
Tree of Thoughts (ToT), which interweaves reasoning with exploratory search, Divide-and-Conquer
prompting strategy consists of three distinct stages: task decomposition stage, sub-task resolution
stage, solution merge stage. In task decomposition stage, the LLM is prompted to explicitly decom-
pose the task as a series of parallel homogeneous sub-tasks with smaller problem sizes (e.g. divide a
long paragraph to sentences). Such design avoids the multi-round conversation or question-answering
in LLM and Decomposed Prompting, making the model less prone to deception. After that, in
sub-task resolution stage, the LLM is prompted to provide the solutions for every sub-task. Finally,
in the solution merge stage, the LLM is prompted to assembly the solutions of subtasks and acquire
the final answer. To tackle tasks of different sizes, Divide-and-Conquer prompting strategy can
be divided to two variants: Single-Level DaC Solver and Multi-Level DaC Solver. Note that DaC
requires additional tokens for sub-task decomposition and solution merging, but it reduces the average
decoding context window size during sub-task resolution.

Single-level Divide-and-Conquer Solver decomposes the task in one call to the LLM, which expands
the original task as a tree of one level. The algorithm is presented in the Alg. 1. The advantage of
this variant is its simplicity and efficiency. However, when the original input is too long, single-level
Divide-and-Conquer Solver may acquire sub-tasks with large problem sizes that will still trigger
intermediate errors. In such a case, following (Khot et al., 2023), we can recursively expand the
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Algorithm 1 Single-Level Divide-and-Conquer Solver T(S, a, t, L, f )
Require: Input Sequence S, Prompt m (for solution merge), Prompt t (for sub-task tackling), Prompt

d (for task decomposition), LLM L
Ensure: Results of the task on input sequence S

1: {S1, S2, ..., Sk} ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: Result← Result +[SEP] + L(t, Si)
5: end for
6: Return L(m, Result)

task as a multi-level tree. More specifically, we repeat the aforementioned steps to further divide
the sub-tasks hierarchically until they are easy enough to be handled by the LLM. This can be done
through a recursive program as presented in Alg. 2. More discussions on the proposed method’s
application scope, including its comparison with other prompting strategies and limitations, can be
found in A.1.

Algorithm 2 Multi-Level Divide-and-Conquer Solver Recursion T(S, m, t, d, f , n, L)
Require: Input Sequence S, Problem Size Metric Function f (·) (a function that measure the problem

size), hyper-parameter w, Prompt m (for merge), Prompt t (for sub-task tackling), Prompt d (for
task decomposition), Large Language Model L

Ensure: Results of the task on input sequence S
1: S1, S2, ..., Sk ← L(d, S)
2: Result← ∅
3: for i = 1, 2, ..., k do
4: if f (Si) > w then
5: Result← Result +[SEP] + T(Si, m, t, d, f , w, L)
6: else
7: Result← Result +[SEP] + L(t, Si)
8: end if
9: end for

10: Return L(m, Result)

4 Theoretic Analysis

In this section, we provide theoretic analysis to the utility and limitations of the Divide-and-Conquer
prompting. In the first subsection, we provide a comparison of IO prompting (common fixed-length
instructional prompting) and DaC prompting in expressive power perspective. This part answers
the first research question: the expressive power of IO prompting is a subset of DaC prompting. In
the second subsection, we provide a comparison between Chain-of-Thoughts and DaC prompting in
expressive power. Our comparison suggests that, although the expressive power of DaC prompting
is a subset of Chain-of-Thoughts, for tasks satisfying specific conditions, DaC prompting can solve
the problem with lower average context window length when decoding the tokens. Such property is
empirically proved to be helpful for reducing the intermediate error and thus boost the performance.

4.1 Divide-and-Conquer vs. IO Prompting

We show that the expressive power of Divide-and-Conquer is stronger than IO Prompting: We
denote the set of problems that a fixed-precision transformer with fixed-length IO prompting can
tackle as S(IO). Similarly, we denote the set of problems that a fixed-precision transformer with
DaC prompting can tackle as S(DaC). Then we have the following results:

S(IO) ⊂ TC0 ⊆ NC1 ⊆ S(DaC) (1)

The function f (·) and the hyper-parameter w are task-dependent and are often determined empirically based
on the capabilities of the specific LLM being used (e.g., the number of digits where an LLM’s multiplication
accuracy drops, or the length of a text segment beyond which verification quality degrades).
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Proof Sketch: The conclusion that S(IO) ⊂ TC0 is a corollary of the main results in (Chiang
et al., 2023). In this paper, we mainly focus on proving NC1 ⊆ S(DaC). This is significant because
it establishes a rigorous computational complexity boundary between these prompting paradigms.
Specifically, we exploit 2-color Binary Subtree Isomorphism (2-BSI) problem for the proof. In
(Jenner et al., 2003), 2-BSI problem is proved to be an NC1-complete problem. Its definition is:
2-color Binary Subtree Isomorphism problem is that, given a pattern 2-colorbinary tree tp and
a base 2-color binary tree tb, a solver is required to judge whether the pattern tree is isomorphic to
a sub-tree of tb In (Jenner et al., 2003), the authors pointed out that the encoding of the problem
will influence the hardness of the problem. In this paper, we focus on pointer list encoding of 2-BSI.
Detailed information about the pointer list encoding of 2-BSI can be found in Appendix. For pointer
list encoding of 2-BSI, we have the following theorem:

There exists a log-precision transformer with fixed depth L and hidden dimension d that can solve the
2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling) and d (for task
decomposition). Proof Sketch: The detailed proof is provided in the Appendix A.2. Here we give a
brief flow of the proof. To prove this theorem, we first show an algorithm that can solve the problem
with divide-and-conquer strategy. Then we prove that there exists a log-precision transformer with
fixed depth L and hidden dimension d that can express the modules in the algorithms with different
but fixed-length prompts. In this way, we can prove the theorem.

With the above theorem, we can prove that NC1 ⊆ S(DaC), which finishes the proof. With this
theoretic results, we can answer the RQ 1:

Compared to IO prompting, DaC have theoretically guaranteed advantages in expressive power.

4.2 DaC vs. CoT

In this section, we compare Divide-and-Conquer with Chain-of-Thoughts in order to understand the
utility and limitation of DaC prompting. The limitation of DaC prompting is that its expressive power
is a subset of CoT prompting: We denote the set of problems that a fixed-precision transformer with
DaC prompting can tackle as S(DaC). Similarly, we denote the set of problems that a fixed-precision
transformer with CoT prompting can tackle as S(CoT) Then we have the following results:

S(DaC) ⊆ S(CoT) (2)

The proof of this proposition is very straightforward. For any problem that DaC can solve, we can
concatenate all outputs of LLM in dividing, tackling and merging as a sequence. Then we can prompt
LLM with CoT to output this sequence. Thus, the problem set that DaC can resolve is a subset of
CoT.

The limitation revealed by the above theorem shows that compared to CoT, the appliance scope of
Divide-and-Conquer is limited. However, by analyzing the average decoding context window size,
we show that on specific tasks, divide and conquer can reduce the problem complexity: Decoding
Context Window Size: In auto-regressive decoding, each token is decoded from a window that
covers all previous tokens. We denote the length of the window as the Decoding Context Window
Size of the token. Suppose that a task contains k sub-tasks, each of which does not rely on the
answers of other sub-tasks. We define such sub-tasks as parallel sub-tasks. If an LLM tackle these
sub-tasks sequentially with CoT, then the average decoding context window size of the sub-tasks’

resolution will be C + ∑k
i=1 ri−1

2 , where ri is the length of the response to the i-th sub-task and C is
the length of input context. If we tackle them parallely with DaC, then the average decoding context

window size of the sub-tasks’ resolution will be C + ∑k
i=1

(ri−1)2

2 ∑k
j=1 rj

< C + ∑k
i=1 ri−1

2 .

The above proposition shows that when task contains a large amount of parallel sub-tasks, DaC is
more helpful for reducing the average decoding context window size than CoT. Existing works have
empirically showed that long decoding context window will propagate intermediate errors and thus
increase the probability of generating hallucination (Yang & Ettinger, 2023). Thus, we can acquire a

TC0 represents problems solvable by constant-depth threshold circuits and is often associated with tasks like
multiplication. NC1 represents problems solvable by logarithmic-depth circuits, indicating high parallelizability.
The known inclusion TC0 ⊆ NC1 is crucial as it formally places the expressive power of DaC prompting in a
higher complexity class than standard I/O prompting.
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conclusion that DaC is competetive on tasks that contain a large amount of parallel sub-tasks and
are bothered by intermediate errors and hallucination. With these theoretic results, we can answer the
RQ 2:

Compared to CoT and its variants, DaC prompting’s expressive power is weaker. However, on tasks
containing a large amount of parallel sub-tasks, DaC is more helpful.

4.3 Advantages of DaC

The above analysis answer the two research questions that we proposed. By summarizing these
two answers, we can acquire the two conditions such that when a task simultaneously satisfied both
conditions, DaC bring performance boost:

• Condition 1: the task is harder than S(IO), such as TC0-complete problems and NC1-
complete problems.

• Condition 2: the task contains a large amount of parallel sub-tasks and is bothered by
hallucinations or intermediate errors.

In Tab. 1, we present some sample tasks that satisfied the conditions. Also, we list some tasks that
typically do not satisfy the conditions. This is helpful for guiding prompt engineering. Details are
provided in Appendix A.7.

5 Experiments

Applicable Tasks Non-Applicable Tasks
Integer Multiplication Integer Addition

Fact Verification Multi-round QA
Consistency Evaluation Planning

Table 1: We list some example tasks that satisfy the
conditions and some tasks that do not satisfy the
conditions.

Our experiments are specifically designed to
test the boundaries identified in our theoret-
ical analysis. We selected tasks that directly
correspond to the conditions outlined in Sec-
tion 4.3. For integer multiplication (a TC0-
complete problem), we strategically chose
operand sizes that push beyond the reliable
capacity of standard prompting to verify the
theoretical complexity boundaries. For fact
verification, we constructed test cases that re-

quire parallel verification of multiple claims, directly testing DaC’s advantage in handling independent
subtasks. Our evaluation metrics - edit distance for arithmetic and F1/precision/recall for verification
tasks - were chosen to directly measure the impact of reduced intermediate errors, which our theory
predicts should be DaC’s primary advantage.

5.1 Case 1: Long Integer Arithmetic

In this case, we consider two tasks in long integer arithmetic: Multiplication, which satisfy the
conditions we proposed, and Addition, which does not satisfy the first condition . Our experiment
results will show that DaC prompting brings a performance boost on multiplication and does not
bring a boost on integer addition.

Task Setup: For this task, we randomly generated 200 pairs of 5-digit integers. We choose 5
for the digit length because according to previous works, ChatGPT-3.5 gets 0% accuracy on 4-
digit multiplications (Cheng & Zhang, 2023), and ChatGPT-4 gets close to 0% accuracy on 5-digit
multiplications (Yang et al., 2023). We evaluate the performance with Edit Distance (Marzal & Vidal,
1993; Schaeffer et al., 2023).

Setup of baselines and DaC: In this task, our baselines include IO prompting, Chain of Thought
(CoT), CoT-SC, Least-to-Most (LtM), and Decomposed Prompting (DeP). Tree-of-Thoughts is not
applicable. This is because that multiplication is deterministic calculation without requiring search in
a tree. For DaC, we apply Multi-Level Divide-and-Conquer program-guided solver.

Multiplication is a TC0-complete problem and can be divided to multiple parallel sub-tasks, while Addition
is in S(IO)Barcelo et al. (2023)
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(a) Edit distance of DaC and baseline prompting
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(b) Edit distance of DaC and baseline prompting
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Figure 3: Performance of different prompting strategies on long integer multiplication.

Strategies GPT-3.5-Turbo GPT-4
F1 Acc Prec Recall F1 Acc Prec Recall

IO-prompting 61.69 61.27 62.11 61.28 64.07 72.66 93.41 48.76
Chain-of-Thoughts 46.85 64.26 91.36 31.50 71.05 76.10 90.08 58.66

CoT-SC 47.70 64.25 88.83 32.60 71.39 76.36 90.41 58.98
Tree-of-Thoughts 70.40 59.91 55.83 95.34 69.41 71.73 75.53 64.28

Least-to-Most 56.43 64.91 74.42 45.44 72.51 77.11 90.74 60.38
Divide-and-Conquer 74.84 75.55 77.41 72.03 76.92 78.99 85.36 70.01

Table 2: Performance of different prompting methods on HaluEval dataset.

Results: Experimental results are shown in Fig. 3(a) and 3(b). As we can see, for integer addition
which does not satisfy our proposed conditions, the performance of DaC, CoT and its variants
does not significantly outperform IO prompting for both ChatGPT-3.5 and 4. However, for integer
multiplication which satisfy our proposed conditions, under all settings, our proposed prompting
strategy outperform all the baselines. This phenomenon indicate that our proposed conditions are
useful for recognizing the tasks where DaC is more powerful.

5.2 Case 2: Fact Verification of Long Text

In the previous section, we show that for arithmetic tasks, our proposed conditions are discerning
to the tasks where divide-and-conquer has advantages. In this section, we further present how our
conditions can be applied to natural language tasks. Specifically, we present the performance of
baselines and Divide-and-Conquer on fact verification of long text. In this task, the LLM is required
to whether a long corpus is aligned with base knowledge. This task satisfied the proposed two
conditions. For the first condition, we can reduce a 2-BTI problem to fact verification by describing
the two trees with natural language. In this way, we can convert the trees to two paragraphs, and what
we need to do is to ask the LLM to judge whether the two paragraphs are aligned or not. For the
second condition, since we are tackling long text, each sentence can be regarded as a parallel sub-task.
We select two benchmarks of fact verification: Fact-Verification for Hallucination Detection and
Fact-Verification for Misinformation Detection

5.2.1 Hallucination Detection

Although Large Language Models have achieved impressive performance on various NLP tasks, they
are bothered by hallucination problem (Manakul et al., 2023), especially when the generated content
or the input context is too long for the user to have a thoroughly review (Zhang et al., 2023b). In this
paper, we focus on evaluating the performance of different strategies in guiding LLM to recognize
inconsistency between given context and model response with hallucination.

Task Setup: We use the HaluEval-Summary dataset. It is one of the three datasets in HaluEval
benchmark for hallucination detection, which contains the hallucination generated by ChatGPT-3.5.
HaluEval-Summary have the longest context and generated contents among all three tasks in this
benchmark (Li et al., 2023a). Thus, detecting hallucination on this dataset requires repeatedly verify
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Strategies GPT-3.5-Turbo GPT-4
F1 G-M Prec Recall F1 G-M Prec Recall

Io-Prompting 72.12 72.77 83.22 63.64 69.15 71.77 94.44 54.55
Chain-of-Thoughts 56.09 60.64 90.48 40.64 74.03 75.79 94.21 60.96

CoT-SC 56.83 61.44 91.67 41.18 70.09 73.45 100.0 53.95
Tree-of-Thoughts 69.91 73.30 53.74 100.0 77.34 78.00 88.89 68.45

Least-to-Most 54.08 54.15 51.46 56.99 73.56 74.25 85.21 64.71
Divide-and-Conquer 76.88 77.13 83.65 71.12 81.11 81.24 76.67 86.10

Table 3: Performance of different prompting methods on SciFact dataset.

each sentence in the response, making standard prompting strategies acquire the worst accuracy
across all three tasks. We report the Accuracy, F1 score (the hallucination pairs are positive samples),
Precision and Recall.

Setup of baselines, ablation variants and DaC: In this task, our baselines include IO prompting,
Chain of Thought, CoT-SC, Tree-of-Thoughts, Least-to-Most, and Decomposed Prompting. In this
task, the sub-tasks are verifying fragments of the summary, which are homogeneous and do not
require recurssion. In such a setting, Decomposed Prompting is equivalent to LtM. For this task,
we apply single level Divide-and-Conquer solver to decompose the summary to multiple sentences,
handle them separately and then merge the conclusions of all sentences. The details are in Appendix.

Results: Experimental results are shown in Tab. 2. For both GPT-3.5 and GPT-4, our proposed
prompting strategy outperforms the baselines, presenting the advantage of DaC. More specifically,
compared to IO-prompting, DaC achieved better performance in general, indicating the advantage
brought by stronger expressive power. Meanwhile, compared to CoT and CoT-SC results, DaC
clearly achieved much better recall. Tree-of-Thoughts, benefited by its searching ability, acquired a
significantly better recall score compared to other baselines. However, its significantly lower precision
substantially harms its overall performance and leads to accuracy that is even worse than standard
IO-prompting. On the contrary, DaC carefully checked all sentences, located the one containing a
factual error, and merged the answers. We hypothesize that this systematic and exhaustive approach
contributes to DaC achieving a better balance between recall and precision, as it addresses each
component without making overly broad or speculative inferences.

5.2.2 Misinformation Detection

The increasing abuse of misinformation toward manipulating public opinions on social media has
been observed in different areas, such as healthcare (e.g. the recent COVID-19 pandemic) (Sharma
et al., 2020; 2022). This threat is increasingly serious due to LLM’s capacity in content generation
(Li et al., 2023b; Weidinger et al., 2021; Zhang et al., 2022). This challenge raise the importance of
fact-verification, which aims at judging the authenticity of an article based on a collection of evidence
from verified source (Whitehouse et al., 2022; Zhang & Gao, 2023). In this experiment, we present
that DaC can outperform other baselines in fact-verification involved with news article .

Task Setup: In this experiment, we mainly adopt SciFact dataset (Wadden et al., 2020). In SciFact
dataset, each sample is a pair of news and evidence, where the evidence is the abstract of a peer-
reviewed paper and the news is a sentence of claim. To better simulate the real-world scenario where
news on social media usually appears as an paragraph of post, following Chen & Shu, we generate a
dataset of paragraph-level misinformation based on SciFact dataset. Specifically, for a given claim,
we apply ChatGPT-4 to extend the claim as an article based on the evidence. For this task, similar as
hallucination detection, we apply single level Divide-and-Conquer solver to decompose the news
article to multiple sentences, handle them separately and then merge the conclusions of all sentences.
Also, the baselines in this experiments are the same as Hallucination Detection. The evaluation
metrics includes F1 score, G-Mean score (geometric mean of precision and recall), Precision and
Recall. We do not apply accuracy as the positive and negative classes are not balanced.

Results: Experimental results are shown in Tab. 3. Notably, GPT-3.5 incorporated with our proposed
prompting strategy even outperform the performance of GPT-4 incorporated with IO-prompting,
Least-to-Most, CoT and CoT-SC, which have significantly lower recall scores, indicating their
proneness to deception. Only Tree-of-Thoughts, which is benefited by its advantage in exploring
various options, acquired the best results among all baselines, but is still defeated by DaC. Moreover,
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as we can see, for GPT-4 the performance of CoT-SC is even worse than CoT, which is supposed to
be a specific case of CoT-SC without exploration. These results suggests that, when facing deceptive
contents generated on purpose, existing works’ improvement may not be robust.

6 Practical Guidelines for Practitioners

Based on our theoretical and empirical analyses, we offer practical guidelines for practitioners
considering DaC prompting:

1. Task Assessment: DaC is most effective for tasks where: (a) subtasks can be processed inde-
pendently, (b) the original task is prone to error accumulation, and (c) the task exceeds the reliable
capacity of standard prompting.

2. Implementation Strategy: When implementing DaC, focus on clear subtask boundaries and explicit
instructions for merging results. Our experiments show that template prompts that explicitly guide
the model through decomposition, resolution, and merging phases yield the most reliable results.

3. Model Selection: While DaC provides benefits across different model capacities, the magnitude of
improvement may vary. For critical applications requiring high precision, combining DaC with more
capable models (e.g., GPT-4) provides the most reliable results, particularly for complex tasks.

4. Efficiency Considerations: For tasks with stringent latency requirements, DaC offers potential
advantages through reduced context window size and opportunities for parallel processing, though
this benefit must be weighed against the overhead of multiple model calls.

These guidelines provide a starting point for practitioners to effectively leverage DaC prompting in
real-world applications.

7 Conclusions

In this paper, we analyze the utility and limitations of the divide-and-conquer prompting strategy. We
first provide a theoretical analysis of Divide-and-Conquer prompting and compare it with representa-
tive prompting strategies. Based on these theoretical results, we summarize two conditions under
which a task is suitable for Divide-and-Conquer prompting. After that, we conducted experiments on
several tasks. The empirical results validated our theoretical analysis and show that the two conditions
we proposed are helpful for recognizing the applicable scope of Divide-and-Conquer prompting.
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A Appendix

A.1 Discussions and Limitations

In summary, the proposed method has the following advantages:

Comparison with IO-Prompting: Superiority in Expressive Power As we proved in Sec. 4,
compared to IO-prompting, DaC has stronger expressive power and thus can solve harder problems.

Comparison with CoT and EoT: Disentangling the task decomposition and task resolution
Compared to the prompting family of CoT and EoT, DaC explicitly separates the task decomposition
stage and task resolution stage. Therefore, we can acquire explicit decomposed sub-tasks rather than
intermediate thoughts proposed during decoding. Consequently, we can explicitly enumerate all
sub-tasks output by the decomposition module and avoid the model from missing important sub-tasks.

Comparison with CoT and ToT: Separates task decomposition from resolution: Unlike Tree
of Thoughts (ToT), which interweaves reasoning with exploratory search, DaC explicitly separates
task decomposition from resolution, treating them as distinct phases. While ToT generates and
evaluates reasoning paths simultaneously, DaC first identifies all relevant subtasks before solving any
of them. Furthermore, DaC can handle heterogeneous decomposition patterns where subtasks vary in
complexity through recursive application of the decomposition process, as shown in Algorithm 2. In
cases where certain subtasks require deeper analysis, DaC recursively applies the decomposition until
reaching manageable units, creating a multi-level tree structure with varying depths across branches.

Comparison with LtM and Decomposed Prompting: Parallel Sub-task Handler and Sequential
Sub-task Handler Similar as DaC, some program-guided prompting like LtM and Decomposed
Prompting also explicitly separate the task decomposition stage and task resolution stage. However,
they are mainly designed for multi-step reasoning for complex tasks. Thus, they sequentially tackle
the sub-tasks and assembly the resolutions. As a result, they tend to follow the flow of the deceptive
contents, leading to proneness to deceptive content.

Although DaC surpasses the baselines on the proposed tasks, it still has some limitations. The first
issue is that the appliance scope of DaC is still limited. More specifically, CoT, EoT, LtM and DaC
are based on different algorithmic paradigms, learning to different Appliance Scopes. As pointed
out by Feng et al., CoT and LtM can be considered as a neural dynamic programming algorithm.
Thus, CoT is more suitable for tasks that can be bridged to dynamic programming, such as multi-step
question answering. Differently, EoT is based on exploration and search, which is more suitable for
planning and search, such as Game of 24 (Yao et al., 2023). DaC is based on Divide-and-Conquer
algorithm. Thus, it is more suitable for tasks that can be decomposed to a series sub-tasks that are
disjoint or only slightly overlapped. Our future work will focus on further expand the appliance scope
of DaC to more areas like question answering.

A.2 Proof to Theorem 4.2

Before providing the proof, we first formally define how to organize the inputs (i.e., two 2-color trees)
as a sequence. We assume that we acquire two trees tp of size n and tb of size m. They are organized
as two sequences of nodes with a random order. Each node has three variables: color, left child index,
and right child index. If any child is null, then the index is filled with 0. Then we can organize them
as as two sequences Xp ∈ Rn×3 and Xb ∈ Rn′×3, where each item in the sequence is a vector of 3
dimensions. The first dimension is the index of the left child, the second dimension is the index of
the right child, the third dimension is the color indicator (0 or 1). In addition, we have a root vector r
with three dimensions. The first dimension is the index of the root node of tp (i.e., pointing to the
root node of tp) and the second is the index of the root node of tb (i.e., pointing to the root node of
tb). The third dimension of r is filled with 0 to make it have same dimension as the items in Xp and
Xb. This expression of trees is also called as pointer list encoding according to (Jenner et al., 2003).
Note that in the following proof, we assume that all indices start from 1. Thus 0 is regarded as a
NULL pointer.

Following the proof flow we provided in Sec. 4.2, we first provide the following divide-and-conquer
algorithm that can solve the above problem:
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Algorithm 3 Recursion Divide-and-Conquer Algorithm for 2-BSI BSI(r, Xp, Xb, m, t, d, f , w)

Require: Inputs r, Xp, Xb, problem size metric function f (·), hyper-parameter w, merge function
m, sub-task tackling function t, task decomposition function d

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic with
pattern tree tp defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl , rr ← d(r, Xp, Xb)
2: for i ∈ {l, r} do
3: if f (ri, Xp, Xb) > w then
4: vi ← BSI(ri, Xp, Xb, m, t, d, f , w)
5: else
6: vi ← t(ri, Xp, Xb)
7: end if
8: end for
9: Return m(r, Xp, Xb, vl , vr)

Algorithm 4 Implementation of d(r, Xp, Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3, Xp ∈ Rn×3, Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic with
pattern tree tp defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: rl ←< Xp[r[1], 2], r[2], r[3] >
2: rr ←< Xp[r[1], 3], r[2], r[3] >
3: Return rl , rr

Algorithm 5 Implementation of t(r, Xp, Xb) when the depth of the tree indicated by r is not longer
than 2
Require: Inputs r ∈ R3, Xp ∈ Rn×3, Xb ∈ Rn′×3

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic with
pattern tree tp defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all q vector with a length of n′
2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ..., m} do
6: if Xb[i, 3]! = Xp[r[1], 3] then
7: v[i]← 0
8: end if
9: end for

10: Return v

The algorithm described above is a typical divide-and-conquer algorithm for solving rooted tree
isomorphism. Its justification can be found in many textbooks introducing algorithms, such as
Introduction to Algorithms (Cormen et al., 2022). Here we provide the detailed definition and
implementation of problem size metric f (·), hyper-parameter w, merge function m(), sub-task
tackling function t(·), task decomposition function d(·):

• w = 1, and f (r, Xp, Xb) is defined as the depth of the pattern tree tp indicated with
root vector r. Although precisely calculating f (r, Xp, Xb) is of O(n), judging whether
f (r, Xp, Xb) > 1 only require us to check whether the root node has child. If not, then
return False.

• d(r, Xp, Xb) = rl , rr returns two new root vectors rl , rr. Both rl , rr have the same second
and third dimension as r. The rl’s first dimension is updated to be the index of the left child
of the root node that r points to. The rr’s first dimension is updated to be the index of the
right child of the root node that r points to. The updating function can be written as:
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Algorithm 6 Implementation of m(r, Xp, Xb, vl , vr)

Require: Inputs r ∈ R3, Xp ∈ Rn×3, Xb ∈ Rn′×3, vl ∈ Rn, vr ∈ Rn

Ensure: A 0-1 indicator vector v: if there exists a subtree with node i as root that is isomorphic with
pattern tree tp defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise, v[i] is 0.

1: Initialize v as all 0 vector with a length of n′
2: if r[1] == 0 then
3: Return v
4: end if
5: for i ∈ {1, 2, ..., m} do
6: if Xb[i, 3] == Xp[r[1], 3] then
7: if vl [Xb[i, 1]]] == 1 and vr[Xb[i, 2]]] == 1 then
8: v[i]← 1
9: else if vl [Xb[i, 2]]] == 1 and vr[Xb[i, 1]]] == 1 then

10: v[i]← 1
11: end if
12: end if
13: end for
14: Return v

• t(r, Xp, Xb) = v returns a 0-1 indicator vector v ∈ Rm with the same length of the base
tree size. If there exists a subtree with node i as root that is isomorphic with pattern tree tp
defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise, v[i] is 0. When the pattern tree’s
depth is not higher than 1 (i.e., 1-node tree), t(r, Xp, Xb) is equivalent to output a 0-1 vector
indicating the nodes in the base tree that have the same color of the root node of pattern tree.
The implementation is provided in Alg. 5.

• m(r, Xp, Xb, vl , vl) = v merge the results vl , vl to acquire a 0-1 indicator vector v ∈ Rm

with the same length of the base tree size. If there exists a subtree with node i as root that is
isomorphic with pattern tree tp defined with inputs r, Xp, Xb, then the v[i] is 1. Otherwise,
v[i] is 0. This function can be implemented by checking whether the pattern root’s children
have a perfect match with each node’s children. Since each node has at most two children,
checking the perfect match can be done in constant time. The implementation is provided in
Alg. 6.

After providing the detailed implementation of the functions d(·), t(·), m(·), we are going to prove
that there exists one unified transformer that can handle all these tasks with different prompts d, t, m.
First, we will provide the following Lemma:

Any fixed-size logic circuit that only contains multi-fan-in AND gates, multi-fan-in OR gates, NOT
gates and has no recurrent structure can be precisely simulated by a multi-layer perceptron (MLP)
with ReLU activation function and a width of O(|Input|+ |Circuit|) and a depth of O(|Circuit|),
where |Input| denotes the size of input and |Circuit| denotes the number of gates in the circuit.
Assume that we are given a series of input pins with logic variable of 0 or 1, organized as a 0-1
vector x ∈ Rh. We first prove that all gates can be simulated by a two-layer perceptron. Then we
can serialize all gates in the circuits and stack their corresponding 2-layer simulators accordingly to
acquire a MLP simulator. An AND gate that take x as input can be simulated as:

AND(x) = σ(wAx− h + 1) (3)

where σ is the ReLU activation function, and wA is a weight vector with all dimensions equal to 1. If
some dimensions of x are not the input of the gate, we can set the corresponding dimensions in the
weight vector as 0 and adjust the h as the input pin number. Similarly, an OR gate that take x as input
can be simulated as:

OR(x) = 1− σ(wOx + h + 1) (4)
where σ is the ReLU activation function, and wO is a weight vector with all dimensions equal to -1.
A NOT gate is different, since it only takes one input pin. In such a case, we denote the index of the
input pin as i, then we can simulate a NOT gate as:

NOT(x) = σ(wN x + 1) (5)
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where wN is a weight is a weight vector whose i-th dimension equals to -1 and all other dimensions
equal to 0. Also, since the x is a 0-1 vector, the activation function is equivalent to a identical function
to x:

x = σ(x) (6)

To construct a MLP that can simulate a fixed-size logic circuit without recurrent structure, we apply the
circuit serialization in (Merrill & Sabharwal, 2024) which order the gates based on topological order.
In this way, we can represent the circuit as a sequence GATE[1], GATE[2], GATE[3],...,GATE[L],
where each GATE[i]’s input only contains the output of the previous gates and the original input
x. Therefore, we can construct a 2L-layer MLP base on the above serialization. Specifically, the
2i-th and 2i + 1-th layers of the MLP will simulate the GATE[i] as well as copy all previous inputs
with activation function and concatenate them together. This can be done by concatenate an identical
matrix on the GATE’s weight vector (wA, wO or wN). In this way, we can construct a MLP that
precisely simulate the circuit. Since every time we concatenate the output of a gate with the input of
it, the input dimension number of the final layer can be bounded by O(|x|+ L). In the worst case,
for a circuit of size L, we needs 2L layers to precisely simulate it. However, in many cases, a lot of
gates in the circuits can be run parallelly. In such cases, the MLP could be much more shallow.

Now, we can start to prove our main theorem:

There exists a log-precision transformer with fixed depth and hidden dimension that can solve the
2-BSI of any size with fixed-length prompt m (for merge), t (for sub-task tackling) and d (for task
decomposition). We prove this theorem by constructing a Transformer that can tackle this problem.
First we define how to organize the input given r, Xp, Xb and the prompt. Specifically, we construct
a feature sequence X ∈ R(3+n+n′)×7. Each item in this sequence is a feature of 7 dimensions,
indicating a token. The first two dimensions indicate whether the token is a prompt (’00’), a root
vector (’01’), a pattern tree node (’10’), or a base tree node (’11’). The third to fifth dimensions
carries the information about the token. For a prompt token, ’100’ indicates merge prompt m, ’010’
indicates sub-task tackling prompt t, and ’001’ indicates task decomposition prompt d. For other
cases, these three dimensions are with the same formula as the three dimensions in r, Xp, Xb. The
rest two dimensions are allocated specifically for the merge function m(·) to store vl and vr. More
specifically, for the feature of token indicating the i-th base tree node, its sixth dimension is vl [i] and
its seventh dimension is vr[i]. For other tokens, these two dimensions are filled with 0. In X[1] we
store the prompt token. In X[2] and X[3] we store the input root vector r duplicately. We store the
same token twice so that we can tackle rl and rr separately. To separate this two token, we use the
last dimension, which was padded as 0 in r, to distinguish them. X[2, 5] is set as 0 and X[3, 5] is set
as 1. From X[4] to X[3 + n], we store Xp. From X[4 + n] to X[3 + n + n′], we store Xb. For all
node indices of pattern tree, we add them by 3. For all node indices of base tree, we add them by 3+n,
so that the indices can be applied to directly retrieve the positional embeddings. After preparing the
inputs, we start to construct our Transformer. The transformer first attach the position index for each
token (positional embedding). After that, the inputs are forwarded into a transformer with depth of
2. Each transformer layer contains a multi-head attention layer followed by a MLP. As proved by
(Merrill & Sabharwal, 2024; Feng et al., 2023), the attention layer of Transformer can retrieve the
feature of tokens whose positional embeddings satisfy specific conditions. For multi-head attention,
different heads can retrieve tokens with different conditions. In the following construction, we will
use this conclusion to construct attention heads with different functions.

In the first Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X[i] for token i.

• Head 2 attends to the token with a positional embedding matches the X[i, 3] and copy this
token’s 5-dimension feature. For tree node tokens, this head’s job is to retrieve the feature of
X[i]’s left child. For root vector tokens, this head’s job is to retrieve the feature of pattern
tree root node. For the first token (prompt token), this head’s retrieved feature will not be
applied in the afterwards layers and thus does not influence the correctness of the model.

• Similar as Head 2, Head 3 attends to the token with a positional embedding matches the
X[i, 4] and copy this token’s 5-dimension feature. This head’s job is to retrieve the feature
of X[i]’s right child. For root vector tokens, this head’s job is to retrieve the feature of base
tree root node.
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Algorithm 7 Logic circuit for MLP of the second Transformer layer

Require: Input feature x′′ ∈ R42

Ensure: Output feature y ∈ R7

1: y← x′′[1 : 7] {Initialize y}
2: if x′′[1 : 2] == 00 or x′′[1 : 2] == 10{Prompt Token or Pattern Tree Node} then
3: Return y
4: else if x′′[1 : 2] == 01 {Root Vector Token} then
5: if x′′[24 : 26] == 001{Prompt is d} then
6: if x′′[5] == 0 then
7: y[3]← x′′[10] {get rl , similar as line 1 in Alg. 4}
8: else if x′′[5] == 1 then
9: y[3]← x′′[11] {get rr, similar as line 2 in Alg. 4}

10: end if
11: end if
12: else if x′′[1 : 2] == 11 {Base Tree Node Token} then
13: if x′′[24 : 26] == 010{Prompt is t} then
14: if x′′[40] == x′′[5]{Line 6 in Alg. 5} then
15: y[5]← 1
16: else
17: y[5]← 0
18: end if
19: else if x′′[24 : 26] == 100{Prompt is m} then
20: if x′′[13] == 1 and x′′[21] == 1 {Line 7 in Alg. 6} then
21: y[5]← 1
22: else if x′′[14] == 1 and x′′[20] == 1{Line 9 in Alg. 6} then
23: y[5]← 1
24: else
25: y[5]← 0
26: end if
27: end if
28: end if

• Head 4 attends to the first token (prompt token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the prompt indicator.

• Head 5 attends to the second token (root token) and copy this token’s 7-dimension feature.
This head’s job is to retrieve the root information.

With the above 5 heads, the attention layer will output a 35-dimension feature for each token. We
denote these features as X′ ∈ R(3+n+n′)×35. After that, these features are forwarded into a MLP
fitting identical mapping to acquire the input features for the second Transformer layer.

In the second Transformer layer, the function of each attention head is defined as:

• Head 1 only attends to the token itself to store X′[i] for token i.

• Head 2 attends to the token with a positional embedding matches the X′[i, 31] and copy
this token’s 1-7 dimension features (X′[X′[i, 31], 1 : 7]). This head’s job is to broadcast the
feature of the pattern tree root node to every token.

With the above 2 heads, the attention layer will output a 42-dimension feature for each token. We
denote these features as X′′ ∈ R(3+n+n′)×42. For root vector token, only the features from head 1
and head 4 are useful. For base tree node tokens, all 42 dimensions are useful. Then each token’s
feature are parallely forwarded into a MLP. We will use this MLP to fit the logical circuit described
in Alg. 7. The function of Alg. 7 is to aggregate the functions of m(·), t(·), d(·) together and
assign the correct value based on the prompt indicator. In Alg. 7, all operations are AND, OR,
NOT, SELECTOR, and ASSIGN and there is not loop. Thus, it is a static logical circuit and can be
implemented with multi-fan-in AND, OR, NOT gates. Thus, it can be precisely simulated by a MLP
according to our Lemma A.2.
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After acquiring the y ∈ R7 for each token, we can organize them as a feature sequence Y ∈
R(3+n+n′)×7. When the prompt is d, we return Y[2, 3 : 5] as rl and Y[3, 3 : 5] as rr. If the prompt is
t or m, then we can output Y[3 + n + 1 : 3 + n + n′, 5] as the expected v.

A.2.1 Token Efficiency and Practical Trade-offs

While DaC requires additional tokens for sub-task decomposition and solution merging, it significantly
reduces the average decoding context window size during sub-task resolution. The following
illustrative tables demonstrate this trade-off.

Table 4: Illustrative Token Usage Comparison for 1234× 5678
Method Stage Est. Prompt Tokens Est. Input Tokens Est. Output Tokens Stage Total Tokens
DaC (Single-Level) 1. Decomposition ∼50 (implicit) ∼25 ∼75

2. Sub-Task Resolution ∼30 (each) ∼3 (each) ∼1-2 (each) ∼138
3. Solution Merge ∼50 (implicit) ∼2 ∼52

DaC Total ∼265

CoT Full Task ∼25 (implicit) ∼150 ∼175
LtM Full Task (Sequential) ∼90 (implicit) ∼220 ∼310

Table 5: Illustrative Token Usage Comparison for Hallucination Detection (5-sentence summary)
Method Stage Est. Prompt Tokens Est. Input Data Tokens Est. Output Tokens Stage Total Tokens
DaC 1. Decomposition ∼40 (instructions) ∼40 (summary) ∼70 ∼150

2. Sub-Task Resolution ∼100 (base prompt) ∼165 (doc+statement) ∼10 (each) ∼1375
3. Solution Merge ∼25 (instructions) ∼75 (analysis results) ∼10 ∼110

DaC Total ∼1635

CoT Full Task ∼20 (instructions) ∼230 (doc+summary) ∼350 ∼600
ToT (Illust.) Combined Stages ∼50 (main prompt) ∼230 (doc+summary) ∼950 (all paths+eval) ∼1230

Reflecting on these illustrative comparisons, when considering the DaC prompting strategy, practi-
tioners should weigh the potential increase in total token usage and the number of LLM calls against
the significant benefits DaC can offer for specific task types. The tables suggest DaC might involve
higher token counts, particularly if context is repeated across sub-tasks. However, this is a trade-off
for key advantages, such as achieving superior performance and reliability for complex problems
that align with its core principles. A crucial benefit of DaC is the reduction in the average decoding
context window size for each sub-task, which can improve performance and manage complexity.

A.3 Justification to Proposition 4.2

Suppose that the LLM is auto-regressively decoding n tokens from an input context window with
length of C. Then the decoding window of the i-th token is C + i− 1. Thus, the average window
size will be:

∑n
i=1(C + i− 1)

n
=

C + n− 1
2

(7)

Thus, when we sequentially decode all the sub-task resolutions, the total length of the decoded
sequence will be ∑k

i=1 ri. Thus the average window size will be:

C +
∑k

i=1 ri − 1
2

(8)

Meanwhile, when we apply Divide-and-Conquer, we parallely decode each sub-task’s resolution.
Thus, for each sub-task, total window size will be C ∑k

j=1 rj + ∑k
i=1

(ri−1)ri
2 . Thus the average

window size will be C + ∑k
i=1

(ri−1)ri
2 ∑k

j=1 rj
. Meanwhile, with Jensen inequility, we have:

k

∑
i=1

(ri − 1)ri <
k

∑
i=1

(ri − 0.5)2 ≤ (
k

∑
i=1

(ri − 0.5))2 ≤ (
k

∑
i=1

ri − 0.5k)2 (9)

Thus, when k ≥ 2, we have:
k

∑
i=1

(ri − 1)ri < (
k

∑
i=1

ri − 1)2 (10)
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Thus, we have:

C +
k

∑
i=1

(ri − 1)2

2 ∑k
j=1 rj

< C +
∑k

i=1 ri − 1
2

(11)

A.4 Refining Condition 2

To better illustrate Condition 2, we refine it into two distinct sub-conditions:

Condition 2.1 (Parallel Subtasks): The task must involve subtasks that can be processed independently
and in parallel, without requiring intermediate results from other subtasks to proceed. Specifically,
a task satisfies this condition if: (a) each subtask can be solved without relying on the outputs or
reasoning paths of other subtasks, and (b) subtasks share a common structure or computational
requirements, enabling consistent treatment by the model.

Condition 2.2 (Susceptibility to Intermediate Errors): The task must be prone to intermediate
errors that arise during sequential reasoning. These errors typically originate from subtask solution
errors—mistakes made during individual sub-task resolution—which then propagate through the
reasoning chain and affect the final solution, creating a cascading effect that significantly impacts
accuracy.

A.4.1 Task Selection Rationale

Our task selection is driven primarily by scenario characteristics rather than granularity considerations.
We deliberately selected tasks representing distinct types of dependencies between subtasks: Multi-
round QA and Planning represent highly sequential reasoning where subtasks depend heavily on
previous outputs, making them less suitable for DaC; while Verification and Consistency Evaluation
involve naturally independent subtasks that align well with DaC’s parallel processing capabilities. The
difference in granularity between tasks is secondary to their structural characteristics—specifically,
whether they exhibit the parallel subtask property (Condition 2.1) and susceptibility to intermediate
errors (Condition 2.2) that our theoretical analysis identifies as crucial for DaC’s effectiveness.

A.4.2 Handling Heterogeneous Subtasks

In real-world applications, subtasks often vary significantly in complexity. For instance, in document
analysis, some sections may contain dense technical content requiring further decomposition, while
others might be straightforward. DaC’s recursive nature naturally accommodates these variations by
dynamically adjusting decomposition depth. When f (Si) > w in Algorithm 2, the system recursively
decomposes complex subtasks until reaching manageable units, creating branches of varying depths.
This adaptive approach is particularly valuable for tasks like hierarchical summarization or technical
document analysis where content complexity varies substantially throughout the input.

A.5 Prompting Details of DaC

Multiplication of Long Integers: Suppose we have two 2n-digit numbers AB and CD, where
A, B, C, D are all n-digit numbers. Then we can break AB× CD as (A× C× 102n) + (A× D×
10n) + (B× C× 10n) + (B× D), where the calculation in each bracket pair is disjoint with others
bracket pairs. We only need to compute the results of multiplication in each bracket pair parallelly
and then merge all of them with addition:

Decomposer Prompt d: Please split the string a from the middle as two separated strings. The lengths
of the two separated strings should be as close as possible. Please only return the two strings separated
by a comma and do not return anything else.

Sub-task Tackling Prompt t: (1)Please compute a ∗ b. (2) Please only return the final results and do
not return anything else (ensure disentangled-sub-process principle).

Merge Prompt m: Please compute x = a ∗ 102n + b ∗ 10n and y = c ∗ 10n + d. Based on the above
calculation, please compute x + y carefully step by step.

Long Integer Addition: Similar to multiplication, we applied a divide-and-conquer approach to
integer addition to empirically demonstrate its unsuitability. The prompts used were designed to
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follow the same DaC structure for fair comparison, even though the task itself does not benefit from
this paradigm. The prompts used were:

Decomposer Prompt d: ”Please split the string a from the middle as two separated strings. The
lengths of the two separated strings should be as close as possible. Please only return the two strings
separated by a comma and do not return anything else.”

Sub-task Tackling Prompt t: ”Please compute the sum of the two numbers a and b. Please only return
the final results and do not return anything else.”

Merge Prompt m: ”Please compute the final sum of the numbers a, b, c, and d. Please add them
carefully step by step, ensuring you carry the values correctly from the rightmost digits. Show your
work and return the final number.”

Hallucination Detection in Long Context: We divide the summary to sentences. After that, we
parallelly verify the sentences. Finally, we merge the verification to each sentence:

Decomposer Prompt d: Please help me segment the following paragraph as sentences. The separated
sentence should be output as: #Statement 1#: ...#Statement 2#: ...Do not say anything else. Just
return the statements in the given format.
Paragraph

Sub-task Tackling Prompt t: I want you to act as a factual contradiction checker. You are given a
set of statements and a document. Among the statements, there might be one or more statements
that contain contradictions with the document. Please find the problematic statement if it exist by
analyzing the statements one by one. For each statement, please make a choice:

• A: The statement is totally aligned with the document for sure.

• B: The statement contradicts with the document.

Merge Prompt m: Based on the above analysis, please tell me, does any statement above contain
contradiction with the document?.

Fact-Verification for Misinformation Detection: Similar as hallucination detection, we divide
the summary to sentences. After that, we paralelly verify the sentences. Finally, we merge the
verification to each sentence. Thus, our decomposer prompt and sub-task tackling prompt are the
same as hallucination detection. The only difference is the merge prompt.

Merge Prompt m: If we connect the above statements to be a news article, based on the above
analyzation, please answer me: Is there any contradiction between the document and the article?

Sub-task Sub-Solution

Input

Output

…

(A). Least to Most

Input

Output

A

C

…

(B). Decomposed   
Prompting (DeP)

B

CoT

LtM

DeP

Figure 4: Comparison of Least-to-Most (LtM)
Prompting and Decomposed Prompting (DeP).

A.6 Decomposed
Prompting and Least to Most

Least-to-Most (LtM) Prompting (Zhou et al.)
and Decomposed Prompting (Khot et al.,
2023) are two similar works to our work.
They both propose to explicitly prompt the
LLM to decompose the task as a series of
sub-tasks and sequentially tackle them. In
Fig .2, we merge these two methods. Here,
we will provide more detailed comparison of
them, which is shown in Fig. 4. Decomposed
Prompting can regarded as a upgraded ver-
sion of LtM. It introduces special notations
into the prompt to represent program states so
that when sequentially tackling the sub-tasks,
it can call heterogeneous modules to tackle
them. Such design enable the LLM to call
external programs (e.g., retrieval documents
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on WikiPedia and program based calculator)
and/or itself (i.e., recursion). Such design
endows it stronger expressive power and increases the compositional generalization ability of LLMs
in different areas, such as symbolic manipulation and multi-hop QA (Khot et al., 2023). Also, it
endows LLM the ability to do open-domain QA by retrieving from external knowledge base.

A.7 Typical Tasks that Satisfy and Dissatisfy the Proposed Conditions

To better assist the prompt engineering on different tasks, we list the typical tasks that satisfy and
dissatisfy the proposed conditions. In common tasks, the following tasks satisfy the proposed
conditions. For such tasks, searching good decomposition prompt for DaC is likely to be helpful for
the performance:

1. Multiplication
2. Fact Verification on Long Text
3. Auto Evaluation on Long Text
4. Article-level Summary

The following tasks typically do not satisfy the proposed conditions. For such tasks, searching good
decomposition prompt for DaC is not very likely to be helpful for the performance:

1. Addition: It is too simple and violate the condition 1
2. Division: It does not contain parallel sub-tasks, thus violate condition 2
3. Multi-Round Question-Answering: It is a typical sequential task, thus violate condition 2
4. Planning: It is a typical sequential task, thus violate condition 2

A.8 More Discussions on Sequential Sub-task Tackling and Parallel Sub-task Tackling

Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A: ......

Sub-task 2: Compute y=123*90*10^2:

A: ......

Sub-task 3: Compute z=45*678*10^2:

A: ......

Sub-task 4: Compute w=123*678*10^4:

A: ......

Resolution Assembly: Based on the above computation, compute x+y+z+w

A: ......

Example of Parallel Sub-task Tackling
Complete Task: Compute 12345*67890:

Sub-task 1: Compute x=45*90:

A: ......

Sub-task 2: Based on the above result, compute y=123*90*10^2+45*90:

A: ......

Sub-task 3: Based on the above result, compute 

z=45*678*10^2+123*90*10^2+45*90:

A: ......

Sub-task 4: Based on the above result, compute 

w=123*678*10^4+45*678*10^2+123*90*10^2+45*90:

A: ......

Example of Sequential Sub-task Tackling

Figure 5: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in long integer
multiplication

Sequential Sub-task Tackling and Parallel Sub-task Tackling are two different paradigm in decom-
posing complex tasks as sub-task to tackle. The first one decompose a complex tasks as a series of
sub-tasks. In this series, each sub-task relies on the previous one’s output as input or context. The
second one decompose a complex tasks as a set of sub-tasks, each of which does not rely on others.
Two examples for multiplication and hallucination detection are provided in Fig 5 and 6
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Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

Sub-task 1: Verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site.

A: ......

Sub-task 2: Verify the following statement :

#Summary#: Marseille prosecutor Brice Robin urged anyone who might have more footage to 

turn it over immediately.

A: ......

Sub-task 3: Verify the following statement :

#Summary#: Andreas Lubitz, the co-pilot accused of deliberately crashing the plane, had a 

history of severe depression and suicidal tendencies.

A: ......

Resolution Assembly: Given the above analysis, verify the summary that consist of the 

above three statements.

A: ......

Example of Parallel Sub-task Tackling
Complete Task: Verify the following summary:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

Sub-task 1: Verify the following statement:

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site.

A: ......

Sub-task 2: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately.

A: ......

Sub-task 3: Based on the above analysis, verify the following statement :

#Summary#: A video showing the final moments of Germanwings Flight 9525 has been 

recovered by investigators from the wreckage site. Marseille prosecutor Brice Robin urged 

anyone who might have more footage to turn it over immediately. Andreas Lubitz, the co-pilot 

accused of deliberately crashing the plane, had a history of severe depression and suicidal 

tendencies.

A: ......

Example of Sequential Sub-task Tackling

Figure 6: Toy example of Sequential Sub-task Tackling and Parallel Sub-task Tackling in hallucination
detection
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