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ABSTRACT

Zero-sum and non-zero-sum (aka general-sum) games are relevant in a wide range
of applications. While general non-zero-sum games are computationally hard,
researchers focus on the special class of monotone games for gradient-based
algorithms. However, there is a substantial gap between the gradient complexity
of monotone zero-sum and monotone general-sum games. Moreover, in many
practical scenarios of games the zero-sum assumption needs to be relaxed. To
address these issues, we define a new intermediate class of monotone near-zero-sum
games that contains monotone zero-sum games as a special case. Then, we present
a novel algorithm that transforms the near-zero-sum games into a sequence of zero-
sum subproblems, improving the gradient-based complexity for the class. Finally,
we demonstrate the applicability of this new class to model practical scenarios of
games motivated from the literature.

1 INTRODUCTION

Two-player zero-sum games (also known as strictly competitive games) and their generalization to
non-zero-sum games (Nash, 1951; Rosen, 1965) are crucial in domains like economics (von Neumann
& Morgenstern, 1947), artificial intelligence (Yannakakis & Togelius, 2018), and biology in the form
of evolutionary game theory (Weibull, 1997; Smith, 1982). As initiated in Rosen (1965); Tseng
(1995); Nemirovski (2004), this paper focues on the computationally tractable class of monotone
games with compact convex strategy spaces.

Early work studies the restrictive classes of games where the two players have equal conditioning:
the seminal paper of Nesterov (2005) established the complexity for bilinearly-coupled zero-sum
games, which was later extended by Nemirovski (2004) to general-sum classes. Later on, the field
explores the broader concept of general conditioning, which allows for more detailed portrayal of
the two players (Chambolle & Pock, 2011; Lin et al., 2020). Early explorations of Chambolle &
Pock (2011); Chen et al. (2014) focus on the bilinearly-coupled cases; starting from Lin et al. (2020),
there has been extensive research into the generally-coupled, generally-conditioned, and zero-sum
games (Yang et al., 2020; Wang & Li, 2020; Kovalev & Gasnikov, 2022; Lan & Li, 2023; Boţ
et al., 2023). However, it has been an interesting open question whether these recent developments
can be further generalized to the broader classes of generally-coupled, generally-conditioned, and
non-zero-sum games.

On the theory side, there is a substantial gap between the gradient complexity of monotone zero-sum
games and that of monotone general-sum games. The recent developments in minimax optimiza-
tion (Lin et al., 2020; Kovalev & Gasnikov, 2022; Lan & Li, 2023) establish much better complexity
results for the zero-sum cases compared to the long-standing bounds of general-sum games (Rock-
afellar, 1976; Tseng, 1995).

On the application side, strictly competitive scenarios, modeled by monotone zero-sum games, are
often insufficient. Real-world game settings frequently involve factors such as transaction fees or
semi-cooperation (Kalai & Kalai, 2013; Halpern & Rong, 2013), necessitating a relaxation of the
zero-sum assumption in the modeling.

Our contributions Our work makes the first step towards bridging the gap between the monotone
zero-sum and general-sum classes. For this purpose, we introduce a new intermediate class of
monotone games, present a novel algorithm for this class, and show the applicability of this new class.
In detail:
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• Theoretical motivation. Our work extends the recent studies of monotone zero-sum games to the
more general non-zero-sum settings. Specifically, we define a new intermediate class of games
called monotone near-zero-sum games, characterized by a smoothness parameter δ describing the
game’s proximity to a zero-sum game. This new class of games presents a natural interpolation
between monotone zero-sum games and a class of monotone general-sum games based on the
near-zero-sum parameter δ, and thus, it partially bridges the gap of the monotone zero-sum and
general-sum classes.

• Main theoretical result. We propose a novel algorithm, Iterative Coupling Linearization (ICL), that
provides a black-box reduction from monotone near-zero-sum games to zero-sum games. It con-
verges to an ε-Nash equilibrium within Õ

((
L√
µν + L

min{µ,ν} ·min
{
1,
√

δ
µ+ν

})
· log2

(
D2

ε

))
gradient queries, where L is the smoothness parameter, µ and ν are the strong concavity parameters
of the two players, δ is the near-zero-sum parameter, and D is the diameter. When δ is small, our
results improve the long-standing complexity results of Tseng (1995); Nemirovski (2004) for the
first time in non-zero-sum classes.

• Practical applications. Besides the theoretical motivation, we demonstrate the practical relevance
of this new class of games. We consider regularized matrix games and competitive games with
small additional incentives. These games are not zero-sum but naturally have a near-zero-sum
structure, where our methods are applied to achieve provably faster rates.

2 DEFINITIONS, PREVIOUS RESULTS, AND THE NEW PROBLEM CLASS

2.1 BASIC DEFINITIONS

This paper studies the Nash Equilibrium Problem (NEP) for two-person general-sum games, in
which Player 1 wants to maximize its utility function u1(x,y) over x ∈ X and Player 2 wants to
maximize its utility function u2(x,y) over y ∈ Y . Here, X and Y are compact and convex sets,
and u1(·, ·) : X × Y → R and u2(·, ·) : X × Y → R are smooth functions. A pair of decisions
(x∗,y∗) ∈ X × Y is a Nash equilibrium if

u1(x
∗,y∗) ≥ u1(x,y

∗), for all x ∈ X, and u2(x∗,y∗) ≥ u2(x
∗,y), for all y ∈ Y .

A pair of decisions (x̄, ȳ) ∈ X × Y is an ε-accurate Nash equilibrium if there exists a Nash
equilibrium (x∗,y∗) such that ∥x̄− x∗∥2 + ∥ȳ − y∗∥2 ≤ ε . A pair of decisions (x̂, ŷ) ∈ X × Y
is an ε-approximate Nash equilibrium, if u1(x̂, ŷ) ≥ u1(x, ŷ) − ε for all x ∈ X and u2(x̂, ŷ) ≥
u2(x̂,y) − ε for all y ∈ Y . The relation between accurate and approximate Nash equilibria is
discussed in Section B. The goal of this paper is to find an ε-accurate (or an ε-approximate) Nash
equilibrium by iterative algorithms which subsequently query the gradients of the utility functions.

Notations Let X and Y be Euclidean spaces. In the space X × Y , for all z = (x,y) ∈ X × Y
and z′ = (x′,y′) ∈ X × Y , define ⟨z′, z⟩ def

= ⟨x′,x⟩+ ⟨y′,y⟩. For all these spaces, the norms are
those induced by inner products. Assume that the diameter of X ⊆ X is bounded by DX and the
diameter of Y ⊆ Y is bounded by DY . Let D =

√
D2
X +D2

Y . Assume that u1(·, ·) and u2(·, ·) are
L-smooth, that is,
∥∇u1(z′)−∇u1(z)∥ ≤ L ∥z′ − z∥ , ∥∇u2(z′)−∇u2(z)∥ ≤ L ∥z′ − z∥ , for all z, z′ ∈ X × Y .

To facilitate our analysis, we adopt the following formulation that decomposes the game into a
coupling part and a zero-sum part. Denote

g = −1

2
(u1 + u2), h =

1

2
(−u1 + u2), H = (∇xh,−∇yh) , F = − (∇xu1,∇yu2) ,

where g is the coupling part, h is the zero-sum part, H is the operator corresponding to the zero-sum
part h, and F is the operator corresponding to the game. Then, we have

u1 = −g − h, u2 = −g + h, F = ∇g +H .

Since the utilities u1 and u2 are both L-smooth, we have the functions g and h are both L-smooth,
and the operators H and F are both L-Lipschitz continuous. While similar decompositions can
be found in the literature of variational inequalities and game theory (Nemirovski, 1995; Halpern
& Rong, 2013; Chen et al., 2017; Hwang & Rey-Bellet, 2020), we emphasize that this notation
is particularly suited to characterize our near-zero-sum games (to be defined later) for explicitly
separating the non-zero-sum coupling part.
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2.2 PROBLEM CLASSES

Monotone general-sum games The seminal work of Nash (1951); Rosen (1965) establishes the
existence of Nash equilibrium for concave games. But to obtain a tractable class of NEPs, further
restrictions need to be considered (Rosen, 1965). Specifically, we make the following assumptions:

Assumption 1 (Convex-concave zero-sum part). There exists (µ, ν) ∈ [0, L]× [0, L] such that the
function h(x,y)− µ

2 ∥x∥2 is convex in x for any fixed y ∈ Y , and the function h(x,y) + ν
2 ∥y∥

2 is
concave in y for any fixed x ∈ X .

Assumption 2 (jointly convex coupling part). The function g(·, ·) is jointly convex.

The operator H = (∇xh,−∇yh) is monotone with modulus min{µ, ν} under Assumption 1, and
the operator ∇g is monotone under Assumption 2. Hence, under Assumptions 1 and 2, the game (or
the operator F = ∇g +H) is monotone with modulus min{µ, ν} (Rosen, 1965; Nemirovski, 1995),
that is, ⟨F(z′)−F(z), z′ − z⟩ ≥ min{µ, ν} · ∥z′ − z∥2 , for all z, z′ ∈ X × Y .

In this paper, we refer to a game as a monotone (general-sum) game if it satisfies Assumptions 1 and 2,
and refer to a game as a strongly monotone game if it is a monotone game with modulus µ, ν > 0. It
is known that there exists a unique Nash equilibrium for strongly monotone games (Rosen, 1965).

Monotone zero-sum games (convex-concave minimax optimization) We now consider a subclass:
monotone zero-sum games. A two-person game is zero-sum if g = 0. A game is said to be a monotone
zero-sum game if it is zero-sum and satisfies Assumption 1. Note that monotone zero-sum games
trivially satisfy Assumption 2 (since g = 0 is convex), and therefore form a subclass of monotone
general-sum games. By Sion’s minimax theorem (Sion, 1958), the NEP for monotone zero-sum
games is equivalent to convex-concave minimax optimization, that is, finding or approaching a saddle
point of the function h(·, ·).

2.3 PREVIOUS RESULTS

We begin with a historical overview of the related study of NEPs for monotone games. Many
prior studies focus on restrictive cases. Early seminal work by Nesterov and Nemirovski in the
early 2000s primarily addressed the restrictive classes of games with equal conditioning (µ = ν).
Nesterov (2005) initially studied the bilinearly-coupled, equally-conditioned, and zero-sum cases,
which Nemirovski (2004) later generalized to cover generally-coupled and general-sum settings.
Subsequently, research has shifted towards the broader concept of general conditioning (µ ̸= ν). This
shift is motivated by the need for more flexible modeling of player behaviors in realistic problems
and can lead to substantially faster convergence rates, particularly when one of the player has a
better conditioning (Chambolle & Pock, 2011; Lin et al., 2020). Early explorations focus on the
bilinearly-coupled and zero-sum cases, developing various primal-dual algorithms in different oracle
settings (Chambolle & Pock, 2011; Chen et al., 2014; Kolmogorov & Pock, 2021; Thekumparampil
et al., 2022). More recently, the seminal work of Lin et al. (2020) spurred extensive research into
generally-coupled, generally-conditioned, and zero-sum games (see Yang et al. (2020); Wang & Li
(2020); Zhang et al. (2022); Kovalev & Gasnikov (2022); Boţ et al. (2023); Lan & Li (2023); Lin
et al. (2025), among others). Despite these advancements, we are not aware of any study addressing
the more general settings of generally-coupled, generally-conditioned, and non-zero-sum games. For
this particularly challenging class, the only established results are the long-standing bounds from
Tseng (1995); Nemirovski (2004). These bounds, however, remain a huge gap from the optimal rates
achieved for the zero-sum cases (Lin et al., 2020; Kovalev & Gasnikov, 2022; Lan & Li, 2023).

Now, we formally outline the state-of-the-art gradient complexity results of monotone general-sum
and zero-sum games within the general settings of general couplings and general conditioning. To
simplify the presentation, we assume strong monotonicity for now in the Section 2.3, while the results
for non-strongly monotone games are indeed similar (as we will discuss later). For general-sum
games, the NEPs can be solved using variational inequality methods for the operator F , leading to
the following long-standing gradient complexity:

Proposition 1 (Tseng (1995)). For strongly monotone general-sum games, an ε-accurate Nash
equilibrium can be found with the number of gradient queries bounded by O

(
L

min{µ,ν} · log
(
D2

ε

))
.
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For the zero-sum cases, the gradient complexity can be significantly improved due to recent advances
in minimax optimization.

Proposition 2 (Lin et al. (2020); Kovalev & Gasnikov (2022); Zhang et al. (2022); Lan & Li (2023)).
For strongly monotone zero-sum games, an ε-accurate Nash equilibrium can be found with the
number of gradient queries bounded by O

(
L√
µν · log

(
D2

ε

))
. This rate is minimax optimal, as

Ω
(

L√
µν · log

(
D2

ε

))
gradient queries are required in general.

2.4 THE NEW PROBLEM CLASS

Theoretical motivation As shown in Propositions 1 and 2, a huge gap exists in the gradient
complexities for solving NEPs for monotone general-sum games versus zero-sum games. This
motivates the exploration of an intermediate problem class that partially bridges this gap.

Monotone near-zero-sum games We introduce the class of monotone δ-near-zero-sum games,
which naturally interpolates between monotone zero-sum (δ = 0)1 and general-sum (δ = L) games.

Assumption 3 (Near-zero-sum). There exists δ ∈ [0, L] such that the function g(·, ·) is δ-smooth.

Definition (MONOTONE NEAR-ZERO-SUM GAMES). If a two-person general-sum game
satisfies Assumptions 1 to 3, we call it a monotone δ-near-zero-sum game.

3 ALGORITHM AND CONVERGENCE ANALYSIS

We first focus on the algorithm for strongly monotone near-zero-sum games in Sections 3.1 and 3.2.
Then, in Section 3.3, we present the results for (non-strongly) monotone near-zero-sum games.

3.1 ALGORITHM

For the zero-sum classes, Lin et al. (2020); Kovalev & Gasnikov (2022); Carmon et al. (2022); Lan &
Li (2023) obtained the optimal convergence rate by Nesterov’s smoothing. However, for the more
general classes of non-zero-sum games, the application of Nesterov’s smoothing is complicated
by the fact that the smooth minimization transforms the problem into a Stackelberg game, whose
solution deviates significantly from a Nash equilibrium (see Section C for more details). Thus, we are
not aware of how the similar smoothing techniques can be applied directly to non-zero-sum games.

This raises the challenge: can we leverage the off-the-shelf algorithms designed for zero-sum games
to solve the non-zero-sum problems of interest? Now, we introduce our novel algorithm, Iterative
Coupling Linearization (ICL), which overcomes the aforementioned challenge and presents a clean
black-box framework to solve near-zero-sum games by using zero-sum algorithms as an oracle.

Potential function Our algorithm leverages a natural potential function ∆ : X × Y → R defined as:

∆(z) = max
z̃=(x̃,ỹ)∈X×Y

g(z)− g(z̃)︸ ︷︷ ︸
jointly convex coupling

+h(x, ỹ)− h(x̃,y)︸ ︷︷ ︸
convex-concave zero-sum

, for all z = (x,y) ∈ X × Y .

This potential function decomposes into a jointly convex coupling part and a convex-concave zero-
sum part. We show below in Propositions 3 and 4 that minimizing this potential function ∆(·) is
sufficient for finding a Nash equilibrium (with detailed proofs in Section D.1):

Proposition 3. For any z = (x,y) ∈ X × Y , we have ∆(z) ≥ 0 and

2∆(z) ≥ max
z̃=(x̃,ỹ)∈X×Y

u1(x̃,y)− u1(x,y) + u2(x, ỹ)− u2(x,y) .

Proposition 4. Let z∗ ∈ X × Y . In monotone games, z∗ is the Nash equilibrium iff ∆(z∗) = 0.

1In 0-near-zero-sum game, let Player 1 maximize a⊤
1 x + b⊤

1 y − h(x,y) and Player 2 maximize a⊤
2 x +

b⊤
2 y + h(x,y), respectively. The Nash equilibrium in the above game is the same as that in the following

zero-sum game: Player 1 maximizes a⊤
1 x−b⊤

2 y− h(x,y) and Player 2 maximizes −a⊤
1 x+b⊤

2 y+ h(x,y).
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Algorithm 1 Iterative Coupling Linearization (ICL)
Require: z0 = (x0,y0) ∈ X × Y .

1: for t = 0, 1, · · · , T − 1 do
2: Let φt(x,y)

def
=

⟨∇xg(xt,yt),x⟩+
1

2ηt
∥x− xt∥2 + h(x,y)− ⟨∇yg(xt,yt),y⟩ −

1

2ηt
∥y − yt∥2 . (1)

3: Find an inexact solution zt+1 = (xt+1,yt+1) ∈ X × Y to minx∈X maxy∈Y φt(x,y) such that

⟨∇xφt(zt+1),xt+1 − x⟩ − ⟨∇yφt(zt+1),yt+1 − y⟩ ≤ εt, for all x ∈ X, y ∈ Y . (2)

4: end for

Algorithm description Our ICL algorithm solves the strongly monotone near-zero-sum game by
iteratively linearizing the coupling part, thereby transforming the non-zero-sum game into a sequence
of strongly monotone zero-sum subproblems. The pseudocode is presented in Algorithm 1.

Specifically, at every iteration t, we linearize the coupling part in the potential function at zt:

min
z∈X×Y

∆(z)⇝ min
z∈X×Y

max
z̃∈X×Y

⟨∇g(zt), z− z̃⟩+ 1

2ηt

(
∥z− zt∥2 − ∥z̃− zt∥2

)
+h(x, ỹ)−h(x̃,y),

and note that this minimax optimization can be fully decomposed into two separate problems:

min
x∈X

max
ỹ∈Y

⟨∇g(zt), (x,−ỹ)⟩+ h(x, ỹ) +
1

2ηt

(
∥x− xt∥2 − ∥ỹ − yt∥2

)
= φt(x, ỹ), and

min
y∈Y

max
x̃∈X

⟨∇g(zt), (−x̃,y)⟩ − h(x̃,y) +
1

2ηt

(
−∥x̃− xt∥2 + ∥y − yt∥2

)
= −φt(x̃,y).

Moreover, by Sion’s minimax theorem (Sion, 1958), (after simple substitutions) these two separate
problems unify into a single saddle point problem of minx∈X maxy∈Y φt(x,y), where φt is defined
in Equation (1). The update zt+1 = (xt+1,yt+1) is then computed by inexactly solving this unified
saddle point problem, where the inexactness condition is specified in Equation (2). Our algorithm,
thus, provides a clean and black-box reduction from near-zero-sum games to zero-sum games.

3.2 CONVERGENCE ANALYSIS

Throughout Section 3.2, let z∗ = (x∗,y∗) be the (unique) Nash equilibrium for the game. We only
present the main proof ideas in this section, and the detailed proofs can be found in Section D.2.
The core of our convergence analysis is to use the properties of the potential function and derive the
following descent lemma, based on which we have the outer loop convergence.
Lemma 5 (Descent lemma). In monotone δ-near-zero-sum games, for ηt ≤ 1

δ , Algorithm 1 ensures(
1

2ηt
+

min{µ, ν}
2

)
∥zt+1 − z∗∥2 ≤ 1

2ηt
∥zt − z∗∥2 + εt .

Lemma 6 (Outer loop convergence). Let ηt = η ∈ (0, 1δ ], for all t ∈ [0, T − 1] ∩ Z. Denote
θ = min{µ,ν}

η−1+min{µ,ν} . Let εt ≤ θε
4η , for all t ∈ [0, T − 1] ∩ Z. For strongly monotone δ-near-zero-sum

games, if the outer loop iterate t ≥ 1
θ log

2D2

ε , then Algorithm 1 converges to an ε-accurate Nash
equilibrium, that is, ∥zt − z∗∥2 ≤ ε.

For the inner loop, any optimal gradient method for zero-sum games can be used:
Lemma 7 (Inner loop complexity (Kovalev & Gasnikov, 2022; Carmon et al., 2022; Thekumparampil
et al., 2022; Lan & Li, 2023)). Under Assumption 1 with modulus µ, ν > 0, at each iteration
t ∈ [0, T − 1] ∩ Z, for ηt ≥ 1

L , the inexact solution (xt+1,yt+1) in Equation (2) of Algorithm 1 can

be found with the number of gradient queries bounded by O

(
L√

(η−1
t +µ)(η−1

t +ν)
· log

(
LD2

εt

))
.
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Combining the outer loop convergence result (Lemma 6) with the inner loop complexity (Lemma 7),
we obtain the main theoretical result of this paper, the overall gradient complexity of Algorithm 1.

Theorem 1 (Main theoretical result). Denote η = min
{

1
δ ,

1
min{µ,ν}

}
and θ = min{µ,ν}

η−1+min{µ,ν} . Let

ηt = η and εt = θε
4η , for all t ∈ [0, T − 1] ∩ Z. For strongly monotone δ-near-zero-sum games, for

T ≥ 1
θ log

2D2

ε , the outer loop iterates of Algorithm 1 converge to an ε-accurate Nash equilibrium
with the number of gradient queries bounded by

O

((
L

√
µν

+
L

min{µ, ν}
·min

{
1,

√
δ

µ+ ν

})
· log

(
LD2

min{µ, ν} · ε

)
log

(
D2

ε

))
.

Finally, we highlight the conditions under which Algorithm 1 achieves a faster convergence rate
compared to variational inequality methods (Tseng, 1995).
REMARK 1 (Acceleration in strongly monotone near-zero-sum games). Consider strongly monotone
near-zero-sum games where min{µ, ν}+δ = o (max{µ, ν}). The gradient complexity of Algorithm 1

is Õ
((

L√
µν + L

min{µ,ν} ·
√

δ
µ+ν

)
· log2

(
D2

ε

))
,2 which (ignoring logarithms) improves upon the

O
(

L
min{µ,ν} · log

(
D2

ε

))
rate of variational inequality methods as stated in Proposition 1. We

also remark that for the special case of zero-sum games (δ = 0), our rate recovers the optimal
O
(

L√
µν · log

(
D2

ε

))
rate as stated in Proposition 2 up to a logarithm term.

3.3 ACCELERATION IN NON-STRONGLY MONOTONE NEAR-ZERO-SUM GAMES

We first state the known results for non-strongly monotone games in literature.
Proposition 8 (Nemirovski (2004)). In monotone general-sum games where µ = 0 or ν = 0, an
ε-approximate Nash equilibrium can be found within O

(
LD2

ε

)
gradient queries.

Then, we provide our result, which is obtained by a similar reduction as in Lin et al. (2020); Wang &
Li (2020); Thekumparampil et al. (2022). The proof can be found in Section D.3.
Corollary 9. In monotone δ-near-zero-sum games with modulus µ and ν:

(a) For µ > 0 and ν = 0, an ε-approximate Nash equilibrium can be obtained within
Õ
((

LDY√
µε +

LD2
Y

ε ·min
{
1,
√

δ
µ

})
· log2

(
LD2

ε

))
gradient queries;

(b) For µ = 0 and ν > 0, an ε-approximate Nash equilibrium can be obtained within

Õ
((

LDX√
νε

+
LD2

X

ε ·min

{
1,
√

δ
ν

})
· log2

(
LD2

ε

))
gradient queries; and

(c) For µ = 0 and ν = 0, an ε-approximate Nash equilibrium can be obtained within
Õ
((

LDXDY

ε + LD2

ε ·min
{
1,
√

δ
ε/D2

X+ε/D2
Y

})
· log2

(
LD2

ε

))
gradient queries.

REMARK 2 (Acceleration in non-strongly monotone near-zero-sum games). For non-strongly
monotone general-sum games, our rate of finding an ε-approximate Nash equilibrium (ignoring
logarithms) is faster than the O

(
LD2

ε

)
rate in literature: (a) when δ = o(µ) and ν = 0; (b) when

µ = 0 and δ = o(ν); or (c) when µ = ν = 0 and ε/D2 + δ = o (ε/D2
X + ε/D2

Y ). We also remark
that for the special case of zero-sum games (δ = 0), our rates recover the optimal rates of Lin et al.
(2020); Wang & Li (2020) up to logarithm terms.

Technical novelty Our technical contributions include a novel coupling linearization technique and
the derivation of a descent lemma (Lemma 5). These elements combine to form a clean, general,
and powerful black-box reduction. This reduction’s key advantage is its ability to solve monotone
non-zero-sum problems by treating any off-the-shelf zero-sum algorithm as an oracle. Moreover, the
inherent black-box nature of our method also allows for deriving complexity results for other oracle
settings. For instance, we present some additional results with proximal oracles in Section E.

2In the Õ(·) notations, the poly-logarithm terms are omitted.
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4 APPLICATION EXAMPLES

In this section, we present practical examples of monotone near-zero-sum games. We focus on the
application of our approach, while the proof details are presented in Section D.4.

4.1 OUR APPROACH FOR REGULARIZED MATRIX GAMES

Regularized matrix games We demonstrate the applicability of Iterative Coupling Linearization to
regularized matrix games. Let X ⊆ Rn and Y ⊆ Rm be compact convex sets, and let A,B ∈ Rm×n

with ∥A∥ ≤ L, ∥B∥ ≤ L, and
∥∥A+B

2

∥∥ ≤ β. Let R : X × Y → R be an L-smooth regularizer that
is µ-strongly concave-ν-strongly convex. Let Player 1 maximize

u1(x,y) = ⟨Ax,y⟩+R(x,y)

over x ∈ X and Player 2 maximize
u2(x,y) = ⟨Bx,y⟩ − R(x,y)

over y ∈ Y . Assume that β ≤ 1
2

√
µν, then the game is min{µ2 ,

ν
2}-strongly monotone, so classic

variational inequality methods yield an ε-accurate Nash equilibrium within O
(

L
min{µ,ν} · log

(
D2

ε

))
gradient queries (Tseng, 1995).

Now, we show that our ICL algorithm can be applied to get a faster rate by leveraging the near-zero-
sum structure. Since − 1

2 (u1 + u2)(·, ·) is not jointly convex, violating Assumption 2, we first apply
a “convex reformulation” technique.

Convex reformulation technique Specifically, we choose the parameters β1 and β2 based on the
relationship between 2β, µ, and ν: (i) If 2β ≤ µ and 2β ≤ ν, let β1 = β2 = β; (ii) if µ ≤ 2β ≤ ν,
let β1 = µ

2 and β2 = 2β2

µ ; and (iii) if ν ≤ 2β ≤ µ, let β1 = 2β2

ν and β2 = ν
2 . With these choices,

we always have β1 ≤ µ
2 , β2 ≤ ν

2 , and
√
β1β2 = β.

We then reformulate the problem as follows: Player 1 maximizes ũ1(x,y) = u1(x,y) − β2 ∥y∥2

over x ∈ X , and Player 2 maximizes ũ2(x,y) = u2(x,y)−β1 ∥x∥2 over y ∈ Y . This reformulated
NEP has the same Nash equilibrium as the original. Let

g̃(x,y) = −
〈(

A+B

2

)
x,y

〉
+

(
β1
2

∥x∥2 + β2
2

∥y∥2
)

and

h̃(x,y) = −
〈(

A−B

2

)
x,y

〉
−
(
R(x,y) +

β1
2

∥x∥2 − β2
2

∥y∥2
)
.

Then, ũ1 = −g̃ − h̃ and ũ2 = −g̃ + h̃. Since β ≤ 1
2

√
µν, by Cauchy-Schwartz inequality, g̃(·, ·) is

jointly convex. Further, by the choices of β1 and β2, we have g̃(·, ·) is (β +max{β1, β2})-smooth,
and h̃(·, ·) is µ

2 -strongly convex-ν2 -strongly concave.

Our approach applied to reformulated games Now applying Algorithm 1 to the reformulated
NEP, by Theorem 1, we obtain an ε-accurate Nash equilibrium with the number of gradient queries
bounded by

Õ
((

L
√
µν

+
L

min{µ, ν}
· β
√
µν

)
· log2

(
D2

ε

))
.

When min{µ, ν} + β = o
(
1
2

√
µν
)
, this rate surpasses the best-known O

(
L

min{µ,ν} · log
(
D2

ε

))
gradient complexity of variational inequality methods (Tseng, 1995). This acceleration leveraging the
near-zero-sum structure seems to be a new result even in the well-studied context of matrix games.
EXAMPLE 1 (Matrix games with transaction fees). Consider regularized matrix games with
transaction fees. Let X = Pn

def
=

{
x ∈ Rn≥0 | x1 + · · ·+ xn = 1

}
and Y = Pm

def
={

y ∈ Rm≥0 | y1 + · · ·+ ym = 1
}

. Let M ∈ Rm×n be the payoff matrix of Player 1 without trans-
action fee, with −M as the payoff matrix of Player 2 without transaction fee. Assume ∥M∥ ≤ L.

Denote M+
def
= 1

2 (M+ abs (M)) and M−
def
= 1

2 (−M+ abs (M)).3

3abs (M) represents a matrix of the same dimensions as M where each element is the absolute value of the
corresponding element in M. A simple illustration is given in Section F.
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Now, suppose there is a transaction fee of ρ ∈ [0, 1] charged by some third party on every payment.
Then, the payoff matrices of Player 1 and Player 2 with transaction fees are

A = (1− ρ)M+ −M− and B = −M+ + (1− ρ)M− .

Let R : X × Y → R be an L-smooth regularizer that is µ-strongly concave-ν-strongly convex.
Assume that ρ ∥abs (M)∥ = o

(√
µν
)
.

Let Player 1 maximize u1(x,y) = ⟨Ax,y⟩ + R(x,y) over x ∈ X , and Player 2 maximize
u2(x,y) = ⟨Bx,y⟩−R(x,y) over y ∈ Y . Applying the convex reformulation and then Algorithm 1,
we obtain an ε-accurate Nash equilibrium with the number of gradient queries bounded by

Õ
((

L
√
µν

+
L

min{µ, ν}
· ρ ∥abs (M)∥

√
µν

)
· log2

(
D2

ε

))
.

4.2 OUR APPROACH FOR COMPETITIVE GAMES WITH SMALL ADDITIONAL INCENTIVES

We show the applicability of Iterative Coupling Linearization to competitive games with small addi-
tional incentives. Let X and Y be compact convex sets in Euclidean spaces. Let h : X × Y → R be
the competition payoff function, which is L-smooth and µ-strongly convex-ν-strongly concave. Let
g : X × Y → R be the additional incentive function, which is β-smooth with β ≤ L. Let Player 1
maximize u1 = −g − h over x ∈ X , and Player 2 maximize u2 = −g + h over y ∈ Y .

We explore two scenarios where the games are min{µ2 ,
ν
2}-strongly monotone, to which our ICL

algorithm as well as the classic variational inequalities (Tseng, 1995) can be applied:

1. If g(·, ·) is jointly convex and β = o (max{µ, ν}), applying Algorithm 1 directly yields an
ε-accurate Nash equilibrium with the number of gradient queries bounded by

Õ

((
L

√
µν

+
L

min{µ, ν}
·

√
β

µ+ ν

)
· log2

(
D2

ε

))
.

2. If β = o
(
1
2 min{µ, ν}

)
, we first apply the “convex reformulation” technique. We reformulate the

problem as follows: Player 1 maximizes ũ1(x,y) = u1(x,y)− β ∥y∥2 over x ∈ X , and Player 2
maximizes ũ2(x,y) = u2(x,y) − β ∥x∥2 over y ∈ Y . This reformulated NEP has the same
Nash equilibrium as the original. Let g̃ = − 1

2 (ũ1 + ũ2) and h̃ = 1
2 (−ũ1 + ũ2) . Then, h̃(·, ·) is

µ
2 -strongly convex-ν2 -strongly concave, and g̃(·, ·) is jointly convex and 2β-smooth.
Applying Algorithm 1 to the reformulated NEP, we obtain an ε-accurate Nash equilibrium with
the number of gradient queries bounded by

Õ
(

L
√
µν

· log2
(
D2

ε

))
.

In both scenarios 1 and 2, our gradient queries are fewer than the O
(

L
min{µ,ν} · log

(
D2

ε

))
gradient

queries of the classic variational inequality methods (Tseng, 1995).
EXAMPLE 2 (Competitive games with small cooperation incentives). Consider the games where
cooperation coexists with competition. Let X ⊆ Xa ×Xb and Y ⊆ Ya × Yb be compact convex sets
in Euclidean spaces. For x = (xa,xb) ∈ X , xa ∈ Xa represents Player 1’s effort in cooperation,
and xb ∈ Xb represents Player 1’s effort in competition (and similarly for y = (ya,yb) ∈ Y ). Let
fa : Xa × Ya → R be the cooperation incentive function given by

fa(xa,ya) = R1(xa) + g̃(xa,ya) +R2(ya) ,

where the regularizer R1 : Xa → R is µ-strongly convex and L-smooth, the function g̃ : Xa×Ya → R
is jointly convex and β-smooth, and the regularizer R2 : Ya → R is ν-strongly convex and L-smooth.
Let fb : Xb × Yb → R be the competition payoff function, which is L-smooth and µ-strongly convex-
ν-strongly concave. Assume that β = o (max{µ, ν}).
Let Player 1 maximize u1(x,y) = −fa(xa,ya) − fb(xb,yb) over x ∈ X , and Player 2 maximize
u2(x,y) = −fa(xa,ya) + fb(xb,yb) over y ∈ Y . Denoting h̃(x,y) = R1(xa) + fb(xb,yb) −

8
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R2(ya), the NEP can be reformulated as Player 1 maximizing ũ1(x,y) = −g̃(xa,ya) − h̃(x,y)

over x ∈ X , and Player 2 maximizing ũ2(x,y) = −g̃(xa,ya) + h̃(x,y) over y ∈ Y . Applying
Algorithm 1 as detailed above, we obtain an ε-accurate Nash equilibrium with the number of gradient
queries bounded by

Õ

((
L

√
µν

+
L

min{µ, ν}
·

√
β

µ+ ν

)
· log2

(
D2

ε

))
.

As a final remark, the modeling of the coexistence of competition and cooperation has been well-
researched (for instance, see the studies of Nash (1950; 1953); Selten (1960); Raiffa (1952); Kalai &
Rosenthal (1978); Kalai & Kalai (2013); Halpern & Rong (2013) on semi-cooperative games). Indeed,
these theories are often applied to the scenarios where cooperation dominates, and optimization
techniques have been used to accelerate the dominant cooperation part (Chen et al., 2017). Our
work contributes to this line of research on semi-cooperative games where competition dominates,
yet there is a small cooperation incentive.

5 BASIC NUMERICAL EXPERIMENTS

We conducted numerical experiments to validate our theoretical results, focusing on matrix games
with transaction fees as in Example 1. We set n = m = 10000, µ = 10−4, ν = 1, and ε = 10−7. A
sparse, random matrix M ∈ Rm×n such that ∥M∥ = 1 was generated. The regularizer was defined as
R(x,y) = −µ

2 ∥x∥2 + ν
2 ∥y∥

2. We varied the transaction fee ρ from {0.00%, 0.03%, · · · , 0.18%}.
Our implementation of ICL (Algorithm 1), detailed in Section 4.1, used the Lifted Primal-Dual
method (Thekumparampil et al., 2022) for the inner loop. We compared ICL against the Optimistic
Gradient Descent Ascent (OGDA) (Popov, 1980) and Extra-Gradient (EG) (Korpelevich, 1976)
methods for variational inequalities. More details and additional experiments are provided in
Section G, and our code is available in the supplementary material.

Table 1: Gradient query counts (in thousands) to converge to an ε-accurate Nash equilibrium under
various transaction fees. Error bars indicate 2-sigma variations across 10 independent runs.

Methods
Transaction Fee ρ

0.00% 0.03% 0.06% 0.09% 0.12% 0.15% 0.18%

ICL (Algorithm 1) 9.1± 0.0 22.6± 0.4 42.2± 0.3 65.0± 0.3 75.7± 0.3 113.7± 0.7 123.8± 0.6
OGDA (Popov, 1980) 93.9± 0.5 93.9± 0.5 93.9± 0.5 93.9± 0.5 93.9± 0.5 94.0± 0.6 94.0± 0.6

EG (Korpelevich, 1976) 132.9± 0.8 132.9± 0.8 132.9± 0.8 132.9± 0.8 132.9± 0.8 132.9± 0.8 132.9± 0.8

The results, summarized in Table 1, demonstrate that ICL requires fewer gradient queries to converge
to an ε-accurate Nash equilibrium when the transaction fee ρ ≤ 0.12%. This empirical observation
aligns with our theoretical prediction in Example 1, which suggests that ICL converges faster when
ρ ∥abs (M)∥ ≪ √

µν = 1%.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this work we consider the class of monotone games and present a condition that naturally inter-
polates between the zero-sum and a non-zero-sum class. We develop an efficient gradient-based
approach and show its applicability with several examples motivated from the literature.

There are some limitations of our work: (a) in our complexity there is a log2(D
2

ε ) dependency rather
than a single logarithm dependency, and whether this double logarithm dependency can be removed
is an interesting question; and (b) whether lower-bound results can be obtained for the new class also
remains an open question.

In addition to the above two theoretical limitations, there are several other interesting directions as
well: for example, (a) exploring other applications of regularized matrix games with near-zero-sum
payoff matrices is an interesting direction; and (b) in the research of semi-cooperative games where
competition dominates, applying our methods in more practical examples is another fruitful direction
for future research.
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A RELATED WORK

We discuss other classes of games in the literature that bridge the gap between zero-sum and general-
sum games.

Near network zero-sum games Near network zero-sum games (Hussain et al., 2023) define a class of
games that is close to network zero-sum games in terms of maximum pairwise difference (Candogan
et al., 2013; Hussain et al., 2023). Limited to the setting of two-person games, monotone near-zero-
sum games considered in this paper differ in three aspects: (i) The utility functions in this paper can
be general functions, rather than bilinear functions; (ii) the difference between near-zero-sum games
and zero-sum games in this paper is characterized by (higher-order) smoothness parameter, rather
than by function values; and (iii) the solution of near network zero-sum games is taken directly from
the zero-sum case, which only guarantees convergence to a neighborhood of the Nash equilibrium.

Rank-k games In the setting of matrix games, one of the most significant attempts on bridging the
gap between zero-sum and non-zero-sum games is the class of Rank-k games introduced in Kannan
& Theobald (2010). As a generalization of zero-sum matrix games, Kannan & Theobald (2010)
study matrix games where rank(A +B) = k, where A and B are the payoff matrices of the two
players. To find an approximate Nash equilibrium, an FPTAS exists when k is small (Kannan &
Theobald, 2010); to find an exact Nash equilibrium, Rank-1 games can be solved in polynomial
time (Adsul et al., 2021), while Rank-3 games are already PPAD-hard (Mehta, 2018). It is crucial
to emphasize that monotone near-zero-sum games, as considered in this paper, are fundamentally
distinct from Rank-k games. Specifically: (i) The utility functions in this paper can be general
functions, rather than bilinear functions; (ii) matrix games can be sufficiently near-zero-sum but still
have full rank; and (iii) the focus of this paper is on gradient-based algorithms and complexity within
the Nemirovsky-Yudin optimization model (Nemirovsky & Yudin, 1983), while the study of Rank-k
games focuses on algorithms and complexity on Turing machines.

B RELATIONS TO APPROXIMATE NASH EQUILIBRIUM

Indeed, an approximate Nash equilibrium can be obtained from an accurate Nash equilibrium (Ne-
mirovski, 2004). Below, we include this result for self-consistency.

Proposition 10 (Nemirovski (2004)). In a monotone general-sum game, let z∗ = (x∗,y∗) be the
Nash equilibrium. Let z̄ = (x̄, ȳ) ∈ X × Y and γ ∈ (0, 1√

2L
]. We have

max
x∈X, y∈Y

u1(x, ŷ)− u1(x̂, ŷ) + u2(x̂,y)− u2(x̂, ŷ)

≤ max
x∈X, y∈Y

⟨F(x̂, ŷ), (x̂, ŷ)− (x,y)⟩

≤ 2

γ

√
D2
X +D2

Y ∥z̄− z∗∥ ,

where x̂
def
= ΠX (x̄+ γ∇xu1(x̄, ȳ)) and ŷ

def
= ΠY (ȳ + γ∇yu2(x̄, ȳ)).4

Proof. Denote x+
def
= ΠX (x̄+ γ∇xu1(x̂, ŷ)), y+

def
= ΠY (ȳ + γ∇yu2(x̂, ŷ)), and z+

def
= (x+,y+).

Consider any x̃ ∈ X and ỹ ∈ Y . By the assignment of x̂, we have

⟨∇xu1(x̄, ȳ), x̂⟩ −
1

2γ
∥x̂− x̄∥2 ≥ ⟨∇xu1(x̄, ȳ),x+⟩ −

1

2γ
∥x+ − x̄∥2 + 1

2γ
∥x+ − x̂∥2 . (3)

By the assignment of x+, we have

⟨∇xu1(x̂, ŷ),x+⟩ −
1

2γ
∥x+ − x̄∥2 ≥ ⟨∇xu1(x̂, ŷ), x̃⟩ −

1

2γ
∥x̄− x̃∥2 + 1

2γ
∥x+ − x̃∥2 . (4)

4In a Euclidean space Q, for a non-empty, closed, and convex set Q ⊆ Q and a vertex u ∈ Q, let ΠQ(u)

denote the projection of u onto Q, that is, ΠQ(u)
def
= argminv∈Q ∥u− v∥ .
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In view of
⟨∇xu1(x̂, ŷ), x̃− x̂⟩

= ⟨∇xu1(x̂, ŷ),x+ − x̂⟩+ ⟨∇xu1(x̂, ŷ), x̃− x+⟩
(4)

≤ ⟨∇xu1(x̂, ŷ),x+ − x̂⟩ − 1

2γ
∥x+ − x̄∥2 + 1

2γ
∥x̄− x̃∥2 − 1

2γ
∥x+ − x̃∥2

= ⟨∇xu1(x̂, ŷ)−∇xu1(x̄, ȳ),x+ − x̂⟩+ ⟨∇xu1(x̄, ȳ),x+ − x̂⟩ − 1

2γ
∥x+ − x̄∥2

+
1

2γ
∥x̄− x̃∥2 − 1

2γ
∥x+ − x̃∥2

(3)

≤ ⟨∇xu1(x̂, ŷ)−∇xu1(x̄, ȳ),x+ − x̂⟩ − 1

2γ
∥x̂− x̄∥2 − 1

2γ
∥x+ − x̂∥2

+
1

2γ
∥x̄− x̃∥2 − 1

2γ
∥x+ − x̃∥2

≤ L ∥(x̂, ŷ)− z̄∥ · ∥x+ − x̂∥ − 1

2γ
∥x̂− x̄∥2 − 1

2γ
∥x+ − x̂∥2

+
1

2γ
∥x̄− x̃∥2 − 1

2γ
∥x+ − x̃∥2

≤ L

2
√
2
∥(x̂, ŷ)− z̄∥2 − 1

2γ
∥x̂− x̄∥2 + 1

2γ
∥x̄− x̃∥2 − 1

2γ
∥x+ − x̃∥2

(5)

(where we have used γ ≤ 1√
2L

in the last inequality), and similarly,

⟨∇yu2(x̂, ŷ), ỹ − ŷ⟩ ≤ L

2
√
2
∥(x̂, ŷ)− z̄∥2− 1

2γ
∥ŷ − ȳ∥2+ 1

2γ
∥ȳ − ỹ∥2− 1

2γ
∥y+ − ỹ∥2 , (6)

we have
⟨F(x̂, ŷ), (x̂, ŷ)− (x̃, ỹ)⟩

(5)(6)
= (

L√
2
− 1

2γ
) ∥(x̂, ŷ)− z̄∥2 + 1

2γ
∥z̄− (x̃, ỹ)∥2 − 1

2γ
∥z+ − (x̃, ỹ)∥2

≤ 1

2γ
∥z̄− (x̃, ỹ)∥2 − 1

2γ
∥z+ − (x̃, ỹ)∥2 ,

(7)

where we have used γ ≤ 1√
2L

in the last inequality.

Taking (x̃, ỹ) := (x∗,y∗) in Equation (7) for the moment, we get

∥z+ − z∗∥2
(7)

≤ ∥z̄− z∗∥2 − 2γ ⟨F(x̂, ŷ), (x̂, ŷ)− z∗⟩ ≤ ∥z̄− z∗∥2 . (8)

Finally, in view of
⟨F(x̂, ŷ), (x̂, ŷ)− (x̃, ỹ)⟩

(7)

≤ 1

2γ
∥z̄− (x̃, ỹ)∥2 − 1

2γ
∥z+ − (x̃, ỹ)∥2

=
1

2γ

(
∥x̄− x̃∥2 − ∥x+ − x̃∥2 + ∥ȳ − ỹ∥2 − ∥y+ − ỹ∥2

)
≤ 1

2γ
(∥x̄− x̃+ x+ − x̃∥ · ∥x̄− x+∥+ ∥ȳ − ỹ + y+ − ỹ∥ · ∥ȳ − y+∥)

≤ 1

γ
(DX ∥x̄− x+∥+DY ∥ȳ − y+∥)

≤ 1

γ

√
D2
X +D2

Y ·
√
∥x̄− x+∥2 + ∥ȳ − y+∥2

≤ 1

γ

√
D2
X +D2

Y ·
√
2 ∥z̄− z∗∥2 + 2 ∥z+ − z∗∥2

(8)

≤ 2

γ

√
D2
X +D2

Y · ∥z̄− z∗∥ ,

(9)
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we have

u1(x̃, x̂)− u1(x̂, ŷ) + u2(x̂, ỹ)− u2(x̂, ŷ) ≤ ⟨F(x̂, ŷ), (x̂, ŷ)− (x̃, ỹ)⟩
(9)

≤ 2

γ

√
D2
X +D2

Y · ∥z̄− z∗∥ ,

and the desired bound follows because x̃ and ỹ can take arbitrary points inX and Y , respectively.

We also state the following sufficient condition for the accurate Nash equilibrium, which can be used
as stopping criterion for the optimization algorithms. Similar results can be found, for instance, in
Nemirovski (2004); Yang et al. (2020).

Proposition 11 (Stopping criterion Nemirovski (2004); Yang et al. (2020)). In a monotone general-
sum game, let z∗ = (x∗,y∗) be the Nash equilibrium. Let z̄ = (x̄, ȳ) ∈ X × Y , γ ∈ (0, 1

2L ], and
µ = min{µ, ν}. We have

∥z̄− z∗∥2 ≤
(

4

µ2γ2
− 2

µγ
+ 16

)
∥z+ − z̄∥2 ,

where z+ = ΠZ (z̄− γF(ẑ)), in which ẑ = ΠZ (z̄− γF(z̄)).

Proof. We have

(1− µγ

2
) ∥z̄− z∗∥2 −

(
2

µγ
− 1

)
∥z+ − z̄∥2

≤ ∥z+ − z∗∥2

(7)

≤ ∥z̄− z∗∥2 − 2γ ⟨F(ẑ), ẑ− z∗⟩
≤ ∥z̄− z∗∥2 − 2γ ⟨F(ẑ)−F(z∗), ẑ− z∗⟩
≤ ∥z̄− z∗∥2 − 2µγ ∥ẑ− z∗∥2

≤ ∥z̄− z∗∥2 − µγ ∥z̄− z∗∥2 + 2µγ ∥ẑ− z̄∥2

= (1− µγ) ∥z̄− z∗∥2 − 2µγ ∥ẑ− z̄∥2 + 4µγ ∥ẑ− z̄∥2

≤ (1− µγ) ∥z̄− z∗∥2 − 2µγ ∥ẑ− z̄∥2 + 8µγ ∥z+ − z̄∥2 + 8µγ ∥z+ − ẑ∥2

≤ (1− µγ) ∥z̄− z∗∥2 − 2µγ ∥ẑ− z̄∥2 + 8µγ ∥z+ − z̄∥2 + 8µγ ∥z̄− γF(ẑ)− z̄− γF(z̄)∥2

≤ (1− µγ) ∥z̄− z∗∥2 − 2µγ ∥ẑ− z̄∥2 + 8µγ ∥z+ − z̄∥2 + 8µL2γ3 ∥ẑ− z̄∥2

≤ (1− µγ) ∥z̄− z∗∥2 + 8µγ ∥z+ − z̄∥2 ,

where in the second to last inequality we use γ ≤ 1
2L . Finally, the desired bound follows from

rearrangement.

C DISCUSSIONS ON SMOOTHING TECHNIQUES

In this section, we present the intuition of most existing algorithms for convex-concave minimax
optimization considering general conditioning, and explain why similar idea may not work directly
when generalized to monotone near-zero-sum games.

Most of existing algorithms for minimax optimization with general conditioning are based on some
smoothing techniques (Nesterov, 2005). In minimax optimization, we have u1 + u2 = 0. Assume
without loss of generality that µ ≤ ν. The function f(x) def

= −u1(x,y(x)) is µ-strongly convex
over x ∈ X , in which y(x)

def
= argmaxy∈Y u2(x,y). At the core of these algorithms, they build a

function f̂t and get an inexact solution x̂t+1 at each iteration t:

x̂t+1 ≈ argmin
x∈X

[
f̂t(x)

def
= f(x) +

ν

2
∥x− x̂t∥2

]
. (10)
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The outer loop is an inexact accelerated proximal point algorithm with Õ
(√

ν
µ · log

(
1
ε

))
it-

erations (Nesterov, 2005; Lin et al., 2018; Carmon et al., 2022), and the inner loop of solv-
ing the smoothed Equation (10) can be any method with the number of gradient queries
Õ
(
L
ν · log

(
1
ε

))
(Tseng, 1995). So, the total gradient complexity is5

Õ
(√

ν

µ
· log

(
1

ε

))
· Õ
(
L

ν
· log

(
1

ε

))
= Õ

(
L

√
µν

· log2
(
1

ε

))
.

However, if we try to apply the above smoothing techniques to monotone non-zero-sum games, the
algorithm may only converge to a Stackelberg solution, which can be very different from the Nash
equilibrium in non-zero-sum games.

EXAMPLE 3 (Stackelberg solution). Consider the case where X = [0, 1] × [1, 2] ⊆ R2 and
Y = [−1, 0] ⊆ R. Let Player 1 maximize

u1(x, y) = −1

2
(x1 − 1)2 − 1

2
(x2 − 1)2 +

1

2
x1y

over x ∈ X , and Player 2 maximize

u2(x, y) =
1

2
x2y − (y + 1)2

over y ∈ Y . Then, the minimization of f(x) = −u1(x, y(x)) will lead to the Stackelberg solution
(x =

(
40
63 ,

68
63

)
, y = − 46

63 ), which is different from the Nash equilibrium (x =
(
5
8 , 1
)
, y = − 3

4 ).

Therefore, we are not aware of how the smoothing techniques for convex-concave minimax optimiza-
tion can be applied in NEPs for non-zero-sum games.

D PROOF DETAILS

D.1 PROOFS FOR THE RESULTS IN SECTION 3.1

Proof of Proposition 3. For any z = (x,y) ∈ X × Y ,

∆(z) ≥ g(z)− g(z) + h(x,y)− h(x,y) = 0 ,

and for all z̃ = (x̃, ỹ) ∈ X × Y , we have

∆(z) ≥ 1

2
[g(z)− g(x, ỹ) + h(x, ỹ)− h(x,y)] +

1

2
[g(z)− g(x̃,y) + h(x,y)− h(x̃,y)]

=
1

2
[2g(z) + u2(x, ỹ) + u1(x̃,y)]

=
1

2
[u1(x̃,y)− u1(x,y) + u2(x, ỹ)− u2(x,y)] .

Proof of Proposition 4. The (if) part follows directly from Proposition 3. Now we prove the (only if)
part. Suppose z∗ = (x∗,y∗) is the Nash equilibrium. For all z̃ = (x̃, ỹ) ∈ X × Y ,

g(z∗)− g(z̃) + h(x∗, ỹ)− h(x̃,y∗) ≤ ⟨∇g(z∗), z∗ − z̃⟩+ ⟨H(z∗), z∗ − z̃⟩ ≤ 0 ,

where in the first inequality we use Assumptions 1 and 2. Then, we have ∆(z∗) = 0.

5The double logarithm term may be avoided by combining this algorithmic idea with some complicated
techniques (Kovalev & Gasnikov, 2022; Carmon et al., 2022), which we omit here for the simplicity of
presentation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 PROOFS FOR THE RESULTS IN SECTION 3.2

The main technical work in the convergence analysis is to use the properties of our potential function
and prove the descent lemma (Lemma 5).

Proof of Lemma 5. By Assumption 1, we can upper bound the convex-concave zero-sum part

h(xt+1,y
∗)− h(x∗,yt+1) = h(xt+1,yt+1)− h(x∗,yt+1) + h(xt+1,y

∗)− h(xt+1,yt+1)

≤ ⟨∇xh(xt+1,yt+1),xt+1 − x∗⟩ − µ

2
∥xt+1 − x∗∥2

− ⟨∇yh(xt+1,yt+1),yt+1 − y∗⟩ − ν

2
∥yt+1 − y∗∥2

= ⟨H(zt+1), zt+1 − z∗⟩ − µ

2
∥xt+1 − x∗∥2 − ν

2
∥yt+1 − y∗∥2 .

(11)
By Assumptions 2 and 3, we can upper bound the jointly convex coupling part

g(zt+1)− g(z∗) = g(zt+1)− g(zt) + g(zt)− g(z∗)

≤ ⟨∇g(zt), zt+1 − zt⟩+
δ

2
∥zt+1 − zt∥2 + ⟨∇g(zt), zt − z∗⟩

= ⟨∇g(zt), zt+1 − z∗⟩+ δ

2
∥zt+1 − zt∥2 .

(12)

In view of

1

2
⟨zt+1 − zt, zt+1 − z∗⟩ = ∥zt+1 − z∗∥2 − ∥zt − z∗∥2 + ∥zt+1 − zt∥2 , (13)

and 〈
∇g(zt) +H(zt+1) +

1

ηt
(zt+1 − zt), zt+1 − z∗

〉
≤ ⟨∇xφt(zt+1),xt+1 − x∗⟩ − ⟨∇yφt(zt+1),yt+1 − y∗⟩
(2)

≤ εt ,

(14)

we have

0 = −∆(z∗) ≤ g(zt+1)− g(z∗) + h(xt+1,y
∗)− h(x∗,yt+1)

(11)(12)
≤ ⟨∇g(zt) +H(zt+1), zt+1 − z∗⟩ − µ

2
∥xt+1 − x∗∥2 − ν

2
∥yt+1 − y∗∥2 + δ

2
∥zt+1 − zt∥2

=

〈
∇g(zt) +H(zt+1) +

1

ηt
(zt+1 − zt), zt+1 − z∗

〉
− 1

ηt
⟨zt+1 − zt, zt+1 − z∗⟩

− µ

2
∥xt+1 − x∗∥2 − ν

2
∥yt+1 − y∗∥2 + δ

2
∥zt+1 − zt∥2

(13)(14)
≤ εt +

1

2ηt
∥xt − x∗∥2 −

(
1

2ηt
+
µ

2

)
∥xt+1 − x∗∥2

+
1

2ηt
∥yt − y∗∥2 −

(
1

2ηt
+
ν

2

)
∥yt+1 − y∗∥2 −

(
1

2ηt
− δ

2

)
∥zt+1 − zt∥2 ,

where the first equality follows from Proposition 4 and the first inequality follows from the definition
of ∆(·). Finally, the desired bound follows from ηt ≤ 1

δ .

With Lemma 5, we are ready to prove the complexity of the outer loop (Lemma 6).

Proof of Lemma 6. For monotone δ-nearly-zero-sum games and η ≤ 1
δ , by Lemma 5, for any

k ∈ [0, t− 1] ∩ Z, we have

∥zk+1 − z∗∥2 ≤ (1− θ) ∥zk − z∗∥2 + 2ηεk .
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Then, unrolling this recursion (from k = t− 1, t− 2, · · · , to 0) yields

∥zt − z∗∥2 ≤ (1− θ)t ∥z0 − z∗∥2 + 2η

t−1∑
k=0

(1− θ)t−k−1εk

≤ (1− θ)t(D2
X +D2

Y ) +
2η

θ
· max
k∈[0,t−1]∩Z

εk

≤ ε

2
+
ε

2
= ε ,

where the last inequality follows from t ≥ 1
θ log

2(D2
X+D2

Y )
ε and εt ≤ θε

4η .

Below, we also include the proof of the gradient complexity of the inner loops for completeness.
This result of the inner loops is heavily based on the previous results of optimal gradient methods
in minimax optimization (see, for instance, Kovalev & Gasnikov (2022); Carmon et al. (2022);
Thekumparampil et al. (2022); Lan & Li (2023)).

Proof of Lemma 7. Let z∗t+1 = (x∗
t+1,y

∗
t+1) ∈ X × Y denote the saddle point of φt(·, ·). Denote

ε̄t =
ε2t

8L2 (D2
X +D2

Y )
.

By Proposition 10, an inexact solution in Equation (2) of Algorithm 1 can be obtained from a pair of
decisions z̄t+1 = (x̄t+1, ȳt+1) ∈ X × Y that satisfies

∥∥z̄t+1 − z∗t+1

∥∥2 ≤ ε̄t.

The function φt(·, ·) is
(
η−1
t + µ

)
-strongly convex-

(
η−1
t + ν

)
-strongly concave and 2L-smooth,

where the 2L-smoothness follows from ηt ≥ 1
L . Hence, by Kovalev & Gasnikov (2022); Carmon

et al. (2022); Thekumparampil et al. (2022); Lan & Li (2023), the aforementioned pair of decisions
z̄t+1 can be found within

O

 L√(
η−1
t + µ

) (
η−1
t + ν

) · log(D2
X +D2

Y

ε̄t

)
gradient queries. Finally, after substituting the ε̄t, the desired bound follows.

Finally, we prove Theorem 1, our main theoretical result.

Proof of Theorem 1. The overall gradient complexity is given by the multiplication of outer loop
iterations (Lemma 6) and inner loop gradient complexity (Lemma 7):

O
(
η−1 +min{µ, ν}

min{µ, ν} · log 2(D2
X +D2

Y )

ε

)
· O

(
L√

(η−1 + µ) (η−1 + ν)
· log L(D2

X +D2
Y )

εt

)

= O
(
δ +min{µ, ν}
min{µ, ν} · log D2

X +D2
Y

ε

)
· O

(
L√

(δ + µ) (δ + ν)
· log

(
L(D2

X +D2
Y )

min{µ, ν} · ε

))

= O

(
L

min{µ, ν} ·

√
δ +min{µ, ν}
δ +max{µ, ν} · log

(
L
(
D2

X +D2
Y

)
min{µ, ν} · ε

)
log

(
D2

X +D2
Y

ε

))

= O

((
L

√
µν

+
L

min{µ, ν} ·min

{
1,

√
δ

µ+ ν

})
· log

(
L
(
D2

X +D2
Y

)
min{µ, ν} · ε

)
log

(
D2

X +D2
Y

ε

))
,

where the first relation follows from η = min
{

1
δ ,

1
min{µ,ν}

}
.
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D.3 PROOFS FOR THE RESULT IN SECTION 3.3

We state a more general formulation of Corollary 9.

Corollary 12. For monotone δ-near-zero-sum games where µ = 0 or ν = 0, an ε-approximate Nash
equilibrium can be found within

O

((
L√
µ̄ν̄

+
L

min{µ̄, ν̄}
·min

{
1,

√
δ

µ̄+ ν̄

})
· log

(
L2D2

min{µ̄, ν̄} · ε

)
log

(
LD2

ε

))

gradient queries, where µ̄ = µ+min
{

ε
2D2

X
, L
}

and ν̄ = ν +min
{

ε
2D2

Y
, L
}

.

Proof of Corollary 12. We consider the reduced game where Player 1 maximizes

û1 = u1 −min

{
ε

4D2
X

,
L

2

}
∥x∥2 +min

{
ε

4D2
Y

,
L

2

}
∥y∥2

over x ∈ X and Player 2 maximizes

û2 = u2 +min

{
ε

4D2
X

,
L

2

}
∥x∥2 −min

{
ε

4D2
Y

,
L

2

}
∥y∥2

over y ∈ Y . Any ε
2 -approximate Nash equilibrium of the reduced game is an ε-approximate Nash

equilibrium in the original game. This reduction is similar to the ones used in Lin et al. (2020); Wang
& Li (2020).

Denote ĝ ≜ −1
2 (û1 + û2) and ĥ ≜ 1

2 (−û1 + u2). Then, we have ĥ = h +
{

ε
4D2

X
, L2

}
∥x∥2 −{

ε
4D2

Y
, L2

}
∥y∥2, which is 2L-smooth and µ̄-strongly convex-ν̄-strongly concave. We also have

ĝ = − 1
2 (û1 + û2) = −1

2 (u1 + u2) = g, which is jointly convex and δ-smooth. By Theorem 1, we
obtain the number of gradient queries for an ε2

32L2D2 -accurate Nash equilibrium in the reduced game:

O

((
L√
µ̄ν̄

+
L

min{µ̄, ν̄}
·min

{
1,

√
δ

µ̄+ ν̄

})
· log

(
L2D2

min{µ̄, ν̄} · ε

)
log

(
LD2

ε

))
.

Finally, following from Proposition 10, we obtain the desired ε
2 -approximate Nash equilibrium of the

reduced game by taking an extragradient step from the ε2

32L2D2 -accurate Nash equilibrium.

D.4 PROOFS FOR THE RESULTS IN SECTION 4

Proposition 13 (Convex reformulation in bilinear coupling). For β1, β2 ≥ 0 and M ∈ Rm×n such
that

√
β1β2 ≥ ∥M∥, the function g̃(·, ·) : Rn × Rm → R defined as

g̃(x,y) =
β1
2

∥x∥2 + ⟨Mx,y⟩+ β2
2

∥y∥2

is jointly convex.

Proof. The quadratic function g̃(·, ·) is bounded below: for all x ∈ Rn, y ∈ Rm,

g̃(x,y) ≥ β1
2

∥x∥2 − ∥Mx∥ ∥y∥+ β2
2

∥y∥2

≥ β1
2

∥x∥2 −
√
β1β2 ∥x∥ ∥y∥+

β2
2

∥y∥2

≥ 0 ,

where in the first inequality we used the Cauchy-Schwarz inequality. Therefore, g̃(·, ·) is jointly
convex.
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Proposition 14 (Convex reformulation in general coupling). For β ≥ 0 and g : X × Y → R such
that g(·, ·) is β-smooth, the function g̃(·, ·) : X × Y → R defined as

g̃(x,y) =
β

2
∥x∥2 + g(x,y) +

β

2
∥y∥2

is jointly convex.

Proof. For all z = (x,y) ∈ X × Y and z′ = (x′,y′) ∈ X × Y , we have

⟨∇g̃(z′)−∇g̃(z), z′ − z⟩ = β ∥z′ − z∥2 + ⟨∇g(z′)−∇g(z), z′ − z⟩

≥ β ∥z′ − z∥2 − β ∥z′ − z∥2

= 0 ,

where the first inequality follows from the β-smoothness of g(·, ·). Therefore, the function g̃(·, ·) is
jointly convex (Nesterov, 2004, Theorem 2.1.3).

E ADDITIONAL RESULTS FOR OTHER ORACLE AND FUNCTION CLASSES

In this section, we consider a different class of Nash equilibrium problem and demonstrate the
applicability of our ICL framework. In Boţ et al. (2023), they considered a zero-sum (or strictly
competitive) game where the two players have proximal oracle and gradient oracle, respectively. We
now consider the generalization where an additional incentive is added. To prevent ambiguity, we
will define the problem class in a self-contained way.

In this section, we are interested in the Nash equilibrium problem, or equivalently, the variational
inequality problem given by operator F defined on X × Y :

F(x,y) = ∇g(x,y) + (∇xh(x,y),−∇yh(x,y) +∇ψ(y)) , (x,y) ∈ X × Y,

where

1. The sets X and Y are compact convex sets in Euclidean spaces. The diameter of X is bounded by
DX , and the diameter of Y is bounded by DY .

2. The function g : X × Y → R is δ-smooth and convex.
3. The function ψ : Y → R ∪ {+∞} is proper, lower semicontinuous, ν-strongly convex, and with

domain domψ = {y ∈ Y | ψ(y) < +∞}.
4. For all y ∈ domψ, the function h(·,y) : X → R ∪ {+∞} is proper, lower semicontinuous, and
µ-strongly convex.

5. For all x ∈ ΠX(domh) ≜ {u ∈ X | ∃v ∈ Y such that (u,v) ∈ domh}, we have that
domh(x, ·) = Y and the function h(x, ·) : Y → R is concave and continuously differentiable.
Moreover, ΠX(domh) is closed.

6. There exists Lyx, Lyy ≥ 0 such that for all (x, y), (x′, y′) ∈ ΠX (domh)× domψ,

∥∇yh(x,y)−∇yh(x
′,y′)∥ ≤ Lyx ∥x− x′∥+ Lyy ∥y − y′∥ .

We assume the players can query the gradient ∇g, the proximal operator of h(·,y) for any fixed
y ∈ Y , the partial gradient ∇yh(·, ·), and the proximal oracle of ψ(·). The problem studied in Boţ
et al. (2023) corresponds to a special case of the additional incentive δ = 0, while we generalize their
results to δ ̸= 0.

We will use the complexity results in Boţ et al. (2023) as a black box. We cite their results below.
Lemma 15 (Boţ et al. (2023), Theorem 14). For δ = 0 and µ > 0, there exists an algorithm which
returns an ε-accurate Nash equilibrium with the number of partial gradient queries to ∇yh(·) and
the number of proximal oracle queries to proxh(·,y)(·) and proxψ(·) bounded by

O
((

1 +
Lyx√
µν

+
Lyy
ν

)
· log

(
D2

ε

))
.

By applying our ICL algorithm (Algorithm 1), we obtain the following complexity result:
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Theorem 2. Assume h is L-smooth over ΠX (domh) × domψ, and ψ is L-smooth over domψ.
For µ > 0, there exists an algorithm which returns an ε-accurate Nash equilibrium with the number
of partial gradient queries to ∇yh(·) and the number of proximal oracle queries to proxh(·,y)(·) and
proxψ(·) bounded by

O

((
1 +

δ

min{µ, ν}

)(
1 +

Lyx√
(δ + µ) (δ + ν)

+
Lyy
δ + ν

)
· log

(
LD2

min{µ, ν} · ε

)
log

(
D2

ε

))
,

and with the number of gradient queries to ∇g(·) bounded by

O
((

1 +
δ

min{µ, ν}

)
· log

(
D2

ε

))
.

Proof. The result follows from multiplying the outer loop iterations in Lemma 6 and the inner loop
complexity in Lemma 15.

F ILLUSTRATION OF MATRIX GAMES WITH TRANSACTION FEES

We give a simple illustration for matrix games with transaction fees. Let the payoff matrices of
Player 1 and Player 2 without transaction fees be

M =

[
300 −200
−100 400

]
and −M =

[
−300 200
100 −400

]
,

respectively. Then,

abs (M) =

[
300 200
100 400

]
, M+ =

[
300 0
0 400

]
, and M− =

[
0 200

100 0

]
.

Let 1% of transaction fees be imposed on every payment. Then, the payoff matrices of Player 1 and
Player 2 with transaction fees are

A =

[
297 −200
−100 396

]
and B =

[
−300 198
99 −400

]
,

respectively. We also draw the following Table 2 for easier comparisons.

Table 2: An illustration of matrix games with transaction fee ρ = 0.01.
300/-300 -200/200
-100/100 400/-400

297/-300 -200/198
-100/99 396/-400

G MORE EXPERIMENTAL DETAILS

G.1 IMPLEMENTATION DETAILS

We generate the sparse matrix M following the procedures outlined in Nemirovski (2004); Nesterov
(2005): (i) The random seeds are set from 0, 111, 222, ..., and 999; (ii) 100000 coordinates of M are
chosen uniformly at random; (iii) each chosen coordinate is assigned a random value independently
drawn from a uniform distribution between [−1, 1]; (iv) all remaining coordinates are set to 0.

We implement our ICL method as described in Algorithm 1. The classic OGDA and classic EG
methods are implemented as outlined in Popov (1980) and Korpelevich (1976), respectively. All
solvers are initialized at (x0,y0) = (1n/n,1m/m), where 1k ∈ Rk denotes the vector of size k
where every element in the vector is equal to 1. The setup for ICL is detailed in Theorem 1. The
stepsize for OGDA is set to 1

2L following Popov (1980); Mokhtari et al. (2020), and for EG is set to
1√
2L

following Korpelevich (1976); Nemirovski (2004). For the inner loop, the Lifted Primal Dual
method (Thekumparampil et al., 2022) is used, with the theoretical setup maintained as specified in
(Thekumparampil et al., 2022, Theorem 2).
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G.2 MORE DETAILS OF THE EXPERIMENT RUNS

We conducted our experiments on e2-highcpu vCPUs within the Google Cloud environment.
The memory requirement of our experiments is quite modest, requiring only sufficient RAM for a
few 10000× 10000 sparse matrices (that is, about 60 MB). Each independent run completes within
about 3 minutes.

We plot the convergence behaviors in Figure 1. Note that for ICL, only iterates within the outer loop
are plotted. Figure 1 shows results for a single seed (seed 0), as plotting all seeds in a single figure
would introduce excessive visual complexity due to the unaligned x-axis representing the counts of
gradient queries in the outer loop. Nonetheless, we observed consistent convergence patterns across
different seeds: (i) Transaction fee changes have little impact on the convergence of OGDA and EG,
but significantly accelerate the convergence of ICL as ρ decreases; (ii) ICL converges fastest when
ρ ≤ 0.12%; and (iii) OGDA converges fastest when ρ ≥ 0.15%.

Finally, we report CPU times of experiment runs to converge to an ε-accurate Nash equilibrium in
Table 3, with error bars indicating 2-sigma variations across 10 independent runs using randomly
generated matrices. Table 3 shows that ICL achieves the shortest CPU time when ρ ≤ 0.12%, while
OGDA achieves the shortest CPU time when ρ ≥ 0.15%.

Table 3: The CPU times (in seconds) of the algorithms to converge to an ε-accurate Nash equilibrium
under various transaction fees. The error bars indicate 2-sigma variations across the independent runs
with 10 randomly generated matrices.

Methods
Transaction fee ρ

0.00% 0.03% 0.06% 0.09% 0.12% 0.15% 0.18%

ICL (Algorithm 1) 19± 0 49± 0 93± 0 142± 1 167± 0 247± 2 264± 3
OGDA (Popov, 1980) 186± 1 185± 1 185± 1 185± 0 185± 1 185± 1 186± 1

EG (Korpelevich, 1976) 258± 1 256± 2 258± 2 257± 3 257± 2 257± 2 257± 2

G.3 ADDITIONAL RUNS UNDER DIFFERENT PARAMETER SETTING

In this section, we run additional numerical experiments under different parameter setting. We change
the parameter ν = 0.01, and we vary the transaction fee δ from {0.0%, 0.3%, · · · , 1.8%}. We keep
the other parameter settings unchanged.

The results, summarized in Table 4, demonstrate that ICL requires fewer gradient queries to converge to
an ε-accurate Nash equilibrium when the transaction fee ρ is below 1.2%. This empirical observation
aligns with our theoretical prediction in Example 1, which suggests that ICL converges faster when
ρ ∥abs (M)∥ ≪ √

µν = 10%.

Table 4: Gradient query counts to converge to an ε-accurate Nash equilibrium under various trans-
action fees. Error bars indicate 2-sigma variations across the independent runs with 10 randomly
generated matrices.

Methods
Transaction fee ρ

0.0% 0.3% 0.6% 0.9% 1.2% 1.5% 1.8%

ICL (Algorithm 1) 924± 0 924± 0 824± 0 1030± 0 1236± 0 1648± 0 2060± 0
OGDA (Popov, 1980) 1364± 0 1364± 0 1364± 0 1361± 4 1359± 5 1353± 6 1350± 6

EG (Korpelevich, 1976) 1848± 0 1848± 0 1848± 0 1848± 0 1848± 0 1848± 0 1848± 0

We also observe that the CPU times in this setting are within 5 seconds for all independent runs.
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