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Abstract

Decoders built on Gaussian processes (GPs) are enticing due to the marginalisation
over the non-linear function space. Such models (also known as GP-LVMs) are
often expensive and notoriously difficult to train in practice, but can be scaled using
variational inference and inducing points. In this paper, we revisit active set approxi-
mations. We develop a new stochastic estimate of the log-marginal likelihood based
on recently discovered links to cross-validation, and we propose a computationally
efficient approximation thereof. We demonstrate that the resulting stochastic active
sets (SAS) approximation significantly improves the robustness of GP decoder
training, while reducing computational cost. The SAS-GP obtains more structure
in the latent space, scales to many datapoints, and learns better representations than
variational autoencoders, which is rarely the case for GP decoders.

1 Introduction

Generative models can be viewed as regression models from unknown inputs. That is, we assume
x = f(z), where f is an unknown mapping from latent variables z to observations x. Given the
inherent difficulty of this task, it is perhaps sensible to marginalize the unknown mapping f to avoid
the brittleness of point estimates. This is the driving idea in the Gaussian process latent variable
(GP-LVM) (Lawrence, 2005), which places a Gaussian process (GP) prior over the unknown mapping
f and marginalizes accordingly. This contrasts contemporary generative models that predominantly
operate with point-estimates of f (Kingma and Welling, 2013; Sohl-Dickstein et al., 2015). While
conceptually elegant, the GP-LVM is, however, notoriously difficult to train and the conceptual
benefits are often not realized in practice.

Exact inference involves computing the marginal likelihood, but (like other GP methods) its cubic
complexity in the number of observations O(N?) limits the scalability of the GP-LVM. However, the
idea of marginalizing the decoder is sufficiently attractive to motivate the development of scalable
and reliable training techniques: Its Bayesian formulation (Titsias and Lawrence, 2010) variationally
integrates out the latent variables z to obtain an evidence lower bound. Using auxiliary inducing
variables, Snelson and Ghahramani (2006) expanded GP regression, which is also applicable in the
unsupervised learning setting (i.e. the GP-LVM).

However, considering inducing variables here involves dangers. First, the convergence of inducing
points is well-studied in the supervised GP scenario, where inputs are fixed, but it differs from the
unsupervised case where the inputs are estimated. Bauer et al. (2016) notes that even in the supervised
setting, inducing points are “not completely trivial to optimise, and often tricks [...] are required”,
and we hypothesize that this is further complicated in the unsupervised setting where we optimize
both latent and inducing variables while they interact.

In this paper, we revisit active sets for scaling GP decoders, a sparse approximation predominantly
used before the seminal work of Snelson and Ghahramani (2006). From a practical viewpoint, active
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sets are fixed inducing variables that belong to the training dataset. We make links between such
active sets and cross-validation, allowing us to lean on a recent result from Fong and Holmes (2020)
which, in turn, links cross validation and the log-marginal likelihood. We show how these links
allow for a stochastic estimate of the log-marginal likelihood, and that active sets can be seen as a
computationally efficient approximation of this. Practically, this amounts to repeatedly and randomly
sampling active sets rather than trying to find the optimal active set. We denote this framework as
stochastic active sets (SAS). We demonstrate that SAS consistently results in significantly better-fitted
GP decoders over models trained using inducing points.

Historical remarks. Methods based on subsets of data diminish the computational demand and
were first introduced in a GP context in the foundational work on sparse approximations by Smola
and Bartlett (2001). Back then, Quifionero-Candela and Rasmussen (2005) had already pointed out
the main difficulties behind the optimal selection of subsets:

“Traditionally, sparse models have very often been built upon a carefully chosen
subset of the training inputs. [...] In sparse Gaussian processes it has also been sug-
gested to select the inducing inputs Xy, from among the training inputs. Since this
involves a prohibitive combinatorial optimization, greedy optimization approaches
have been suggested [...]. Recently, Snelson and Ghahramani (2006) have proposed
to relax the constraint that the inducing variables must be a subset of training/test
cases, turning the discrete selection problem into one of continuous optimization.”

This explains how inducing variables reshaped the Gaussian process community, effectively banishing
other subset-based methods. Our work builds on the advances made in stochastic optimization in the
time since active sets were left behind. We show a third way over those considered by Quifionero-
Candela and Rasmussen (2005): instead of optimizing the active set, we average with respect to it.
This simplifies matters notably and makes them more robust.

To justify our approach, we establish a link between active sets and cross validation (CV). The latter
has a long history for model selection in GPs, dating at least to the seminal work of Wahba (1990).
For probabilistic models, Rasmussen and Williams (2006) point to the utility of CV variants within
negative log-probabilities. Building on results from Fong and Holmes (2020) linking CV and log-
marginal likelihoods, we argue that, for GP-LVMs, active sets combine more gracefully with stochastic
optimization. The remainder of this paper elaborates on this viewpoint and demonstrates it empirically.

2 Gaussian Process Decoders

The Gaussian process latent variable model (GP-LVM) (Lawrence, 2005) defines a decoder which is
a non-linear mapping” & = f(z) from the latent space Z € R to observation space X € R”. The
prior on this map is a Gaussian process (GP) so it is drawn like f ~ GP(0, kg(+,)), where kg is the
covariance function or kernel and Ky denotes the evaluated kernel function so the 7, jth element of
K equals kg(z;, ;). For clarity, we omit the dependence on covariance function parameters, 6.

The original version of the GP-LVM starts from one-dimensional observations « = {x,, }__; and
latent variables z = {z,})_,, and factorises the joint distribution of the model as p(z, f|z) =
p(x|f, z)p(f|z). Here the conditional distributions correspond to the likelihood model and the prior

N

p(a|f,z) = [[ N(@nlf(z0),0°), p(f12) = N(f(2)[0, Ky ). )

n=1

When the data dimensionality is D > 1, the model factorises across dimensions, and we have different
mappings f per d*® feature. One of the principal assumptions of the GP-LVM is that the prior
p(f) regularises the smoothness of all mappings equally, so we only consider one kernel. This
assumption can be relaxed if needed, but at increased computational cost and with more learnable
hyperparameters.

*We use {x, z} to denote observations and latent variables respectively, since we do not consider inducing
variables. Notice that Lawrence (2005) use the notation {y, = }.



Mapping marginalization. A GP prior over the non-linear decoder f allows for marginalisation of
f to obtain a closed-form expression of the marginal likelihood of the GP-LVM

plaz) = / p(@|f, 2)p(f12)df = N ([0, Kny + oI).

On a log-scale, this gives the following objective function (Lawrence, 2004), which can be optimized
w.r.t. both hyperparameters € and latent variables z

DN D 1 _
L= ——5 log 2 — 0} log |Knn + o?T| — Etr((KNN + oI) ! zx'). 2)

The difficulties of training the GP-LVM using this objective function are evident above, as the
evaluation cost grows cubically with the number of observations N. Furthermore, notice that
observations « are no longer independent (in contrast with Eq. 1) once f is integrated out. The
log-marginal likelihood will be the starting point for our approach in Sec. 3.

Bayesian extension. In the seminal works of Lawrence (2004, 2005), the GP-LVM is first derived as a
non-linear extension of probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999).
Considering the isotropic prior on the latent variables z, such that p(z,) = N (2,]0,1) Vz, € z,
the general idea is to optimize them rather than introducing marginalization. From a full probabilistic
perspective, one could also be interested in the posterior distribution over z, which leads to using
Bayesian inference for the GP-LVM approach. This is the driving idea of Titsias and Lawrence (2010),
where variational methods are introduced. In particular, latent variables are not easy to marginalize,
mainly due to their presence in the kernel mappings, so a lower-bound on the log-marginal likelihood
log p(x) = log [ p(x|z)p(z)dz of the model is derived.

So far, the Bayesian GP-LVM model (Titsias and Lawrence, 2010) has been considered as the
standard methodology to apply GPs to large unsupervised datasets with 10*—10°¢ observations, e.g.
in regression (Bui and Turner, 2015), classification (Gal et al., 2015) and representation learning
(Mirtens et al., 2019) tasks.

3 Stochastic Active Sets

Our key objective is a computationally efficient estimate of the log-marginal likelihood in Eq. 2, as
this is known to be a good measure of generalization performance (Rasmussen and Ghahramani,
2000; Germain et al., 2016). Another popular measure of generalization performance is cross
validation (CV) (Geisser and Eddy, 1979; Vehtari and Lampinen, 2002), which is arguably mostly
used outside the realm of Bayesian models. Recently, Fong and Holmes (2020) linked these two
measures, effectively showing that the marginal likelihood is equivalent to the average over exhaustive
leave-R-out CV scores. In particular, the average is w.r.t. the size of the hold-out set. More precisely,
let

1
Scv(z|R) = CZ Zlogp(wnlwA,,,Z)=§EAp > logp(@nlTa,.z)|, 3

p=1 neERp neRp

denote the leave- R-out CV using log-predictive scoring functions log p(x,|T 4, , z). Here A, denotes
the active set indices of the training data, such that A, C {1,2,...,N}and R, = {1,2,...,N}\ 4,
are the remaining hold-out samples. The subscript p € C denotes the permutation, and we average
over all C = (JI\{[) possible hold-out sets. We use use R to indicate the size of the hold-out set
Rp (R = |Rp|)and let A = |A,| = N — R. If we average Scy(xz|R) over all possible sizes of
the hold-out set, then Fong and Holmes (2020) has shown that we recover the exact log-marginal
likelihood,

logp(x|z) = ZSCV (z|r) = Scev(z|R) + Spev(z|R). 4)

Here, Spcv(x|R) = E 4[log p(x.a]z4)] and Scev(x|R) = Zle Scv(x|r) is the cumulative CV
score, which reduces to a sum of expectations over the predictive factors.® Further details on Spcy
and Sccv can be found in the Appendix. Fong and Holmes (2020) used Eq. 4 to argue in favor of
using the marginal likelihood over cross-validation for model selection.

3We drop the permutation subscript p in .4 and R to avoid cluttered notation.



Figure 1: Schematic graphical model of the correlation structure given different permutations p of the
active set Ay, As, . .., A¢ for five observations {x1, ..., x5}. Thick red lines indicate that we build
full covariance densities between observations included in « 4. Only-blue variables are considered
conditionally independent among them w.r.t. to the red colored ones. Dashed lines indicate the
conditional probability factors p(x,, |z .4, z) that we can easily compute.

Stochastic approximation. We take a slightly different view than Fong and Holmes (2020) and
argue that Eq. 4 can be the grounds for an efficient stochastic gradient (Robbins and Monro, 1951)
of the log-marginal likelihood suitable for training. In the context of GPs, we have that conditional
probabilities for Spcy (| R) and Sccy (x| R) in Eq. 4 are

p(walza) = N (|0, Ky + o2l), p(xn|za, 2) = N(X0|my a5 Coja), 5
where we used Eq. 2.22 from Rasmussen and Williams (2006) to obtain
M4 = Kpa(Kaa+031) 'xa,
eoja = Knn + 021 — Kpa(Kaa+02) 'K, 4,

and K 44 € RA*4 has entries k(z;, z;) with 2;, z; € z 4. The computational cost of Spcy (x| R) is
O(A3), while log p(,,| 4, z) can reuse the matrix inversion K ;; to only have an additional linear
cost. Clearly, we can obtain an unbiased stochastic estimate of the log-marginal likelihood by first
uniformly sampling R, second making a random split permutation into train and hold-out data R and
finally by evaluating

logp(z|z) ~ Y _ log p(an|@.a, z) + log p(w.4|2.), (6)
nerR

where we remark that the summation can be mini-batched. This approach is equivalent to the
decomposition log p(x|z) = logp(xr|T 4, 2) + log p(x 4]|2.4) and it also assumes conditional inde-
pendence among observations x,, for n € R. This is similar to the standard active set approximation
(Seeger et al., 2003) previously discussed, and we may think of A as a stochastic active set (SAS).

However, the estimate of log p(x|z) still has the same computational complexity O(N?) as the
usual deterministic approach, since we may sample A= N in the worst case. Instead, we propose
to make a stochastic approximation where we choose the size of the active set deterministically
through a user-specified parameter, such that the computational cost reduces to O(A?), as in sparse
approximations based on inducing points. This does not need to be unbiased; empirically we find that
most often the approximation behaves as a lower bound to the true marginal likelihood, and that, in
all instances, it is a rather close approximation. We include a longer discussion on this point in the
Appendix and the training methodology using SAS is in Alg. 1.

3.1 Extension for Bayesian GP decoders

We next seek to extend the previous SAS approach to the Bayesian GP-LVM, where we aim to obtain
the posterior distribution p(z|x). From this perspective, we are interested in marginalising latent
variables z to obtain the marginal likelihood p(z) of the model.* However, this integration is not
possible, as latent variables appear non-linearly in the kernel function (Titsias and Lawrence, 2010).
Alternatively, we consider the variational inference scheme, where an auxiliary distribution ¢(z) is

“Notice that the probabilistic objective function changes between standard and Bayesian versions of the
GP-LVM. In the former case, we usually look for p(z|z) as the marginal likelihood w.r.t. the mapping f. This is
the one usually considered in supervised GP tasks. In the latter, we refer to p(x) as the marginal likelihood of
the model, since z are also integrated out.



introduced into the formulation. Therefore, we are able to build the evidence lower bound (ELBO) of
the model using Jensen’s inequality as

log p(x) > /q(Z) log p(x|2)p(2)dz = Eq(z) [log p([2)] — KL [¢(2)[|p(2)], ()

which is equivalent to the one obtained by Titsias and Lawrence (2010, Eq. 8). At this point, the
computational cost is O(N?3), since the ELBO requires evaluating log p(z|z), where we invert Ky v.
The expectation in Eq. 7 can also benefit from a stochastic SAS approximation, just as with inducing
points (Hensman et al., 2013). Thus, the lower bound can be approximated as

N
LeLpo ~ Z IEq(zn) [logp($n|w.Au Z)] + IEq(zA) [logp(a:A|zA)} - Z KL[q(zn)Hp(zn)], ®)
neER n=1

where we consider mean-field V1 to factorize the distribution ¢(z). The Bayesian GP-LVM shares
high-level similarities with other generative models that marginalize the latent variable according to a
simple prior (Rezende and Mohamed, 2015). The proposed SAS approximation (8) scales similarly
to mini-batched inducing point approximations, but we will later see that SAS behaves notably better
in practice. Algorithmically, the approach is simple, and the summary code is provided in Alg. 2.

Algorithm 1 SAS for GP decoders Algorithm 2 SAS for Bayesian GP decoders
1: Input: Observed data I: Input: Observed data
2: Parameters: Initialize @, ¢ /0, z if NA 2: Parameters: Initialize 8, ¢ // 0,1, 0 if NA
3: for e in epochs do 3: for e in epochs do
4 for b in batches do 4:  for b in batches do
5: Sample Tpyeh ~ T 5: Sample Epgen ~ T
6: TR, T4 < random_split(Tpach) 6: TR, T < random_split(Tpatch)
7 if amortized then 7: if amortized then
8: Get {zr,z4} + g(xr, T A|D) 8: Get p1z < gu(Tr, T A|P)
9: end if 9: Get o, < go (TR, T A|P)
10: Compute K // via Cholesky 10 end if
11: Evaluate log p(z 4|2.4) 11: Sample {zR, 24} ~ q(pz,02) //RT
12: Evaluate logp(x,|x 4, 2), V&, ETR 12: Compute K /1 via Cholesky
13: Evaluate Eq. 6 13: Evaluate £ in Eq. 8
14: do Adam(8, ¢) step for £ 14: do Adam(8, ¢) step for Lgpo
15:  end for 15:  end for
16: end for 16: end for
NA: Non-amortized. NA: Non-amortized, RT: Reparametrization trick.

3.2 The Role of Amortization

Early after the emergence of the seminal GP-LVM (Lawrence, 2005), the lengthy optimization
required obtaining a result in which all latent representations z,, became noticeable. An additional
consideration is that, while most approaches to non-linear low-dimensionality reduction focus on pre-
serving similarities, the GPLVM does the opposite. This property was initially discussed by Lawrence
and Quifionero-Candela (2006), since in some sense the GP-LVM is dissimilarity preserving, such
that different observations will generally be represented far away from each other. In practice, we are
often more interested in embeddings that reflect the zrue distance between the observed objects in their
representations, particularly those that are close together. This observation inspired back constraints
for locality preservation (Lawrence and Quifionero-Candela, 2006), which enforces latent variables
z to be an explicit function of observations z = g(x|¢) parameterized by ¢. This is similar to the
stochastic encoder applied in variational autoencoders (Kingma and Welling, 2013; Rezende and
Mohamed, 2015). This idea was also extended to the VI framework in GP-LVMs by Bui and Turner
(2015) using a recognition model, e.g. ¢(2z,) =N (2, |9, (2n|®), 9o (€, |$)) and more recently, to
accelerate hyperparameter learning in GPs with hierarchical attention networks (Liu et al., 2020).

In our context, we assume the mappings to be neural networks (NNs) like Bui and Turner (2015),
referring to them as amortization networks. We find such networks accelerate learning very nicely
when used in conjunction with SAS. It is also worth noting that amortization has been empirically
shown to improve generalization performance (Shu et al., 2018).



4 Related Work

Marginal likelihood approximations were used in GPs (Smola and Bartlett, 2001; Csaté and Opper,
2002) before the apparition of pseudo-inputs (Snelson and Ghahramani, 2006) and the associated
variational inference framework (Titsias, 2009). In the former case, stochastic approximations to the
ELBO were first presented by Hensman et al. (2013, 2015), in line with the Bayesian counterpart
of SAS. In terms of active sets, Seeger et al. (2003) empirically observed that the approximation
was generally stable for optimisation, even if the size of A was a small fraction of the training size
only. However, they also observed that random selection of active sets led to non-smooth fluctuations,
making it difficult to converge through exact gradient ascent. Particularly, the issue with re-selecting
of A motivated Snelson and Ghahramani (2006) as a smoother optimization alternative, and we find
that SAS also circumvents this problem via stochastic estimates as shown in Sec. 5.

The connection between cross-validation and GPs was already described in Rasmussen and Williams
(2006) as an alternative for model selection. However, the equivalence between exhaustive CV and
the log-marginal likelihood provided in Fong and Holmes (2020) provides a novel perspective that
we exploit. Additionally, the notion of back constraints has recently been considered in Lalchand
et al. (2022) for GP-LVMs with inducing points, where a doubly stochastic formulation is used. More
recently, amortization networks have been used to drastically reduce the number of inducing points in
supervised GPs.

5 Experiments

In this section, we evaluate the performance of the SAS approach for stochastic learning of GP
decoders, both the deterministic GP-LVM (Lawrence, 2004) and its Bayesian counterpart (Titsias
and Lawrence, 2010). For this purpose, we consider three different datasets: MNIST (LeCun et al.,
1998), FASHION MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009). For a fair comparison
of our model with baseline methods, we use the same amortization across models, namely a neural
network (three linear layers ReLU activation functions)® for all models in all experiments and all
GPs use an quadratic exponentiated kernel. In all experiments, the learning rates are set in the range
[10~%,1072], the maximum number of epochs considered is 300 and we use the ADAM optimizer
(Kingma and Ba, 2015). For SAS experiments, we only consider batch sizes greater than the active
set size, as this is a requirement for SAS.

Performance metrics of the SAS-GP decoders are given in terms of the negative log-predictive density
(NLPD), root mean-square error (RMSE) and mean absolute error (MAE). In all cases, we optimize
w.r.t. an approximation to the log-marginal likelihood log p(x|z) in the deterministic scenario or w.r.t.
a lower bound on the log p(x) of the model in the Bayesian cases. We also provide PYTORCH code
that allows for reproducing all experiments and models.® We monitor the run-time of convergence
as we suspect that rotating active sets (see Fig. 1) across the dataset is a fast way to capture the
correlation structure of the regression problem.

5.1 Representation performance

First, we analysed our SAS approach and the approximate optimization procedure on an unsupervised
version of MNIST, FMNIST and CIFAR-10, where we took the full training corpus for learning two-
dimensional latent representations of images. The approximation curves are included in Fig. 2, where
we observe convergence in less that 2h runtime in CPU for most cases. For all experiments, we can
observe that for larger active set sizes A, the SAS approaches take longer time to complete the 300
epochs, as the computational cost of inversion is higher.

Evaluation with SOTA methods. We also tested the performance of representation learning in the
state-of-the-art methods with and without GPs for unsupervised scenarios. Results are shown in Fig.
4. We include a short description of the models considered:

* SAS-GP DECODER — It uses stochastic active sets to approximate the log-marginal likeli-
hood log p(x|z). The training methodology is described in Alg. 1.

>Please see the supplementary material for more details.

The code is publicly available in the repository: https://github.com/pmorenoz/SASGP/ including
baselines.


https://github.com/pmorenoz/SASGP/

«10° SAS vs. A - MNIST % 10° SAS vs. A - FMNIST x 108 SAS vs. A - CIFAR

—02 e
—0.4
~04 —4 //A
—0.6 —06
< B
—0.8 —6
-1.0 —08 — 4w
—_— A=150
. — — a2
-12 —1.0 8 A=10
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 0 2 4 6 8
Run Time [hours| Run Time [hours] Run Time [hours]
%107 Bayes SAS vs. A - MNIST x107_Bayes SAS vs. A - FMNIST %107 Bayes SAS vs. A - CIFAR
0.0 _C’/ﬂk*“—’ﬁ” 0.5 /
. /‘/ N4
/ 0.0 -2
—0.5
—0.5
— A _
S —1.0 — A= A= S
A =50 -1.0 —A=50
— A= 100 —_— A= 100 — A= 100
~15 — = — A= — =
L5, Nm| 15 S I i
I - _— -
—o0f — A=50 9.0 — A= 500 A =50
0.0 0.5 1 1.5 0.0 0.5 1.0 1.5 0 2 4 6 8

.0
Run Time [hours] Run Time [hours| Run Time [hours]

Figure 2: Approximate log-marginal likelihood (upper row) for SAS and ELBO curves (lower row)
for Bayesian SAS. We fix the batch size in Alg. 1 to be B =1024 and study the convergence for
different active set sizes A. All values in the curves displayed are per-epoch.
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Figure 3: Latent representation in a 2-dimensional space Z for the 10 MNIST and FMNIST classes
learnt with SAS and Bayesian SAS. Notice that the likelihood model of the GP decoder is controlled
by a vanilla RBF kernel. The examples have been obtained using an active set size A=_800.
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Figure 4: Illustration of latent space mappings z,, € Z on test data for different SAS models and
baselines (rows) and different datasets (columns). The models have been trained on full MNIST and
FMNIST.



* BAYESIAN SAS-GP DECODER — It uses stochastic active sets to approximate the ELBO in
Eq. (8) on log p(x). See Alg. 2.

¢ BAYESIAN GP-LVM — It is based on the model in Titsias and Lawrence (2010). Means and
variance parameters are generated by an amortization NN as in Bui and Turner (2015). The
model is trained using stochastic variational inference (Hensman et al., 2013).

* GP-LVM — We used the model proposed by Lawrence (2005) enhanced with an NN
encoding to the latent space. The model is trained using maximum likelihood (ML).

* VARIATIONAL AUTOENCODER (VAE) — (Kingma and Welling, 2013) The NN encoder has
the same architecture as the amortization function used in the SAS-GP models.

For the SAS-GP decoder and GP-LVM, a neural network encodes the latent variables. Likewise,
for the Bayesian SAS-GP decoder and the Bayesian GP-LVM, two neural networks each encode
the latent means and latent variances. We refer to this encoding as amortization. All models use a
Gaussian likelihood’.

Table 1: Comparative metrics for SAS and Bayesian SAS on MNIST, FMNIST and CIFAR-10.

MODEL SAS BAYESIAN SAS

ACTIVE SET SIZE A =100 A = 200 A = 400 A =100 A = 200 A = 400

MNIST / RMSE | 2.55+0.98 247+£0.98 2.41+0.93 2.16+0.02 2.08 +0.02 1.99 £ 0.02
MNIST / MAE | 1.61 +£0.97 1.55 £ 0.99 1.51 +0.96 1.11 £ 0.02 1.04 £ 0.02 0.96 £ 0.01
MNIST / NLPD | 2.99 +1.41 2.92+1.38 2.84+£1.31 2.33 £0.03 2.26 £ 0.02 2.17 £ 0.02

FMNIST / RMSE | 2.37+0.95 2.31+£094 2.25+0.90 1.99 £0.17 1.88 £0.20 1.85 £ 0.13
FMNIST / MAE | 1.48 £0.91 1.42£0.91 1.39 £ 0.89 1.11 £ 0.02 1.02 £0.03 0.98 £ 0.02
FMNIST / NLPD | 2.76 £1.33 2.71+£1.31 2.65+1.23 2.16£0.18 2.07£0.19 2.04 £0.12

CIFARIO/RMSE ]  2.66 £1.08 2.55+1.06 2.55+1.03 2.74+1.07 2.64 +1.08 2.57 +1.02
CIFAR10/ MAE | 1.77 £ 1.06 1.69 £+ 1.06 1.69 £+ 1.02 1.84 £1.03 1.76 £ 1.05 1.71 £1.03
CIFARIO/NLPD | 3.20+1.55 3.07+£1.44 3.32+£1.89 3.24+1.53 3.14 £ 1.53 3.06 £ 1.45

All metrics are (x 10~ 1).

5.2 Evaluation metrics

In this section, we are interested in the evaluation of the GP decoder with the standard error metrics
used for GPs. In Tab. 1 we provide RMSE, MAE and NLPD for the three datasets considered in this
experiment. Interestingly, the performance usually improves with larger active set sizes A, as the
SAS model captures captures the underlying correlation of datapoints better and this enhances the
approximation. This happens for both deterministic and Bayesian cases. Additionally, we observe
that the NLPD metric is generally better for smaller active set sizes A. This can also be noticed in Fig.
2, where loss curves have a better convergence for the lowest A.

Classification accuracy. We are interested in evaluating the structure of the representation. For
this purpose, we trained a (one) nearest neighbour classifier on the encoded, two-dimensional latent
variables and we tested the accuracy using encoded test data. Tab. 2 shows the mean and standard
deviations of test the accuracy.

Table 2: Classification accuracy (1) on 2-dim. latent space Z.

MODEL MNIST FMNIST

BAYESIAN SAS-GP DEC. (ours) 0.63 4+0.022 0.63 4= 0.020
BAYESIAN GP-LVM 0.18 £ 0.033 0.24 +0.043
VAE 0.54 +0.026  0.58 + 0.008

Runtime and convergence of SAS approximation. The loss curves obtained for the (sparse)
Bayesian GP-LVM model and the Bayesian SAS-GP decoder are shown in Fig. 5. We observe
that the two methods scale similarly, but that SAS is faster by a notable constant within stochastic
optimization. Additionally, we observe the performance of the SAS approximation to closely fit the
exact log-marginal likelihood log p(x|z). For the plot in Fig. 5, we computed the exact probability
for a subset of MNIST N=40, 000 samples.

"Pytorch (Paszke et al., 2019) and Pyro (Bingham et al., 2019) are available on public repositories.
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Figure 5: (Left-center) ELBO curves for Bayesian SAS-GP and Bayesian GPLVM for different
batch-sizes and active set points. (Right) SAS loss function compared with the exact log-marginal
likelihood computed. In all curves, N=40, 000 samples of MNIST were considered and five different
initializations per batch and A setup.

6 Conclusion

State-of-the-art representation learning is generally based on neural networks, as this allows for
scaling to large datasets. However, often we want reliable uncertainty estimates from the model
and we can achieve these with Gaussian process decoders if we can scale them sufficiently. We
have reviewed the main difficulties to obtain decent performances with GP-LVM approaches when
applied to large-scale learning, even with inducing variables. Revisiting active set approximations,
we considered a stochastic viewpoint to approximate the marginal likelihood while simultaneously
keeping the model marginalized. We formulated our stochastic active sets (SAS) approach for both
deterministic and Bayesian versions of GP decoders. We found that our approach works well with
amortization, such that a neural network encoder approximately inverts the GP decoder. While
amortization also helps when using inducing points, we found the combination with SAS to be
particularly efficient and robust.

Empirically, we illustrated the advantage of our method first on image-based observations, where our
approach learns better representations using fewer computational resources compared to inducing
point methods. We further demonstrated that our approach easily scales to nearly 10° observations.
In this experiment, we found that the learnt representations are qualitatively on par with those attained
by a comparable autoencoder. This is an important finding as, beyond small datasets, GP decoders
generally recovers less useful representations compared with models based on neural networks.
From this result, we speculate that improvements in training might be enough to get state-of-the-art
representations with GP decoders.

Additional benefits. Besides the empirical benefits demonstrated by SAS in the previous section,
we have also observed other practical benefits worth reporting. First, we have observed that SAS
easily runs in 32-bit numerical precision, unlike inducing point methods that generally require 64-
bits of precision (when reporting running times we consistently used 64 bits). Similarly, the jitter
usually added to the Cholesky factorization is of less importance in SAS. Second, we note that our
implementation is surprisingly free of additional #ricks and no numerical heuristics were needed to
realize a reliable implementation.

Limitations and future work. Stochastic active sets rely on the Gaussian likelihood, and this is
perhaps the strongest limitation. This works well for continuous data, but many data sources are
inherently discrete and this requires a suitable likelihood, e.g. the discretized mixture of logistics
(Salimans et al., 2017). Having more powerful likelihoods would surely improve the GP decoders,
but this requires realization of further developments using SAS.

Future work will focus on applying the SAS approach in the supervised setting as well, and building
SAS-like methods for discrete data. Other possible directions include extending the decoder with
deep kernels (Wilson et al., 2016) to capture more features in the data and applying convolutional
GPs (Van der Wilk et al., 2017) which are more suited to high-dimensional images.
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