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Abstract

Although convolutional neural networks have been the dominant architecture for computer
vision for many years, Vision Transformers (ViTs) have recently shown promise as an
alternative. Subsequently, many new models have been proposed which replace the
self-attention layer within the ViT architecture with novel operations (such as MLPs),
all of which have also been relatively performant. We note that these architectures all
share a common component—the patch embedding layer—which enables the use of a
simple isotropic template with alternating steps of channel- and spatial-dimension mixing.
This raises a question: is the success of ViT-style models due to novel, highly-expressive
operations like self-attention, or is it at least in part due to using patches? In this paper,
we present some evidence for the latter: specifically, we propose the ConvMixer, an
extremely simple and parameter-efficient fully-convolutional model in which we replace the
self-attention and MLP layers within the ViT with less-expressive depthwise and pointwise
convolutional layers, respectively. Despite its unusual simplicity, ConvMixer outperforms
the ViT, MLP-Mixer, and their variants for similar data set sizes and parameter counts,
in addition to outperforming classical vision models like ResNet. We argue that this
contributes to the evidence that patches are sufficient for designing simple and effective
vision models. Our code is available at https://github.com/locuslab/convmixer.

1 Introduction
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Figure 1: Acc. vs. params., trained & tested
on ImNet-1k; ResNets newly-trained (same
procedure as ConvMixers).

For many years, convolutional neural networks have been
the dominant architecture for deep learning systems applied
to computer vision tasks. But recently, architectures
based upon Transformer models, e.g., the so-called Vision
Transformer architecture (Dosovitskiy et al., 2020), have
demonstrated compelling performance in many of these
tasks, often outperforming classical convolutional architec-
tures, especially for large data sets. An understandable
assumption, then, is that it is only a matter of time before
Transformers become the dominant architecture for vision
domains, just as they have for language processing. In order
to apply Transformers to images, however, the representa-
tion had to be changed: because the computational cost of
the self-attention layers used in Transformers would scale
quadratically with the number of pixels per image if applied
naively at the per-pixel level, the compromise was to first
split the image into multiple “patches”, linearly embed
them, and then apply the transformer directly to this collection of patches.
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Figure 2: ConvMixer uses “tensor layout” patch embeddings to preserve locality, and then applies d copies
of a simple fully-convolutional block consisting of large-kernel depthwise convolution followed by pointwise
convolution, before finishing with global pooling and a simple linear classifier.

1 import torch.nn as nn
2

3 class Residual(nn.Module):
4 def __init__(self, fn):
5 super().__init__()
6 self.fn = fn
7

8 def forward(self, x):
9 return self.fn(x) + x

10

11 def ConvMixer(dim, depth, kernel_size=9, patch_size=7, n_classes=1000):
12 return nn.Sequential(
13 nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size),
14 nn.GELU(),
15 nn.BatchNorm2d(dim),
16 *[nn.Sequential(
17 Residual(nn.Sequential(
18 nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"),
19 nn.GELU(),
20 nn.BatchNorm2d(dim)
21 )),
22 nn.Conv2d(dim, dim, kernel_size=1),
23 nn.GELU(),
24 nn.BatchNorm2d(dim)
25 ) for i in range(depth)],
26 nn.AdaptiveAvgPool2d((1,1)),
27 nn.Flatten(),
28 nn.Linear(dim, n_classes)
29 )

Figure 3: Implementation of ConvMixer in PyTorch; see Appendix E for more implementations.

Many subsequent works have modified the architecture of the ViT, replacing self-attention with novel oper-
ations and making other small changes, all of which have been relatively performant. These architectures
follow a common and very simple “template”: they are isotropic, maintaining equal size and resolution
throughout the network, and apply alternating steps of spatial and channel mixing. They also all use patch
embeddings, which moves all downsampling to the beginning of the network and enables the simple, isotropic
mixing design.

In this work, we explore the question of whether, fundamentally, the strong performance of vision transform-
ers may result more from this patch-based representation and its simplifying consequences for architecture
design, than from the use of novel and highly-expressive operations such as self-attention and MLPs. We
develop a very simple convolutional architecture which we dub the “ConvMixer” due to its similarity to the
recently-proposed MLP-Mixer (Tolstikhin et al., 2021). This architecture is similar to the Vision Transformer
(and MLP-Mixer) in many respects: it directly operates on patches, it maintains an equal-resolution-and-
size representation throughout all layers, it does no downsampling of the representation at successive layers,
and it separates “channel-wise mixing” from the “spatial mixing” of information. But unlike the Vision
Transformer and MLP-Mixer, our architecture does all these operations via only standard convolutions. As
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depthwise and pointwise convolution are less expressive than self-attention and MLPs respectively, we believe
this suggests that the patch-based isotropic mixing architecture is a powerful primitive that works well with
almost any choice of well-behaved mixing operations.

The chief result we show in this paper is that this ConvMixer architecture, despite its extreme simplicity
(it can be implemented in 280 characters of dense PyTorch code; see Appendix E), outperforms both
“standard” computer vision models such as ResNets of similar parameter counts and some corresponding
Vision Transformer and MLP-Mixer variants, even with a slate of additions intended to make those
architectures more performant on smaller data sets. Importantly, this is despite the fact that we did not
design our experiments to maximize accuracy nor speed, in contrast to the models we compared against.
Our results suggest that, at least to some extent, the patch representation itself may be a critical component
to the “superior” performance of newer architectures like Vision Transformers. While these results are
naturally just a snapshot, and more experiments are required to exactly disentangle the effect of patch
embeddings from other factors, we believe that this provides a strong “convolutional-but-patch-based”
baseline to compare against for more advanced architectures in the future.

2 A simple model: ConvMixer

Our model, dubbed ConvMixer, consists of a patch embedding layer followed by repeated applications of a
simple fully-convolutional block. We maintain the spatial structure of the patch embeddings, as illustrated in
Fig. 2. Patch embeddings with patch size p and embedding dimension h can be implemented as convolution
with cin input channels, h output channels, kernel size p, and stride p:

z0 = BN (σ{Convcin→h(X, stride=p, ksize=p)}) (1)

The ConvMixer block itself consists of depthwise convolution (i.e., grouped convolution with groups equal
to the number of channels, h) followed by pointwise (i.e., kernel size 1× 1) convolution. As we will explain
in Sec. 3, ConvMixers work best with unusually large kernel sizes for the depthwise convolution. Each of
the convolutions is followed by an activation and post-activation BatchNorm:

z′l = BN (σ{ConvDepthwise(zl−1)}) + zl−1 (2)
zl+1 = BN (σ{ConvPointwise(z′l)}) (3)

After many applications of this block, we perform global pooling to get a feature vector of size h, which we
pass to a softmax classifier. See Fig. 3 for an implementation of ConvMixer in PyTorch.

Design parameters. An instantiation of ConvMixer depends on four parameters: (1) the “width” or
hidden dimension h (i.e., the dimension of the patch embeddings), (2) the depth d, or the number of
repetitions of the ConvMixer layer, (3) the patch size p which controls the internal resolution of the model,
and (4) the kernel size k of the depthwise convolutional layer. We name ConvMixers after their hidden
dimension and depth, like ConvMixer-h/d. We refer to the original input size n divided by the patch size
p as the internal resolution; note, however, that ConvMixers support variable-sized inputs.

Motivation. Our architecture is based on the idea of mixing, as in Tolstikhin et al. (2021). In particular,
we chose depthwise convolution to mix spatial locations and pointwise convolution to mix channel locations.
A key idea from previous work is that MLPs and self-attention can mix distant spatial locations, i.e., they
can have an arbitrarily large receptive field. Consequently, we used convolutions with an unusually large
kernel size to mix distant spatial locations.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive fields and content-
aware behavior, the inductive bias of convolution is well-suited to vision tasks and leads to high data efficiency.
By using such a standard operation, we also get a glimpse into the effect of the patch representation itself in
contrast to the conventional pyramid-shaped, progressively-downsampling design of convolutional networks.
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Table 1: Models trained and evaluated on 224× 224 ImageNet-1k only. See more in Appendix A.

Current “Most Interesting” ConvMixer Configurations vs. Other Simple Models

Network Patch
Size

Kernel
Size

# Params
(×106)

Throughput
(img/sec)

Act.
Fn. # Epochs ImNet

top-1 (%)

ConvMixer-1536/20 7 9 51.6 134 G 150 81.37
ConvMixer-768/32 7 7 21.1 206 R 300 80.16
ConvMixer-1536/20 14 9 52.3 538 G 150 78.92

ResNet-152 – 3 60.2 828 R 150 79.64
DeiT-B 16 – 86 792 G 300 81.8
ResMLP-B24/8 8 – 129 181 G 400 81.0

3 Experiments

Training setup. We primarily evaluate ConvMixers on ImageNet-1k classification without any pretraining
or additional data. We added ConvMixer to the timm framework (Wightman, 2019) and trained it with
nearly-standard settings for the common training procedure from this library: we used RandAugment (Cubuk
et al., 2020), mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), random erasing (Zhong et al., 2020), and
gradient norm clipping in addition to default timm augmentation. We used the AdamW (Loshchilov & Hutter,
2018) optimizer and a simple triangular learning rate schedule. Due to limited compute, we did virtually
no hyperparameter tuning on ImageNet and trained for fewer epochs than competitors. Consequently, our
models could be over- or under-regularized, and the accuracies we report likely underestimate the capabilities
of our model.

Results. A ConvMixer-1536/20 with 52M parameters can achieve 81.4% top-1 accuracy on ImageNet,
and a ConvMixer-768/32 with 21M parameters 80.2% (see Table 1). Wider ConvMixers seem to converge
in fewer epochs, but are more memory- and compute-hungry. They also work best with large kernel sizes:
ConvMixer-1536/20 lost ≈ 1% accuracy when reducing the kernel size from k = 9 to k = 3 (we discuss
kernel sizes more in Appendix A, B, & C). ConvMixers with smaller patches are substantially better in
our experiments, similarly to Sandler et al. (2019); we believe larger patches require deeper ConvMixers.
With everything held equal except increasing the patch size from 7 to 14, ConvMixer-1536/20 achieves
78.9% top-1 accuracy but is around 4× faster. We trained one model with ReLU to demonstrate that
GELU (Hendrycks & Gimpel, 2016), which is popular in recent isotropic models, isn’t necessary.

Comparisons. Our model and ImageNet1k-only training setup closely resemble that of recent patch-based
models like DeiT (Touvron et al., 2020). Due to ConvMixer’s simplicity, we focus on comparing to only
the most basic isotropic patch-based architectures adapted to the ImageNet-1k setting, namely DeiT and
ResMLP. Attempting a fair comparison with a standard baseline, we trained ResNets using exactly the same
parameters as ConvMixers; while this choice of parameters is suboptimal (Wightman et al., 2021), it is likely
also suboptimal for ConvMixers, since we did no hyperparameter tuning aside from our recent adoption of hy-
perparameters from Wightman et al. (2021) for some models (presented separately in Appendix A). Looking
at Table 1 and Fig. 1, ConvMixers achieve competitive accuracies for a given parameter budget: ConvMixer-
1536/20 outperforms both ResNet-152, ResMLP-B24, and DeiT-B despite having substantially fewer param-
eters. ConvMixer-768/32 uses just a third of the parameters of ResNet-152, but is similarly accurate. Note
that unlike ConvMixer, the DeiT and ResMLP results involved hyperparameter tuning, and when substantial
resources are dedicated to tuning ResNets, including training for twice as many epochs, they only outperform
an equivalently-sized ConvMixer by ≈ 0.2% (Wightman et al., 2021). However, ConvMixers are substantially
slower at inference than the competitors, likely due to their smaller patch size; hyperparameter tuning and
optimizations could narrow this gap. For more discussion and comparisons, see Table 2 and Appendix A.

Hyperparameters. For almost all experiments presented in the main text, we used only one set of
“common sense” hyperparameters for the regularization methods. Recently, we adapted hyperparameters
from the A1 procedure in Wightman et al. (2021), published after our work, which were better than
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our initial guess, e.g., giving +0.8% for ConvMixer-1536/20, or 82.2% top-1 accuracy (see Appendix A).
However, we note that such optimal ResNet hyperparameters are likely not optimal for ConvMixers.

Additional experiments. We present additional ImageNet experiments in Appendix B; notably, we
provide more evidence for the advantage of large-kernel convolutions. We also performed smaller-scale
experiments on CIFAR-10, where ConvMixers achieve over 96% accuracy with as few as 0.7M parameters,
demonstrating the data efficiency of the convolutional inductive bias. Details of these experiments are
presented in Appendix C.

4 Related work

Isotropic architectures. Vision transformers have inspired a new paradigm of “isotropic” architectures,
i.e., those with equal size and shape throughout the network, which use patch embeddings for the first layer.
These models look similar to repeated transformer-encoder blocks (Vaswani et al., 2017) with different
operations replacing the self-attention and MLP operations. For example, MLP-Mixer (Tolstikhin et al.,
2021) replaces them both with MLPs applied across different dimensions (i.e., spatial and channel location
mixing); ResMLP (Touvron et al., 2021a) is a data-efficient variation on this theme. CycleMLP (Chen
et al., 2021), gMLP (Liu et al., 2021a), and vision permutator (Hou et al., 2021), replace one or both blocks
with various novel operations. These are all quite performant, which is typically attributed to the novel
choice of operations. In contrast, Melas-Kyriazi (2021) proposed an MLP-based isotropic vision model, and
also hypothesized patch embeddings could be behind its performance. ResMLP tried replacing its linear
interaction layer with (small-kernel) convolution and achieved good performance, but kept its MLP-based
cross-channel layer and did not explore convolutions further. As our investigation of ConvMixers suggests,
these works may conflate the effect of the new operations (like self-attention and MLPs) with the effect of
the use of patch embeddings and the resulting isotropic architecture.

After our investigation, Liu et al. (2022) proposed an architecture similar to ConvMixer, the isotropic
ConvNeXt. Similarly to our work, they provide evidence that the success of ViTs comes from design choices
other than the use of self-attention, such as patches; however, ConvMixer goes a step further and eliminates
even the MLPs, which suggests that neither of the original ViT operations are crucial to the success of the
more general architecture design. Further, Yu et al. (2022) replaced self-attention with a simple pooling
operation and demonstrated its effectiveness; they also argued this supports the effectiveness of the ViT
template. In contrast, our work suggests the template is even more general, not even requiring MLPs.

A study predating vision transformers investigates isotropic (or “isometric”) MobileNets (Sandler et al.,
2019), and even implements patch embeddings under another name. Their architecture simply repeats
an isotropic MobileNetv3 block. They identify a tradeoff between patch size and accuracy that matches
our experience, and train similarly performant models (see Appendix A, Table 2). However, their block is
substantially more complex than ours; simplicity and motivation sets our work apart.

Patches aren’t all you need? Several papers have increased vision transformer performance by replacing
standard patch embeddings with a different stem: Xiao et al. (2021) and Yuan et al. (2021a) use a standard
convolutional stem, while Yuan et al. (2021b) repeatedly combines nearby patch embeddings. However,
this conflates the effect of using patch embeddings with the effect of adding convolution or similar inductive
biases e.g., locality. We attempt to focus on the use of patches.

CNNs meet ViTs. Many efforts have been made to incorporate features of convolutional networks into
vision transformers and vice versa. Self-attention can emulate convolution (Cordonnier et al., 2019) and can
be initialized or regularized to be like it (d’Ascoli et al., 2021); other works simply add convolution operations
to transformers (Dai et al., 2021; Guo et al., 2021), or include downsampling to be more like traditional
pyramid-shaped convolutional networks (Wang et al., 2021). Conversely, self-attention or attention-like
operations can supplement or replace convolution in ResNet-style models (Bello et al., 2019; Ramachandran
et al., 2019; Bello, 2021). While all of these attempts have been successful in one way or another, they are
orthogonal to this work, which aims to emphasize the effect of the architecture common to most ViTs by
showcasing it with a less-expressive operation.
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5 Conclusion

We presented ConvMixers, an extremely simple class of models that independently mixes the spatial and
channel locations of patch embeddings using only standard convolutions. We also highlighted that using
large kernel sizes, inspired by the large receptive fields of ViTs and MLP-Mixers, provides a substantial
performance boost. While neither our model nor our experiments were designed to maximize accuracy or
speed, i.e., we did not search for good hyperparameters, ConvMixers outperform the Vision Transformer
and MLP-Mixer, and are competitive with ResNets, DeiTs, and ResMLPs.

We provided evidence that the increasingly common “isotropic” architecture with a simple patch embedding
stem is itself a powerful template for deep learning. Patch embeddings allow all the downsampling to
happen at once, immediately decreasing the internal resolution and thus increasing the effective receptive
field size, making it easier to mix distant spatial information. Our title, while an exaggeration, points out
that attention isn’t the only export from language processing into computer vision: tokenizing inputs, i.e.,
using patch embeddings, is also a powerful and important takeaway.

While our model is not state-of-the-art, we find its simple patch-mixing design to be compelling. We hope
that ConvMixers can serve as a baseline for future patch-based architectures with novel operations, or that
they can provide a basic template for new conceptually simple and performant models.

Given that such simple architectures as ConvMixer can be successful, we question the role of continued
architecture searches; in particular, are more complicated architectures fundamentally better at modeling
phenomena, or are they ultimately just more computationally efficient? Much of the variance in accuracies
may be explained by more advanced training pipelines and augmentation techniques, as demonstrated by
Wightman et al. (2021) and our work.

Future work. We are optimistic that a deeper ConvMixer with larger patches could reach a desirable
tradeoff between accuracy, parameters, and throughput after longer training and more regularization and
hyperparameter tuning, similarly to how Wightman et al. (2021) enhanced ResNet performance through
carefully-designed training regimens. Low-level optimization of large-kernel depthwise convolution could
substantially increase throughput, and small enhancements to our architecture like the addition of bottlenecks
or a more expressive classifier could trade simplicity for performance.

Due to its large internal resolution and isotropic design, ConvMixer may be especially well-suited for
semantic segmentation, and it would be useful to run experiments on this task with a ConvMixer-like
model and on other tasks such as object detection. More experiments could be designed to more clearly
extricate the effect of patch embeddings from other architectural choices. In particular, for a more in-depth
comparison to ViTs and MLP-Mixers, which excel when trained on very large data sets, it is important to
investigate the performance of ConvMixers in the regime of large-scale pre-training.

More work is necessary to extricate the effect of the patch embeddings from the rest of the architecture. In
particular, we have preliminary evidence that it is not necessary to separate the spatial and channel mixing
steps; patches followed by any stack of nonlinear operations (say, plain convolution) may be sufficient for
simple, performant models.

Note on paper length. We acknowledge that this paper is shorter than most, and this is intentional.
In the main text, we have presented our main thesis, proposed an extremely simple architecture used to
validate the thesis, included a complete implementation, highlighted the results that we believe to be most
relevant, and finished with concluding thoughts. The work here is very simple, and thus we believe that
a short paper is ultimately more effective at conveying the main messages. While additional experiments
and results are included in the appendix, we fully argue that the results in the main text are sufficient to
establish our point, and that the supplementary material is genuinely of secondary importance. Hence, we
felt the shorter length was more than sufficient.
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A Comparison to other models

Table 2: Throughputs measured on an RTX8000 GPU using batch size 64 and fp16. ConvMixers and
ResNets trained ourselves. Other statistics: DeiT (Touvron et al., 2020), ResMLP (Touvron et al., 2021a),
Swin (Liu et al., 2021b), ViT (Dosovitskiy et al., 2020), MLP-Mixer (Tolstikhin et al., 2021), Isotropic
MobileNets (Sandler et al., 2019). We think models with matching colored dots (•) are informative to
compare with each other. †Throughput tested, but not trained. Activations: ReLU, GELU.
FUsing new, better regularization hyperparameters based on Wightman et al. (2021)’s A1 procedure.

Comparison with other simple models trained on ImageNet-1k only with input size 224.

Network Patch
Size

Kernel
Size

# Params
(×106)

Throughput
(img/sec)

Act.
Fn. # Epochs ImNet

top-1 (%)

ConvMixer-1536/20F 7 9 51.6 134 G 150 82.20
ConvMixer-1536/20 • 7 9 51.6 134 G 150 81.37
ConvMixer-1536/20F 7 3 49.4 246 G 150 81.60
ConvMixer-1536/20 7 3 49.4 246 G 150 80.43
ConvMixer-1536/20 14 9 52.3 538 G 150 78.92
ConvMixer-1536/24F 14 9 62.3 447 G 150 80.21
ConvMixer-768/32F 7 7 21.1 206 G 150 80.74
ConvMixer-768/32 • 7 7 21.1 206 R 300 80.16
ConvMixer-1024/16 7 9 19.4 244 G 100 79.45
ConvMixer-1024/12 7 8 14.6 358 G 90 77.75
ConvMixer-512/16 7 8 5.4 599 G 90 73.76
ConvMixer-512/12 • 7 8 4.2 798 G 90 72.59
ConvMixer-768/32 14 3 20.2 1235 R 300 74.93
ConvMixer-1024/20 • 14 9 24.4 750 G 150 76.94
ResNet-152F – 3 60.2 828 R 150 81.15
ResNet-152 • – 3 60.2 828 R 150 79.64
ResNet-101 • – 3 44.6 1187 R 150 78.33
ResNet-50 – 3 25.6 1739 R 150 76.32
DeiT-B† 7 – 86.7 83 G – –
DeiT-S† 7 – 22.1 174 G – –
DeiT-Ti† 7 – 5.7 336 G – –
DeiT-B • 16 – 86 792 G 300 81.8
DeiT-S • 16 – 22 1610 G 300 79.8
DeiT-Ti • 16 – 5.7 2603 G 300 72.2
ResMLP-S12/8 • 8 – 22.1 872 G 400 79.1
ResMLP-B24/8 • 8 – 129 181 G 400 81.0
ResMLP-B24 16 – 116 1597 G 400 81.0
Swin-S • 4 – 50 576 G 300 83.0
Swin-T • 4 – 29 878 G 300 81.3
ViT-B/16 • 16 – 86 789 G 300 77.9
Mixer-B/16 • 16 – 59 1025 G 300 76.44
Isotropic MobileNetv3 • 8 3 20 355 R – 80.6
Isotropic MobileNetv3 • 16 3 20 1296 R – 77.6
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Experiment overview. We did not design our experiments to maximize accuracy: We chose “common
sense” parameters for timm and its augmentation settings, found that it worked well for a ConvMixer-1024/12,
and stuck with them for the proceeding experiments. We admit this is not an optimal strategy, however, we
were aware from our early experiments on CIFAR-10 that results seemed robust to various small changes.
We did not have access to sufficient compute to attempt to tune hyperparameters for each model: e.g.,
larger ConvMixers could probably benefit from more regularization than we chose, and smaller ones from
less regularization. Keeping the parameters the same across ConvMixer instances seemed more reasonable
than guessing for each.

However, to some extent, we changed the number of epochs per model: for earlier experiments, we merely
wanted a “proof of concept”, and used only 90–100 epochs. Once we saw potential, we increased this
to 150 epochs and trained some larger models, namely ConvMixer-1024/20 with p = 14 patches and
ConvMixer-1536/20 with p = 7 patches. Then, believing that we should explore deeper-but-less-wide
ConvMixers, and knowing from CIFAR-10 that the deeper models converged more slowly, we trained
ConvMixer-768/32s with p = 14 and p = 7 for 300 epochs. Of course, training time was a consideration:
ConvMixer-1536/20 took about 9 days to train (on 10× RTX8000s) 150 epochs, and ConvMixer-768/32 is
over twice as fast, making 300 epochs more feasible.

If anything, we believe that in the worst case, the lack of parameter tuning in our experiments resulted in
underestimating the accuracies of ConvMixers. Further, due to our limited compute and the fact that large
models (particularly ConvMixers) are expensive to train on large data sets, we generally trained our models
for fewer epochs than competition like DeiT and ResMLP (see Table 2).

In this revision, we have added some additional results (denoted with a F in Table 2) using hyperparameters
loosely based on the precisely-crafted “A1 training procedure” from Wightman et al. (2021). In particular,
we adjusted parameters for RandAug, Mixup, CutMix, Random Erasing, and weight decay to match those
in the procedure. Importantly, we still only trained for 150 epochs, rather than the 600 epochs used in
Wightman et al. (2021), and we did not use binary cross-entropy loss nor repeated augmentation. While we
do not think optimal hyperparameters for ResNet would also be optimal for ConvMixer, these settings are
significantly better than the ones we initially chose. This further highlights the capabilities of ConvMixers,
and we are optimistic that further tuning could lead to still-better performance. Throughout the paper, we
still refer to ConvMixers trained using our initial “one shot” selection of hyperparameters.

A note on throughput. We measured throughput using batches of 64 images in half precision on a single
RTX8000 GPU, averaged over 20 such batches. In particular, we measured CUDA execution time rather
than “wall-clock” time. We noticed discrepancies in the relative throughputs of models, e.g., Touvron et al.
(2020) reports that ResNet-152 is 2× faster than DeiT-B, but our measurements show that the two models
have nearly the same throughput. We therefore speculate that our throughputs may underestimate the
performance of ResNets and ConvMixers relative to the transformers. The difference may be due to using
RTX8000 rather than V100 GPUs, or other low-level differences. Our throughputs were similar for batch
sizes 32 and 128.

ResNets. As a simple baseline to which to compare ConvMixers, we trained three standard ResNets using
exactly the same training setup and parameters as ConvMixer-1536/20. We also trained ResNet-152F using
the new A1-based procedure for comparison against ConvMixer-1536/20F. Despite having fewer parameters
and being architecturally much simpler, ConvMixers substantially outperform these ResNets in terms of
accuracy. A possible confounding factor is that ConvMixers use GELU, which may boost performance,
while ResNets use ReLU. In an attempt to rule out this confound, we used ReLU in a later ConvMixer-
768/32 experiment and found that it still achieved competitive accuracy. We also note that the choice of
ReLU vs. GELU was not important on CIFAR-10 experiments (see Table 7). However, ConvMixers do have
substantially less throughput.

DeiTs. We believe that DeiT is the most reasonable comparison in terms of vision transformers: It only adds
additional regularization, as opposed to architectural additions in the case of CaiT (Touvron et al., 2021b),
and is then essentially a “vanilla” ViT modulo the distillation token (we don’t consider distilled architectures).
In terms of a fixed parameter budget, ConvMixers generally outperform DeiTs. For example, ConvMixer-
1536/20 is only 0.43% less accurate than DeiT-B despite having over 30M fewer parameters; ConvMixer-
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768/32 is 0.36% more accurate than DeiT-S despite having 0.9M fewer parameters; and ConvMixer-512/16
is 0.39% more accurate than DeiT-Ti for nearly the same number of parameters. Admittedly, none of the
ConvMixers are very competitive in terms of throughput, with the closest being the ConvMixer-512/16 which
is 4× slower than DeiT-Ti.

A confounding factor is the difference in patch size between DeiT and ConvMixer; DeiT uses p = 16 while
ConvMixer uses p = 7. This means DeiT is substantially faster. However, ConvMixers using larger patches
are not as competitive. While we were not able to train DeiTs with larger patch sizes, it is possible that
they would outperform ConvMixers on the parameter count vs. accuracy curve; however, we tested their
throughput for p = 7, and they are even slower than ConvMixers. Given the difference between convolution
and self-attention, we are not sure it is salient to control for patch size differences.

DeiTs were subject to more hyperparameter tuning than ConvMixers, as well as longer training times. They
also used stochastic depth while we did not, which can in some cases contribute percent differences in model
accuracy (Touvron et al., 2021a). It is therefore possible that further hyperparameter tuning and more
epochs for ConvMixers could close the gap between the two architectures for large patches, e.g., p = 16.

ResMLPs. Similarly to DeiT for ViT, we believe that ResMLP is the most relevant MLP-Mixer variant
to compare against. Unlike DeiT, we can compare against instances of ResMLP with similar patch size:
ResMLP-B24/8 has p = 8 patches, and underperforms ConvMixer-1536/20 by 0.37%, despite having over
twice the number of parameters; it also has similarly low throughput. ConvMixer-768/32 also outperforms
ResMLP-S12/8 for millions fewer parameters, but 4× less throughput.

ResMLP did not significantly improve in terms of accuracy for halving the patch size from 16 to 8, which
shows that smaller patches do not always lead to better accuracy for a fixed architecture and regularization
strategy (e.g., training a p = 8 DeiT may be challenging).

Swin Transformers. While we intend to focus on the most basic isotropic, patch-based architectures for
fair comparisons with ConvMixer, it is also interesting to compare to a more complicated model that is
closer to state-of-the-art. For a similar parameter budget, ConvMixer is around 1.2-1.6% less accurate than
the Swin Transformer, while also being 4-6× slower. However, considering we did not attempt to tune or
optimize our model in any way, we find it surprising that an exceedingly simple patch-based model that uses
only plain convolution does not lag too far behind Swin Transformer.

Isotropic MobileNets. These models are closest in design to ours, despite using a repeating block that
is substantially more complex than the ConvMixer one. Despite this, for a similar number of parameters,
we can get similar performance. Notably, isotropic MobileNets seem to suffer less from larger patch sizes
than ConvMixers, which makes us optimistic that sufficient parameter tuning could lead to more performant
large-patch ConvMixers. As Sandler et al. (2019) did not provide an implementation, we cannot be sure if
ours is exactly the same; e.g., we were unsure if 5x5 stride-5 convolutions were replaced with 3x3 or 5x5
stride-1 convolutions, so we chose 3x3. The throughputs in Table 2 are based on our implementation. We
also trained a patch-size-16 Isotropic MobileNet using exactly the same pipeline used for our ConvMixers,
which achieved only 70.76% accuracy.

Other models. We included ViT and MLP-Mixer instances in our table, though they are not competitive
with ConvMixer, DeiT, or ResMLP, even though MLP-Mixer has comparable regularization to ConvMixer.
That is, ConvMixer seems to outperform MLP-Mixer and ViT, while being closer to complexity to them in
terms of design and training regime than the other competitors, DeiT and ResMLP.

Kernel size. While we found some evidence that larger kernels are better on CIFAR-10, we wanted to see
if this finding transferred to ImageNet. Consequently, we trained our best-performing model, ConvMixer-
1536/20, with kernel size k = 3 rather than k = 9. This resulted in a decrease of 0.94% top-1 accuracy,
which we believe is quite significant relative to the mere 2.2M additional parameters. However, k = 3 is
substantially faster than k = 9 for spatial-domain convolution; we speculate that low-level optimizations
could close the performance gap to some extent, e.g., by using implicit instead of explicit padding. Since
large-kernel convolutions throughout a model are unconventional, there has likely been low demand for such
optimizations.
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B Additional Experiments on ImageNet

In this section, we present additional experiments on ImageNet-1k. We primarily used ConvMixer-512/12
trained using the new A1-like (F) technique. Note that the throughputs in this section were recorded using
Tesla V100 GPUs, while those in Table 2 used RTX8000s (hence, the two measurements should not be
compared across tables).

Table 3: We investigate the effect of different patch sizes on throughput and accuracy. Smaller patches result
in higher accuracy at the expense of throughput.

Effect of Patch Size

Network Patch
Size

Kernel
Size

Throughput
(img/sec)

ImNet
top-1 (%)

ConvMixer-512/12 5 9 388 75.60
ConvMixer-512/12 7 9 644 74.60
ConvMixer-512/12 9 9 1120 73.55
ConvMixer-512/12 12 9 1908 71.79
ConvMixer-512/12 16 9 2892 69.65

Patch sizes. Larger patch sizes result in lower accuracy, while smaller patches increase accuracy. However,
ConvMixers using smaller patches are substantially slower. For most of our experiments, we used 7 × 7
patches; however, in some cases, it may be desirable to use slightly larger 9× 9 patches in exchange for a bit
less accuracy (see Table 3).

Table 4: We tested ConvMixers with ResNet-style stems and ResNets with patch embedding stems; in both
cases, patch embeddings worked better.

Patch Embeddings vs. ResNet-Style Stems

Network Stem ImNet
top-1 (%)

ResNet50 ResNet Stem 78.32
ResNet50 Patches (4 × 4) 78.74

ConvMixer-512/12 ResNet Stem 71.24
ConvMixer-512/12 Patches (12 × 12) 71.79

Disentangling the effect of patches. We found that using a patch embedding stem with a ResNet
improves accuracy relative to the default stem, while using a ResNet stem with a ConvMixer hurts accuracy
(see Table 4). This provides some evidence that patches are a good choice of input representation, and may
even improve the performance of existing models compared to their default input representation. For the
ConvMixer, we used a ResNet stem with 12× 12-kernel convolutions with stride 6 followed by max pooling;
this ensured that ResNet-stem ConvMixer had the same internal resolution as the version using patches.

Kernel sizes. Here, we investigate whether larger kernel sizes are really beneficial to ConvMixers. In
Table 5, we see that 9× 9 kernels strongly outperform 3× 3 kernels. This may be unsurprising, as the model
with 9 × 9 kernels has significantly more parameters; to control for this, we trained a ConvMixer-512/14
with 3 × 3 kernels which has a comparable number of parameters. However, this still does not achieve
the performance of the 9 × 9-kernel model. Further, conventional wisdom states that three stacked 3 × 3
convolutional layers (with GELUs between the layers) has the same receptive field as 9 × 9 convolution
while being more expressive. Consequently, we replaced plain 3 × 3 convolutions with three stacked 3×
convolutions; however, this still did not surpass the accuracy of 9× 9 convolutions. Finally, using the same
intuition, we stack three ConvMixer-512/12s and tried a ConvMixer-512/36; only then do we outperform
large-kernel convolutions. This is perhaps unsurprising, given the 24 additional pointwise layers.
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Table 5: Here, we investigate whether larger kernels are really more effective than smaller ones. Our results
suggest that larger kernels are advantageous compared to a variety of “control” experiments.

Effect of Kernel Size

Network Patch
Size

Kernel
Size

# Params
(×106)

Throughput
(img/sec)

ImNet
top-1 (%)

ConvMixer-512/12 7 7 4.07 724 74.54
ConvMixer-512/12 7 15 5.15 401 75.25

ConvMixer-512/12 7 9 4.27 644 74.60
ConvMixer-512/12 7 3 3.83 992 72.96
ConvMixer-512/14 7 3 4.37 856 74.03
ConvMixer-512/12
(3 stacked 3x3-GELU convs) 7 3 3.95 732 74.53

ConvMixer-512/36 7 3 10.3 338 77.67

Table 6: We investigated choices of activation functions and normalization layers, as well as training with
reduced data augmentation. While reducing augmentation improves performance on this small model, we
did not adopt this change elsewhere.

Ablation of ConvMixer-512/12 on ImageNet

Ablation ImNet
Acc. (%)

Baseline 74.60
BatchNorm → LayerNorm 74.51
GELU → ReLU 74.44
– Mixup and CutMix 75.65
– RandAug 75.26

Architectural choices. In Table 6, we demonstrate that the choice of activation function (ReLU vs.
GELU) and norm layer (BatchNorm vs. LayerNorm) does not have a large impact on performance.

Data augmentation. We also investigate removing some of the data augmentations from the A1 recipe
(see Table 6). We saw a substantial performance boost from removing Mixup and CutMix, and to a lesser
extent, RandAugment as well. This is likely due to the relatively small model used for the comparison
(ConvMixer-512/12), for which this level of augmentation may be excessive. We did not adopt these changes
for other experiments. For comparison, a DeiT trained exactly the same way as the baseline ConvMixer
achieves 70.28% accuracy, while a DeiT without RandAug, CutMix, and MixUp gets 69.65% accuracy. That
is, it seems augmentations are more important to DeiT than to ConvMixer.

Input size. Unlike ViTs, MLP-Mixers, ResMLPs, and other recent models, ConvMixers can handle variable
input sizes with no modifications whatsoever. In Fig. 4, we show the effect of input size on the inference
time of a ConvMixer-768/32 using a batch size of 32, averaged over 16 trials on an RTX 3080Ti GPU in half
precision. Note the rapid growth of inference time for kernel sizes 7 and 9 compared to 3 and 5; we believe
this shows that the underlying implementation of depthwise convolution is suboptimal for large kernel sizes.

C Additional Experiments on CIFAR-10

Residual connections. We experimented with leaving out one, the other, or both residual connections
before settling on the current configuration, and consequently chose to leave out the second residual connec-
tion. Our baseline model without the connection achieves 95.88% accuracy, while including the connection

13



Published in Transactions on Machine Learning Research (03/2023)

16 32 48 64 80 96 112 128
Input Size

10

20

30

40

50

In
fe

re
nc

e 
Ti

m
e 

(m
s)

ConvMixer-768/32
Kernel Size

3
5
7
9

Figure 4: Inference time vs. input size for ConvMixer-768/32 with a variety of kernel sizes.

reduces it to 94.78%. Surprisingly, we see only a 0.31% decrease in accuracy for removing all residual connec-
tions. We acknowledge that these findings for residual connections may not generalize to deeper ConvMixers
trained on larger data sets.

Table 7: Small ablation study of training a ConvMixer-256/8 on CIFAR-10.

Ablation of ConvMixer-256/8 on CIFAR-10

Ablation CIFAR-10
Acc. (%)

Baseline 95.88
– Residual in Eq. 2 95.57
+ Residual in Eq. 3 94.78
BatchNorm → LayerNorm 94.44
GELU → ReLU 95.51
– Mixup and CutMix 95.92
– Random Erasing 95.24
– RandAug 92.86
– Random Scaling 86.24
– Gradient Norm Clipping 86.33

Normalization. Our model is conceptually similar to the vision transformer and MLP-Mixer, both of
which use LayerNorm instead of BatchNorm. We attempted to use LayerNorm instead, and saw a decrease
in performance of around 1% as well as slower convergence (see Table 7). However, this was for a relatively
shallow model, and we cannot guarantee that LayerNorm would not hinder ImageNet-scale models to an
even larger degree. We note that the authors of ResMLP also saw a relatively small increase in accuracy
for replacing LayerNorm with BatchNorm, but for a larger-scale experiment (Touvron et al., 2021a). We
conclude that BatchNorm is no more crucial to our architecture than other regularizations or parameter
settings (e.g., kernel size).

Having settled on an architecture, we proceeded to adjust its parameters h, d, p, k as well as weight decay on
CIFAR-10 experiments. (Initially, we took the unconventional approach of excluding weight decay since we
were already using strong regularization in the form of RandAug and mixup.) We acknowledge that tuning
our architecture on CIFAR-10 does not necessarily generalize to performance on larger data sets, and that
this is a limitation of our study.

14



Published in Transactions on Machine Learning Research (03/2023)

C.1 Results

ConvMixers are quite performant on CIFAR-10, easily achieving > 91% accuracy for as little as 100, 000
parameters, or > 96% accuracy for only 887, 000 parameters (see Table 8). With additional refinements e.g.,
a more expressive classifier or bottlenecks, we think that ConvMixer could be even more competitive. For
all experiments, we trained for 200 epochs on CIFAR-10 with RandAug, mixup, cutmix, random erasing,
gradient norm clipping, and the standard augmentations in timm. We remove some of these augmentations in
Table 7, finding that RandAug and random scaling (“default” in timm) are very important, each accounting
for over 3% of the accuracy.

Scaling ConvMixer. We adjusted the hidden dimension h and the depth d, finding that deeper networks
take longer to converge while wider networks converge faster. That said, increasing the width or the depth
is an effective way to increase accuracy; a doubling of depth incurs less compute than a doubling of width.
The number of parameters in a ConvMixer is given exactly by:

#params = h[d(k2 + h+ 6) + cinp
2 + nclasses + 3] + nclasses, (4)

including affine scaling parameters in BatchNorm layers, convolutional kernels, and the classifier.

Kernel size. We initially hypothesized that large kernels would be important for ConvMixers, as they would
allow the mixing of distant spatial information similarly to unconstrained MLPs or self-attention layers. We
tried to investigate the effect of kernel size on CIFAR-10: we fixed the model to be a ConvMixer-256/8, and
increased the kernel size by 2s from 3 to 15.

Using a kernel size of 3, the ConvMixer only achieves 93.61% accuracy. Simply increasing it to 5 gives
an additional 1.50% accuracy, and further to 7 an additional 0.61%. The gains afterwards are relatively
marginal, with kernel size 15 giving an additional 0.28% accuracy. It could be that with more training
iterations or more regularization, the effect of larger kernels would be more pronounced. Nonetheless, we
concluded that ConvMixers benefit from larger-than-usual kernels, and thus used kernel sizes 7 or 9 in most
of our later experiments.

It is conventional wisdom that large-kernel convolutions can be “decomposed” into stacked small-kernel
convolutions with activations between them, and it is therefore standard practice to use k = 3 convolutions,
stacking more of them to increase the receptive field size with additional benefits from nonlinearities. This
raises a question: is the benefit of larger kernels in ConvMixer actually better than simply increasing the
depth with small kernels? First, we note that deeper networks are generally harder to train, so by increasing
the kernel size independently of the depth, we may recover some of the benefits of depth without making it
harder for signals to “propagate back” through the network. To test this, we trained a ConvMixer-256/10
with k = 3 (698K parameters) in the same setting as a ConvMixer-256/8 with k = 9 (707K parameters), i.e.,
we increased depth in a small-kernel model to roughly match the parameters of a large-kernel model. The
ConvMixer-256/10 achieved 94.29% accuracy (1.5% less), which provides more evidence for the importance
of larger kernels in ConvMixers. Next, instead of fixing the parameter budget, we tripled the depth (using
the intuition that 3 stacked k = 3 convolutions have the receptive field of a k = 9 convolution), giving a
ConvMixer-256/24 with 1670K parameters, and got 95.16% accuracy, i.e., still less.

Patch size. CIFAR-10 inputs are so small that we initially only used p = 1, i.e., the patch embedding layer
does little more than compute h linear combinations of the input image. Using p = 2, we see a reduction
in accuracy of about 0.80%; this is a worthy tradeoff in terms of training and inference time. Further
increasing the patch size leads to rapid decreases in accuracy, with only 92.61% for p = 4.

Since the “internal resolution” is decreased by a factor of p when increasing the patch size, we assumed that
larger kernels would be less important for larger p. We investigated this by again increasing the kernel size
from 3 to 11 for ConvMixer-256/8 with p = 2: however, this time, the improvement going from 3 to 5 is
only 1.13%, and larger kernels than 5 provide only marginal benefit.

Weight decay. We did many of our initial experiments with minimal weight decay. However, this was not
optimal: by tuning weight decay, we can get an additional 0.15% of accuracy for no cost. Consequently, we
used weight decay (without tuning) for our larger-scale experiments on ImageNet.
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Table 8: An investigation of ConvMixer design parameters h, d, p, k and weight decay on CIFAR-10

Tiny ConvMixers trained on CIFAR-10.

Width
h

Depth
d

Patch
Size p

Kernel
Size k

# Params
(×103)

Weight
Decay

CIFAR-10
Acc. (%)

128 4 1 8 103 0 91.26
128 8 1 8 205 0 93.83
128 12 1 8 306 0 94.83
256 4 1 8 338 0 93.37
256 8 1 8 672 0 95.60
256 12 1 8 1006 0 96.39
256 16 1 8 1339 0 96.74
256 20 1 8 1673 0 96.67

↓ Kernel adjustments
256 8 1 3 559 0 93.61
256 8 1 5 592 0 95.19
256 8 1 7 641 0 95.80
256 8 1 9 707 0 95.88
256 8 1 11 788 0 95.70
256 8 1 13 887 0 96.04
256 8 1 15 1001 0 96.08

↓ Patch adjustments
256 8 2 9 709 0 95.00
256 8 4 9 718 0 92.61
256 8 8 9 755 0 85.57

↓ Weight decay adjustments
256 8 1 9 707 1× 10−1 95.88
256 8 1 9 707 1× 10−2 96.03
256 8 1 9 707 1× 10−3 95.76
256 8 1 9 707 1× 10−4 95.63
256 8 1 9 707 1× 10−5 95.88

↓ Kernel size adjustments when p = 2
256 8 2 3 561 0 94.08
256 8 2 5 594 0 95.21
256 8 2 7 643 0 95.35
256 8 2 9 709 0 95.00
256 8 2 11 791 0 95.14

↓ Adding weight decay to the above
256 8 2 3 561 1× 10−2 94.69
256 8 2 5 594 1× 10−2 95.26
256 8 2 7 643 1× 10−2 95.25
256 8 2 9 709 1× 10−2 95.06
256 8 2 11 791 1× 10−2 95.17
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D Weight Visualizations

Figure 5: Patch embedding weights for a ConvMixer-1024/20 with patch size 14 (see Table 2).

Figure 6: Patch embedding weights for a ConvMixer-768/32 with patch size 7 (see Table 2).
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Figure 7: Random subsets of 64 depthwise convolutional kernels from progressively deeper layers of
ConvMixer-1536/20 (Table 1).

In Figure 5 and 6, we visualize the (complete) weights of the patch embedding layers of a ConvMixer-1536/20
with p = 14 and a ConvMixer-768/32 with p = 7, respectively. Much like Sandler et al. (2019), the layer
consists of Gabor-like filters as well as “colorful globs” or rough edge detectors. The filters seem to be more
structured than those learned by MLP-Mixer (Tolstikhin et al., 2021); also unlike MLP-Mixer, the weights
look much the same going from p = 14 to p = 7: the latter simply looks like a downsampled version of the
former. It is unclear, then, why we see such a drop in accuracy for larger patches. However, some of the
filters essentially look like noise, maybe suggesting a need for more regularization or longer training, or even
more data. Ultimately, we cannot read too much into the learned representations here.

In Figure 7, we plot the hidden convolutional kernels for successive layers of a ConvMixer. Initially, the kernels
seem to be relatively small, but make use of their allowed full size in later layers; there is a clear hierarchy
of features as one would expect from a standard convolutional architecture. Interestingly, Touvron et al.
(2021a) saw a similar effect for ResMLP, where earlier layers look like small-kernel convolution, while later
layers were more diffuse, despite these layers being representated by an unconstrained matrix multiplication
rather than convolution.
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E Implementation

1 def ConvMixer(h,d,k,p,n):
2 S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
3 R=type('',(S,),{'forward':lambda s,x:s[0](x)+x})
4 return S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1))) for i in range(d)],
5 AdaptiveAvgPool2d(1),Flatten(),Linear(h,n))

Figure 8: An implementation of our model in less than 280 characters, in case you happen to know of any
means of disseminating information that could benefit from such a length.
All you need to do to run this is from torch.nn import *.

We present an even more terse implementation of ConvMixer in Figure 8, which to the best of our knowledge
is the first model that achieves the elusive dual goals of 82%+ ImageNet top-1 accuracy while also fitting
into a tweet.

19


	Introduction
	A simple model: ConvMixer
	Experiments
	Related work
	Conclusion
	Comparison to other models
	Additional Experiments on ImageNet
	Additional Experiments on CIFAR-10
	Results

	Weight Visualizations
	Implementation

