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ABSTRACT

Message-passing graph neural networks (MP-GNNs) excel in deep learning on
graphs. Despite their success in various studies, they are limited by passing infor-
mation to the fixed length k distance neighbouring nodes, where k is the number
of layers. In reality, different types of edges (alternatively relations) may influ-
ence nodes at varying distance and should not be uniformly treated. This paper
proposes an adaptive distance message-passing method that considers the unique
roles of edge types, addressing this issue. Experiments on real-world datasets
validate the effectiveness of our approach.

1 INTRODUCTION

Message-passing based graph neural networks (MP-GNNs) have proven to be effective for graph
representation learning (Sanchez-Lengeling et al., 2021; Bodnar et al., 2021), which aggregate the
information from the neighbouring nodes iteratively and update the representation of nodes based
on passed information and their previous states (Gilmer et al., 2017).

Figure 1: Local aggregation

However, MP-GNNs are limited by local message passing (He et al., 2022). Specifically, to aggre-
gate information from k−hop neighboring nodes, the neural network must stack k layers, a process
we refer to as uniform length message passing. As illustrated in Figure 1 (a), we require five layers to
pass information from node J to node I , ensuring that all nodes in the graph can capture information
from 5 − hop neighbouring nodes. However, when more than four layers are stacked, MP-GNNs
loses their generalisation ability and overly compressed information leads to over-squashing (Alon
& Yahav, 2020). Although advanced methods such as non-local update mechanisms(Balcilar et al.,
2021) or transformers (Ying et al., 2021; Mialon et al., 2021; Thölke & De Fabritiis, 2022) have re-
cently been applied to MP-GNNs to capture long-range dependencies in the graph(Min et al., 2022),
they tend to focus more on the influence of nodes rather than the impact of multiple types of edges
over nodes. This approach is not optimal for tasks like molecule learning, where different types
of relations exist. Other studies (Vashishth et al., 2019; Zheng et al., 2022) investigated message
passing on multi-relational graphs but were still limited to uniform length message passing.
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Addressing the above problems, we propose a novel method called adaptive distance message pass-
ing from edge view (ADMPE), where edges with significant impacts can reach distant nodes rather
than being limited to fixed k − hop neighbouring nodes in uniform length message passing. As
illustrated in Figure 1 (b), the red edge between source node J and target node P can reach the five
hop node I while the blue edge from M to H reaches two-hop nodes I and F .

2 METHODOLOGY

We examine the edge attributes to determine the extent of information propagation. For instance,
there are four types of edges (0,1,2,3) between atoms (nodes) in the ZINC dataset, representing no
bond, single, double and aromatic bonds. These bonds differ in reactivity and stability, with double
bonds being more reactive than single bonds and aromatic bonds being more stable due to higher
electron density. Our mechanism allows the type 1 edges to propagate to k1 − hop, and type 2
edges to k2 − hop of nodes. k1 and k2 are distinct, learnable parameters for different edge types,
initialised as integers between 1 and 10. While following standard MP-GNN steps (Gilmer et al.,
2017): initialisation, aggregation, update and readout, we modify the aggregation to incorporate
features of different edge types to nodes at varying hops:

h′
i = fu(hi,

∑
j∈N(i)

W1xj
∑

i∈M(r)

W2erjp) (1)

h′
i and hi represent the updated representation and previous state of node i, respectively. xj denotes

the initial features for neighbour node j and er represents edge feature of relation r. fu is the update
function and W1, W2 are learnable matrices. N(i) denotes the neighbours of node i and M(r) is a
hop count set indicating that node i is within the maximum hop length k − hop of a type of r edge
which connected with node j and p, as shown in Figure 1 (b).

3 EXPERIMENT

Datasets We consider two benchmark datasets ZINC (12K) (Dwivedi et al., 2020)and MolHIV (Hu
et al., 2020) for molecule learning tasks, details shown in Table 2 in Appendix.

Baselines and Results. We compare GPS(Rampášek et al., 2022), state of the art on Zinc (12K)
dataset and Graph MLP-Mixer(He et al., 2022) state of the art for MolHIV, with our method
ADMPE. We keep the same implementations as the baselines and integrate them with the updated
function in equation 1. Table 1 summarises the mean results of four runs, demonstrating the ef-
fectiveness of ADMPE. While ADMPE’s integration with GPS on the ZINC dataset shows modest
improvements, its use with the Graph MLP-Mixer method noticeably enhances performance on both
the ZINC and MolHIV datasets.

Table 1: Comparison of our model to baseline methods
Methods ZINC MolHIV

Metric MAE ROCAUC

GPS 0.070 0.781
Graph MLP-Mixer 0.075 0.807

GPS with ADMPE 0.069 0.785
Graph MLP-Mixer with ADMPE 0.072 0.811

4 CONCLUSION

This paper introduces a novel adaptive distance message-passing (ADMPE) method, focusing on
multi-relational edges. ADMPE overcomes uniform length message passing limitations by propos-
ing a relation-aware rule for passing edge information to nodes at varying distances. Easily inte-
grated with existing work, ADMPE enhances representation learning. However, it requires prior
knowledge of edge types in the dataset, which can be investigated in future.
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A APPENDIX

A.1 DATASETS

ZINC (12K) dataset consists of 28 types of nodes (atom types) and 4 types of edges (but type 0
represents no bond between atoms, so only 3 types of actual edges in the molecule graph). For
Molhiv, edges represent chemical bonds, and nodes refer to atoms. The default setting of Molhiv in
the Graph MLP-Mixer model is no types of nodes and edges. However, when loading the Molhiv
dataset using ogb library, the edge attribute still has four types of values (0,1,2,3). We apply the
node and edge linear embeddings (hidden dimension is 128) to the raw input, same as (He et al.,
2022) and train the model.

Table 2: Dataset summary
Datasets Graphs Nodes Avg Nodes Avg Edges Node Types Edge Types Class

ZINC 12000 9-37 23.2 24.9 28 4 Regression (1)
MolHIV 41127 2-222 25.5 54.9 None None 2

A.2 EXPERIMENTAL SETTINGS.

Our model is implemented with Pytorch 1.12.1 and CUDA 11.3. We keep the same hyper-
parameters setting as baselines Graph MLP-Mixer (He et al., 2022) and GPS Rampášek et al. (2022).
The whole model is implemented on PyTorch Geometric.
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