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ABSTRACT

Denoising diffusions sample from a probability distribution 1 in R? by construct-
ing a stochastic process (&; : t > 0) in R? such that & is easy to sample, but the
distribution of &7 at large 7" approximates z. The drift m : R x R — R? of this
diffusion process is learned by minimizing a score-matching objective.

Is every probability distribution p, for which sampling is tractable, also amenable
to sampling via diffusions? We address this question by studying its relation to
information-computation gaps in statistical estimation. Earlier work in this area
constructs broad families of distributions  for which sampling is easy, but approx-
imating the drift m(y,t) is conjectured to be intractable, and provides rigorous
evidence for intractability.

We prove that this implies a failure of sampling via diffusions. First, there exist
drifts whose score matching objective is superpolynomially close to the optimum
value among polynomial time drifts and yet produce samples with distribution
that is very far from the target . Second, any polynomial-time drift that is also
Lipschitz continuous results in equally incorrect sampling.

We instantiate our results on the toy problem of sampling a sparse low-rank matrix,
and further demonstrate empirically the failure of diffusion-based sampling. Our
work implies that caution should be used in adopting diffusion sampling when
other approaches are available.

1 INTRODUCTION

1.1 BACKGROUND

Diffusion sampling (DS) (Song & Ermon, 2019; Ho et al., 2020) has emerged as a central paradigm
in generative artificial intelligence (AI). Given a target distribution ;2 on R%, we want to sample
@ ~ pu. Diffusions achieve this goal by generating trajectories of a stochastic process (&;) whose
state & at large T is approximately distributed according to x. This suggests a natural question:

Q: Are there distributions p for which sampling via diffusions fails even if sampling from  is easy?

In order to explain how DS might fail, it is useful to recall the setup and introduce some nota-
tions'. The basic DS approach implements an approximation of the following stochastic differential
equation (SDE), with initialization yo = O:

dy, = m(y; t)dt + dBy, (1
m(y,t) := E{a|te + Vig = y}, )
where (By);>0 is Brownian motion (BM) and in Eq. (2) « ~ ( is independent of g ~ N(0, I5).

It is not hard to show that, if y, is generated according to the above SDE, then there exists
x ~ p and an independent standard BM (W, );>¢ (different from (B;);>0) such that

Yy =tx+ W;. 3)

"We follow the formulation of Montanari (2023), which does not require time reversal.
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Therefore, running the diffusion (1) until some large time 7', and returning yr /T or m(yr,T)
yields a sample approximately distributed according to .

In practice, the function m is generally not accessible (cf. discussion below (6)), and is replaced
by an approximation m(y, t). We can implement an Euler discretization of the SDE (1):

Yira = Y +m(Ys, 1) A + VA2 ; 4

with A a small stepsize, and (2;)tena ~iia N(0, I;). After iterating (4) up to a large time 7', we
output &7 = m(yr,T). We refer to T as a diffusion sample.

Diffusions reduce the problem of sampling from a distribution p to that of approximating the
conditional expectation m (Eq. (2)) by m. The mapping y — m(y,t) is the Bayes-optimal
estimator of « in Gaussian noise:

m(-,) = argmir E{lle(y:) — 2|} )
@:R™*—R™

In words, we are given a Gaussian observation y; ~ N(tx, tI;) (for a single t) and want to estimate
x as to minimize mean square error (MSE). This is also known as the ‘score-matching objective’.

The minimization in Eq. (5) has to be modified for two reasons: First, in general we do not
know the distribution of  over which the expectation in (5) is taken; we only have a sample
(z;)i<N ~iia p. We thus replace the MSE by its sample version:

A = .
minimize N;H‘P(y”) 7331-”2, subj. to p € A, (6)

where y; ; = tx; + Vtg; for (gi)i<n ~iia N(0, I). The minimization in (5) must be restricted to
a function class .4 (e.g. neural nets). A (near)-optimal solution to (6) will be 7.

Second, to efficiently implement the generative process (4), 1 should be computable in poly-
nomial time. For this reason, .#” must be a set of such functions. This is a purely computational
constraint, and is present even if we have access to u (i.e., for N = 00).

Most of the literature on diffusion sampling studies how samples quality deteriorates because of
finite sample size IV or non-vanishing step size A. Here we focus on a more fundamental limitation
that arises because 7 must be computable in polynomial time (the second remark above).

A key remark here is that the ideal drift m(y, t) is the Bayes-optimal denoiser, see (5). Namely
it is the optimal function to estimate & with prior distribution y from noisy observations y; ~
N(tx,tI;): ¢ can be interpreted as the signal-to-noise ratio (SNR) of this denoising problem. We will
say that an information-computation gap arises for this problem (at SNR ¢) there exists a constant
gap(t) > 0 such that, for all polynomial-time algorithms m, if d is large enough

E{llri2(y:) — ="} > inf E{ll¢(y:) — z|*} + gap(t). @)

Recent literature provides many instances of statistical estimation problems for which an
information-computation gap is shown to exist (Brennan et al., 2018; Bandeira et al., 2022; Ce-
lentano & Montanari, 2022; Schramm & Wein, 2022) conditional on certain widely accepted con-
jectures. We stress that the conditional/conjectural nature of these results is, so far, unavoidable, a
situation analogous to classical complexity theory that relies on P#NP. Several of the problems for
which a gap arises take the form of estimating & ~ y from observations y; = tx + v/t g.

Koehler & Vuong (2024) already pointed out informally that denoising problems presenting an
information-computation gap can result into a failure of DS. As a concrete example, they suggested
the spiked Wigner model (c.f. next section). While this informal remark is natural, making it math-
ematically precise is far from obvious. In fact —strictly speaking— the remark is false. If sampling
from p is easy, then the drift m(y,t) can be constructed to return (for all ¢ > () a fixed random
sample  ~ . Then the diffusion will sample correctly. However such m will be very far from an
optimal denoiser. (See Proposition 2.1 for formal version of this counter-example.)

We also note that several earlier papers provided examples of probability distributions p from
physics and Bayesian statistics for which Gibbs sampling is expected to succeed, but DS appears
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to fail (Montanari et al., 2007; Ricci-Tersenghi & Semerjian, 2009; Ghio et al., 2024; Huang et al.,
2024). None of these papers presented a formal claim either.

The present paper fills this gap in the literature. We prove two general results that hold for any
distribution p that presents a certain version of information-computation gap (see formal statements
below). First, we prove that there exists drifts that are approximate optimizers of the score matching
objective (6) among polynomial time algorithms (up to an sub-polynomially small error) and yet
lead to completely incorrect sampling. Second, we show that every polynomial-time computable
drift that is a near optimum of score matching and is also Lipschitz continuous leads to incorrect
sampling. Finally, we ilustrate the applicability of our theorems by studying a toy example, namely
sampling a sparse low-rank matrix.

We emphasize that this failure of DS is of computational of nature and purely related to the
requirement to approximate the Bayes optimal denoiser m(y, t) by a polytime computable function.

1.2 SUMMARY OF RESULTS

Recall that the Wasserstein-1 distance between two measures /i1, (o on R? is defined as

Wi(un, o) = inf / a1 — alla y(day, )
YEC(p1,p2)

with the infimum taken over couplings on p; and ps. Given random vectors X, Xo we denote
by W1(X1, X2) the Wi-distance of their distributions. We prove lower bounds on the W; to show
incorrect sampling. Since we only consider distributions u supported on vectors with bounded
norm, a lower bound on W; implies lower bounds on TV distance and KL divergence. Hence our
impossibility results are stated in a strong form.

As a running example/application, we will let 1 to be the following distribution over n x n
sparse low-rank matrices. Let B,, 1 := {u € {0,+1/Vk}"||u|lo = k} be the set of 0/ & (1/Vk)
unit vectors with k nonzero entries (||u||o denotes the number of nonzeros in u). We define the
target distribution ;1 = i, 1 to be the distribution of * = uu' when u ~ Unif(B, ;). Note
that & € R™*™ is a matrix that we identify with a vector in R? for d = n2. Sampling from  is
trivial: just sample a vector with entries in {0,1/v/k, —1/v/k} and exactly k non-zero entries, and
let = uu". However, rigorous evidence supports the claim that —for certain scalings of k, ¢t with
n— polynomial-time algorithms cannot approach the Bayes-optimal error (Butucea et al., 2015; Ma
& Wu, 2015; Cai et al., 2017; Brennan et al., 2018; Schramm & Wein, 2022).

We will prove two sets of main results that hold for distributions p such that the denoising
problem presents an information-computation gap:

1. (Theorem 1, Corollaries 3.2, C.1) Near optimizers of score-matching can sample incorrectly.
We prove that there exists m : R™”*" x R — R"™*" such that:

M1. 72( - ) can be evaluated in polynomial time.

M2. The estimation error achieved by m (namely, E{||7i2(y;,t) — x||*}) is close to the optimal
estimation error achieved by polynomial-time algorithms. Hence m( -, ¢) will be a near min-
imizer of the score-matching objective (5) (integrated over t).

M3. Samples &1 generated by the discretized diffusions (4) with drift m( -, t) at some large time
T have distribution that is very far from the target 1 (‘as far as it can be’ in W7 distance.)

2. (Theorem 3, Corollary 5.1) All (sufficiently) Lipschitz score-matching optimizers sample incor-
rectly. More precisely, we prove that any denoiser that near optimizes the score matching among
polytime algorithms, acts optimally on pure noise data, and is C'/¢t-Lipschitz for ¢ > t; (for any
constant C' a suitable ¢;), samples incorrectly.

Additionally, (Theorems 2, 5), we prove a reduction from estimation to DS. Namely, if accurate,
polytime DS is possible, then near Bayes optimal estimation of & from y, = ta + \/tg must also
be possible in polynomial time for all ¢. The contrapositive of this statement implies that if an
information-computation gap exists, then (near)-correct DS is impossible in polynomial time.

Roadmap. The rest of the paper is as follows. In Section 2 we motivate our setting and assumptions,
and discuss some limitations of our results. In Section 3 we state formally our results (for technical
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reasons we state two separate results depending on the growth of k with n.) Section 4 presents the
general reduction from estimation to diffusion sampling. Section 5 proves that all Lipschitz score
matching optimizers fail. Section 6 provides a numerical experiment of a neural network 7 that
outperforms (conjectured) asymptotically optimal denoisers for finite n, yet still samples poorly.

Notation. Throughout, a,, < b,, means a,,/b, — 0. We refer to Appendix A for notations.

2 DISCUSSION

Setting. Our results indicate that a standard application of denoising diffusions methodology will
fail to sample from p when the associated denoising problem presents an information-computation
gap. The example i, ;, of sparse low-rank matrices shows that DS can fail in cases in which sam-
pling from g is trivial.

Our example also shows that the latent structure of the distribution can be exploited to construct
a better algorithm. Namely, one can use diffusions to sample w ~ Unif(B,, ;) (the posterior expec-
tation m(y, t) is polytime-computable) and then generate & = uw . On the other hand, identifying
such latent structures from data can be hard in general, both statistically and computationally.

Limitations. We prove that there exists drifts m(-,t) that lead to poor sampling, despite being
nearly optimal (among poly-time algorithms) in terms of the score matching objective (5). In par-
ticular, these bad drifts will be near optimal solutions of the problem of (6), as long as .4 only
contains polytime methods and is rich enough to approximate them. We further exclude the exis-
tence of Lipschitz drifts 7n( -, ¢) that also satisfy conditions M1 and M2 but yield good generative
sampling.

In principle there could still be non-Lipschitz polytime drifts that are near score matching
optimizers and sample well. However if such drifts exist, our results suggest that minimizing the
score matching objective is not the right approach to find them (since the difference in value with
bad drifts will be superpolynomially small).

Correct samplers violating M2. If we drop condition M2, i.e. we accept drifts that are bad for the
score-matching objective, then it is possible to construct drifts that can be evaluated in polynomial
time and yield good sampling. This is stated formally below and proven in Appendix I.

Proposition 2.1. Suppose that a discretized SDE (Yya)e>0 per (4) is generated, with step size

A > 0 and noise stream Z; i N(0, I,,xn). Then for every m, k, there exists a func-
tion m(y,t) = m(y,t;21) parametrized by z, (with no additional randomness) such that:
(i) E[||lm(ys, t) — z||?] = 2(1 — o(1)) uniformly for every t > 0 (sub-optimal score-matching);
(ii) Wi(m(gea,lA),2) = 0 for all ¢ > 0 (m(yy,t) is an approximate sample of x);
(#91) limy_y 0o W1(gea/(CA), ) = 0 (9 /t is an approximate sample of x at large time).

The drift constructed in this proposition has very poor value of the score-matching objective.

Further related work. A number of groups proved positive results on diffusion sampling. Alaoui
et al. (2022); Chen et al. (2023b); Montanari & Wu (2023); Lee et al. (2023); Benton et al. (2023)
provide reductions from diffusion sampling to score estimation. Chen et al. (2023a); Shah et al.
(2023); Mei & Wu (2025); Li et al. (2024) give end-to-end guarantees for classes of distributions .

The computational bottleneck that we study here has been observed before in the context of cer-
tain Gibbs measures and Bayes posterior distributions Ghio et al. (2024); Alaoui et al. (2023); Huang
et al. (2024), and random constraint satisfaction problems Montanari et al. (2007); Ricci-Tersenghi
& Semerjian (2009) (the later papers use sequential sampling rather than diffusion sampling).

Our work provides an approach to rigorize the latter line of work.

3 NEAR-OPTIMAL POLYTIME DRIFTS WITH INCORRECT DIFFUSION
SAMPLING

Given an arbitrary polytime computable drift 7y, we will construct a different polytime drift 1,
with nearly equal score matching objective and yet incorrect sampling. In Subsection 3.1, we state
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our assumptions and general result. In Subsection 3.2, we apply the general theorem to the example
of sampling sparse low-rank matrices. We also indicate several other similar examples.

In what follows (x, y;) will always be distributed according to the ideal diffusion process of
(3), which also satisfies (2). In particular & ~ p, y, = ta + Wy, for (W;);>0 a BM. On the other
hand, (g;) will denote the process generated with the implemented procedure (4).

3.1 GENERAL RESULT

Throughout, we will consider distributions y that are supported on B4(1) := {x € R? : ||z|» < 1}.
We will state our assumptions and results having in mind the case of measures that are roughly
centered: E,,.,[x] = [ @ p(dz) = 0, although this condition is not formally needed.

Our first main assumption is that any polynomial-time algorithm to estimate = from y; ~
N(ta,tl,) fails when ¢ is below a certain threshold ¢,,. When ¢/t,, < 1, we expect that polytime
algorithms will not perform better (in score-matching, c.f. (5)) than the best constant estimator of
x, namely E,,[x]. In the case ||Ez~,[z]|| = 0, it follows that polytime algorithms 7729 with good
score-matching will have small norm ||772(yy, t)||. This small-norm property is captured by our
assumption. More details are discussed at the beginning of Subsection 3.2.1, and Proposition B.1.
Assumption 1 (Small norm below threshold). Ler y, = ta + Wy, for (x, (Wy)i>0) ~ 1 ® BM.
Then, there exists a function n; : N — R (which we refer to as ‘rate’) such that n1(d) = 04(1) and,
foranye,v >0,

(I1=")tayg
| Bl > <) at = O ().

Our second assumption is that polytime detection is reliable for ¢ above t,,. By detection, we
consider the following hypothesis testing problem. Given y € R?, we test if y is distributed as
tx + /tN(0, I;) or as N(a, t1,) for ||a|| small, where a might depend on the Gaussian noise.
Assumption 2 (Hypothesis testing succeeds above threshold). For ¢ € (0, 1), define Aq(c) = {a €
RY : |la|| < ctuy}. We assume there exists §,mo : N — R (which we refer to as rates), and a
polytime binary test function ¢ : R x Rsq — {0, 1} such that:

1. (Sharp detection threshold) §(d) = 04(1).
2. For the process (y; = tx + Wy), ¢ rejects with high probability:

/ T By t) = 0)dt = O(na(d))

alg(1+6)

3. Uniformly over the set Aq(c), ¢ fails to reject with high probability. Namely:

P(3t > ty,(1+6) such that sup ¢(a+W,;) =1) =o(1).
acAq(c)

Remark. Since we try to state our theorem in the strongest form, Assumptions 1 and 2 do not take
the same form as the information-computation gap (7). Nevertheless, it can be proven that (for a
broad class of problems) these assumptions cannot hold unless an information-computation gap is
present. We leave this point for future work.

We state our first main result. It stipulates that we can construct a polytime algorithm which
has ‘essentially’ the same score-matching objective as 1 yet yields bad samples.

Theorem 1. Let y be a probability measure supported on B(1) such that
liminfy o [||@]| p(de) = a > 0. Assume that there exist ty, = ty(d) > 0, a drift
my : R4 x R — R, and functions 11(d), 5(d), e2(d) = 04(1), such that following conditions hold:
(i) sup,, ; [[M0(y, t)|| < 1. (i1) Assumption 1 holds with rate 1, (d). (iii) Assumption 2 holds with
rates §(d), n2(d).

Then there exists a modified drift yn such that

M1. m(-) can be evaluated in polynomial time.
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M2. If y; = tx + By is the true diffusion (equivalently given by (1)), then
(oo}
| Ellsintan. ) = sno(y 7] dt = Ol (d) v ne(a).
0

M3. For any step size A = A,, > 0, we have incorrect sampling:
i f W n(y vt ) > - 1). 8
teN~A,t1§(1+5)talg 1(M(Ye,1), @) > o — oa(1) (8)

The proof is presented in Appendix F. The main idea is to let 112y, t) be 1120 (Y, 1)1y (y,¢) || <<
fort < (1 — 7y)tue, and Mo (y,t)é(y, t) fort > (1 4 6)t,,, with small constants (7, ) and test ¢.

Remark. It makes sense to assume that ||7729 (-, -)|| < 1. Since supp(x) C B%(1) and the latter is a
convex set, projecting any 1y onto this set yields a smaller MSE.

3.2 EXAMPLE: SAMPLING LOW-RANK MATRICES

We state two separate results for the probability distribution p = i, ;, described in the introduction,
depending on the scaling of k& with n: in Section 3.2.1 we assume /n < k < n; while in Appendix
C we assume k < y/n. Indeed, the nature of the problem changes at the threshold k& =< /n.

A crucial role will be played by the following threshold
k2 log (%) ifk < n
n

5 if Vn<k<n

It is expected that for ¢ < (1 — §)t,.(n, k) and ¢ any fixed constant, no polytime algorithm can
estimate  significantly better than the estimator 172,,; = E[x] &~ 0 for £ < n (see Conjecture 3.1).

talg (n, k) = (9)

Since ||| = 1 for @ ~ pu, the Bayes denoiser m(y,t) = m(y) does not depend on ¢ (this
can be seen by Bayes rule). From now on, we refer to ||| = ||z||» as the Frobenius norm.

3.2.1 MODERATELY SPARSE REGIME: /n < k < n

Assumption 1 states that, for y, = tx + W, the estimated drift 72 (y;, t) should have small
norm with high probability. This condition holds under the well-accepted Conjecture 3.1 below on
information-computation gaps. In fact, a simple consequence of this conjecture is that any polytime
1 matching this error must satisfy E{ || (ys, t)||*} = 0,,(1) (see Proposition B.1).

Conjecture 3.1. For \/n < k < n, there exists k,, < n such that the following holds for any
k= ky, withk, <k, < n. Let {m,}n>1, 1ty : R"*™ X R — R"*" be any sequence of polytime
algorithms (polynomial time in n). Then for any 6 > 0, we have

inf  E{|m, t)— ||} >1—o,(1). 10
tg(llr—lé)talg {”m (yt’ ) w” }_ ¢ ( ) ( )

We refer to Ma & Wu (2015); Cai et al. (2017); Hopkins et al. (2017); Brennan et al. (2018);
Schramm & Wein (2022); Kunisky et al. (2019) for evidence towards this conjecture. Next, we
provide the following implication of Theorem 1, whose proof is in Appendix G.

Corollary 3.2. Assume /n < k < n, so that ty,(n,k) := n/2 per (9). Let vng be an arbitrary
poly-time algorithm such that sup,, , ||o(y,t)||r < 1 and Assumption 1 holds with rate )y such

that n; < n~PYD > 0. Then there exists an estimator T such that:
M1. m(-) can be evaluated in polynomial time.

M2. Ify, = tax + By is the true diffusion (equivalently given by (1)), then, for every D > 0,

/0 " Ellri(ye, t) — mo(ye, 2] dt = O(m=").

M3. There exists § = 0,,(1) such that, for any step size A = A,, > 0, we have incorrect sampling:

inf Wy (g 1), 2) > 1 — o, (1). 1
teN»A,tlg(l—s-é)ta]g 1 (g, t), @) 2 on(1) (D
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To connect the last corollary with the introduction, we recall two facts from the literature on
submatrix estimation: () The Bayes estimator m(y;) achieves small MSE in a large interval above
t., (Proposition 3.3); (i¢) No polytime estimator is expected to perform better than the null estimator
below t,, (Conjecture 3.1). Regarding (), we state a characterization of the Bayes optimal error.
The proof is analogous to the main result in Butucea et al. (2015), which considers the case of
asymmetric matrices. (For k < n%, a < 5/6, see also Barbier et al. (2020).)

Proposition 3.3 (Modification of Butucea et al. (2015)). Let m(y) be the posterior mean estimator
in Eq. (2). Assume 1 < k < n, and define typ,e(n, k) := 2klog(n/k). Then, for any 6 > 0, we
have inf; < (1-5)tgye E{ [m(ye) = 2[?} = 1= 0 (1), 8UDs> (145)15,,0 E{ M (ye) —2[*} = 04 (1)

In other words, for 2k log(n/k) < t < n, the optimal estimator can estimate the signal x
accurately, but we expect that no polytime algorithm can achieve the same.

3.2.2 VERY SPARSE REGIME: k < /1, AND OTHER EXAMPLES

In the very sparse regime k < /n, we prove a result similar to Corollary 3.2 (Corollary C.1).

Other examples. We mention a few examples where it is relatively straightforward to apply The-
orem 1, following the blueprint in Corollary 3.2. (i) Sampling low rank tensors, e.g. £ = u®? €
(R™)®4, ¢ > 3 when u ~ Unif({+1/y/n,—1/y/n}") or u is uniform on the unit sphere; the
corresponding denoising problem is known as tensor PCA (Montanari & Richard, 2014) (in this
case d = n?). (ii) Sampling elements of random linear subspaces of {0,1}%: £ = Gu mod 2,
where G € {0, 1}%** is a fixed (known) uniformly random matrix and u ~ Unif({0,1}¢), £ = rn
for r € (0,1) a constant; the corresponding denoising problem amounts to decoding random lin-
ear codes (Richardson & Urbanke, 2008; Ghazi & Lee, 2017) (this example fits our framework after
centering). We give two classes of examples for which applying Theorem 1 requires additional tech-
nical work (defer to future publications): (¢i¢) Sampling from Bayesian posteriors, e.g. posterior
of a low-rank plus noise estimation problem that presents an information-computation gap (Lelarge
& Miolane, 2017; Montanari & Wu, 2023; Ghio et al., 2024); (iv) Sampling solutions of random
constraint satisfaction problems (Montanari et al., 2007; Ghio et al., 2024).

4 REDUCTION OF ESTIMATION TO DIFFUSION-BASED SAMPLING

To complement previous results, we prove a general reduction: if diffusion sampling can be per-
formed in polynomial time with sufficient accuracy, then we can perform also denoising. The con-
trapositive of this statement aligns with results in previous sections.

To avoid unessential complications, in this section we assume p to be supported on the unit
sphere S*! = {x : ||| = 1}. We denote by P] the law of (y;)o<;<7 Where y; given by

Eq. (1) and by P;‘;F’A the law of (§;)o<i<7, which is the discretized diffusion trajectory defined in
(4) (interpolated linearly outside N - A).

It is further useful to define FZ;’A to be the law of the SDE interpolating that of (4):
dg: = m(Ys) 5, [t]a) dt +dBy, (12)
where |¢|a == max{s e N- A : s < ¢}
Theorem 2. Assume that m( -, - ) has complexity x and that for any T < 6d, DKL(Fg’AHPZ) <e

Then for any o > 0 there exists an algorithm a randomized algorithm m_ with complexity
(Nx - T/A) that approximates the posterior expectation:

E{|m(y) — m(y)||’} <2e+2N"". (13)

Here & := \/2e + £0(0) and o(0) := E|Pgy — N(0, (0d) " 1y) * Pyyylrv is the expected TV
distance between Py, and the convolution of P,

The proof of this result is presented in Appendix S, along with a modification.
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5 ALL LIPSCHITZ POLYTIME ALGORITHMS FAIL

In Section 3 (Theorem 1 and Corollary 3.2) we proved that there exist near-optimizers of the score
matching objective that perform poorly. However, we did not rule out the possibility that the optimal
(in the sense of score-matching) polytime drift 7in will perform well. We next show that this is not
the case, under an additional assumption, namely that the drift 72( - ;¢) is Lipschitz continuous for
t > (14 6)ty,. Proofis given in Appendix V. (We assume the Lipschitz constant to be C'/t, because
the input of the denoiser is y; = tx + W}, and hence the two ¢-dependent factors cancel.)
Theorem 3. Let u be supported on B4(1) = {x : |z| < 1}, [zu(dz) = 0, and
liminfy oo [|z|p(dz) = a > 0. Let 1 : R? x Rsg — R? be a polytime denoiser such
that sup,, , |[m(y,t)|| < 1 (below Wy is a standard BM):

1. ™ is nearly optimal, namely for y, = tx + Wy, and every v > 0

sup  [E{Im(ye,t) - 2|} — Elll2]| = otz (14)
tS(lf'Y)talg

sup E{||m(yt7t) — a:||2} =o(1), (15)
tz(l""'Y)talg

and that for every t > 0, c € [0, 1], E[||m(y;, t) — z|?] < E[||lem(y,t) — =||?].

2. (m is small on pure noise.) For some 6 = o(1), f(olo+6)talg E[||m (W, t)||?]dt = o(1)

3. m(-,t) is C/t-Lipschitz for some constant C and all t > (1 4 0)ty,.
Then, for every constant Cy > 0 and step size A > 0:

inf Wi(m(g,t), >a—ol
temr%,cotalg] 1(m(Ys, 1), ) > a—o(1)

We apply the above theorem to our running example of sampling sparse low-rank matrices. In
order to make sure that condition 2 in the theorem is verified, we introduce a variant Tk of fip, 1 (all

conclusions stated for p, e.g., Theorem 1, Corollaries 3.2, C.1 hold for 7z,, ;, as well.) Letting ,u%} &
be the centered version of py, ; we define 7z,, ,, = % do + % u?L’ &~ In words, with probability 1/2 we
let = 0 and with probability 1/2 we draw = & — E[Z], & ~ p,, x, a sparse rank-one matrix, as
in previous sections. As mentioned, this mixture distribution 7z,, ;. is mainly to satisfy condition 2 of
Theorem 3. Indeed, we have the following decomposition

N 1 . 1 .
Eonr, , (00 t) = 2%] = SEanpy [y, t) — 2] + SE[lm(Wi, 1)),

which shows that, to get 1m(y;, ) ~ x under the mixture distribution, we also need (W, t) =~ 0.
More concretely, we can get explicit rates on E[||ri (W4, t)||?] for ¢ above ¢, by enforcing that 1
cannot be improved by multiplying by certain hypothesis tests. The full result is as follows.

Corollary 5.1. Assume k,, exists as in Conjecture 3.1. Let k = k,, be such that k,V \/n < k, < n
(moderately sparse regime). Let m,, be a polytime denoiser such that for every fixed constant vy > 0:

1. ™, is nearly optimal, namely (for y, = tx + W;, W, standard BM)

sup [E{in(y, t) — @]} — El2|]| = on(n "), (16)
tS(l_’Y)talg

sup  E{[lm(y:,t) — 2|*} = oa(1), (17)
t2(1+7)talg

and further, for any t > 0 the MSE of m, smaller or equal than the MSE of
c(M(ye))my(ye, t) for any polytime function c(-) of the maximum eigenvalue of (y; +
y!)/V/2, and than the MSE of Pgtiv,,, for Py the projection onto the unit ball.

2. my(-,t) : R — R " js C/t-Lipschitz for some constant C and all t > (1 4 0)t .
Then, for every constant Cy > 0, and step size A > 0

—on(1). (18)

N

inf Wi(m(ye,t), ) >
tenanp Gy LG D), T) 2
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Figure 1: Generating sparse rank-one matrices @ ~ [i,, j using denoising diffusions, for n = 350,
k = 20. Left: MSE of various denoisers (vertical line corresponds to the algorithmic threshold t,,.)
Right: Frobenius norms of generated samples.

The proof is given in Appendix W. We note that the error of polytime denoisers in (16) (and
sampling error of Eq. 18) is 1/2 instead of 1 because the best constant denoiser achieves error 1/2.

Corollary 5.1 does not rule out the possibility that there exists a near-optimizer of score match-
ing that violates the Lipschitz condition and samples well. However, for ¢ > (1 + J)t,, accurate
estimation is possible with Lipschitz algorithms, and indeed many natural methods are in this class
(e.g. neural nets with bounded number of layers and suitable operator norm bounds on the weights.)

6 NUMERICAL ILLUSTRATION

The theory developed in the previous section yields a concrete prediction of the failure mode of DS
when applied to the distribution fi, 1 = (1/2)d0 + (1/2)pnk (With p, k. the law of z = wuT,

u ~ Unif(B,, x)). Namely (for large n, and /n < k < n):

1. Given sufficient model complexity and training samples, we expect the learnt denoiser M., (¢, - )
to achieve MSE close to 1/2 for t < (1 — §)t,,, and close to 0 for ¢ > (1 + 0)ty,.

2. We expect DS based on such a denoiser to generate samples concentrated around 0.
We tested these predictions in a numerical experiment. We considered three polytime denoisers:

(a) The spectral-plus-projection denoiser of Algorithm 2;

(b) A modification of the latter whereby the eigenvector calculation is replaced by 25 iterations
of power method;

(¢) A learned graph neural network (GNN) (Scarselli et al., 2008; Kipf & Welling, 2016).

We carry out experiments with denoiser (b) because ¢ iterations of power method can be approxi-
mated by an (-layers GNN. Hence, method (b) provides a baseline for GNN denoisers.

Figure 1, left frame, reports the MSE achieved by the three denoisers (a), (b), (c) as a function
of t/n, for n = 350, K = 20. As GNNs are permutation-equivariant, we are training on ~ 3% of
all possible outcomes, for n = 350 and k¥ = 20. We observe that the GNN denoiser outperforms
both the spectral algorithm and its approximation via power iteration. However, none of the three
approaches can overcome the barrier at t,, = n/2, while they perform reasonably well above that
threshold. This confirms the prediction at point 1 above.

On the right, we plot the histogram of Frobenius norms of samples generated with the GNN
denoiser. These values are close to 0, which confirms the prediction at point 2 above. By using
|| - |l= as a 1-Lipschitz test function, we obtain that the Wasserstein distance between diffusion
samples and the target distribution is at least 0.48 (the asymptotic prediction from theory is 0.50).
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A NOTATIONS

Throughout the paper it will be understood that we are considering sequences of problems indexed
by n, where € R™*™ and the sparsity index k = k,, diverges as well. We write f(n) < g(n) or

f(n) = o(g(n)) if f(n)/g(n) — 0and f(n) < g(n) or f(n) = O(g(n)) if f(n)/g(n) < C fora
constant C'. Finally f(n) = ©(g(n)) or f(n) < g(n)if1/C < f(n)/g(n) < C.

We write W ~ GOE(n) if W = W is a random symmetric matrix with (W;;);<;<n in-
dependent entries W;; ~ N(0,2), and W;; ~ N(0,1) for ¢ < j. We say that (W, : t > 0)is
a GOE(n) process if W; € R™™ is a symmetric matrix with entries above and on the diagonal
(Wi, ) =i < j <n;Wi(i,4)/v/2 : i < n;t > 0) forming a collection of n(n + 1)/2 independent
BM:s.

We use C, C;, ¢;, . . . to denote absolute constants, whose value can change from line to line.

B A SIMPLE CONSEQUENCE OF CONJECTURE 3.1

We state and prove the following proposition.
Proposition B.1. Suppose that Conjecture 3.1 holds for a distribution p with Eq.,[||z]?] = 1.
Then for any sequence of times t = t, < (1 — 0)tyg,
El|m(ye.t) — 2|*] =1 o(1) = Ell|lm(ye, )] = o(1)
In words, if T is (near)-optimal in score matching for t < (1 — §)t,,, then ||[m(yy, t)|| is small.

Before giving the proof, we remark that the full Conjecture 3.1 is not needed. It suffices for m
to have a weaker property; namely, that for any fixed constants ¢ € [—1, 1] and 6 € (0, 1),

inf  Elller t)—x|?] >1-o0(1
E< (18t erntyest) = ) 2 1= o)

Proof. Fix ¢ € [—1,1] to be a constant chosen later. From the property of 1, we get from Cauchy-
Schwarz that

1 N .

By, OIF) — Elllz]*]) < 1 = o(1) = El|rn(y:, )" < 4 - o(1)
We use Conjecture 3.1 for the sequence of estimators c12, which states that uniformly over ¢t <
(1 — 5)talg:

Elllern(ys,t) — 2|*] > 1 = o(1) = E[[[r(ye, )] — 2¢E[((ye, 1), )] > ~o(1)
Suppose for sake of contradiction, that limsup,,_, . [E[(rin(y:, t), 2)]| > B > 0. Without loss
of generality, we consider the subsequence (ny) such that E[(rn(y:,t),x)] > (/2. Along this
subsequence, we have

4¢® — B > —o(1)
for all ¢ € [—1, 1]. However, we know that this is not true for ¢ > 0 small enough; specifically, take

¢ < (/8 so that we have —c¢3/2 > —o(1), contradiction. Hence E[(m(y,, t), )] = o(1). From the
property of m, we obtain the conclusion. O

C APPLYING THEOREM 1 TO VERY SPARSE MATRICES

As mentioned in Section D.3, we state and prove an analogous version of Corollary 3.2 in the very
sparse case. One different aspect from the moderate case is that k can be smaller asymptotically: in
particular, k can be sub-polynomial in n. Therefore, we first give a modification of Assumption 1.

Assumption 3. Consider k,, < k < n for k,, in Conjecture 3.1. Let y; = tx + W for (Wy) sBM
independent of x. Then a near-optimal estimator 1y (y,t) in score-matching satisfies: for every

pair (v,€) € (0,1),
(17"/)talg . D
[ ool = 2 de =00 )
0
for every fixed D > 0.

12
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Corollary C.1. Assume (logn)? < k < n, so that ty(n, k) = k?log(n/k?). Let 1 be an
arbitrary poly-time algorithm such that sup,, , |70 (y,t)||r < 1 and Assumption 3 holds. Then
there exists an estimator M such that

M1. m(-) can be evaluated in polynomial time.

M2. Ify, = tax + By is the true diffusion (equivalently given by (1)), then, for every D > 0,

/ " Ellri(ys, ) — rio(ys, DI dt = O(k~P)

M3. There exists § = 0,,(1) such that, for any step size A = A,, > 0, we have incorrect sampling:

inf Wi(m (g, t >1—o0,(1). 19
tEN'A’tlg(l"!‘é)ta]g l(m(yt7 ),$) = 19) ( ) ( )

Proof. By the blueprint Theorem 1, we find (a sequence of) hypothesis tests ¢(y, t) indexed by ¢
such that Assumption 2 holds. We choose a rate é,, = 0,,(1) slow enough, and &,, be the resulting
sequence, such that Proposition H.1 holds. We now describe ¢(y,t), based on Algorithm 1, from
time t = (1 + )ty = (1 + 0)k?log(n/k?) upto t = n:

e Let s = /(1 +¢,)log(n/k2). Compute y, =y + entg and y_ =y — \/t/c, g, with
g ~ N(0,I). Then, compute Ay = (y; +y1)/(2v%),and A_ = (y_ +y_)/(2V).

* Let v be the leading eigenvector of 75;(A4). Then, let v = A_v. Let S be the set of k
indices of © with largest magnitude, and compute w such that w; = (1/Vk) sign(;)1,.g-

* Finally, reject iff (w, yw) > St, for some 1 > § > ¢.

From Proposition H.1, we know that
sup  Plw(y;,t) #x) <n P
t2(1+6)talg
for every D > 0. On the event that w(y;, t) = x, we get that
(w(ye, 1), yrw(ye, 1)) =t + (w(ye, t), Wew(y, 1)) >t — sup (v, Wyv)
vi||lvllo=k,v;€{0,£1/Vk}
for (W) standard Brownian motion. From Lemma G.1, we get that with error probability at most
) =P for some D, we get that

(wly ) (. ) = ¢+ (w(yr,t). Wil ) = ¢ - €1 ticg () =o(1 = o(1)

Therefore, we obtain that for § < 1,

sup  P(é(y,t) =0) < n~ P
t2(1+6)talg
for any D > 0. After time ¢ = n, we use the same tests ¢1, ¢2 as documented in the proof of Corol-
lary 3.2, ast = n > (1 + d)(n/2), where n/2 is the algorithmic threshold of the moderately sparse
case. The reason we can do this is that the spectral method, as in Algorithm 2, works even when
k < y/n (although the threshold for this algorithm is asymptotically worse than k2 log(n/k?)). Fur-
thermore, the size of the perturbation @ € Ay(c) is at most ||a|| < cty, = ck?log(n/k?) < c(n/2).

Consequently, the first condition of Assumption 2 holds with rate n=" for every D > 0. To
deal with the second condition, note simply that w is a k-sparse vector. A close inspection of the
proof of Corollary 3.2 shows that it does not really matter how w is computed; the main idea is
simply that for all @ € A4(c),

/ n
(w, (a + By)w) < |a| + (w, Biw) < cty, + (w, Biw) < cty, + Cy[tlog (k)

for each t. Of course, we have to bound this simultaneously for all ¢, and this is done in the proof of
Corollary 3.2; c.f. Appendix G. [

13
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D CONCRETE EXAMPLES: DENOISERS FOR SPARSE LOW-RANK MATRICES

D.1 ALGORITHMS

In this section, we provide the detailed pseudocode for Algorithms 1 and 2. In Algorithm 1 we use
the following soft-thresholding function, with a parameter s:

ns(y) = sign(y) max(|y| —¢,0) = sign(y)(Jy| — )+

Algorithm 1 Submatrix Estimation Algorithm (very sparse regime)

Input: Data y;; time ¢; parameters s, &

Output: Estimate of x: i (y;, t)

Let g; ~ N(0,tI,xy) and compute y; 4+ := Y¢ + VEGs, Y1.— := Yt — g1/ /e
Symmetrize: Ay = (yi.s +yl )/ (VD). Ap_ = (y +yT_)/ (V)
Compute top eigenvector of 75(A; ), denoted if by v,

AN T

&

Ift > ty, V1and A\ (s (Asy)) >k + g, continue; otherwise return m(y,t) := 0

7: Compute the vector v := A; _v;

8: Let S be the set of k indices i of largest values of |044], and compute vector w such that
w; = Sign(@t,i)lies

9: return 1 (y;,t) 1= 113 /k

Algorithm 2 Submatrix Estimation Algorithm (moderately sparse regime)

—_

Input: Data y,; time ¢; parameter €

Output: Estimate of x: m(y;, t)

If t > t,, continue; otherwise return m(y:,t) =0
Symmetrize: A; = (y;: +y[)/(2V/1)

If t > n? and \; (A;) < V/1/2, return 0; otherwise continue
Compute top eigenvector of A;, denoted if by v,

Compute S by S := {z € [n]: vl > ﬁ}

Compute vector w such that w; = sign (v ;)1,.g

D e A A o

return m(y,,t) == ww" /|S|if | S| > k/2; otherwise return 0

D.2 MODERATELY SPARSE REGIME: v/n < k < n

Since Theorem 3.2 is somewhat abstract, we complement it with an explicit example of 7: namely,
it is a modification of a standard spectral estimator. While achieving near optimal estimation error
(among polytime algorithms), 7 fails to generate samples from the correct distribution.

Proposition D.1. Assume \/n < k < n, so that tu,(n, k) := n/2 per (9). Then the estimator T
defined in Algorithm 2 satisfies the following:

M1. () can be evaluated in polynomial time.
M2. For any § > 0, there exists ¢ = ¢(8), C = C(0) such that
inf  E{|m(y,t) — 2|’} =1—0.(1),  sup E{|r(y,t) |’} < Ce k.
tg(l_é)ta]g t2(1+6)talg
M3. For any A > 0, we have incorrect sampling: infieny.Ao Wi (m(gs,t), @) =1 — 0,(1).

Therefore, we enforce that 1 = 0 for ¢ < t,,. Recall that this implies Assumption 1 holds
trivially. Regarding the specific design of 7, Algorithm 2 uses a thresholded spectral approach.
We compute the leading eigenvector of (the symmetrized version of) y;, call it v, € R™. We then
estimate the support S of the latent rank-one matrix x using the entries of v, with largest magnitude.

14
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D.3 VERY SPARSE REGIME: k < 1/n

We have an analogous result for the very sparse regime, where the sparsity level k < 1/n.
Proposition D.2. Assume (logn)®/? < k < \/n, and note that here t,,(n, k) = k*log(n/k?), per
(9). Then the randomized estimator m : R"*"™ x R — R"*™ of Algorithm 1 satisfies the following:

M1. () can be evaluated in polynomial time.

M2. Foranyd > 0and D > 0:
it E{l(yet) - 22} = 1-o0a(1),  swp  E{lmynt) - 2|} <n P,
t<(1=8)tag 2> (140)ty

M3. For any A > 0, we have incorrect sampling: infieny.Ao Wi (m(gs,t), @) =1 — 0,(1).

The pseudocode for the estimator 77 - ) that is constructed in the above is given as Algorithm
1. This is based on a standard approach in the literature Deshpande & Montanari (2016); Cai et al.
(2017), with some modifications to allow for its analysis in the diffusion setting. The main steps
are as follows: (1) Perform Gaussian data splitting of y; into y; 4, ¥y, see Line 3 of Algorithm
1, with most of the information preserved in y; . (2) Use entrywise soft thresholding n,(z) =
(lz] — s)+ sign(zx) to reduce the noise in the symmetrized version of y, . (3) Compute a first
estimate of the latent vector 1g by the principal eigenvector of the above matrix. (4) Refine this
estimate using the remaining information y; _.

We point out that Proposition 3.3 remains true in the regime v/n < k < n, and hence we
observe a gap between t,,(n, k) and tp,yes (12, k) in this regime as well.

E PROOF OF PROPOSITION D.1

E.1 PROPERTIES OF THE ESTIMATOR 772( - )

Proposition E.1. Assume \/n < k < n, and note that in this case ty,(n,k) = n/2. Let (- ) be
the estimator of Algorithm 2 with input parameter €. For every § > 0, there exists € > 0 such that

sup E [||m(yt,t) — w||2] < C e’ /64k (20)
t2(1+§)talg

The proof of this proposition is standard, and will be presented in Appendix N. We note that
the rate in Equation (20) gets slower the closer k is to n; it is super-polynomial if n > klogn.

By definition, when /n < k < nand t < t,,(n, k), the Algorithm 2 returns m(y,t) = 0, so
we automatically have the following result.

Proposition E.2. For any fixed § > 0, and t < (1 — 0)ty,, we have || (y;,t) — x| = 1.
E.2 AUXILIARY LEMMAS

The following lemmas are needed for the analysis of the generated diffusion. Their proofs are
deferred to Appendices O, P, Q, R.

Lemma E.3. Let W, be a GOE process. Then for each time ty > 0,

P ( max |Wyllop > 16\/t0n> < 2exp (—32n).
0<t<to

Lemma E.4. Let W, be a GOE process, and let v, be any eigenvector of Wy for every t > 0. Define
the set
Cy/1 k
Avy; C) = {z 1< <y foy| > ‘\)ﬁ("/)}
n

Then for any C' > 4, we have
i <|A('vt; O)| > max{Vk, k2/n}) =0 (exp(—(1/3)n1/4))

As a consequence, using this eigenvector, 1 will evaluate to 0 per line 8 of Algorithm 2.
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Lemma E.5. Let W, be a GOE process, and for each t, let v, be a top eigenvector of Wy. Then for
any times to < t1, with probability at least 1 — 2 exp(—32n),

sup |(ve, Wiy,ve) — Mi(Wh,)| < 324/n(ts — to).

to<t<t;

Lemma E.6 (Concentration for deformed GOE model). Consider the model Y = 6vv" + W for
W ~ GOE(n)/v/n and @ > 1 a constant, v a unit vector. Let v1(Y) be the top eigenvector of Y.
Define (x*,u*) = (0 +1/0,1 — 1/6?). For any closed set F such that d((x*,u*), F) > 0, there
exists a constant ¢ > 0 such that

P (()q(Y)7 (v1(Y),v)?) € F) < exp(—cn)
for all n large enough.

We only use Lemma E.6 for the alignment (v, (Y), v)2.

E.3 ANALYSIS OF THE DIFFUSION PROCESS: PROOF OF PROPOSITION D.1

We will prove Theorem D.1 for 1 > ¢ > C'y/log(n/k)/(n/k) for some sufficiently large constant
C.

Suppose that we generate the following diffusion, with (z;);>0 a standard n2-dimensional BM,
and gy = 0:

Uea = Y—va + A-m (Je-na, (€ —1)A) + (zea — 2-1)a) -

We will prove that the generated diffusion never passes the termination conditions (c.f. Algorithm
2, lines 3, 5, 8).

E.3.1 ANALYSIS UP TO AN INTERMEDIATE TIME

Define toeueen = 12. Following the same strategy with Section H.2, we will first show that 7 = 0
up tO fheween With high probability by analyzing only the noise process (in short, if 7 = 0 always,
our generated diffusion coincides with the noise process). Our strategy is of the same nature as
that of Section H.2. Indeed, we will attempt to prove that m = 0 simultaneously for all ¢, with
high probability. In this phase (0 < ¢ < tpepween), W€ Will show that |§ | < k/2 (c.f. definition in
Algorithm 2, lines 7, 8) for 0 < ¢ < tpemeen, With high probability (v, is the top eigenvector of Ay,
c.f. Algorithm 2). Note that line 5 of Algorithm 2 is not relevant in this phase. We first show this for
a sequence of time points {t¢},>1, then control the in-between fluctuations. We can set ¢; to be any
value in [0, n/2), as the algorithm returns 0 if ¢ < t,, = n/2 anyway. We denote the GOE process

.
woo BBl g,

It is clear that the eigenvectors of W, and A; coincide.

We choose the following time points:
n J4
ty=——1+—.
£7 2 * n4
To exceed toemeen = 12, We will need 18 values of . By union bound from Lemma E.4 (recall also
the definition of the set A(v; C') from this Lemma),

2

P (Ell <0< n:|A(vy,; C)| > max{Vk, k2/n}> <0 (exp(—(1/3)n1/4 + 610gn)) (21)

Next, we will control the in-between fluctuations; specifically, we would like to show that
maxy, <¢<t,,, |A(vs; C)| < Comax{vk,k?/n} simultaneously for many values of ¢ (with high
probability), for some constant Cjy > 0. Our approach is as follows.

(i) Let v; be a top eigenvector of W;. If ¢ is close to ¢4, then v, is an approximate solution to

the equation (in v):
'UTWté’U = /\1(th)
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(ii) v¢ can be written in the coordinate system of the orthonormal eigenvectors U;, =
[wi1] -+ |u,] of Wy, corresponding to decreasing eigenvalues A1 (Wy,) > -+ > A\, (Wy,).
Namely, v; = U, U] vy = Uy, w with |w]|| = 1.

(iii)) Let m be a (sufficiently large) constant integer with 1 < m < n. The first m components
of w take up 1 —o(1) in Lo-norm by (i) and (ii) with overwhelming probability, from which
we can simply use triangle inequality to upper bound |A(v;; C)| according to Lemma E.4
for wy, - - -, u.,, which incurs only a constant factor of error probability, by union bound.

Define p,, = P (|/\1(W1) — A7(Wy)| < n_c/_l/Q) for any C’ > 0 (here we take m = 7).
We use the following result (we have accounted for the scaling).

Lemma E.7 (Corollary 2.5, Nguyen et al. (2017)). Let Wi ~ (1/+/2)GOE(n). For any fixed
1 >1,C" > 0, there exists a constant ¢y = co(l, C") such that

]_ ’ ’ 12
g <)‘1(W1) —Ap(Wy) < §nic 1/2> <eon @

We materialize our approach above. We can write, with v, = U, w

n

v, Wi,v; = w' Dy, w = Z(Dt[)iiwf.
i=1
We then obtain that p

1 B n
v Wy,ve — A (W) < Z (We,) = M(Wa)w? < —Z+/Een 323 w?
-~ :

with probability at least 1 — p,, > 1 — con ™8, from Lemma E.7 and W;, ~ /t;W;. Now from
Lemma E.5, we know that with probability at least 1 — 2 exp(—32n),

’U;I—Wt['vt — )\1(Wt£) Z —32\/ ’I’L(tf+1 — t[)

With probability at least 1 — con ™8 — 2exp(—32n), both of these statements are true, uniformly

over ty <t < tpy1,leading to
[t t -
+1 — W -3/2 2
64y ——— >n E w; .
te i—8 '

A simple bit of algebra shows that

ter1 — e _ - _
/ < 5/2:>wa§12871 L

=8
Consider the first 7 eigenvectors {u;, ;}7_, of Wy,. Let

7
A= Au, 5 0).

i=1
From Lemma E.4 and a union bound, that |[A| < 7max{v/k, k?/n} with probability at least 1 —
O(exp(—(1/3)n'/*)). For every j € A°, we have

n 7 n
Cy/log(n/k) C’+/log(n/k) 128 log(n/k)
s < 3 sl < 3 b IR ] < YRS T < oy S
for a large enough constant C”” > (. This means that with probability at least 1 — O(n~%),
sup  |A(v; C")| < Tmax{Vk, k?/n} < k/2

te<t<tet1

From Equation (21) and a union bound over ¢ > 1, we know that with high probability,
sup  |A(vg; C)| < Tmax{Vk, k*/n}

n/2—1<t<n?
for some absolute constant C' > 0, meaning that 11 = 0 up t0 tyeeen, as long as
Cy/log(n/k
_ CVog(n/k)

vn/k

17
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E.3.2 ANALYSIS TO THE INFINITE HORIZON

We will prove that simultaneously for all ¢ > n?, Algorithm 2 always terminates at line 5, or that
A1 (W) < t/2. Similar to Subsection E.3.1, we choose the following sequence of time points for
all ¢ > 1:

tgz) =n?24+0-1
By standard Gaussian concentration and the Bai-Yin theorem, we get, for instance, the following
tail bound (constants are loose) for all > 0:

P ()\1 (v\;) > 4\/ﬁ+x> < 2exp (—f)

2 we have z > n/8, and so z + 4y/n < 2z for n large enough.

(3 (%) 2 %) < 2emp e

for some universal constant ¢c; > 0. A union bound for the chosen points gives:

Set x = Sincet > n

ENES

Consequently,

P (Elé >1:M (Wtfzz)) > t§2)/4> <2 iexp ( clt( )) = 2exp(—cin?) iexp(fcl(é — 1)) Sexp(—cyn?)
' =1 =1
(22)

Next we control the in-between fluctuations. From a simple modification of Lemma E.3, we have

P sup ’/\1 ( t(z)) - M (Wt)‘ > 16\/(75%21 — tf)) -tf)n < 2exp (—32nt§2))

(2) (2)
ty) <t<ty?)

so that by union bound

Pl3¢>1: sup ’/\1 ( (2>> -\ (Wt)‘ > 16\/(15%21 - tf)) -tf)n < exp(—32n?)
2 <e<t{?)

(23)

Consider the intersection of events described in Equations (22) and (23):

> 16\/ t3) =) -t

A:{aezLAl(W@))ztf)/zx}u W>1:  sup ‘Al( t@))—)\l(Wt @,

t
¢ ©) (@)
g <t<t{?,

For each t > n2, let t; be largest such thatt, <t < t;41. On A, we have

e e
@) _ @)y 4@, (2) <t
M (W) < + 16\/ (toyr — )ty 4 +164/¢,"n < -+~ 2 2

for n large enough, since t§ ) > n? > n. Hence the algorithm always returns 0 with high probabil-

ity, and we are done.

F PROOF OF THEOREM 1

We define m as follows:

Mo (Y, ) Lo (wt)l<e  iFE < (1 —7)ta,,
m(y,t) =  Mo(y,t) if (1= y)ta <t < (1+ 6)tag,
"ho(% t)¢(ya t) if¢ Z (1 + 6)talga

First, we check that Condition M2 holds.

/ " Ellriv(ye, t) — oy, )2t
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oo

(lfV)talg
- / E[[riv(ye, 1) — 1ivo(ge, )2}t + / El[lri(ye, £) — rivo (e, )|t
0 (1+6)talg

(a) (I=7)tug R o
< / B0y, t)]| > <)dt + /( P (6(y,1) = 0) dt
0

1+6)tﬂlg
=0(m1(d) + 12(d))
where in (a) we use the fact that ¢ is binary and Conditions 4), 4¢) and #ii.1). Secondly, we check
that Condition M3 holds. To reduce notational clutter, we assume that ¢; /A = /¢ is an integer.
Then, we can write
Lo
U, = By, + A m(gia,id) (24)
i=1
where the drift accumulation term is bounded by, from Condition i):
Lo
AN i(gin, iA)
i=1

for every ¢ € (0, 1) by taking €,y small enough, as § = 04(1). Suppose that from Condition iii.2),
the event {¢(a + B;) = Oforallt > t1,a € A4(c)} holds. Then it is clear that (g, ,t1) =
&(Yt,,t1) = 0 by definition of 1. Suppose the inductive hypothesis that 772 (9:, 1A, t1 +9A) =0
for all 0 < ¢ < k. Then from Eq. (24), we get that 9, 4 (,+1)a — Bt +(k+1)a € Aa(c) and so
M(Yt, +(k+1)a, 11 + (K + 1)A) = 0. Consequently, m(y;,t) = 0 forall t = (At > t;. By
Condition 47i.2), the preceding event holds with high probability, so that for each t = (At > ¢4,
m(y;,t) = 0 with high probability. By boundedness of 7in and definition of the Wasserstein-1
distance used on the function f(-) = || - ||, we obtain that Wy (m(g;,t), ) > a — o(1). The proof
ends here.

S 6(1 - ’Y)talg + (’-Y + 5)talg <c- talg

G PROOF OF COROLLARY 3.2

G.1 AUXILIARY LEMMAS

We will use the following lemmas, whose proofs are deferred to Appendix K.
Lemma G.1. Let W ~ GOE(n,1/2), and C' > \/2 some positive constant. Then we have

n n —C?/2+2
> < .
P(vrengkav,WvH_C log (k;)) _2(k>

We state the following non-asymptotic result from Peng (2012).

Lemma G.2 (Theorem 3.1, Peng (2012).). Let y = fuu' + GOE(n,1/n), and denote by \1(y)
the top eigenvalue of y. Letting £(0) := 0 + 0~ 1, the following holds for every x > 0 and 0 > 1:

P (i <€) -2 2) <oy (~ OO o (1 DO,

In Appendix K, we will use the last lemma to prove the bound below.

Lemma G.3 (Alignment bound). Let y = fuu' 4+ GOE(n, 1/n), where § = \/1+ 0. Let vy be
the top eigenvector of y. Then, there exist constants C, ¢ > 0 such that the following holds for any
0 = b, withn™¢ < § < 1 for some ¢ > 0 small enough:

/3

P (|(vy,u)| < c6?) < Cem™'" (25)

We also use the following lemma, which is implied in the proof of Lemma E.4.
Lemma G.4. Let g ~ N(0, I,,) and define the set

L(g:C) = {is1<i < nlgil > CViog(n/k)} -

Assume \/n < k < n. Then, for any C large enough, there exists C, such that

P (e )l = (Vi ’;)) < Cert
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G.2 PROOF OF COROLLARY 3.2
Let § = 0,,(1) be a parameter to be chosen later and recall that ¢,,, = n/2. We define 1 as follows:

Mo (Y, ) Lo (yt)f<e  iFE < (1 —7)ta,,

m( t) —_ mo(y7t) if (1 - ’Y)talg <t< (1 + 6>ta]g,
v Tho(y, )61 (y, 1) if (14 )ty <t < nf,
mo(y,t)p2(y, t) if t > n4,

where ¢1, g2 : R"*™ x R>g — {0, 1} are defined below and - is given in Assumption 1. It will be
clear from the constructions below that ¢, ¢ can be evaluated in polynomial time. To establish the
relationship between Corollary 3.2 and Theorem 1, we make a few remarks:

* Assumption 1 is used in (27);

* By defining the hypothesis test ¢ such that

_ [oi(yt) i (L+ )ty <t <n?
. {¢2(y,t) it > nd

we recover the desired properties of Assumption 2, with 72(n) = O(n~P) for any D > 0.

In order to prove claim M2, we need to bound J, (0, c0), whereby, for ¢, < t3,

Jn(t(utb) = /t b E “|m(yt7t) - Tho(ytvt)HQ} dt

Setting t1 = (1 + &)ty and to = n?, we write
Jn(07 OO) = Jn(07 tl) + Jn(tla t2) + J’n(t27 OO) ) (26)

and will bound each of the three terms separately.

Bounding .J,,(0,¢;). By Assumption 1, we know that

(1=7)to
In(0,11) < / P(|lri0(ye, )| > €) dt = O(n™ "), 27)
0
for every D > 0.

Bounding J,,(¢1,t2). For a matrix y € R™*" and time point ¢, we define ¢ (y, t) according to
the following procedure:

1. Compute the symmetrized matrix A = (1/2)(y +y");

2. Compute its top eigenvector v (choose at random if this is not unique).

3. Let S C [n] be the k positions in v with the largest magnitude, and define ¥ € R™ with
b = (1/Vk) sign(v;) Lies;

4. Compute the test statistic s := (0, A¥), and return 1 if s > St; 0 otherwise.

Here 8 € (0, 1) is a fixed constant to be chosen later.

We will show that ¢1(y:,t) = 1 with overwhelming probability for the true model y; =
tx + B;. Define
ety
2
where we recall that uw ~ Unif (2, ;) and W, is a GOE(n) process. Let v, ¥ be the top eigenvector
and thresholded vector of Ay, respectively.

We have

At = t’U/LLT + Wt

St = <’lA)t7 At’lAJt> =1- <U, ’lAIt>2 + <{)t7 Wt’l}t> . (28)
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Using Lemma G.1, we know that |(9;, W,)| < 4+/klog(n/k) - v/t with probability at least 1 —
) -0 say. Further
v = (v, u)u + /1 — (v, u)? w,

where w is a uniformly random unit vector orthogonal to w, independent of (v;, u). Alternatively,
there exists g ~ N(0, I,,), , independent of (v, u) so that:

(I, —uul)g

I~ uuT)g]
For every 1 < i < n, we have

(gl

Vk
Since by assumption klog(n/k) < n, with probability at least 1 — C; exp(—£k/2),
VEklog(n/k) and ||(I,, — uu")gl|| > /n/2, so that

i€ Lg:C) = |wil < (20+2)- %log(n/k).

(X — wuT)g)i| < |gil +

(u,g)| <

Therefore, by using Lemma G.4 and klog(n/k) > n'/2, we get that with probability at least
1 — C, exp(—n'/4), | A(w; C)| < max{Vk, k*/n} for some constant C' > 0, where

Afw: C) 1= {z 1< <, > C\/:Llog(n/k:)} .

By Lemma G.3, we know that with probability at least 1 — C, exp(—cnl/ 3) for some C,c > 0,
[(ve,(146), w)| > ¢02. Since | (v, u)| is stochastically increasing with ¢ (Fact N.2), we actually have
that for any ¢ > (1 4 &)t,,, with the same probability |(v;, u)| > b2

On the event & = {|(v;, w)| > cd2}, further suppose without loss of generality that (v, u) >
0. As a consequence of the result above, if 7 € supp(u) and i ¢ A(w; C), then

cd? 1
u; > 0,1 ¢ Aw;C) = v, > 7 C - log(n/k),
cd? 1
) ; . < il )
u; < 0,1 ¢ Aw;C) = wv,; < 7k +C - log(n/k)

Similarly, if ¢ ¢ supp(u), then

u; =0, 1 ¢ Aw;C) = |u,| < C\/%log(n/k).

We next choose & = ¢, such that \/(k/n)log(n/k) < ¢, < 1. Hence, we conclude that
i € supp(u) \ A(w; C) = o, =sign((ve,u)) - u;, (29

whence
R 2
|{(w, 1)) Zl—E\A(w;Cﬂzl—on(l), (30)

with probability at least 1 — C, exp(—n'/%/3). On this event, by Eq. (28) we obtain that

s >t-(1—0,(1))% —4-\klog(n/k) -Vt
Fort > (1 + d)ty, = (1 + d)n/2, we this implies that, for any fixed 8 € (0, 1), with probability at
least 1 — C, exp(—n'/*/3) (possibly adjusting the constant C.,).
Recalling that . (y;,t) = Mmo(ye, t)P1(ye, t) for t € [t1, 2], and |10 (y, t)]] < 1, we have,
for t1 = (1 + 0)tag t2 = n* as defined above,

to

ta 1/3
Tu(trsts) = / El[lr(ye. £) — rino(ye, )]t < / P (é1(ge. 1) = 0) < Cunt e’ (31

t1 t1
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Bounding J,(t2,00). When ¢ > to, we use a simple eigenvalue test. For a matrix y, and time
point ¢, we define ¢ (y, t) according to the following procedure:

1. Compute symmetrized matrix A = (1/2)(y +y").
2. Compute top eigenvalue \;(A).
3. Return 1if A1 (A) > ¢/2, and 0 otherwise.

Under the true model y; = t — B, we have:
AL(Ap) >t — [Wy|op >t — t2/3
with error probability given by
P (||W,5||op > t2/3> < Cexp (—ctl/g) ,

for constants C, ¢ > 0. Thus, we get that

o0 (o)
Jn(tz, 00) < 2/ P(|Willo > t23)dt < C, | e at
tQ t2
< Cre=” < e (32)
Claim M2 of Theorem 3.2 follows from Egs. (27), (31), (32).
We finally consider claim M3. Equation (4) yields, for every ¢ > 1:
¢ ¢
Goa =AY m(u-na, (i —1)A) + VA gia. (33)
i=1 i=1
We define
£q
My, =AY m(fa-na, (= 1DA),, 0= [ty,(1+06)/A]. (34)
i=1
We further define the following auxiliary process for t > (1A = |t1/A|A:
Yy =my, + By, (35)

where (B, : t > 0) is a BM such that Bja = \/ZZLl gin- In particular, Yo, A = Yo, A-

From triangle inequality, using Assumption 1, the condition |7 (y,t)||r < 1, and that by
construction ||m(y, t)||r < & fort < (1 — 7)ty,, we get

||m||F S 6(1 - ’Y)talg + (,7 + 6)talg .
We claim that (with high probability) ¢ (g, t) = O simultaneously for all ¢ € [t1,t2]. As a

consequence, recalling the definition of m, we obtain that g, = g, for all ¢ € [t1,t2]. In order to
prove the claim, define, for ¢ > 1:

(-1
’Tn::{t+:t1+7:éeN}ﬂ[tl,tg}.

For every t € [t1,t2], consider the thresholded vector @ in the definition of the test ¢;. We know
that

(g, Yp0r) = (O, m0y) + (g, Byvy) < e(1 — )ty + (v + 0)tug + max (v, Byv). (36)
vEQ, &

Using Lemma G.1, we get that

n n —C? /242
P (vrenéxj(k |(v, Byv)| > Oy |log (k) \/Z> < 2<k> :
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Note that |7,,| < n®, whence

n n —C?/242
P|lIteT,: max (v, W,v)| > C log<kj)\/tig §2(k) n°.

velly i

For ¢ € [te, to41], we have

max {max |{(v, Wyv)| — renéxx [{(v an>|} < max |[[Wy— Wy, |lo-

te<t<tpy1 (VEQn & te<t<tei1

Using Lemma E.3, we get that maxy,<;<¢, , |[Wi — Wy, |lop < 164/(te41 — t¢)n = 16 with prob-
ability at least 1 — 2 exp(—32n). Taking a union bound over 7,,, we get that

n n C?/242
P (315 € [t1,t2] : max [{(v, Wyv)| > Cy[log <k> \/f) < 2(k) n® + 2n° e 732"
vell, k

for possibly a different constant C' > 0.
Using Eq. (36) and the last estimate, we obtain that

—C?/242
P <3t € [th tZ] : <{’t7 ’gtﬁt> 2 bntalg + C log (Z) \/{E) S 2 (Z) n5 + 2n5 exp(—32n) )
(37)

where b, := e(1 — ) + (v + ). Since §,, = 0,,(1), we have b,, — (1 — )& + . Further, by
choosing v, & small enough, we get that lim sup,, b,, < ¢/2, say. Hence, we get that for ¢ > ¢, and
all n large enough

butag + C'4 [log (Z) Vi< ct)2

for the constant ¢ of Assumption 2. Therefore Eq. (37) implies that ¢1 (9, t) = 0 simultaneously for
all t € [t1,ts], with high probability, by choosing 3 > ¢. We conclude that, with high probability
Y = U throughout t € [ty, ta].

Finally, we extend the analysis to ¢ € [ta, 00) by proving that, with high probability, ¢2(g:,t) =
0 and hence §; = g; for all t € [to,00). We use (for A; = (§; + 9 )/2, W; = (B; + B])/2)
A(A) < e(l = y)tag + (6 4 7)tae + A1 (Wh) (38)

Following exactly the argument as in the proof of Proposition D.1 (in particular, Subsection E.3.2),
we get that \;(W;) < t/3 simultaneously for all ¢ > t5, with high probability. On this event,
A1(A¢) < t/2 with high probability (because ¢/6 > (1 — v)tus(1 — ) + (v + J)ta.). Hence, with
high probability ¢2(g:,t) = 0 and hence g = g, for all ¢ € [t2, 00

We thus proved that, with high probability, §y, = ¢, for all t > ¢; = ( + 6)ta,, whence
m(y:,t) = 0 as well (because ¢1(gs,t) = 0 fort € [t1,t2] and ¢o(gs,t) = 0 for t € [ta, 00)).
Claim M3 thus follows.

H PROOF OF COROLLARY D.2

H.l PROPERTIES OF THE ESTIMATOR 772( - )

Proposition H.1. Assume (logn)? < k < /n and let (- ) be the estimator defined in Algorithm
1. Recall that in this case, ty, = k*log(n/k?). Then for any § > 0 there exists ¢ > 0 such that,

letting s = /(1 + ¢) log(n/k?), we have

sup  P(m(y;,t) #x) = O(nP) (39)
tZ(l‘Hs)ta]g

for any fixed D > 0.
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The proof of this proposition is a modification of the one in Cai et al. (2017), and will be
presented in Appendix J. Note that Proposition H.1 directly implies the first inequality in Condition
M2v of Theorem D.2, as ||/ (y;, t) — x| < 2.

By definition, when ¢ < t,,, the algorithm will return 7 = 0, so we automatically have the
following, which implies the second inequality in Condition M2v.

Proposition H.2. For any fixed 6 > 0, and t < (1 — §)t,,, we have |m(y;,t) — x| = 1.

In the proof of Theorem D.2, we will also make use of the following estimates, whose proof is
deferred to the Appendix M.

Lemma H.3. Let (w; : t > 0) be a process defined as

wy = % {(Bt +Veg) + (B + \/ggt)T}

where B, g are independent n?-dimensional BMs, and 0 < & < 1. Then, for any 0 < ty < t, and
t>0,s>1,

IP’( - >4 “to)s - ) < 9em’s/4 4
tOIgCLgth lw: — wy, || 7 > (t1 —to)s-n) <2e , (40)
P(||wi||r > 4vEs - n) < 267754 (A1)

H.2 ANALYSIS OF THE DIFFUSION PROCESS: PROOF OF COROLLARY D.2

We are left to prove that Condition M3v of Corollary D.2 holds.

For that purpose, we make the following choices about Algorithm 1:

(C1) We select the constants in the algorithm to be €, = 0,,(1) and s, = /(1 + &,,) log(n/k?).
We will use the shorthands s = s,, and € = ¢,,, unless there is ambiguity.

(C2) The process (g:):>0 used in Algorithm 1 follows a n?-dimensional BM.

Note that Propositions H.1, H.2 hold under these choices, and in particular g; ~ N(0, tI,, ) at all
times. Also the sequence of random vectors gea, £ € N can be generated via gean = ge—1)a +

V/Agy, for some i.i.d. standard normal vectors {Ge}e>o0.

Letting (2¢)¢>0 a standard BM in R"*", and gy = 0 we can rewrite the approximate diffusion
(4) as follows (fort € N - A)

Yerr =Y + A - (Ye, t) + (Ze4a — 2¢) - (42)
We further define
1
wy = 5{(% +Vegr) + (2 + \@gt)T} . (43)

It is easy to see that (c(e)w; : t > 0) is a GOE(n) process for c(¢) := ((1 4 £)/2)~'/2. The key
technical estimate in the proof of Theorem D.2, Condition M3y is stated in the next proposition.
Proposition Hd4. Let (w; : t > 0) be defined as per Eq. (43), and assume €, = o0,(1) and
sn = /(1 + &,)log(n/k2). Further, assume k > C(logn)®'? for some sufficiently large absolute
constant C > 0. Then

T}iﬁnolop{uns(wt/\/i)|\cp <k 4+ VsVt > 1} ~1. (44)

Before proving this proposition, let us show that it implies Condition M3v of Theorem D.2.
Indeed we claim that, with high probability, for all £ € N, m(gea,¢A) = 0 and yoa = zea. This is
proven by induction over £. Indeed, if it holds up to a certain { — 1 € N, then we have gya = z¢a by
Eq. (42) whence it follows that A; ; = w;/ Vt, for t = (A (c.f. Algorithm 1, line 4) and therefore
m(y;,t) = 0 by Proposition H.4 (because the condition in Algorithm 1, line 6, is never passed).

We therefore have

1 7 ] > 1 ¥ ] = = _— .
;Izlg Wy (m(gea, LA), ) > I}IzlgIP’(m(ym,EA) 0)=1—o0,(1) (45)

This concludes the proof of Theorem D.2. We next turn to proving Proposition H.4.
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Proof of Proposition H.4. We follow a strategy analogous to the proof of the Law of Iterated Log-
arithm. We choose a sparse sequence of time points {t,}72,, and () establish the statement jointly
for these time points, and (i¢) control deviations in between. In particular, we consider

(—1\?
te=\(1+ 3

We first show that simultaneously for all £ > 1, we have max; ; ‘(wte )U/\/ﬂ’ < 8té/4\/log n. We
have, by sub-gaussianity of (wy,);; and a union bound (here we account also for the case where

i = 7, in which there is an inflated variance), along with € = 0,,(1): using the bound 2zy > = +y
/

forall / > 1.

2 . . .
,y = log n. Taking a union bound once again over ¢, we have

oo
e Z l
£=0

We have, as the summands form a decreasing function of ¢ integer:

Zexp <—8 . (1 + i)) <C —|—/ exp (—8333> dz < Cn?. (46)
— n 0 n

‘We thus obtain that
P (Hf >1,1<i,j<n:|(w,)yl > 8t3/4\/10gn) —0(n?). 47)

The point of this calculation is that simultaneously for all £ > 1, we can truncate the entries of
ns(we, /v/Te) by 8t;/4\/log n without worry.

Namely, foreach ¢ > 1, 9, = 8ti/4\/logn we define w,, € R"*" by
ns(wttz/\/ﬂ) it |ns (wtz/\/ﬁ)‘ <Yy,

whena:,yzlforx:t}g

(wte)ij =4 if ns(wte/\/t?) > 19@5 (48)
—y ifns(wtg/\/t?) < =Y.
By Eq. (47), we have
P(3¢>1 :ns(wy, /VEe) # ) =00 ?). (49)
We have from Bandeira & van Handel (2016), for every x > 0:
- cx?
IP’(Hwt[HOp 240—1—1‘) < nexp —7 ) (50)
*
for some absolute constant ¢ > 0, where
n n 2
2 S \2 wy,
o :=max Y E[(w,);] < ZE lns < ) ] , (51
i<n = J = Vi ij
0. = max |(dy, )| < 8ty/*\/logn. (52)
1,5

It can be seen from an immediate Gaussian calculation that, for ¢ # j and Z ~ N(0, 1):

(“’“)2 —/Oo4z-1P> s i) as
Vi) 2 ° =

(a) [o° 1 2
0 z+s 1+¢

(<b<)1 52 < 52
—exp | — exp | —
S P 1+e) — P 1+¢
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Here in (a) we employ the Mill’s ratio bound, and (b) follows from z 4+ s > s and s — oo.

Proceeding analogously for the diagonal entries of 7s(wy,//t¢), we obtain that ¢ <
Vvnexp(—s?/(2(1+ €))) = k by definition of s.

We set x = k/3 + +/t¢/(3s). Since x > o, we have 4o + x < (3/2)x if n, k are sufficiently
large. Using Eq. (50) we obtain that, for some universal constants ¢, c’, ¢’ > 0:

- k t 3 3
P (HwtzHop 2 5 + \;Z) S nexp | —

(Z) 'k c/’ty2
————— | <nexp|-— — .
64t,”* logn slogn  s*logn

In step (a), we simply expand the squared term in the numerator and drop the quadratic term
in k. Now, taking a union bound over £ > 1, we get that (similar to Eq. (46))

) ko Jh Ik 0o c//t;/2
P(3>1: -+ < - -
< > 1:||wy, [lop > 2"’ 28)_nexp< slogn ;exp s2logn
ck > 'z
< — 1 3. )4
_nexp( slogn> (0( )*/0 eXp( s2n3logn) x>
'k
oo (28 ) )
slogn
:On(l)v

where the last estimate holds if & > C(logn)>/? for some sufficiently large C' > 0. In conclusion,
using the last display and Eq. (49) we have shown that

IP’(EIE>1:‘775<I\ZL) >§ m):on(l). (53)
4

op 2s
Now we control the in-between fluctuations. Noting that 7)4(-) is a 1-Lipschitz function, we
have the following crude bound:

max |9 <wf> - (ww) < max ||t Y
te<t<tpi1 s \/7? s Vite op Tt <t<tp41 \/1? Viellp
maxy, <¢<t,., [|we — we,||F 1 1
< + lwe,llp | —= — :
Vie Vie Vit

From Lemma H.3, we obtain that

(e VD) = el VD 2 e Vit dne v (125 ) ) <ae

By definition of ¢, simple algebra reveals that (we also use the fact that n= /2 < s~ 1):

t T
4n-\/tg+1tg+4n'\/lg~(l Z)gﬁ.

(7A8] 25

te<t<tet1

]P( max

By union bound over ¢ > 1,

P(Hﬂzl: max

te<t<tei1

(o0 V) = o, VD) 2 5+ )

op 2 2s

=4 ex —n2 ooeX —1 -1 i
=4 exp( /8); p< 8<1+ n3>>
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72

8nb

<4 exp(—n?/8) <0(1) + /OOO exp ( ) da:) = O(exp(—n?/8)n3) = o(1) .

Using this estimate together with Eq. (53), we conclude that with high probability the following
holds simultaneously for all ¢ > 1. Letting ¢ be largest such that ¢, < ¢:

] Iy EX TN ] e EXCNOEE XC

and this finishes the proof. O

Vi Vi

t
<k+ XL <k X
op S S

We remark that Assumption (C2) in the proof above is technically not needed, meaning that the
additional noise stream g; can in fact be discarded entirely: an appropriate thresholding of v, the
top eigenvector of 17,( A 4 ), as in Algorithm 2, will also suffice to satisfy all conditions of Theorem
D.2, although & will not be recovered exactly; some o(k) positions outside the support of & will also
be chosen, at most. The reason for this is that the alignment |(v;, u)| = 1 — 0,(1) already, from
a close inspection of our proof of Proposition H.1. Regarding the proof of Proposition H.4 above,
one can easily realize that even if € = 0, it will go through without any modification. We choose to
keep our formulation of Algorithm 1 as faithful to the original work of Cai et al. (2017) as possible
to discuss a variety of approaches, and leave this to the interested reader.

I PROOF OF PROPOSITION 2.1

We take the first row of 21, and let A = {211, -, z1,}. Let 7; = rank(2;) denote the rank of z;;
with respect to the elements of A. Then since z1; ~ N(0,1) across j, the collection of the first &
ranks Ay = {ry,--- , 7} constitutes a sample without replacement from [n]. Construct v a binary
vector such that v; = 1 if and only if i € A, and let u be a randomized-sign vector version of

(1/vk)v. Let
m(y,t;g1) = uu' =2’ (54)

then it is clear that m(y,t; 21) ~ x and is independent of x (as it is a function of only 21). The
identity from (i) follows accordingly. To see that this error is clearly sub-optimal compared to
polynomial time algorithms, observe that ¥n = 0 is a polynomial time drift, which achieves error 1
at every t.

Point (4) also follows immediately. Indeed, for every £ > 0,
Wi(m(gea, lA),z) = Wi(z',z) =0
Lastly, regarding point (4i%), note that since 2’ is not dependent on ¢, we have, for every £ > 1,

Yea = Y-1)a + Az + VAZn

Simple induction gives

¢
Yia = ((A)2' + VA 2a
j=1
We take the coupling of (gea /(¢A), ) such that &' = x. Then by definition of the Wasserstein-2

metric,
2

\/ZZ§:1 Zjn

Wa(9en/((A), x)? < E A

It is clear that as ¢ — oo, this quantity converges to 0. Hence we are done.

J PROOF OF PROPOSITION H.1

We conduct our analysis conditional on w (recall that ¢ = wuT), and S be the support of u. Let
Ay = vtuu" and notice that

Ay =Ag+0.Z, A_=Ag+0 W, (55)
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where 02 = (1+¢)/2, 02 := (14 ¢)/(2¢), and Z, W ~ GOE(n) are independent random
matrices.

‘We have
ns(As+) = Ao +ns(04 Z) + E[B] + (B — E[B]), (56)
where
Bij =Ts (\/iulu] —|—O'+Zij) — \/7§~uiuj —775(0'+Zij). 67

Our first order of business is to analyze E[B]. If i ¢ S or j ¢ S, we have E[B;;] = 0. On the other
hand, if 7, j € S, then
(i) Casel: uwyu; =1/k
In this case, we have E[B;;] = —bg + b11,=; where (below G ~ N(0, 1))

t t t 4

e (8 0.6) L) (8 i0) (S )
(58)

Recalling that o is bounded and bounded away from 0 (without loss of generality we can

assume € < 1/2) and s, v/t/k—s grows with n, k, so that ns (vt /k+Z;;) = V't /k+Z;;—s

with high probability; hence |B;; + s| = op(s) (as Z;; = o(s) with high probability).

Noting that | B;;| < 2s, we get by = s(1+ o(1)) and by = o(s) (distribution on diagonal is

different).

(i) Case2: uju; =—1/k=1i#j
By a similar reasoning, we have E[B;;] = by = s(1 + o(1)).
We can thus rewrite
Ns(Ar ) = (Vt—kbo) -uu’ + by - Ps +15(04 Z) + (B —E[B]), (59
where (Pg);; = 1if i = j € S and = 0 otherwise.
Next, we analyze the operator norm of 7 (c4 Z). Let Z = (mZ;;); j<n be defined as
mZ;; =ns(04+2;;) 1(Ins(04+Z;5)| < Clogn). (60)

for some constant C' > 0; we have max;j<p \Zij| < C'logn with error probability at most

exp(—c(logn)?) < n~P for any fixed D > 0. We have Z = n,(Z). By Bandeira & van Handel
(2016), there exists an absolute constant ¢ > 0 such that for every u > 0:

. cu?
IP(HZHOP Z4a+u> <nexp (75 ). 61)
where

n
o’ = max E[ns(z’ij)2] ) (62)

i<n =
L = max |mZ;j|jc < Clogn. (63)

,7<n

)

An immediate Gaussian calculation yields, for i # j:
E[ns (o4 Zij)? :/ 4z - P(oy Zij > 2+ s)dz < Cre=* /(1+e) (64)
0

for some constant C; > 0.

Proceeding analogously for 7s(0y Z;) and substituting in Eq. (61), we get o2 <
2C nexp{—s?/(1 + ¢)}. Applying Eq. (61) there exists an absolute constant C;,C’ > 0 such
that, by taking u = C"k, with probability at least 1 — exp(—ck?/(logn)?),

In5(04 2)llop < OV exp{—s2/2(1 + )} V /logn) (65)
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gc(kv \/@) < Ck. (66)

Note that the error probability is at most exp(—ck), because we already know that k > (logn)?.

Lastly, consider B — E[B]. By Eq. (57) we know that the entries of this matrix are independent
with mean 0 and bounded by 2s, hence subgaussian. Further only a k£ x k submatrix is nonzero, so
that

|B —E[B]|ly < C1Vks, (67)

with high probability (for instance, the operator norm tail bound above can be applied once more,
which gives an error probability of at most C exp(—ck) for some absolute constant C, ¢ > 0).

Summarizing, we proved that
ns(Art) = (Vt —kby) -uu’ + A, (68)
1Al < C(k + Vks) < C'k, (69)
where in the last step we used k > (logn)?
Recall that v, denotes the top eigenvector of 75(A; 4+ ). By Davis-Kahan,

min |v; —au| < _ Gk (70)
ae{+1,-1} Vit — kbg
(a)
< __Ck (71)
Vt—(1+e)ks
(®)
< e, (72)

where in (a) we used the fact that by = s + o(s) and in (b) the fact that t > (1 + §)k? log(n/k?),
whereby we can assume § > Ce for C a sufficiently large absolute constant. Recalling the definition
of the score v;:

Oy = A vy = \/iu(u,'uﬁ +o_Wuo
where we know that G = W, ~ N(0, I,,) by independence of W and v;. Assuming to be definite
that the sign of the eigenvector is chosen so that the last bound holds with a = +1, we get that
(u,v;) > 1 — 2. We get that for every j € S:

Uj>0:>@t7j2(1—52)ﬁ_0_|Gj|2(1_62)\/E_flogn (73)

t t
u; <0 =9 ; < —(1 —52)\/;+U_Gj| <—(1 —52)\/;+ glogn (74)

where we use a union bound to get |G;| < C'logn for all j < n, with probability at least 1 —
exp(—c(logn)?). Similarly, forall i ¢ S,
C
|05 < 0-|Gj| < \fbg”
These calculations reveal that: (i) the entries with the largest magnitudes are the elements of .S, and
(ii) if u; and 9y ; share the same sign for all ¢ € S. On this event, | (y;,t) — x| = 0.

Lastly, we claim that the top eigenvalue of 74(A; 1) is larger than k + \/t/s. From triangle
inequality applied to Eq. (59), we have

M(15(Ar1)) = (VI = kbo) = b1 — |[15(0+-Z)llop — 1B — E[B]|lop (75)
Y (VE— (14 2)ks) — Ch — CVs (76)
Y Vi~ (1 + Coe)ks 1)
< ks, (78)

Here (a) follows from Egs. (66) and (67), (b) because k¥ > 1 and s > 1 and (c¢) follows by
taking 0 > Ce for C a sufficiently large absolute constant. The claim follows because ks > k and
ks > +/t, and that exp(—c(log n)?) is a super-polynomially small rate.
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K AUXILIARY LEMMAS FOR SECTION G

K.1 PROOF OF LEMMA G.1

We let B ~ N(0, I,2) so that W = (B + BT)/2. Forv € Q,, ; we have (v, Wv) = (v, Bv) ~
N(0, 1). We thus have, by Gaussian tail bounds and a triangle inequality:

P <<U7Wv>| > (' [log (Z)) < 2exp (—C;log (Z)) .

Taking the union bound over v € £, ;; gives the desired statement, since the cardinality of this set
is (1)2F.

K.2 PROOF OF LEMMA G.3

Using Lemma G.2, we can take x = n-1/4, say, and § = /14 for § > n~ for some small
enough ¢y > 0, to get that

P (Al(y) <O4+1/0—n"14 - 2/n) < Cexp(—en'/?),
for some absolute constants C, ¢ > 0.
We have the following identity, letting W ~ GOE(n, 1/n):

1 1
P, O (y) L - W) P = 0 [~ W),

By standard Gaussian concentration, we know that, for any A > 0

P(|W]lo > 2+ A) < Cexp(—cnA?).

<'LL, ’l)1>2

In this inequality, we take
1
A=+ 1/60 —n~Y* —2/n—2).

Note that with § = /1 + ¢ and § = 0,,(1), we know that § + 1/6 — 2 = ©(5?), so that A = O(5?)
if § > n~° with ¢g < 1/8. Hence, by a union bound on the two concentration inequalities,

P (Amin(M1 ()T — W) < 2A) < Cexp(—cen'/?)

and on the complement of this event, we know that
(vi,u)? > — = O(¢")

since 0 = Q(1), and so |(vy, u)| = 2(5?).

L PROOF OF PROPOSITION E.1

In our proof, we will use the following elementary facts.
Fact L.1. For any deterministic unit vector u, a unit vector v is uniformly random on the orthogonal
subspace to u if and only if (v,u) = 0 and v 2 Qv for every orthogonal matrix Q such that
Qu = u.
Fact L.2. Let A be a symmetric matrix, and w a unit vector. Denote B, = auu' + A, and let
v(a) be a top eigenvector of B,,. Then f(a) = |(v(«), w)| is an increasing function of o > 0.

Let u ~ Unif (€, x). Recall that A; = V/tuu" + /tW where W ~ GOE(n,1/2).

We conduct our analysis conditional on u. Let v; be a top eigenvector of A;. For t = (1 +

6)n/2, (v, w)| “3 /6/(1+9), so that with high probability |(vs,u)| > V6/(2y/1+9). If

t > (14 0)n/2, we can use Fact N.2 to obtain the same result. By choosing € such that 2e <
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0/(1+ 4), we know from standard concentration of the alignment (Lemma E.6) that |(v;, u)| >
2e with probability at least 1 — exp(—cn) for some ¢ > 0 possibly dependent on (g, §).
vy — (v, u)u

o= (v, wyu]
subspace to u. hence, there exists g ~ N(0, I,,), such that

By rotational invariance of W, w; : is uniformly random on the orthogonal

(In B uuT)g

wes ~ ——————————————— .
C T~ uuT)g]

Since ||(I, — uu")g| ~ ||g’| for some g’ ~ N(0, I,,_;), we have, for some constant ¢ > 0,
P (10, - wutigl < ')

Further, for every 1 < ¢ < n, we know that

<exp(—cn) .

[(u,9)|
N

We next show that, with the claimed probability, only a few entries of w, can have large magni-
tude. As a result, less than ¢ entries of w can be estimated incorrectly (with £ = 1 if k < n/logn).

(Lo = wu")g)il < lgil + llwlloc - [(w, 9)| < lgil +

Define ¢ = [nexp(—ay, - n/k)] > 1 (with a,, a sequence to be chosen later) and g?}}; as the
(-th largest value among the |g;|’s. We have

P (|(u,g)| > v/nay) < exp (—%) .

Furthermore, from a union bound, we get that
< o 2y/nay, n 2nt - ay,
ot = 20E) < (7)o (-5
< (%)Ze ( 2n€ an>

ome -
= exp (— nﬁk n —i—(logZ—i—f) .

By definition, we know that £ > max {n exp(—a, - n/k), 1}, so that

2na., 1 n 1> 2nan,
—log — —
k &7 =

as long as na, > k. This means that

]P’( s 2./nan> < exp (_%) .

An(t) = {z <n: |w| > 6 /%} .
By the bounds above we have

P(lAn(8)| <0 —1) >1— e " — g nan/2k _ g=nan/2

nay,

2k

—min {logn,a, -n/k} —1>

Define the set

Suppose that |{(v;, u)| > 2¢ also holds, and suppose without loss of generality that (v, u) > 2e.
Then, we have (as long as 6./a,, < (9/10)¢)

~ 6yan
1€ Si¢d A (t)u; > 0= vy > {vs, ) ¢ > —=>ZGS sign(vy;) > 0,,

vk VE WV
. . (vg,u)  6y/a, € oA
1€8,i¢ Ap(t),u; < 0= vy < — + < ——=1i¢€ S,sign(vy) <0.
¢ (t) t N N N gn(vy;)
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Analogously, fori ¢ S,i ¢ A, (t), we have
6+/an €
V| < < —=.
il =R <R

and we obtain that at most £ — 1 positions could be mis-identified.

Next, we show that the termination condition (Line 5, Algorithm 2) does not trigger for each
t > n? (with high probability). We write

Y +yf T (Bt + BZ)
A, = =Viuu" + [ ———L
W Wi

From Weyl’s inequality:
B, + B/

2Vt lop

From standard operator norm results for GOE matrices (as (B; + B} )/v/2t ~ GOE(n)), we know
that ||(B; + B])/(2V/1)]lop < 24/n with probability at least 1 — exp(—cn), for some ¢ > 0. Hence
M(A) > VE—2yn>t/2ast >n? > n.

‘We obtain that

E [l (ys, t) — z||’] = O (Ekl + exp (nZn>> = O (exp(—ne?/64k))

(A > \/E—’

where we picked a,, > £2/64 satisfying the bounds outlined above, namely (i) 6./a, < 0.9¢, and
(ii) nay, > k. Notice that na,, /k > log(na, /k) if na, > k,and { — 1 < n-exp(—a, - n/k).

M PROOF OF LEMMA H.3

d
Proof. By the Markov Property, we know that maxy,<i<¢,, |[wy — wylr =

maxo<¢<¢,, ,—t, |we| . By Gaussian concentration, we have
22
P —E > <2 -
L e B e R v

This can be proven, e.g. by discretizing the interval [0,¢y,1 — t;] into 7 equal-length intervals and
employing standard Gaussian concentration on vectors (then pushing » — o0). As the argument is
standard, we omit the proof for brevity.

Now we bound E [maxo<i<t,,,—¢, ||we|[r]. We know that ||w||F is a non-negative sub-
martingale, so that from Doob’s inequality:

2| ~ 27 < _ 2
|, ol ] < 4B, 3] < e — ton

so that from CauChy-SChWarZ, E [maX0<t<f,g 1—tys Hwt H F} < 3\/ t[+1 — t[?’l Hence as tg > 1,
max ||lw; —w 4 — n 2exp | ———
tonX t t|F = 04+1 ¢)le = |

The second tail bound follows immediately (at least, the proof would be analogous to the preceding
display). O

N PROOF OF PROPOSITION E.1

In our proof, we will use the following facts; since they are elementary, we omit the proof.

Fact N.1. For any deterministic unit vector u, a unit vector v is uniformly random on the orthogonal
subspace to w if and only if (v,u) = 0 and v ~ Quv for every orthogonal matrix Q such that

Qu = u.
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Fact N.2. Let A be a symmetric matrix, and w a unit vector. Denote B, = = auu' + A, and let
v(a) be a top eigenvector of B,,. Then f(a) = |(v(«), w)| is an increasing function of o > 0.

We suppose that ¢ > (1 +8)%n/2 instead of (1+ &)n/2, for notational convenience. Let u be a
unit vector of random signs generated from a uniformly random set S C [n] of size k. Since scaling
does not change the eigenvectors, we instead consider the matrix

5 T
Y, = A L + (Bt + B > = \/?uuT + W,
f n 2v/tn n

where it is clear that /2W,, ~ GOE(n).

We conduct our analysis conditional on w. Let v, be a top eigenvector of Y;. We know that

as. | 0 V5
whent = (1 4+ 0)n/2, [{(vs,w)| = 1/ ——, so that with high probability |(v;, u)| > ———.

If ¢t > (14 d)n/2, we can use Fact N.2 to obtain the same result. By choosing € such that 2¢ <

\/0/(1 + 4), we know from standard concentration of the alignment (Lemma E.6) that |(v;, u)| >
2¢ with probability at least 1 — exp(—cn) for some ¢ > 0 possibly dependent on (e, §).

By rotational invariance of W,,, we know that v; ~ Qu, for any orthogonal matrix @ such
that Qu = u. We obtain that v; — (v, w)u also has this property, so by Fact N.1, we get that
vy — (v, u)u

w; = —— 18 uniformly random on the orthogonal subspace to u. We can write, with
v = (v, w)ul|
g ~ N(0,I,):
(I, —uu')g
I(Ln — wuT)g]|

We first deal with the denominator. From triangle inequality, we know that ||(I,, — uu")g|| >
llgll — [luu"g| = |lg|l — |{w,g)|. Since (u,g) ~ N(0,1), we have from standard sub-exponential
concentration on ||g|| that

< exp(—cn)

P (1, -~ uatigl < ")

for some constant ¢ > 0. For every 1 < ¢ < n, we know that

[(u, g)|
Vk

Define £ = [nexp(—a, -n/k)] > 1 and g‘(“g‘; as the ¢-th largest value among the |g;|’s. We have

(T —wu")g)il < |gil + |lulloo - [, 9)] < lgil +

Pl > v < xp (-2)

Furthermore, from a union bound, we get that

2./na n 2nt - a en\* 2nt - a 2nl - a n
abs n n n . n
]P’<(/)>\/E><<£>-exp(— 2 ><(€) exp(— 2 )—exp<— 3 +/{llog—+¢

By definition, we know that £ > max {n exp(—a, - n/k), 1}, so that

2nay, 2n n
7;: flog% -1> T — min {logn,a, -n/k} —1> %
as long as na, > k. With probability at least 1 — exp(—cn) — exp(—na,/k) — exp(—na,/2),
we have that at most £ — 1 positions ¢ in a "bad" set A have |wy| > 6+/a,/k. Suppose that
|(ve, w)| > 2¢ also holds, and suppose without loss of generality that (v;, u) > 2. Then, we have

6y/an,
iGS,i¢A,ui>Oévti><vt’u> ¢ >—éz€S51gn(vn)>O

- VE o VE TV

(vg,u) 6 /ay € oA
< ———==1i¢€ 8, sign(vy) <0
VE | VE O Vk gn(vei)

i€Si¢ Au <0= vy < — +

33



Under review as a conference paper at ICLR 2026

as long as 6,/a,, < 3¢/4, say. Analogously, fori ¢ S,i ¢ A, we have
6\/an, €
V| < < —=
il = <R

and we obtain that at most £ — 1 positions could be mis-identified.

For completeness, we show that the termination condition (Line 5, Algorithm 2) does not trig-
ger for each ¢ > n? (with high probability). We write

Y +yl T (Bt+BtT>
A =22 — Viwu" + | ———-
W Wi

From Wey!’s inequality:
B, + B/

2Vt lop

From standard operator norm results for GOE matrices (as (B; + B} )/v/2t ~ GOE(n)), we know
that ||(B: + BJ)/(2v/t)]lop < 2+/n with probability at least 1 — exp(—cn), for some ¢ > 0. Hence
M(A) >Vt —2yn>t/2ast > n? > n.

‘We obtain that

A(Ay) z\/i—‘

nay,

E [||/(ys,t) — z|?] = O (E_kl + exp (_k>> = O (exp(—ay, - n/k))

where we notice that na,, /k > log(na, /k) if na, > k.

O PRrOOF OF LEMMA E.3

By Gaussian concentration, we have

T

2
]P’( max  ||[Wil[op — E e, X ||Wtop] > z> < 2exp (_2(>

0<t<te41—1s <t<tp41—te toy1 — tf)

This can be proven, e.g. by discretizing the interval [0, ;11 — t¢] into r equal-length intervals and
employing Gaussian concentration on vectors (then pushing » — 00). As the argument is standard,
we omit the proof for brevity.

To evaluate E[maxo<i<¢,,, ¢, || Willop], We recognize that ||W;||op is a submartingale, so that
from Doob’s inequality:

2 2
B, max, (WilR| <48 [1We, o ]3)

Once again from Gaussian concentration,

$2
P (Wil — B Wi gl > ) < 2050 ( 55 )

so that P (|[Wi,,, o,llop — ElIWi,,, o llopll = 2) < 2exp (—/(2(te1 — 1)), Hence
Wit —tollop i8 (te41 — te)-subgaussian, implying that Var(||W;,,, ¢, llop) < 6(te1 — te). As
E[|Wi,,\—t,llop)®> ~ 4(te+1 — te)n (one can obtain this from the Bai-Yin Theorem along with

sub-gaussianity, for instance), we get that E [|[Wy,,, —¢,[|?] < 16(t¢41 — t¢)n eventually as n gets
large.

From Cauchy-Schwarz inequality, we get that

E |: max ||Wt||0p:| S 8\/t[+1 - tl\/’ﬁ

0<t<tp41—te

‘We conclude that

P W, > 16+/(t —t <2 —32
(et IWiley > 169/ Gca — )0 ) < 2exp (~320)
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P PROOF OF LEMMA E .4

First, by orthogonal invariance of W;, we know that v; is uniformly random over the unit sphere
S"~1. We can write, using g ~ N(0, I,,), the following representation

oo 9
gl

As in the statement of the Lemma, we define the following set, for v € R™ and C' > 0:
/1 k
A(v;C) = {z 1<i<n, vyl > ‘\)gf("/)}
n

As with the proof of Proposition E.1, we first deal with the denominator ||g||: indeed, sub-
exponential concentration gives us

P> g <
j=1
This leads us to define another set
B(g;C) = {z 1<i<n,lg| > C’\/log(n/k)}

Let p, = P(Jg1| > C+/log(n/k)), then we have |B(g;C)| ~ Bin(n,p,). From Gaussian tail

bounds, we know that p,, < (n/k)~C"/2. We now use a Chernoff bound of the following form: for
every x > 4E[X], where X ~ Bin(n, p), then

P(X > x) <exp(—z/3)

< 2exp(—n/8) (79)

|3

It is clear that np,, < k?/n < max{k?/n, vk} when C > 2, so that we have
1 1
P (\B(g; O)| > max{Vk, k2/n}) < exp (—3 max{Vk, k:2/n}> < exp (—3711/4)

Therefore, with each fixed ¢, by union bound with probability at least 1 — O(exp(—+/n)), we
have, for a possibly different C' > 0, |A(vy; C)| < max{Vk,k?/n}. Our proof ends here, as
max{Vk, k?/n} < k/2for /n < k < n.

Q PROOF OF LEMMA E.5

We know that
v Wy, v, =v] Wv, — o] (W, — Wi, v
=\ (W) — o] (W, — W,,)v,
=\ (Wy,) — v (W, — Wy, vy + (A (W3) — A (W)

from which we obtain from Weyl’s inequality that

sup v;rWtzvt — /\1(Wtﬂ)| <2 sup ||Wi— Wi, llop <32V (te41 — te)n

te<t<tet1 te<t<toy1
with probability at least 1 — 2 exp(—32n).
R PROOF OF LEMMA E.6

By Weyl’s inequality, W + A1 (Y') (with Y = fvv T + W) is a 1-Lipschitz function and therefore,
by Borell inequality (and Baik et al. (2005)), letting A, () := 6 + 1/, for any £ > 0,

P(IM(Y) = A(0)] > €) < 2e7/4 (80)
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To prove concentration of (v1(Y), v)?, note that simple linear algebra yields

1

v s WU AL - —2p) =: .
(v1(Y),v)? (v, M(Y)I = W) "v) = F(W) (81)

It is therefore sufficient to prove that F'(W') concentrates around a value that is bounded away from
0. Fix €9 > 0 such that 2 + 3¢ < A.(#) and define the event
E = {W ||W||Op§2+50, ‘)\1(Y)—>\*|§60} (82)

By the Bai-Yin law and Gaussian concentration (plus the above concentration of A1), P(£) > 1 —

2e~¢(=0)" for some ¢(g¢) > 0. Further, it is easy to check that F'(W) is Lipschitz on £, whence the
concentration of (u, v (W))? follows by another application of Borell inequality.

S PROOFS OF REDUCTION RESULTS

S.1 PROOF OF THEOREM 2

We state and prove a more detailed version of Theorem 2.

N . —=T,A
TheoremTt Assume that (- , - ) has complexity x and that for any T < 0d, Dy (P~ |[PL) < e
(where E}’ is the continuous time process obtained by Brownian-linear interpolation of Eq. (4)).

Then for any o > O there exists an algorithm with complexity O(x - T/A), that takes as input
y=x+o0g, (x,g) ~ u®N(0,I), and outputs &, such that

E(|Pgjy — Pajylly < V26 +e0(8) =: €, (83)

where go(0) = E|[Pgjy — N(0, (0d) " 1) * Pyyllrv is the expected TV distance between P,
and the convolution of P |, with a Gaussian with variance 1/(0d). As a consequence, there exists a
randomized algorithm vy with complexity (N x-T/A) that approximates the posterior expectation:

E{|ms(y) —m(y)|I’} <28 +2N"". (84)

Proof. The algorithm consists in running the discretized diffusion (4) with initialization g;, = y/o>
att = to := 1/0?. To avoid notational burden, we will assume (7" — t¢) /A to be an integer. Let g
be generated by the discretized diffusion with initialization at ¢y at ¢ = 0. Note that the distribution
of 9y, is the same as the one of ¢ty + v/#g and hence by Assumption (b), and Pinsker’s inequality

1 1 —T,A €
IPg., — Py llrv < \/QDKL(P.@:O”P@O) < \/QDKL(PQ IPg) < \/g (85)

Hence 9, ¥y, can be coupled so that P(g;, # 9;,) < 1/€/2.

We extend this to a coupling of (y; )¢, <t<7 and (9: ), <t<7 in the obvious way: we generate the
two trajectories according to the discretized diffusion (4) with the same randomness 2;. Therefore

P(yr # 95) < \/€/2. Another application of the assumption Dy, (Fz’AHPg) < ¢ and Pinsker’s

inequality yields P(yr # 9%) < \/2/2, for yp < T + VTg' with (z,g’) ~ 1 ® N(0,I). We
conclude by triangle inequality P(yr # yr) < 24/¢/2, which coincides with the claim (83).

Finally, Eq. (84) follows by generating NV i.i.d. copies &1, ..., &y using the above procedure,
and letting 1 (y) be their empirical average. O

S.2 PROOF OF THEOREM 5

The next statement makes a weaker assumption on the accuracy of the diffusion sampler (transporta-
tion instead of KL distance), but in exchnage assumes the approximate drift 1 to be Lipschitz. We
note that Lip(m( -, t)) = sup,, [|Cov(z|y: = y)||o» and the latter is of O(1/d) (for instance) if the
coordinates of & are weakly dependent under the posterior.
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Theorem 5. Assume that (-, -) has computational complexity x and satisfies the following:
(a) For every t > 1/0% y +— m(y,t) is L/d-Lipschitz. (b) There is a stepsize A such that
Wl(PZ;’A, PZ) <eforanyT < 0d.

Then for any o > 0 there exists an algorithm with complexity O(x - T/A), that takes as input
y=x+o0g, (x,g) ~ pu®N(0,I), and outputs &, such that
1

EyWi(Pgly, Pajy) < 2e%0e + ﬁ =:€. (36)

As a consequence, Eq. (13) holds also in this case with the new definition of €.

The algorithm consists in running the discretized diffusion (4) with initialization g, = y/ o?
att =to := 1/0>. To avoid notational burden, we will assume (1" —t()/A to be an integer. Let g}
be generated by the discretized diffusion with initialization at gg at ¢ = 0. Note that the distribution
of 9, is the same as the one of oz -+ v/tg and hence by Assumption (b),

Wi(Py,, Py; ) < Wi(P% o, PH) <e. (87)

In other words there exists a coupling of g/ and g, such that E||g; — 9,2 < e.

We extend this to a coupling of (9 )+, <t<7 and (Y )¢, <¢<7 in the obvious way: we generate
the two trajectories according to the discretized diffusion (4) with the same randomness 2;. A simple
recursive argument (using the Lipschitz property of 772, in Assumption (a)) then yields

T/A
Ellgr — grl2 < (1 + LA/d) e < elT/de (88)

(See for instance Montanari & Wu (2023) or Alaoui et al. (2023) for examples of this calculation.)

Let now yr L7+ VTg' for (x,g') ~ u® N(0,I). Another application of Assumption (a)
implies that this can be coupled to ¢ so that E|lyr — 97| < e, and therefore

Ellgr — yrlls < 2el774c. (89)

As output, we return @ = g7 /T. Using E|lyr — x| = E||g||/v'T and T = 6d,
1
Ellx — | < 2%Fe + — . 90)
I | 7 (

Since the coupling has been constructed conditionally on y, the claim (86) follows.

Finally, Eq. (13) follows by generating N i.i.d. copies &1, ..., Zy using the above procedure,
and letting 772(y) be their empirical average.

T PROOF OF LEMMA G.1

We let B ~ N(0, I,,2) so that W ~ (B + BT)/2. We consider a non-random vector v fitting the
description, and note that

(v, Wo)| < %{\<vva>| + (v, BTv)[}

We know that (v, Bv), (v, BTv) ~ N(0,1). We thus have, by Gaussian tail bounds and a triangle

inequality:
2
P <|<v,W’U> > Cy[log (Z)) < 2exp (—glog (Z))

Union bounding over the set of all such vectors gives us the desired statement, as the cardinality of
this set is (}})2".
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U PROOF OF LEMMA G.3

Proof of Lemma G.3: Using Lemma G.2, we can take x = n=1/4 say, and § = /14§ for
§ = o, (1), to get that

P (/\1(y) <O+1/0 —n~ 14— 2/n> < Cexp(—en'/?)
for some absolute constants C, ¢ > 0.
We have the following identity, letting W ~ GOE(n, 1/n):
_ 1 S 1
0% (u, A ()T = W)72u) = 0% [(A(y)T = W) =2y
By standard Gaussian concentration, we know that
P (|W |l > 2+ 2) < C exp(—cna?)

<ua U1>2

We take
041/ —n14—2/n—2
v 4
Note that with # = /1 + & and § = 0,,(1), we know that @ + 1/6 — 2 = ©(4?), so that z = O(§?)
if § > n~1/8. Furthermore we have, by Theorem 1 above,

P (Amin(A1(y)I — W) < 2zx) < C’exp(—cnl/Q)
and on the complement of this event, we know that

4 2
(o1, 0)? > < = 6(6")

since @ = Q(1), and so |(vy, u)| = 2(6?). Hence we are done.

V  PROOF OF THEOREM 3

The optimality of 7 with respect to scalings c¢m implies, by Pythagoras’ theorem:
E{llm(ye, t) — «|*} = E{|lz]*} — E{ln(y:, )1},
whence, using assumption (16), we obtain that

sup  E[[|ri(y, t)]] = o(ty, ) - 1)
tS(l_'Y)talg

Recall that (g;) is the generated diffusion, defined in Eq.(4). From Girsanov’s formula on [0, (1 —
¥)tag, we get that:

N A .
KL (@eenanoa-mugl@ensnoa-g) =5 2. Ellwsdl?) = o1)
tENAN(O, (1—7) ]
From Eq. (97), we get from Markov’s inequality that with high probability,
A . (@) A .
50X ImetP=om &S Y Il )l = o),
tENANO, (1—7)tag] tENANO,(1—7)tag]

where (a) follows by Cauchy-Schwarz. By Pinsker’s inequality on Eq. (98), we obtain that the same
event holds for (g;) with high probability:

A o
3 2 m@enl=o(yi).
teNAN(O,(1—7)tyg]

Fix a constant €5 > 0 to be chosen later. By taking the constant ~ to be close enough to 1, we get
that for ¢, := min{¢A : A > (14 )ty }:

Yy, = By, + A Z My (Ye,t) := mo + By,
teNANIO,tp)
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w1th P(||mol| > eotag) = o(1). Next we couple (g; : t > t;) to (99 : t > t;) defined by letting
9y = By, and, for t € NA N [t, 00),

Uion =97 + ™97, t)A + Byya — By .

By the assumed Lipschitz property of 7 and Gromwall’s lemma:

CA
loe-9tl< TI  (1+=7) - lImol

t/
t’eNAN[ty,t]
t\C
< (1) lImoll < C'eota ©2)
alg

where the last inequality holds for some absolute constant C” and all ¢ < Ct,,, on the high proba-
bility event ||| < €otag.

We are now in position to finish the proof of the theorem. We couple the process (99 : t > ;)
defined above with (B, : t > ;) to get

KL(Bt+allgiia) < KL(Billy)) + CE{|lm(B:. 1)|*} - A
Using KL(By,||g?,) = 0, summing the last inequality over ¢ > ¢;, and applying Pinsker’s inequality
we obtain, with C” a suitably large constant

sup TV(9Y, B;) = o(1). 93)
tENAN[t e (1+45),00)

Putting together this bound and Eq. (99) (which holds with high probability) we obtain that
P max iy, — B|| > C'eotae) = 0n(1) . 94
(te[talg(1+6)vctalg] Hyt tH o 0 lé) ( ) ( )

We collapse C’gg into €y, as &g is arbitrary. Using once more Lemma W.1 and the Lipschitz
property of ™, we obtain that, for &; = m(gy, t),

) IOl 2 20) = ol 95
( . (1_?;30%15]” m (g, t)|| > e0) = o(1) )

which implies that
inf Wi(m(ye,t),x) > a—eg+ o1
te[talg(l‘l"s)thalg] 1( (yt ) ) 0 ( )

By taking ¢ | 0, we obtain the claim of the theorem.

W PROOF OF COROLLARY 5.1

In order to simplify some of the formulas below we center (i, ;.. Namely, we redefine p,, 1, to be the
distribution of = uu" — E[uu"] when u ~ Unif(B,, ).

Throughout this proof, C' denotes a generic constant which depends on the constants in the
assumptions, and is allowed to change from line to line. We will write E,, ;, for expectation under
in, 1 and E for expectation under M e = % Lkt %50. Further y; = tx+ W}, where the distribution
of @ is either y, , or 1z, 4, as indicated.

The optimality of 1, with respect to scalings ¢, implies, by Pythagoras’ theorem:
E{ [l (ye, t) — 2)*} = E{|l=]*} — E{ 7. (ye, )]},
whence, using assumption (16), we obtain that

sup  Ef[|ri, (ye,1)]°] = on(n™"). (96)

tS(lf'Y)talg

By Law of Total Probability, we have

E[||ri (e, 1)]°] = m~unk[||mn(yt, £)lI*] + %E[Hmn(Wt,t)HQ],
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from which we get

sup E[H?’hn(Wt,t)HQ} =o0,(n7h) 97)

tS(lf'Y)talg
From Girsanov’s formula on [0, (1 — y)t,,], we get that
A .
=35 E[||rin (Wi, )[°] = 0n(1)
teENAN[O,(1—7)tag]

KL ((Wt)teNAﬁ[O,(l—fy)talg] ||(Qt)tENAﬁ[O,(l—'y)talg])

(98)

due to the fact that t,,, = n/2. From Eq. (97), we get from Markov’s inequality that with high
probability,

vo| >

Y WP =00 S Wt = on(vi),

tENAm[Oa(l_'Y)talg] teNAn[Oa(l_'Y)talg]

where (a) follows by Cauchy-Schwarz. By Pinsker’s inequality on Eq. (98), we obtain that the same
event holds for (y;) with high probability:

A o
5 @t = oulvi).
tENAm[Ov(l_W)talg]

Fix a constant 9 > 0 to be chosen later. By taking the constant -y to be close enough to 1, we get
that for ¢ := min{¢A : LA > (14 &)ty }:

th = Btb +A Z Thn@mt) =Mmy + Btb
tENAN[O, ]

with P(||myg|| > eon) = o,(1), and (g,) is the generated diffusion, defined in Eq.(4). Next we
couple (g : t > 1) to (g§ : t > t,) defined by letting ¢, = By, and, for t € NA N [ty, 00),

@2+A = 'gg + mn('gg7 t)A + Bt+A - Bt .

By the assumed Lipschitz property of 1 and Gromwall’s lemma:

A
fg-afl< TT (1+S2) - Imal

t/
' eNAN[ty,1]
t\¢
< (t—) [mol| < C'eon, (99)
alg

where the last inequality holds for some absolute constant C’ and all t < Cn = (2C)ty,, on the
high probability event ||mg|| < gon.

In order to finish the proof, we state and prove a useful lemma. In a nutshell, m,, resists
improvements from eigenvalue hypothesis tests:

Lemma W.1. Under the assumptions of Theorem 5.1, assume that 6,, vanishes slowly enough. Then,
Sfort > (1+ )ty

E{ |, (B, 1)[|2} < Ce™ ViVt /Cn (100)

Proof. Let A1 (y;) be the maximum eigenvalue of (y; + y+)/v2, M\(t) := V2(Vt + /fag)? and
d(yr) == L(A1(yr) > A«(t)). Concentration results about spiked GOE matrices imply, for all
t > (14 0)tug

P,k (d(ys) = 0) < Ce "VEVEIC T p(g(B,) =0) < C exp{ _ é(\/g, \/@4} .
(101)

(To simplify notations, we omit the dependence of ¢ on £.)
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By assumption, the MSE of 7, (y:,t) is not larger than the one of 772, (y:, t)¢(y:). Letting
o(yt) =1~ ¢(y):
E{|lm(y, t) — |} <E{|lm(y:, t)o(y:) — =}

=E{|lm(y, t) — z[|¢(y:) } + E{||z*¢(y:) }

= E{[[m(ys,t) — [d(ye) } + Prr(d(y:) =0), (102)
whence

E{ [ (ys, t) — [|*¢(ye) } < Pri(d(ye) =0). (103)
On the other hand
E{ |l (ys, t) — z[|*d(ye) } = E{|lm(ye,t)[|*Lamod(y:) }

%E{ (B, 1) |2 (W) }

Y]

1 . 1

SE{Im(B.1)[*} - SP(6(Wi) = 1). (104)

Putting together Egs. (101), (103), (104), we obtain (eventually adjusting the constant C')
E{[[m(By, 1)} < P(¢(B:) = 1) + 2Py 1 (6(ye) = 0)

1
< Cexp{ - —(Vt- \/talg)‘l} .
Cn
O
We are now in position to finish the proof of the theorem. We couple the process (99 : t > ;)
defined above with (B, : t > ;) to get
KL(Bitall9tia) < KL(Billyy) + CE{|li (B, )%} - A
N 1
< KL(Bi[1g9) + Chexp { = (Vi — /i)' }
Using KL(By,||g? ) = 0, summing the last inequality over ¢ > t;, and applying Pinsker’s inequality
we obtain for 6,, > C’(logn/n)/* with C’ a suitably large constant

sup TV(9?, B;) = on(1). (105)
tENAN[t 1 (145),00)

Putting together this bound and Eq. (99) (which holds with high probability) we obtain that

Pl et ji = Bil| > C'zon) = on(1). 106
té[talg(l-f-)((s),Cn] 9 il = on) (1) (106)

We collapse C'e into eq, as € is arbitrary. Using once more Lemma W.1 and the Lipschitz
property of m,,, we obtain that, for &; = m(gy,t),

P max My, (Y, t)|| > o) = 0n(1), 107
()] > 20) = 0,0 (107

which implies that

inf Wi (e, (9¢,t), ) > 1/2 — (1
tE[talg(lflM),Cn] 1(110n (Y1, 1), ) /2 —¢e0+0n(1)

By taking €¢ | 0, we obtain the claim of the theorem.
X DETAILS OF NUMERICAL SIMULATIONS

Our GNN architecture uses node embeddings that are generated by 3 iterations of the power method
and 10 message passing layers. Each message passing layer comprises of the ‘message’ and ‘node-
update’ multi-layer perceptrons (MLPs), both of which are 2-layer neural networks with LeakyReLU
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nonlinearity. We simply use the complete graph with self-loops for node embedding updates. We
find that ‘seeding’ the node embeddings with iterations of power method is crucial for effective
training.

During training of the denoiser, we sample time points ¢ as follows: choose a time threshold ¢,,
and sample so that times ¢ > t, are picked with total probability 0.95 (and times ¢ < ¢, are picked
with total probability 0.05). Within each interval (0, ¢,] and (¢.,T’), times are chosen at random.
This allows the neural network to initially prioritize learning in a low-noise regime. Several fine-
tuning steps are taken, for which ¢, is gradually decreased to refine the network on lower SNR.

Empirically, training directly with 10 layers is difficult, due to its depth. We find that training
initially with 7 layers, then subsequently introducing the later layers results in more stable training.

We train such a network using N' = 30000 samples x; from the distribution f,, ., and evaluate
their MSE on Ng = 15000 samples.
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