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ABSTRACT

Large language models (LLMs) have transformed natural language processing,
with frameworks like Chatbot Arena providing pioneering platforms for evaluating
these models. By facilitating millions of pairwise comparisons based on human
judgments, Chatbot Arena has become a cornerstone in LLM evaluation, offering
rich datasets for ranking models in open-ended conversational tasks. Building upon
this foundation, we propose a statistical framework that incorporates key advance-
ments to address specific challenges in pairwise comparison analysis. First, we
introduce a factored tie model that enhances the ability to handle ties—an integral
aspect of human-judged comparisons—significantly improving the model’s fit to
observed data. Second, we extend the framework to model covariance between
competitors, enabling deeper insights into performance relationships and facili-
tating intuitive groupings into performance tiers. Third, we resolve optimization
challenges arising from parameter invariances by introducing novel constraints, en-
suring stable and interpretable parameter estimation. Through rigorous evaluation
and extensive experimentation, our framework demonstrates substantial improve-
ments over existing methods in modeling pairwise comparison data. To support
reproducibility and practical adoption, we release leaderbot, an open-source
Python package implementing our models and analyses.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has transformed natural language process-
ing, enabling breakthroughs across diverse tasks. As these models evolve, the need for effective
evaluation methods becomes crucial for fostering innovation and ensuring that LLMs align with
human preferences.

Traditional benchmarks, such as MMLU (Hendrycks et al., 2021) and HumanEval (Chen et al., 2021),
play an important role in assessing specific capabilities of LLMs. However, they often fall short
in capturing the nuanced, real-world interactions characteristic of open-ended conversational tasks,
particularly those seen in chatbot applications.

To address this gap, crowdsourced evaluation platforms have emerged, with Chatbot Arena (Chiang
et al., 2024; Zheng et al., 2023) standing out as a pioneering framework. By facilitating millions
of pairwise comparisons between LLMs based on human judgments, Chatbot Arena has become
one of the largest and most credible datasets (Zheng et al., 2024) for chatbot evaluation. Its design
more closely reflects the open-ended nature of chatbot usage, providing unparalleled diversity and
robustness in assessing model performance. In its first year, the platform amassed over two million
votes across more than 150 state-of-the-art models, gaining adoption by leading institutions such
as OpenAI, Google, and Hugging Face. This unparalleled scale and impact have solidified Chatbot
Arena as a cornerstone in the LLM evaluation ecosystem.

The ranking methodology employed in Chatbot Arena relies on the Elo rating system (Zermelo,
1929; Bradley & Terry, 1952), which is well-suited for competitive settings with clear win-loss
outcomes. However, the Elo system does not account for ties—a notable portion of human-judged
comparisons—or for modeling deeper relationships between competitors, such as correlations in
performance. Addressing these aspects presents an opportunity to build upon the success of Chatbot
Arena, enhancing its analytical capabilities while retaining its foundational strengths.
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In this paper, we propose a statistical framework that extends the foundational Elo-based approach
employed in Chatbot Arena. Our contributions include:

1. Incorporating ties: Ties, where two competitors are judged to perform equally, are a key feature
of pairwise comparisons. To model ties, we integrated well-established methods by Rao & Kupper
(1967) and Davidson (1970), which define tie probabilities based on axiomatic assumptions.
While these methods offer a solid foundation for paired comparisons, applying them directly
to the Chatbot Arena dataset, with its extensive pairwise comparisons, highlighted the need for
further adaptation: these models yielded errors exceeding 10% when applied to tie outcomes.
To address these challenges, we propose a novel factored tie model, which generalizes these
frameworks by uncovering latent structures in tie patterns across pairs of competitors. This
factor analysis substantially improves model fit, reducing errors in fitting tie data by two orders of
magnitude. Notably, this enhancement also extends to win/loss predictions, achieving comparable
improvements. Details of tie modeling, including a background and our generalizations, are
provided in Section 2.

2. Incorporating covariance: We extend paired comparison models by introducing Thurstonian rep-
resentations to capture covariance structures between competitors (Section 2.4), enabling deeper
exploration of relationships beyond rankings, such as correlations in performance. Building
on our theoretical demonstration of covariance’s structural non-uniqueness and its equivalency
class (Appendices B and C), we show that derived metrics from covariance, such as dissimilarity
metrics, are unique and provide interpretable insights. These metrics enable visualization tech-
niques to uncover latent patterns, such as performance trends, and clustering techniques to group
competitors into performance tiers based on relative strengths.

3. Addressing optimization challenges through constraints: Paired comparison models often
exhibit parameter invariances that lead to non-unique solutions during likelihood optimization.
These invariances, arising from structural symmetries in the model, result in valid but indistin-
guishable solutions, compromising convergence stability during parameter estimation. To resolve
these issues, we introduce novel constraints that eliminate non-uniqueness by regularizing the
parameter space, ensuring stable and interpretable parameter estimation (Section 2.5 and Ap-
pendix C.4).

In addition to developing our framework, we conducted comprehensive evaluations and analyses to
validate its performance and interpret its results. Empirical evaluations (Section 3) demonstrate the
model’s fit to observed data, supported by extensive experimentation (Appendix D) on model selec-
tion, goodness-of-fit, and prediction metrics. Furthermore, detailed inference analyses (Section 4.1)
explore competitor relationships, offering visual insights through clustering and ranking consistency
studies (Appendices C and E).

To support reproducibility and broader adoption, we provide leaderbot, an open-source Python
package implementing our statistical framework with tools for data processing, model fitting, and
visualization. This ensures that all results in this paper are fully reproducible (Appendix G).

2 STATISTICAL MODEL

2.1 PROBLEM STATEMENT

Consider a paired-comparison experiment involving m ≥ 2 competitors (here, LLM chatbots),
indexed by the set V := {1, . . . ,m}. Let E ⊆ {{i, j} | i, j ∈ V } denote the set of unordered pairs of
competitors that have been compared in the experiment. We assume the graph G(V,E) is connected.

We define the m×m matrix W = [wij ], where wij represents the frequency with which competitor
i wins against competitor j, and wji represents the frequency with which i loses to j. Similarly, we
define the symmetric matrix T = [tij ], where tij denotes the frequency of ties between competitors
i and j, with tij = tji. We set wij = wji = tij = 0 whenever {i, j} /∈ E to reflect the absence of
comparisons between competitors i and j. The total number of comparisons between competitors i
and j is denoted by nij , where nij = wij + wji + tij . The triple (G,W,T) constitutes the input
data for our problem.

2
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Our objective is to rank the competitors based on their performance in the overall comparisons.
To formalize this in a probabilistic framework, we define P (i ≻ j | {i, j}) as the probability that
competitor i wins against competitor j, and P (i ∼ j | {i, j}) as the probability that i and j tie. For
notational simplicity, we often denote these probabilities by Pi≻j and Pi∼j , respectively.

A broad class of parametric models (which we will discuss in detail later) assumes the existence of a
score array x = (x1, . . . , xm) ∈ Rm, which defines the ranking. Specifically, the ranking is inferred
by a bijection from V to itself that orders the scores xi, such that xi > xj implies i is ranked higher
than j, denoted by the binary relation i ≻ j.

The score vector x forms part of the model’s parameters, denoted by θ, which also includes other
parameters governing the probability of each outcome. A common approach for estimating these
parameters is the maximum likelihood method. The likelihood function L(θ | G,W,T) is defined
as the product of multinomial distributions for each compared pair {i, j} ∈ E, given by

L(θ | G,W,T) =
∏

{i,j}∈E

nij !

wij !wji!tij !
P

wij

i≻j (θ)P
wji

i≺j (θ)P
tij
i∼j(θ). (1)

The parameter estimate θ̂ is then obtained by maximizing the log-likelihood function ℓ(θ) :=

logL(θ), i.e., θ̂ = argmaxθ ℓ(θ).

2.2 PROBABILISTIC MODELS

A parametric model for the above probabilities must satisfy two fundamental axioms. First, by the
law of total probability, we have Pi≻j + Pi≺j + Pi∼j = 1. Second, the model should respect the
concept of transitivity in ranking, though in a probabilistic setting. Rather than standard transitivity,
where i ≻ j and j ≻ k imply i ≻ k, we adopt the principle of stochastic transitivity (see, e.g., Shah
et al. (2017); Shah & Wainwright (2018)).

In particular, we are interested in strong stochastic transitivity, which states that if Pi≻j ≥ 1
2 and

Pj≻k ≥ 1
2 , then Pi≻k ≥ max{Pi≻j , Pj≻k}. A key sub-class of strong stochastic transitivity, and the

focus of this work, is linear stochastic transitivity. This property is characterized by the existence
of an increasing comparison function F : R → [0, 1] and a merit function ζ : R → R, such that
Pi≻j = F (ζ(xi)− ζ(xj)).

In the following subsections, we describe several common models of paired comparison that satisfy
these properties.

2.2.1 BRADLEY-TERRY MODEL

One of the most widely used models for paired comparison was first introduced by Zermelo (1929)
and later rediscovered by Bradley & Terry (1952), leading to the model being named after them. The
Bradley-Terry model forms the basis of the well-known Elo rating system, which is extensively used
by the World Chess Federation. In this model, the probabilities of win and loss are given by

P (i ≻ j | {i, j}) := πi

πi + πj

and P (i ≺ j | {i, j}) := πj

πi + πj

, (2)

where πi := exi . This model assumes that xi − xj follows a logistic distribution, as shown by

P (xi − xj > 0) =
1

1 + e−(xi−xj)
. (3)

Variants of this model, such as the one proposed by Glenn & David (1960), assume a standard
normal distribution instead of the logistic. However, the logistic distribution is typically preferred in
paired comparison settings due to its heavier tails, which provide better fit for real-world data, and
its computational advantages and tractability (Böckenholt, 2001).

2.2.2 MODELS WITH TIES

The Bradley-Terry (BT) model does not account for ties (i.e., Pi∼j = 0), making it suitable only
for balanced paired comparisons, such as zero-sum games. However, in our application of ranking

3
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LLM chatbot agents, ties frequently occur, rendering the BT model inadequate for capturing these
outcomes.

A workaround used in previous work, such as Chiang et al. (2024) for ranking LLM models, is to
treat a tie as halfway between a win and a loss, modifying the outcome matrix as W ←W + 1

2T.
However, more sophisticated extensions of the BT model have been developed, incorporating ties
based on proper axioms.

One such generalization is the model of Rao & Kupper (1967), which modifies the logistic distribu-
tion to account for ties. The resulting probabilities for win, loss, and tie are given by

P (i ≻ j | {i, j}) = P (xi − xj > η) :=
πi

πi + νπj

, (4a)

P (i ≺ j | {i, j}) = P (xi − xj < −η) :=
πj

νπi + πj

, (4b)

P (i ∼ j | {i, j}) = P (|xi − xj | < η) :=
πiπj(ν

2 − 1)

(πi + νπj)(νπi + πj)
, (4c)

where ν := eη ≥ 1 and η > 0 is a threshold parameter to be optimized. In this model, if the
difference between competitors’ scores is less than the threshold η, the judge is unable to distinguish
between competitors i and j, resulting in a tie. Setting η = 0 reduces this model to the standard BT
model.

Another extension of the BT model, introduced by Davidson (1970) and based on the axiom of choice
of Luce (1959), models ties differently:

P (i ≻ j | {i, j}) = πi

πi + πj + ν
√
πiπj

, (5a)

P (i ≺ j | {i, j}) = πj

πi + πj + ν
√
πiπj

, (5b)

P (i ∼ j | {i, j}) =
ν
√
πiπj

πi + πj + ν
√
πiπj

, (5c)

where ν := eη and η ∈ R is a threshold parameter for tie to be optimized. Here, setting η = −∞
reduces this model to the BT model. Note that in both the Rao-Kupper and Davidson models, the
probability of a tie increases as the difference in scores decreases.

2.3 A GENERALIZATION FOR MODELS WITH TIES

The original Rao-Kupper and Davidson models each employ a single parameter for ties, ν. However,
as our numerical results will demonstrate, one tie parameter is insufficient to capture the complexity
of ties across all pairs of competitors. To address this, we propose a generalization of these models
by incorporating additional parameters, which, to our knowledge, is a novel extension.

In this generalized model, the tie parameter ν = eη is replaced with a pair-specific parameter
νij = eηij , where i, j ∈ V , subject to the symmetry condition νij = νji. This modification
introduces |E| parameters, potentially leading to overfitting. To mitigate this, we propose a reduced
model. Let the symmetric m ×m matrix H = [ηij ] represent the pairwise tie parameters. Rather
than treating all ηij as independent parameters, we introduce the following factor model to construct
H by

Hk :=

{
GΦ⊺ +ΦG⊺, k ∈ V,

ηJ, k = 0,
(6)

where G = [gij ] is an n×k matrix of the new parameters gij , Φ = [ϕij ] is an m×k constant matrix
of rank k consisting of predefined basis vectors that will be discussed below, and J is the m ×m
matrix of all ones. The rank of Hk is max(1,min(2k,m)) containing max(1,mk) parameters, thus,
choosing k allows us to strike a balance between the goodness of fit and the complexity of the model.
Note that the case k = 0 reverts to the original Rao-Kupper or Davidson models where a single
parameter ηij = η is used.

4
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To ensure Φ is of full rank, we design Φ with orthogonal column vectors. This can be achieved,
for instance, by orthogonalizing a randomly generated matrix using Gram-Schmidt orthogonaliza-
tion. However, for reproducibility and to avoid using randomly generated matrices, we recommend
constructing Φ using discrete orthogonal polynomials with respect to a uniform weight over equally
spaced points (Baik et al., 2007), which are inherently orthogonal. Such matrices can be generated,
for instance, by discrete Legendre polynomials, the Hadamard transform (when m is a power of 2),
discrete Chebyshev polynomials (Corr et al., 2000), or the discrete cosine transform (DCT). For
simplicity, we choose the discrete cosine transform of the fourth type (DCT-IV) basis, where the
elements ϕij are given by

ϕij =

√
2

m
cos

( π

4m
(2i− 1) (2j − 1)

)
, i = 1, . . . ,m, and j = 1, . . . , k. (7)

2.4 THURSTONIAN REPRESENTATION OF MODELS

A fundamental approach to modeling paired comparisons was introduced by Thurstone (1927)
through the laws of comparative judgment, laying the foundation for psychometric choice mod-
eling from a statistical perspective. Here, we briefly describe Thurstone’s multivariate discriminal
process and apply it to the models discussed earlier.

Thurstonian models assume that the score variables x are stochastic processes defined by x = µ+ ϵ,
where µ ∈ Rm is the mean, and ϵ is a zero-mean random component with covariance Σ = [σij ],
often referred to as the comparative dispersion.

The difference between scores, which is central to the previously mentioned models, also becomes
a stochastic process: xi − xj = µi − µj + ϵij , where ϵij has covariance S = [sij ], given by
sij = σii + σjj − 2σij .1 This is commonly referred to as the discriminal dispersion (Heiser &
de Leeuw, 1981).

The original Thurstonian model assumes that x follows a joint normal distribution, meaning that
xi−xj also has a normal distribution. Let xij := xi−xj , µij := µi−µj , and yij := (xij−µij)/

√
sij .

It can be shown that Pi≻j = P (xij > 0) = Φ(zij) (Maydeu-Olivares, 1999), where Φ is the
cumulative standard normal distribution, and

zij :=
µi − µj√

sij
. (8)

Although the Thurstonian discriminal process is typically applied using normal distributions, we
extend this process to the models previously introduced, including the Bradley-Terry model (which
uses the logistic distribution) and the Rao-Kupper and Davidson models (which incorporate ties). To
our knowledge, these extensions have not been explored in the literature.

To generalize the Bradley-Terry model with the discriminal process, we assume yij follows a logistic
distribution, yielding

P (i ≻ j | {i, j}) = 1

1 + e−zij
, and P (i ≺ j | {i, j}) = 1

1 + e−zji
. (9)

We can similarly extend the Rao-Kupper and Davidson models. The probabilities in equations (4)
and (5) can be expressed in terms of the logit function log(πi/πj) = xij , which represents the
quantile of the logistic distribution. To incorporate the Thurstonian model, we replace xij with zij .
Thus, the Rao-Kupper model becomes

P (i ≻ j | {i, j}) = 1

1 + e−(zij−ηij)
, (10a)

P (i ≺ j | {i, j}) = 1

1 + e−(zji−ηij)
, (10b)

P (i ∼ j | {i, j}) = eηij − 1(
1 + e−(zij−ηij)

)(
1 + e−(zij−ηij)

) . (10c)

1This is due to the fact that var(xi − xj) = var(xi) + var(xj)− 2 cov(xi, xj).
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Similarly, the Davidson model becomes

P (i ≻ j | {i, j}) = 1

1 + e−zij + e−( 1
2 zij−ηij)

, (11a)

P (i ≺ j | {i, j}) = 1

1 + e−zji + e−( 1
2 zji−ηij)

, (11b)

P (i ∼ j | {i, j}) = 1

1 + e−( 1
2 zij−ηij) + e−( 1

2 zji−ηij)
. (11c)

These models introduce an additional
(
m
2

)
covariance parameters σij , which can lead to overpa-

rameterization. To address this, Thurstone (1927) proposed various constraints on the covariance
matrix, while Takane (1989) suggested a factor model for covariance structure analysis. We adopt
the factor model employed by Böckenholt (1993); Maydeu-Olivares & Böckenholt (2005), where
the covariance is constructed as

Σ = D+ΛΛ⊺, (12)
where D = [dij ] is a positive-definite diagonal matrix with dii > 0, and Λ = [λij ] is an m × k
matrix of rank k ≤ n, containing the factor parameters λij . By selecting k, we can balance model fit
with complexity.

2.5 IMPOSING CONSTRAINTS TO RESOLVE SYMMETRIES

When estimating the parameters of the models (such as θ = (µ,G,D,Λ)) through the maximum
likelihood method described in (1), we encounter computational issues due to the non-uniqueness
of the solution. This arises from the fact that the likelihood function remains invariant under certain
transformations of the parameters, known as symmetries. These symmetries can result in poor
optimization behavior, such as large or small parameter values, causing instability in the estimation
process. To address these issues, we propose constraints on the log-likelihood function to eliminate
the problematic symmetries. While one of these symmetries has been addressed in prior work, the
other two have not, to the best of our knowledge.

The first symmetry relates to the fact that the models are invariant under the transformation xi 7→
xi + c, where c ∈ R is a constant. This means that the absolute values of xi are not identifiable,
only their differences matter. As a result, the parameters can shift without changing the model’s
predictions. Common approaches to address this symmetry include fixing one of the score parameters,
as done in Chiang et al. (2024), or imposing other constraints on the parameter values. For instance,
the original Bradley-Terry model (Bradley & Terry, 1952) imposes the constraint

∑m
i=1 πi = 1.

In our work, we adopt a similar constraint by fixing the mean of the scores:
∑m

i=1 µi = 0. This
natural choice effectively eliminates the shift invariance, ensuring stable optimization of the score
parameters x.

The second symmetry, which has not been addressed in previous studies, involves scaling both the
score and covariance parameters. Specifically, the models remain invariant under the transformation
(xi, σij) 7→ (txi, t

2σij) for any positive constant t, because the ratio zij remains unchanged. This
symmetry can lead to parameters collapsing to very small values, causing numerical instability or
underflow during optimization. To resolve this, we introduce the following constraint

trace(Σ̃) = 1, (13)

where Σ̃ := PΣP, and P := I− 1
m11⊺ is the centering operator with I as the identity matrix and

1 := (1, . . . , 1)⊺ is a column vector of ones. This constraint ensures proper scaling of the covariance
parameters and avoids collapse during optimization. A detailed explanation of this constraint is
provided in Appendix C.4.

The third symmetry pertains to the factor model parameters λij . Using the factor model for covariance
in (12), we can express the elements of the matrix S as

sii = 0, and sij = dii + djj + ∥λi − λj∥22, i ̸= j,

where λi := (λi1, . . . , λik) is the i-th row of the matrix Λ, and ∥ · ∥2 denotes the Euclidean norm.
This expression reveals an invariance under translation λij 7→ λij + c′, which has not been addressed

6
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Figure 1: Comparison of pair-specific win (first row) and tie (second row) probabilities among
25 competitors between observed data (first column) and model predictions: our generalized Rao-
Kupper with factored tie model (second column), original Rao-Kupper with ties (third column),
Bradley-Terry with ties as half win/loss (fourth column, (Chiang et al., 2024)), and original Bradley-
Terry without ties (fifth column). The ordinate and abscissa are shared across panels, shown only for
the left-most and top-most panels. Each row shares the same color range, with a single colorbar per
row.

in the literature. To eliminate this translation symmetry, we impose the constraint

∥Λ⊺1∥22 = 0. (14)

This constraint fixes the column-wise mean of Λ to zero, preventing the factor parameters from
arbitrarily shifting.

3 EMPIRICAL EVALUATION OF STATISTICAL MODELS

In this section, we apply the statistical models introduced earlier to the dataset from Chatbot Arena.
As of September 2024, the dataset consists of m = 129 competitors, with |E| = 3455 unique
pairs that have been compared. The total number of comparisons across all pairs is

∑
{i,j}∈E nij =

1, 374, 996, distributed as follows: 43.3% wins, 36.2% losses, and 20.4% ties.

3.1 EVALUATING THE PREDICTION OF WIN/LOSS AND TIE MATRICES

We visualize a subset of the win/loss matrix W and tie matrix T corresponding to the top 25 models
ranked by Model 18. Figure 1 presents these visualizations: the first and second rows show the
win/loss matrix W, while the third row shows the tie matrix T. The leftmost column contains the
matrices derived from observed data, while the second and third columns show matrices predicted
by Models 18, 7, 4, and 1. Note that since the BT models (Models 4 and 1) do not account for ties,
their corresponding tie matrix T is absent.

We visualize a subset of the win/loss matrix W and tie matrix T corresponding to the top 25
models ranked by our generalized Rao-Kupper model with factored ties (second column in Figure 1),
the original Rao-Kupper model with ties (third column), Bradley-Terry with ties treated as half
win/loss (Chiang et al., 2024) (fourth column), and the original Bradley-Terry model without ties
(fifth column). The first row shows win probabilities, while the second row shows tie probabilities.
The leftmost column contains the matrices derived from observed data. Note that since the Bradley-
Terry models do not account for ties, their corresponding tie probabilities are not shown.

We observe that the generalized Rao-Kupper model with factored ties (k = 20) demonstrates a
strong resemblance between the predicted and observed matrices for both win/loss and tie outcomes.
By contrast, the original Rao-Kupper model with a single tie parameter performs reasonably well
in predicting the win matrix but lacks accuracy in the tie matrix. Meanwhile, the Bradley-Terry

7
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models (both with ties treated as half win/loss and without ties) produce noticeably different win/loss
matrices, as they fail to account for ties, leading to discrepancies in their predictions relative to the
observed data.

4 RANKING AND COMPARISON OF LLM-BASED CHATBOTS

In this section, we examine how the proposed models provide insights into the competitive perfor-
mance of chatbots. In Section 4.1, we focus on analyzing the ranking of chatbots, while in Section 4.2
we explore the correlations between their performances.

4.1 RANKING

In pairwise comparison methods, the score parameters x are used to rank competitors. As an example,
Figure E.1 in Appendix E illustrates the score parameters for the top 50 chatbots, ranked according
to Model 30 (see Table D.1), which is based on the Davidson model with a tie factor model of rank
k = 20.

An important question is how different statistical models affect the chatbot rankings. To explore
this, we analyzed rankings produced by a selection of 12 models from Table D.1. Figure E.2 in
Appendix E presents a bump chart that visually compares these rankings. In the chart, each column
corresponds to a statistical model, and each row represents a chatbot’s ranking position. The chatbots,
listed by their abbreviated names on the left, are ranked by Model 30 in the leftmost column. Each
line in the chart tracks how a chatbot’s ranking changes across different models, with colors used to
distinguish individual paths.

The 12 models are arranged in increasing order of complexity, moving from right to left. In the first
tier, Models 1, 4, 7, and 19 (shown in the rightmost columns) represent the original BT, Rao-Kupper,
and Davidson models without any of our proposed generalizations. In the second tier, Models 3 and
6 extend the basic BT models by incorporating Thurstonian covariance with k = 0. Models 10 and
22 further extend the Rao-Kupper and Davidson models by introducing tie factor parameters with
k = 20. Models 14 and 26 include a Thurstonian covariance factor with k = 3, while the most
complex models, 18 and 30, combine k = 3 and k = 20 for covariance and tie factors, respectively.

The bump chart reveals a high degree of consistency among all models for the highest-ranked chatbots,
indicating that these models, regardless of complexity, produce stable rankings for top performers.
However, discrepancies become more apparent at the lower end of the rankings, where models
diverge more significantly. Notably, similar models—especially those with comparable complexity
levels—tend to produce more consistent rankings across the chart, though exceptions do occur.

Further analyses of the rankings, including Kendall’s rank correlation and additional visualizations,
are provided in Appendix E in the appendix. These analyses explore how ranking outcomes vary
across models and identify key model parameters that influence these variations.

4.2 EXPLORING COMPETITOR CORRELATIONS

One of the advantages of incorporating Thurstonian models into our extended framework is the
ability to extract insights beyond simple rankings, particularly by revealing correlations between
competitors. While these models significantly enhance fit, they also allow us to explore relationships
that would otherwise remain hidden. However, caution must be exercised when interpreting these
covariance parameters, as their individual values do not offer straightforward insights.

To clarify, just as the absolute values of the score parameters xi hold no direct meaning—their
differences between competitors being the key factor—so too is the case for the covariances. Recall
from the Thurstonian representation that xi = µi + ϵi, where ϵi represents the stochastic component
with covariance σij . The value of σii alone does not convey any specific uncertainty about xi. Instead,
the interpretable quantity is the covariance of the difference xij = xi − xj = µi − µj + ϵij , which
is given by sij = σii + σjj − 2σij . The matrix S, consisting of these pairwise covariances sij ,
reveals the relationships between competitors and is commonly interpreted in the paired comparison
literature (Maydeu-Olivares & Böckenholt, 2005; Böckenholt, 2006).
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Figure 2: Kernel PCA projection of the distance matrix Z onto three dimensions, focusing on the
top 40 competitors ranked by Model 18 of Table D.1. In the scatter plot, circle size and color are
proportional to the competitors’ scores.

To visualize these relationships, we use kernel PCA to project the data into a three-dimensional space,
enabling more effective interpretation of the distances between competitors. The matrix Z = [zij ],
where zij is defined by (8), serves as the distance metric, normalizing score differences by√sij . We
apply a squared exponential kernel, ρij = exp(−γz2ij), with γ = 10−4, and project the data into
three dimensions. Figure 2 shows a scatter plot of the top 40 chatbots, ranked by model 18, with
circle size and color proportional to their scores. In this plot, the relative distances between points are
meaningful, rather than their specific coordinates or orientation. This spatial configuration reveals
how closely related the chatbots are, offering insights beyond ranking alone.

It is important to note that such visual representations of chatbot relationships are only possible with
models that include Thurstonian representations and covariance structures. These models provide a
deeper understanding of how competitors are related, extending beyond traditional ranking to offer
insights into their underlying correlations.

5 CONCLUSION

Effectively evaluating large language models (LLMs) in pairwise comparison settings is crucial
for understanding their strengths and limitations in real-world applications. This paper presents
a novel statistical framework that extends traditional approaches, incorporating ties, covariance,
and advanced optimization techniques to enhance interpretability, stability, and accuracy in LLM
evaluation.

Our generalized tie model addresses long-standing limitations of Rao-Kupper and Davidson methods,
reducing prediction errors by two orders of magnitude and improving fit across win, loss, and
tie outcomes. By introducing covariance structures, our framework uncovers latent relationships
among competitors, enabling clustering into performance tiers and enriching interpretability beyond
rankings. Additionally, we resolve optimization challenges through novel constraints, ensuring stable
and unique parameter estimation.

A key insight from our analysis is that covariance structures not only enrich interpretability but
also shape ranking consistency, underscoring their critical role in capturing nuanced relationships in
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pairwise comparisons. This finding highlights the broader utility of covariance-based approaches in
complex evaluation tasks.

To validate our framework, we conducted rigorous empirical evaluations, demonstrating significant
improvements in model fit and interpretability compared to existing methods. To support reproducibil-
ity and broader adoption, we provide leaderbot, an open-source Python package implementing
our statistical framework with tools for data processing, model fitting, and visualization.

Our work not only advances LLM evaluation but also provides a robust foundation for analyzing
pairwise comparison data in diverse domains. By bridging theoretical rigor with practical applica-
bility, this framework opens new avenues for ranking, inference, and interpretability in complex
comparison tasks.
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consumer preferences. In psychometrics and behavioral studies, paired comparisons assess percep-
tion and attitudes in response to visual or auditory stimuli. Similarly, in election studies and political
science, they are employed to rank candidates, analyze voting behavior, test referendum arguments
(Loewen et al., 2012), and measure perceived political ideologies (Hopkins & Noel, 2022). Clinical
research also uses paired comparisons to evaluate treatments and interventions in clinical trials and
epidemiological studies. These diverse applications illustrate the versatility of paired comparison
frameworks in extracting meaningful inferences from comparative data.

Recent advancements have extended paired comparison methods to machine learning, where they
play a pivotal role in preference modeling and optimization. For instance, Reinforcement Learning
with Human Feedback (RLHF) uses paired comparisons to fine-tune large language models (LLMs)
by ranking outputs based on human preferences, often employing the Bradley-Terry model for
preference quantification (Rafailov et al., 2024; Karthik et al., 2024). Direct Preference Optimization
(DPO) further refines this approach by aligning model outputs directly with human preferences
without relying on scalar reward models (Wu et al., 2023). Additionally, methodologies like Pairwise
Proximal Policy Optimization (P3O) leverage relative feedback to enhance LLM alignment (Wu et al.,
2024). Innovations such as the integration of Rao-Kupper models have enabled paired comparison
frameworks to incorporate ties, capturing ambiguous or neutral preferences in RLHF settings (Liu
et al., 2024). These developments highlight the growing influence of paired comparison methods in
machine learning and underscore the potential of our generalizations to enhance these frameworks
further.

APPENDIX B UNIDENTIFIABILITY OF PARAMETERS IN PAIRED
COMPARISON MODELS

In this section, we discuss the challenge of estimating the uncertainties of scores xi in paired compar-
ison models. Previous works, such as Chiang et al. (2024), have introduced methods for computing
confidence intervals for scores using empirical approaches like bootstrapping. While these meth-
ods are valuable in practice, we demonstrate that this problem is intrinsically ill-posed due to the
unidentifiability of the score parameters. Specifically, the likelihood function depends only on score
differences xi − xj , rendering individual score estimates invariant under certain transformations.
This invariance introduces non-uniqueness in the quantification of confidence intervals.

This issue arises not from specific modeling choices but from a structural characteristic of models
based on strong stochastic transitivity, where probabilities take the form F (xi−xj) (see Section 2.2).
To analyze this limitation rigorously, we examine the Fisher Information Matrix (FIM) of the like-
lihood function. In Appendix B.1, we provide a background on the FIM and its role in parameter
identifiability. In Appendix B.2, we show that the score parameters are unidentifiable due to the
singularity of the FIM. Finally, in Appendix B.3, we propose reparameterizations that result in
identifiable quantities.

B.1 FISHER INFORMATION AND IDENTIFIABILITY: BACKGROUND

The Fisher Information Matrix (FIM) quantifies the amount of information that the likelihood func-
tion carries about the parameters of interest. It can be derived from the gradient of the log-likelihood
function, known as the informant vector,2 or equivalently, from the negative Hessian matrix of the
log-likelihood:

F(θ) := E [∇θℓ(θ)⊗∇θℓ(θ) |θ] = −E [∇θ∇⊺
θℓ(θ) |θ] . (B.1)

The FIM measures the curvature of the likelihood function around the estimated parameters, reflecting
the precision of the parameter estimates. A sharper likelihood function implies higher confidence in
the parameter estimates. Formally, the Cramér-Rao bound establishes a theoretical lower bound for
the covariance of the parameter estimates (see e.g., Söderström & Stoica (1989)):

cov(θ) ≥ F−1(θ). (B.2)

2Commonly referred to as the score but this term is avoided here to prevent confusion with the score
parameters xi.
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This lower bound is often used to derive estimates of parameter uncertainty. For example, assuming
the approximation var(θi) ≈ [F−1]ii, the confidence interval for θi can be estimated as:

∆θi = tα,n−m

√
var(θi), (B.3)

where tα,n−m is the critical value from the Student’s t-distribution for a confidence level α ∈ [0, 1]
with n−m degrees of freedom, n being the number of data points and m the number of parameters.
This approach yields a conservative estimate of the variance of θi, reflecting the Cramér-Rao bound.
Alternative methods, such as bootstrapping, may provide more practical confidence intervals in
certain cases.

When the FIM is ill-conditioned or singular, however, the parameter estimation problem becomes
ill-posed. In such cases, the uncertainty bounds ∆θi become unbounded or undefined. This occurs
when the likelihood function exhibits invariance under certain transformations of the parameters,
leading to parameter redundancy. We formally define parameter identifiability and its connection to
the FIM below.
Definition B.1 ((Rothenberg, 1971, Definitions 1, 2, and 3)). Two parameter vectors θ and θ′ are
said to be observationally equivalent if ℓ(θ) = ℓ(θ′). A parameter vector θ is locally identifiable if
there exists an open neighborhood around θ containing no other θ′ that is observationally equivalent
to θ. If θ is not observationally equivalent to any other parameter vector in the entire domain of the
likelihood function, it is said to be globally identifiable.
Theorem B.1 ((Rothenberg, 1971, Theorem 1)). Let θ∗ be a regular point of the FIM F(θ). Then,
θ∗ is locally identifiable if and only if F(θ) is non-singular.

The above theorem establishes that the FIM plays a central role in determining parameter identifia-
bility (see also (Seber & Wild, 2005, Sections 3.4 and 8.4)).

B.2 UNIDENTIFIABILITY OF SCORE PARAMETERS

We now focus on the identifiability of the score parameters, x, in paired comparison models. For
simplicity, we limit the analysis to x, though the results extend naturally to other parameters. We
prove that the FIM for x is singular for likelihood functions satisfying the shift invariance property.
While the invariance property trivially implies unidentifiability by definition, analyzing the FIM
reveals deeper insights into the parameter space. Specifically, it identifies the null space causing
unidentifiability and highlights subspaces suitable for well-defined reparametrizations, as explored
in the next subsection.
Proposition B.1. Let the log-likelihood function ℓ ∈ C2(Rm,R) satisfy the shift invariance property

ℓ(x+ c1) = ℓ(x), c ∈ R. (B.4)

Then, the corresponding Fisher Information Matrix F(x) is singular where rank(F(x)) ≤ m − 1,
with 1 (the vector of ones) in its null space.

Proof. From (B.4) we have
∂ℓ(x+ c1)

∂c
=

m∑
j=1

∂ℓ(x)

∂xj

= 0. (B.5)

On the other hand, summing over all columns of the Hessian, H := ∇x∇⊺
xℓ(x), and using (B.5)

yields
m∑
j=1

Hij =

m∑
j=1

∂2ℓ(x)

∂xi∂xj

=
∂

∂xi

 m∑
j=1

∂ℓ(x)

∂xj

 = 0, ∀ i = 1, . . . ,m. (B.6)

Hence, H has a zero row sum, implying H1 = 0. Therefore, 1 lies in the null space of H, and by
extension, F(x) is singular with a rank of at most m− 1.

The singularity of F(x) confirms the unidentifiability of the score parameters x, rendering the
quantification of their uncertainties fundamentally ill-posed. As a result, the lower bounds from
the Cramér-Rao inequality in (B.2) become unbounded, making the confidence interval such as in
(B.3) undefined. In the next section, we analyze the structure of F(x) to identify subspaces where
meaningful parameter estimation is possible.
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B.3 IDENTIFIABLE PARAMETRIZATION

We now address which quantities are identifiable through the FIM. Specifically, any reparameter-
ization within the range of the FIM is identifiable. Let Nθ denote the null space of the FIM and
N⊥

θ its orthogonal complement. Suppose θ = θ∗ is a local minima of the likelihood function. The
FIM, when restricted to N⊥

θ
∗ , is positive definite, and any parameterization within this subspace is

identifiable.

In the case of pairwise comparison with the optimal solution x = x∗, assuming rank(F(x∗)) =

m− 1, we have Nx
∗ := span(1). The projection operator onto N⊥

x
∗ is given by

P = I− 1

m
11⊺, (B.7)

which is the centering matrix that converts x∗ to the mean-zero vector x̃∗ := Px∗ ∈ N⊥
x

∗ . A
representation of this reparameterization can be expressed using the (m−1)×m forward differencing
matrix A : Rm → N⊥

x , defined as Ai,i = 1, Ai,i+1 = −1, and zero otherwise. Specifically,
y∗ := Ax∗, where y∗i = x∗

i − x∗
i+1. This reparameterization lies entirely in N⊥

x
∗ , making y∗

identifiable and allowing its uncertainty to be meaningfully quantified.

Thus, in paired comparison models we consider, only differences in scores provide meaningful
inference. In the next section, we explore this in the context of Thurstonian covariance parameters.

APPENDIX C COVARIANCE MODEL

In Section 2.4 we expand the inclusion of covariance via Thurstonian model. We recall that, in
Thurstonian model, the score parameters are assumed to be stochastic with xi = µi + ϵi where ϵi is
the stochastic component with the covariance Σ = [σij ] where σij := cov(ϵi, ϵj). Furthermore, we
defined the matrix S = [sij ] where sij = σii + σjj − 2σij representing the covariance of xi − xj .

In this section, we provide a detailed analysis of the covariance matrix Σ and its associated matrix S.
In particular, in Appendix C.1, we explore the identifiability, particularly how Σ is inherently non-
unique while S remains unique and identifiable. In Appendix C.2 we present how to interpret and
visualize these matrices. In Appendix C.3, we examine hierarchical clustering of competitors based
on the dissimilarity matrix, uncovering performance tiers and relationships. Finally, in Appendix C.4
we discuss constraints that allow stable identification of covariance during optimization of likelihood.

C.1 NON-UNIQUENESS AND EQUIVALENCE CLASS OF COVARIANCE

We begin by noting that the likelihood function in the Thurstonian models we presented depends on
the function of zij defined in (8), which itself depends on sij . That is, S is an observable quantity,
while Σ is a latent variable. Below, we formalize the relationship between these two matrices and
the equivalence class of covariance matrices that share the same S.

Let Sm denote the space of symmetric m×m matrices and Sm◦ be the the space of hollow symmetric
matrices where all diagonal elements are zero. Define the map S : Sm → Sm◦ that associates a
covariance matrix Σ with the matrix S, given by

S = S(Σ) = diag(Σ)1⊺ + 1diag(Σ)⊺ − 2Σ, (C.1)

where diag(Σ) is a vector containing the diagonal elements of Σ. This relation corresponds to
sij = σii + σjj − 2σij in matrix form.

As we will show momentarily, the map S is non-injective, as for each S, there exist non-unique
covariance matrices Σ differing by elements in the kernel of S, all of which map to the same S.
Consequently, the preimage of S defines the equivalence class of covariance matrices producing the
same S, given by

[Σ] = S−1(S) =
{
Σ′ ∈ Sm

∣∣ S(Σ′) = S
}
. (C.2)

This equivalence class partitions Sm modulo the kernel of S, denoted as Sm/ ker(S). We now
formalize this structure.
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Proposition C.1 (Equivalence Class of Covariance). The map S : Sm → Sm◦ , defined in (C.1), is a
surjective, non-injective linear transformation. Its kernel is given by

ker(S) = {v1⊺ + 1v⊺ | v ∈ Rm}. (C.3)

Consequently, the quotient space Sm/ ker(S) represents the space of equivalence classes of covari-
ance matrices of the form

[Σ] = {Σ+ v1⊺ + 1v⊺ | v ∈ Rm}, (C.4)
where all elements of [Σ] map to the same matrix S under S.

Proof. To determine ker(S), consider Σ′ ∈ Sm such that S(Σ′) = 0. From (C.1), it follows that

diag(Σ′)1⊺ + 1diag(Σ′)⊺ − 2Σ′ = 0.

Rearranging, we find

Σ′ =
1

2

(
diag(Σ′)1⊺ + 1diag(Σ′)⊺

)
,

implying that any Σ′ ∈ ker(S) must be of the form given in (C.3). The equivalence class [Σ] =

S−1(S) is obtained by adding elements of ker(S) to a representative Σ, yielding (C.4).

To show S is surjective, observe that for any S ∈ Sm◦ , the matrix − 1
2S ∈ Sm satisfies S(− 1

2S) = S.
Hence, every S ∈ Sm◦ has at least one preimage, proving surjectivity.

As demonstrated in Proposition C.1, the covariance matrix Σ is not unique, as adding any sym-
metric rank-one matrix to it leaves the likelihood invariant. Consequently, Σ is not identifiable by
Definition B.1.

C.2 INTERPRETATION AND VISUALIZATION OF COVARIANCE

While the covariance matrix Σ is not unique, the matrix S is unique and identifiable. This makes S
the preferred object for interpreting relationships between competitors. Unlike Σ, which represents
similarity, S plays the role of a dissimilarity matrix. In fact, under suitable conditions, S can be
interpreted as a distance matrix.

For S to qualify as a distance matrix, it must be non-negative. This holds if and only if the doubly-
centered covariance matrix, defined as

Σ̃ = PΣP, (C.5)

is positive semi-definite. Here, P is the centering matrix from (B.7). The matrix Σ̃ represents the
covariance of mean-centered scores, x̃ = Px. Importantly, Σ̃ ∈ [Σ] and is unique within the
equivalence class [Σ]. Specifically, for any Σ′,Σ′′ ∈ [Σ], it holds that PΣ′P = PΣ′′P = Σ̃. This
ensures that Σ̃ is well-defined and serves as a canonical representation of the covariance structure.

A matrix S is called a Euclidean distance matrix if there exist spatial points p1, . . . ,pm such that
sij = ∥pi − pj∥2. (Mardia et al., 1979, Theorem 14.2.1) guarantees that S is a Euclidean distance
matrix if and only if Σ̃ is positive semi-definite. In our setting, this condition is always satisfied, as
we enforce the factor covariance model in (12) as

Σ = D+ΛΛ⊺, (C.6)

where D is a positive diagonal matrix (D > 0), ensuring that Σ is positive definite. Consequently,
Σ̃ is positive semi-definite, making S a Euclidean distance matrix.

This property enables meaningful visualization of S using multi-dimensional scaling (MDS). MDS
(see e.g., (Mardia et al., 1979, Chapter 14) or (Seber & Wild, 2005, Section 5.5)) constructs a set of
points in two- or three-dimensional space such that their pairwise distances approximate the distances
in S. This approach is particularly suitable for visualizing S or similar distance matrices derived
from covariance models.

Here, we use the matrix Z as the distance matrix, as defined in (8), where zij = (xi − xj)/
√
sij ,

capturing both score differences and dissimilarities derived from covariance. The dissimilarity repre-
sented by Z is visualized in Figure C.1 using MDS, showing the first two principal coordinates in a
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Figure C.1: MDS projection of the distance matrix Z onto two dimensions, focusing on the top 50
competitors ranked by Model 18 of Table D.1. In the scatter plot, circle size and color are proportional
to the competitors’ scores.

two-dimensional space. Interestingly, the spatial arrangement of points in the plot not only reflects
the pairwise dissimilarities but also aligns well with the overall ranking of competitors, effectively
capturing their relative scores. This highlights the ability of MDS to extract meaningful patterns
from the dissimilarity matrix alone, without access to the absolute values of the scores.

A companion approach to MDS is kernel PCA (Schölkopf et al., 1999; Williams, 2000), applied
earlier in Section 4.2 and visualized in Figure 2. Both techniques aim to uncover relationships in
lower-dimensional spaces, with kernel PCA operating on points in a feature space and MDS working
directly with pairwise distances. These methods are dual representations: PCA identifies principal
components of the data, while MDS identifies principal coordinates of a distance matrix (Mardia
et al., 1979, Section 14.3). Notably, both the kernel PCA in Figure 2 (projected into three dimensions)
and the MDS in Figure C.1 (projected into two dimensions) rely on the same dissimilarity matrix Z,
offering consistent visual representations of the relationships between competitors.

C.3 HIERARCHICAL CLUSTERING OF COMPETITOR PERFORMANCE

To complement the analysis of dissimilarity using PCA and MDS, we applied hierarchical agglomer-
ative clustering (Hastie et al., 2009, Section 14.3.12) with optimal leaf ordering (Bar-Joseph et al.,
2001) to the dissimilarity matrix Z. We recall that the matrix Z incorporates both score differences
and dissimilarities derived from Thurstonian covariance in our generalized models. This integration
of covariance within the model enhances the interpretability of the clustering results by capturing
both the performance levels of competitors and their correlation structure.

The clustering analysis focuses on the top 100 competitors ranked using Model 18 from Table D.1.
The resulting dendrogram, shown in Figure C.2, reveals a hierarchical structure that organizes com-
petitors into distinct tiers. Interestingly, despite the clustering algorithm having access only to the
dissimilarity matrix Z, which encodes score differences (but not the absolute values of the scores)
and covariance-derived uncertainties, the clustering order closely aligns with the competitors’ rank-
ings. Each cluster roughly corresponds to a contiguous range of ranks, albeit with minor variations,
demonstrating the ability of the clustering method to infer meaningful performance groupings solely
from relative differences.

This hierarchical structure provides additional insights into the relationships between competitors,
suggesting a natural stratification into performance-based tiers. Tier I includes the two leading
models, ChatGPT-4 Latest (as of September 2024) and Gemini 1.5 Pro Experimental, reflecting their
dominance. The remaining 98 models form Tier II, which is further divided into two subgroups: IIA
(green theme) and IIB (red theme). These subgroups are further refined into smaller clusters: IIA
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Figure C.2: Hierarchical clustering of the top 100 competitors based on the distance matrix Z derived
from model 18 of Table D.1. The clustering reveals performance tiers, with Tier I consisting of the
top two competitors (ChatGPT-4 Latest and Gemini 1.5 Experimental) and Tier II further subdivided
into groups representing decreasing performance levels. This structure highlights the relationships
and relative strengths among competitors.

is split into IIA1
(dark green) and IIA2

(light green), while IIB is split into IIB1
(light red) and IIB2

(dark red).

The meaningfulness of these groupings arises from the use of Z, which integrates performance scores
with covariance-based dissimilarities—a capability enabled by incorporating Thurstonian models
in our framework. This analysis complements rankings by uncovering hierarchical structures and
relational patterns among competitors.

While our analysis focuses on hierarchical clustering derived from the statistical properties of the dis-
similarity matrix, alternative clustering approaches, such as those leveraging semantic relationships
(e.g., embeddings or linguistic features), could provide complementary insights into model relation-
ships. However, incorporating semantic clustering would necessitate additional datasets or features,
which fall outside the scope of this work. Future research may explore such directions, integrating
semantic and statistical perspectives to uncover deeper insights into competitor relationships.
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C.4 CONSTRAINT ON THURSTONIAN COVARIANCE MODEL

In Section 2.5 we presented constraints to resolve the symmetry of the likelihood functions with
respect to transformations of the parameters. Here, we provide further detail on the second symmetry
presented therein. Specifically, we recall that the models are invariant under the transformation
(xi, σij) 7→ (txi, t

2σij) for an arbitrary t > 0.

One approach to resolve the arbitrariness of the parameters introduced by such translation is to
impose the constraint

C := 1

2m

m∑
i,j=1

sij = 1, (C.7)

where the constant 1
2m is arbitrary, chosen for convenience as we will explain momentarily. Since

sij represents the variance of the difference xij = xi − xj , this constraint ensures that the total
variance of all random processes xij is fixed. We will further show that this constraint can be directly
expressed in terms of the covariance matrix Σ.
Proposition C.2. The constraint in (C.7) is equivalent to

trace(Σ̃) = 1, (C.8)

where Σ̃ := PΣP is the doubly-centered covariance matrix given in (C.5), and P := I− 1
m11⊺ is

the projection matrix defined in (B.7).

Proof. Recall that the elements sij of the matrix S are related to Σ by

S = diag(Σ)1⊺ + 1diag(Σ)⊺ − 2Σ. (C.9)

The constraint in (C.7) can be written equivalently as

C = 1

2m
1⊺S1. (C.10)

Substituting (C.9) into (C.10) and noting that 1⊺ diag(Σ) = trace(Σ), we obtain

C = trace(Σ)− 1

m
1⊺Σ1. (C.11)

Next, let J◦ := 1
m11⊺, so that P = I − J◦. Expanding Σ̃ := PΣP, we use the cyclic property of

the trace and the idempotence of J◦ (J2
◦ = J◦) to write

trace(Σ̃) = trace(Σ)− trace(ΣJ◦). (C.12)

Moreover, by the cyclic property of the trace,

trace(ΣJ◦) =
1

m
1⊺Σ1. (C.13)

Substituting this into (C.12), we find that trace(Σ̃) equals C as expressed in (C.11). Thus, the
constraint (C.7) is equivalent to trace(Σ̃) = 1, completing the proof.

By using the factor model (12), the constraint can be written in terms of D and Λ as

C =
(
1− 1

m

)
trace(D) + ∥Λ∥2F − ∥1⊺Λ∥22, (C.14)

where ∥ · ∥F is the Frobenius norm. Also, the derivative of the constraint with respect to these
matrices (which is needed for the optimization methods utilizing Jacobin of the loss function) is can
be derived as

∂C
∂D

=

(
1− 1

m

)
I, (C.15a)

∂C
∂Λ

= (2I− 11⊺)Λ. (C.15b)
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Model Features Num.
Param.

Cross Entropy Training
TimeId Model Cov. (k) Tie (k) −ℓ(θ) Win Loss Tie

1 Bradley-Terry
(with tie data)

✗ ✗ 129 0.6554 0.3177 0.3376 — 2.3
2 0 ✗ 258 0.6552 0.3180 0.3371 — 3.8
3 3 ✗ 645 0.6549 0.3178 0.3370 — 34.1

4 Bradley-Terry
(without tie data)

✗ ✗ 129 0.6351 0.3056 0.3295 — 0.0
5 0 ✗ 258 0.6346 0.3059 0.3287 — 1.7
6 3 ✗ 645 0.6342 0.3057 0.3285 — 27.5

7 Rao-Kupper ✗ 0 130 1.0095 0.3405 0.3462 0.3227 5.8
8 ✗ 1 258 1.0106 0.3401 0.3459 0.3245 6.9
9 ✗ 10 1419 1.0055 0.3404 0.3455 0.3196 208.1

10 ✗ 20 2709 1.0050 0.3403 0.3455 0.3192 396.9

11 0 0 259 1.0092 0.3408 0.3457 0.3228 8.4
12 0 1 387 1.0103 0.3404 0.3454 0.3245 7.5
13 0 10 1548 1.0052 0.3407 0.3449 0.3196 293.7
14 0 20 2838 1.0048 0.3406 0.3449 0.3193 664.9

15 3 0 646 1.0089 0.3405 0.3457 0.3227 36.0
16 3 1 774 1.0100 0.3400 0.3454 0.3245 36.9
17 3 10 1935 1.0049 0.3403 0.3449 0.3196 363.5
18 3 20 3225 1.0044 0.3403 0.3449 0.3193 817.3

19 Davidson ✗ 0 130 1.0100 0.3409 0.3461 0.3231 6.0
20 ✗ 1 258 1.0077 0.3413 0.3466 0.3198 10.5
21 ✗ 10 1419 1.0057 0.3404 0.3456 0.3197 253.2
22 ✗ 20 2709 1.0052 0.3404 0.3455 0.3193 602.8

23 0 0 259 1.0098 0.3411 0.3455 0.3231 8.7
24 0 1 387 1.0074 0.3415 0.3460 0.3200 8.3
25 2 10 1548 1.0055 0.3407 0.3451 0.3197 286.9
26 0 20 2838 1.0050 0.3407 0.3450 0.3194 665.1

27 3 0 646 1.0094 0.3410 0.3453 0.3231 34.6
28 3 1 774 1.0070 0.3412 0.3460 0.3199 35.8
29 3 10 1935 1.0051 0.3407 0.3448 0.3197 366.4
30 3 20 3225 1.0047 0.3405 0.3448 0.3194 804.9

Table D.1: Configurations and training details of the 30 statistical models used throughout the
analysis. These models are referenced by their ID in various sections of the paper.

APPENDIX D EVALUATION OF STATISTICAL MODELS

D.1 MODEL SELECTION

The models used in our analysis are listed in Table D.1. Rows 1 to 6 include the Bradley-Terry (BT)
model and its variants, rows 7 to 18 cover the Rao-Kupper model and its extensions, and rows 19 to
30 represent the Davidson model and its variants. For the BT model, we analyze two forms of the
dataset. In rows 1 to 3, we modify the input matrices to incorporate ties by treating each tie as half
a win and half a loss, i.e., W ←W + 1

2T, as done by Chiang et al. (2024). In rows 4 to 6, we did
not modify W. We recall that in both cases, the BT model does not account for ties, meaning T is
effectively ignored.

Rows 1, 4, 7, and 19 represent the standard versions of the BT, Rao-Kupper, and Davidson models as
found in the literature. All other rows reflect our extensions, detailed in the third and fourth columns
of the table. In the third column, k refers to the rank of Λ in the factor model for covariance, as
given in (12). The symbol “✗” means the model does not include a covariance structure, excluding
the Thurstonian representation. k = 0 implies a diagonal covariance matrix, i.e., Σ = D.

In the fourth column, k represents the number of columns of the matrix G in the factor model for
ties, as defined in (6). The symbol “✗” indicates that the model does not account for ties, while k = 0
corresponds to the original Rao-Kupper and Davidson models with a single tie parameter.
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We trained these models (except for models 1 and 4) by maximizing the likelihood function (1) using
the BFGS optimization method, while satisfying the constraints in Section 2.5. This method requires
both the loss function−ℓ(θ) and its Jacobian−∂ℓ(θ)/∂θ, which we analytically derived with respect
to all parameters for each model and provided during training. The negative log-likelihood (NLL) is
shown in the fifth column, and training time (in seconds), using an AMD EPYC 7543 processor with
32 cores, is given in the last column.

Models in rows 1 and 4 were trained using the iterative minorization–maximization (MM) algorithm
of Newman (2023), which offers notable speed advantages over conventional maximum likelihood
estimation. MM algorithms have also been extended to certain generalizations of the Bradley-Terry
model, as shown by Hunter (2004). Whether MM methods are directly applicable to the more
complex generalized models proposed in this work remains an open question and warrants further
investigation.

Since the BT models do not account for ties, their NLL values are generally lower compared to
other models, making direct comparison between the NLLs of BT and tie-inclusive models not
applicable. However, within each model category, we observe that incorporating the Thurstonian
covariance structure and the tie factor model (with increasing k) improves the NLL, indicating a
better fit. Further evaluation metrics, including goodness-of-fit and generalization performance, are
provided in Appendix D.2 and Appendix D.3, respectively.

D.2 MODEL FIT

One method of assessing model fit, as presented in Table D.2, is to compare the cross-entropy
between the predicted probabilities of win, loss, and tie with the observed probabilities. The sum
of these cross-entropies matches the NLL, as shown in the fifth column. As with the NLL, the BT
models show lower cross-entropy, though this is due to their differing dimensionality. Specifically,
the BT model predicts two outcomes (win and loss), yielding only one independent output, since the
probability of loss complements the probability of a win. In contrast, the Rao-Kupper and Davidson
models predict three outcomes (win, loss, tie), resulting in two independent output variables. Thus,
the BT model fits a one-dimensional output space, while the other models fit a two-dimensional
space. Although the BT models achieve lower error rates, the complexity of the Rao-Kupper and
Davidson models offers richer predictions.

Within each model category, increasing the rank k for covariance or tie models consistently improves
fit, as indicated by decreasing cross-entropies. Further improvements are also reflected in other
metrics, such as RMSE and divergence values, which will be discussed in the following paragraphs.

Another metric for comparison, provided in the fifth to eighth columns of Table D.2, is training
accuracy via the root-mean-square error (RMSE) between predicted and observed data. Given the
non-uniform number of comparisons per pair, we use weighted RMSE, with weights proportional
to the number of comparisons. Results for win, loss, and tie are presented in the fifth to seventh
columns, while overall RMSE is in the eighth. Similar to earlier trends, BT models show lower
errors, but models with higher k values for covariance and ties show significant improvements in
model accuracy.

We also compare models using the divergence between predicted probabilities and observed data.
For each pair, we compute the Kullback-Leibler (KL) divergence between the predicted and observed
probability mass functions. The KL divergence DKL(P∥Q), averaged over all pairs, is shown in the
ninth column of Table D.2. Additionally, the Jensen-Shannon (JS) divergence DJS(P∥Q), which is
symmetric and ranges between 0 and 1, is provided in the tenth column. Lower KL and JS values
indicate better model fit. Notably, models incorporating covariance and tie factor models yield better
results in terms of divergence, reaffirming the effectiveness of these extensions.

D.3 GENERALIZATION PERFORMANCE

To evaluate the models’ generalization performance, we trained each model on 90% of the data and
tested predictions on the remaining 10%. The weighted RMSE of the predictions is presented in the
fifth to eighth columns of Table D.3, and the KL and JS divergences are shown in the ninth and tenth
columns, respectively.
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Model Features RMSE Divergence (×10
2)

Id Model Cov. (k) Tie (k) Win Loss Tie All KLD JSD

1 Bradley-Terry
(with tie data)

✗ ✗ 29.7 29.7 — 29.7 1.49 0.44
2 0 ✗ 26.2 26.2 — 26.2 1.42 0.42
3 3 ✗ 17.4 17.4 — 17.4 1.30 0.39

4 Bradley-Terry
(without tie data)

✗ ✗ 35.1 35.1 — 35.1 1.82 0.52
5 0 ✗ 31.5 31.5 — 31.5 1.71 0.49
6 3 ✗ 17.3 17.3 — 17.3 1.58 0.46

7 Rao-Kupper ✗ 0 48.2 69.9 103.5 77.3 3.32 0.92
8 ✗ 1 46.4 67.8 99.2 74.3 3.45 0.91
9 ✗ 10 34.1 34.2 23.1 30.9 2.63 0.73

10 ✗ 20 34.3 32.2 16.8 28.8 2.35 0.65

11 0 0 46.5 67.9 103.6 76.4 3.23 0.90
12 0 1 43.5 66.8 99.4 73.5 3.36 0.89
13 0 10 29.8 31.6 22.7 28.3 2.55 0.70
14 0 20 30.4 29.1 16.7 26.1 2.26 0.63

15 3 0 49.0 61.7 104.7 75.6 3.09 0.86
16 3 1 48.6 58.7 100.9 73.0 3.18 0.84
17 3 10 20.0 21.2 22.1 21.1 2.42 0.67
18 3 20 18.7 18.9 15.8 17.9 2.12 0.59

19 Davidson ✗ 0 51.0 71.8 109.8 81.3 3.41 0.94
20 ✗ 1 44.4 63.3 90.1 68.6 2.99 0.82
21 ✗ 10 37.1 39.6 25.7 34.7 2.69 0.75
22 ✗ 20 37.7 37.1 17.2 32.1 2.50 0.70

23 0 0 49.4 70.5 109.9 80.6 3.32 0.92
24 0 1 41.1 62.4 91.4 68.1 2.94 0.81
25 0 10 32.8 37.7 27.0 32.8 2.73 0.76
26 0 20 35.7 32.6 18.8 30.0 2.56 0.72

27 3 0 55.1 61.1 111.0 79.8 3.18 0.89
28 3 1 46.5 50.0 90.6 65.5 2.80 0.78
29 3 10 20.8 22.0 25.0 22.7 2.57 0.72
30 3 20 19.1 19.0 17.1 18.4 2.43 0.68

Table D.2: Goodness-of-fit metrics, including root-mean-square error (RMSE), Kullback-Leibler
divergence (KLD), and Jensen-Shannon divergence (JSD), for the 30 statistical models introduced
in Table D.1.

An important observation is that increasing the number of parameters, such as k in the covariance
or tie factor models, improves the fit to training data (Table D.2), but can reduce generalization
performance, as seen in Table D.3. While adding parameters helps mitigate underfitting in simpler
models like the original Rao-Kupper and Davidson, too many parameters lead to overfitting. Models
with k in the range of 1 to 10 strike a balance between fit and generalization, whereas higher k values,
such as k = 20, tend to overfit the data, reducing generalization performance.

D.4 EVALUATING MARGINAL PROBABILITIES OF WIN, LOSS, AND TIE

The errors in previous sections were calculated based on pairwise probabilities, such as Pi≻j , with
errors averaged over all pairwise comparisons in E. Here, we assess the marginal probabilities
for each competitor, which represent the overall likelihood of winning, losing, or tying against all
other competitors. Specifically, we denote these probabilities respectively by P (i ≻ V \ {i} |E),
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Model Features RMSE Divergence (×10
2)

Id Model Cov. (k) Tie (k) Win Loss Tie All KLD JSD

1 Bradley-Terry
(with tie data)

✗ ✗ 27.4 27.4 — 27.4 1.46 0.41
2 0 ✗ 27.6 27.6 — 27.6 1.48 0.41
3 3 ✗ 27.1 27.1 — 27.1 1.55 0.43

4 Bradley-Terry
(without tie data)

✗ ✗ 30.0 30.0 — 30.0 1.74 0.48
5 0 ✗ 30.3 30.3 — 30.3 1.77 0.48
6 3 ✗ 30.4 30.4 — 30.4 2.06 0.54

7 Rao-Kupper ✗ 0 54.5 29.1 67.4 52.8 3.16 0.88
8 ✗ 1 49.9 41.9 74.3 57.0 3.31 0.87
9 ✗ 10 26.3 38.6 32.1 32.7 3.17 0.85

10 ✗ 20 29.0 56.3 66.4 53.0 4.14 1.00

11 0 0 52.9 31.5 67.8 52.9 3.19 0.88
12 0 1 46.8 45.5 75.0 57.4 3.31 0.87
13 0 10 25.9 38.5 31.6 32.4 3.10 0.84
14 0 20 30.2 54.3 64.6 51.7 4.66 1.06

15 3 0 50.3 33.8 68.1 52.6 3.31 0.90
16 3 1 51.6 42.1 75.0 57.9 3.59 0.93
17 3 10 28.5 34.9 32.3 32.0 3.25 0.87
18 3 20 35.9 59.6 67.1 55.8 4.71 1.07

19 Davidson ✗ 0 54.7 30.8 70.0 54.3 3.28 0.91
20 ✗ 1 43.1 24.6 42.7 37.8 2.76 0.77
21 ✗ 10 27.6 41.8 31.4 34.2 2.95 0.81
22 ✗ 20 28.6 65.5 73.4 59.1 3.42 0.93

23 0 0 54.0 32.8 70.2 54.5 3.31 0.92
24 0 1 44.2 26.2 45.0 39.4 2.91 0.81
25 0 10 26.9 40.0 28.6 32.3 3.06 0.84
26 0 20 31.0 68.3 80.4 63.5 3.51 0.96

27 3 0 52.5 34.2 70.2 54.3 3.40 0.93
28 3 1 40.7 28.2 44.0 38.2 2.87 0.79
29 3 10 33.6 32.7 28.5 31.6 3.31 0.89
30 3 20 32.8 71.6 83.3 66.2 3.70 1.00

Table D.3: Generalization performance of the 30 statistical models introduced in Table D.1, evaluated
on test data using a 90/10 train-test split, including root-mean-square error (RMSE), Kullback-Leibler
divergence (KLD), and Jensen-Shannon divergence (JSD).

P (i ≺ V \ {i} |E), and P (i ∼ V \ {i} |E), which are defined by

P (i ≻ V \ {i} |E) =
∑

{i,j}∈E(i)

P (i ≻ j | {i, j})P ({i, j} |E) (D.1a)

P (i ≺ V \ {i} |E) =
∑

{i,j}∈E(i)

P (i ≺ j | {i, j})P ({i, j} |E) (D.1b)

P (i ∼ V \ {i} |E) =
∑

{i,j}∈E(i)

P (i ∼ j | {i, j})P ({i, j} |E) (D.1c)

where E(i) := {e ∈ E | i ∈ e} represents the set of edges incident to the vertex i ∈ V , and
P ({i, j} |E) is the probability of observing a match for the pair {i, j}, which can be empirically
obtained as

P ({i, j} |E) =
nij∑

{k,l}∈E

nkl

. (D.2)

For brevity, we denote the marginal probabilities in (D.1a) to (D.1c) by Pi≻V−i
, Pi≺V−i

, and Pi∼V−i
,

respectively, where V−i := V \ {i}.
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Here, we evaluate the goodness of fit of the models by comparing the predicted marginal prob-
abilities of winning, losing, and tying for each competitor against their corresponding empirical
marginal probabilities. Figure D.1 illustrates the marginal probabilities for a selected set of models.
Specifically, the first two rows of the figure show results from the BT models (Models 1 and 4 of
Table D.1, with and without modified input data), while rows 3 to 5 correspond to the Rao-Kupper
models (Model 7 as the standard model with one tie parameter corresponding to k = 0, Model 8
with factored tie model and k = 1, and Model 10 with factored tie model and k = 20). Results for
the Davidson models are omitted as they closely resemble those of the Rao-Kupper models under
similar conditions.

The left, middle, and right columns in the figure show the marginal probabilities of win (Pi≻V−i
),

loss (Pi≺V−i
), and tie (Pi∼V−i

), respectively. Each row shares the same legend, shown only in
the rightmost column. The abscissa represent competitors ordered by their rank in Model 18. The
colored curves represent predicted marginal probabilities for each model, with red-themed curves
for BT models and green-themed curves for Rao-Kupper models. The black curve represents the
empirical marginal probabilities from the observed data, though in some cases, it may overlap with
the colored curves. The relative error between model predictions and empirical probabilities is
presented in the sixth row, using the same color scheme for consistency. Key observations are as
follows:

First, in the top two rows of the figure, the BT model predictions (red curves) noticeably deviate
from the empirical probabilities (black curve). This is because the BT models do not account for
ties, resulting in a different distribution of win and loss probabilities. To provide a fair comparison,
we compare BT model predictions with adjusted empirical probabilities, represented by the dotted
black curve, which excludes ties. Accordingly, the relative error for BT models in the sixth row
is computed against these adjusted probabilities. By contrast, Rao-Kupper models are compared
directly with empirical probabilities from the input data, which include ties.

Second, in the last row of the figure, we observe that the errors for BT models are generally lower than
those of the Rao-Kupper models. This is due to the smaller output dimension of the BT models, which
fit only win and loss outcomes. If BT models were compared to the actual empirical probabilities
(solid black curves), their error would be higher than that of the Rao-Kupper models. However, such
a comparison would be unfair, as BT models are trained on modified data that does not account for
ties.

Finally, the original Rao-Kupper model with a single tie parameter (Model 7, shown in the third
row) exhibits errors on the order ofO(1) toO(10), making it impractical for real-world applications,
particularly in predicting ties. However, our generalized Rao-Kupper models, which incorporate
factored tie models (Models 8 and 10, shown in the fourth and fifth rows), demonstrate a substantial
improvement in accuracy. This enhancement not only elevates the prediction of ties but also improves
the prediction of win and loss outcomes by one to two orders of magnitude. This result is significant,
as it brings the Rao-Kupper and Davidson models back into practical relevance, offering richer
predictions for win, loss, and tie outcomes—unlike the BT models—without compromising on
accuracy.

APPENDIX E COMPARATIVE ANALYSIS OF RANKING VARIABILITY

This section expands on the ranking comparisons of chatbots presented in Section 4, providing
a detailed examination of how ranking outcomes vary across statistical models with different pa-
rameter configurations. We include visualizations such as the baseline model’s score distribution
(Appendix E.1), a comparison of ranking consistency across models (Appendix E.2), and Kendall’s
tau correlation matrix (Appendix E.3) to assess ranking similarities. Further exploration using hierar-
chical clustering (Appendix E.4) reveals underlying structure in model-based rankings, highlighting
the distinct influences of covariance and tie parameters on ranking alignment.

E.1 BASELINE MODEL RANKINGS AND SCORE DISTRIBUTION

The score plot in Figure E.1 illustrates the scores for the top 50 chatbots, ranked according to Model
18 from Table D.1. This model, a generalized Rao-Kupper (RK) variant with a higher covariance
factor k = 3 and tie factor k = 20, achieves improved goodness of fit, making it a suitable baseline
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Figure D.1: Comparison of predicted (colored curves) and empirical (black curves) marginal prob-
abilities of win (left), loss (middle), and tie (right) for selected models. First and second rows: BT
models, third row: original Rao-Kupper with tie factor k = 0, fourth and fifth rows: generalized
Rao-Kupper with tie factors k = 1 and k = 20. Sixth row: relative errors for rows one to five,
calculated between predicted and empirical probabilities.
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Figure E.1: Competitors ranked by their scores according to Model 18 from Table D.1.

for comparison. We selected this RK model over a similar generalized Davidson model due to their
comparable performance. Each bar in the plot represents a chatbot, ordered by their relative score
from highest to lowest. We use the ranking by this model as a basis for comparing consistency across
top competitors, examined further in the bump chart analysis.

E.2 EXPLORING RANKING CONSISTENCY ACROSS MODELS

The bump chart from Section 4 (now displayed here in Figure E.2) compares rankings across 12
selected models from Table D.1. Each row represents a competitor, ranked by the leftmost model,
and columns represent models of increasing complexity from right to left. By following the colored
lines across the chart, we observe how rankings shift as models incorporate additional parameters for
ties and covariances. The rankings of top competitors remain consistent across all models, indicating
robustness, while discrepancies grow more pronounced at lower ranks.

E.3 QUANTIFYING RANKING SIMILARITY ACROSS MODELS

While the bump chart in Section 4.1 provides a visual overview of ranking shifts across models,
quantifying the degree of similarity between these rankings requires statistical correlation measures.
A variety of methods are available, including Pearson’s correlation, Spearman’s ρ, and Kendall’s τ
(Kendall, 1938). Pearson’s correlation is most suitable for assessing linear relationships between
continuous variables, while Spearman’s rank correlation generalizes it for monotonic relationships
in ordinal data. However, neither offers as direct an interpretation for pairwise ranking comparisons
as Kendall’s τ , which evaluates the ordering of pairs directly, making it particularly well-suited for
ordinal data.

Kendall’s ranking correlation quantifies the agreement between two ranking orders by comparing
the relative ordering of pairs of objects. Given two score vectors, xp = (xp

1, . . . , x
p
m) and xq =

(xq
1, . . . , x

q
m), from the p-th and q-th models, respectively, τpq reflects the extent to which the pairwise

orderings are concordant. Two pairs, (xp
i , x

p
j ) and (xq

i , x
q
j), are concordant if they maintain the same

relative ordering—i.e., either xp
i < xp

j and xq
i < xq

j , or xp
i > xp

j and xq
i > xq

j . Conversely,
they are discordant if the orderings are reversed. This concordance criterion can be expressed as
sgn(xp

i − xp
j ) sgn(x

q
i − xq

j) = 1 for concordant pairs, and −1 for discordant pairs.

The Kendall correlation τpq is defined as the difference between the probabilities of concordant
and discordant pairs and can be empirically obtained by computing the difference of counts for all
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Figure E.2: Bump chart comparing chatbot rankings across 12 statistical models, with Model 1
representing the Elo-based ranking method used in Chiang et al. (2024). Models are arranged with
increasing complexity from right to left. Lines track changes in ranking for each chatbot.
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Figure E.3: Kendall τ ranking correlation matrix for models in Table D.1. The table below cate-
gorizes models by configuration: model type (first row), covariance factor k (second row), and tie
factor k (third row). In the first row, code names BT, RK, and DV denote Bradley-Terry, Rao-Kupper,
and Davidson models, respectively, with BT✽ indicating the Bradley-Terry model treating ties as
half wins and half losses. The model order is determined by hierarchical clustering on Kendall’s
correlation values, highlighting two main clusters based on the presence of covariance, with a further
division within the covariance group based on factor k. A dendrogram below the table illustrates this
clustering.

concordant and discordant pairs, normalized by the total number of pairs,
(
m
2

)
, as

τpq =
1(
m
2

) ∑
1≤i<j≤m

sgn(xp
i − xp

j ) sgn(x
q
i − xq

j). (E.1)

This correlation ranges from −1 to 1, where τpq = 1 indicates identical rankings, and τpq = −1
implies a complete reversal in ranking order (i.e., xp

i < xp
j implies xq

i > xq
j and vice versa). The

probability that a pairwise order xp
i < xp

j in one ranking aligns with xq
i < xq

j in another is 1
2 (τpq +1)

(Gibbons & Chakraborti, 2003, p. 410).

In this analysis, we compute the Kendall correlation matrix τ = [τpq], p, q = 1, . . . , 30, between
each pair of models in Table D.1 using Kendall’s τ -b method, which also accounts for ties in the
scores (Kendall, 1945).

Figure E.3 shows the resulting τ matrix, where each cell represents the Kendall correlation between
two models. We present only the lower-triangular half of this symmetric matrix for clarity. An
adjacent table below the matrix describes each model’s type (first row), covariance factor k (second
row), and tie factor k (third row). The codes BT, RK, and DV represent Bradley-Terry, Rao-Kupper,
and Davidson models, respectively, while BT✽ denotes the Bradley-Terry model with ties treated
as half win and half loss. Across our 30 models, the Kendall correlation ranged from 0.96 to
1, indicating overall similarity in rankings but with distinguishable differences driven by model
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parameter variations. Further insights into these parameter-driven distinctions emerge by reordering
the correlation matrix, as detailed in the next section.

E.4 IDENTIFYING RANKING SIMILARITIES VIA HIERARCHICAL CLUSTERING

To better interpret the distinctions between models, we performed hierarchical agglomerative cluster-
ing (Hastie et al., 2009, Section 14.3.12) on the distance matrix J−τ , where J is a matrix of all ones,
converting τ into a dissimilarity measure. Using optimal leaf ordering (Bar-Joseph et al., 2001), this
clustering reorders the rows and columns of τ to reveal natural groupings based on ranking similarity
across models.

The ordering of models shown in Figure E.3 is directly the arrangement produced by hierarchical
clustering, visualized in the dendrogram below the figure, which reveals a distinct block structure in
the τ matrix. The clustering first divides the models into two main groups: those without covariance
(indicated by ✗, columns 1 to 10, shown by the yellow branch) and those with covariance (columns 11
to 30). Within the group of models with covariance, further subdivision occurs, with models having
k = 0 (columns 11 to 20, shown by the orange branch) forming a distinct sub-block from those with
k = 3 (columns 21 to 30, shown by the red branch). This hierarchical structure highlights that the
presence and type of covariance parameter k are primary factors influencing ranking similarity, more
so than the tie factor k.

While covariance modeling prominently influences ranking consistency, earlier results (see Section 3
and Appendix D) demonstrated that our generalized tie modeling significantly enhances inference
and predictive accuracy. This dual impact—covariance structure shaping ranking alignment and
generalized tie modeling improving model fit and accuracy—illustrates the complementary strengths
of these two generalizations in paired comparison models.

APPENDIX F RELATIONSHIP BETWEEN LLM CHARACTERISTICS AND
SCORES
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Figure F.1: Scatter plots showing the effect of LLM characteristics on scores. The abscissa represents
the logarithmic scale of the characteristics: (left) number of parameters, (middle) computational
budget (FLOPs), and (right) dataset size. The ordinate (y-axis) is shared across all panels and shown
only for the left panel. Each point is labeled with the corresponding LLM name, and the regression
lines are shown in dashed black.

This section explores the relationship between the scores derived from our ranking framework and
three key characteristics of large language models: the number of parameters, computational budget
(FLOPs), and dataset size. Using data from Epoch AI (2022), which provides these attributes for
various LLMs, we matched these models with those evaluated in our analysis. Among the matched
models, 37, 34, and 28 LLMs had available values for the number of parameters, FLOPs, and dataset
size, respectively. Figure F.1 presents scatter plots illustrating these relationships, with the abscissa
displayed on a logarithmic scale and dashed regression lines capturing the linear trends. The scores,

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

shown on the ordinate, are derived from our generalized Rao-Kupper model corresponding to model
18 of Table D.1.

Table F.1: Regression results examining the relationship between LLM characteristics and scores.

Variable Coeff (×100) p-Value R2 Pearson r

Number of Parameters 1.62 (±0.76) 4.028% 0.11 0.34
Training Compute (FLOPs) 2.40 (±0.51) 0.004% 0.41 0.64
Dataset Size 5.53 (±1.29) 0.022% 0.41 0.64

Table F.1 summarizes the results of independent regressions performed for each characteristic against
the scores. The table reports the coefficients with their standard errors, p-values, coefficient of
determination R2, and Pearson correlations r. These results reveal consistent positive associations
between all three characteristics and model scores. Computational budget (FLOPs) and dataset size
exhibit the strongest associations, each with R2 = 0.41 and r = 0.64. The number of parameters
shows a weaker association, reflected by a lower R2 = 0.11 and r = 0.34, though it remains
statistically significant.

Our findings align with prior studies on the scaling laws of LLMs. Kaplan et al. (2020) emphasize
that model performance depends strongly on scale, encompassing model size, dataset size, and com-
putational budget. Hoffmann et al. (2022) further highlight the importance of balancing these factors,
demonstrating that compute and dataset size play pivotal roles in maximizing performance within
fixed budgets. Consistently, our analysis shows that scores improve across all three characteristics,
with particularly strong trends observed for computational budget and dataset size.

The comparatively modest association observed for the number of parameters in our analysis reflects
the diminishing returns noted in the literature when model size is increased without proportional
scaling of compute and data resources. This observation underscores the importance of balanced
scaling for optimal performance, as emphasized by prior studies.

Given the sparsity of available data for proprietary models in our analysis, these conclusions should
be interpreted with caution. Further studies incorporating more comprehensive datasets could provide
additional insights into the interplay between computational budget, dataset size, and the number of
parameters in driving LLM performance.

APPENDIX G IMPLEMENTATION AND REPRODUCIBILITY GUIDE

We developed a Python package leaderbot3 that implements the methods presented in this paper.
The package allows users to reproduce the numerical results, evaluate model fit, and explore model
generalization performance. Below, we provide examples of using leaderbot for common tasks
such as model training, evaluation, and visualization. The full documentation, including further
functionality and customization options, is available online.

G.1 MODEL TRAINING AND VISUALIZATION

Listing G.1 demonstrates the basic usage of leaderbot for training a statistical model and visual-
izing results. In this example, we replicate Model 23 from Table D.1 using the DavidsonFactor
class, which includes both tie modeling and covariance with parameters k = 0 for covariance and
k = 0 for the factor tie model. Once instantiated, the model is trained using the BFGS optimization
method on the dataset. While leaderbot ships with the data used in this paper, users can download
the latest dataset directly from Chatbot Arena through the function load, which provides additional
options (see documentation for details).

After training, users can use the model for inference and prediction, retrieve the values of the loss
function and Jacobian at either the trained optimal parameters or any specified parameter array,

3leaderbot is available for installation from PyPI at [URL removed for anonymization]. The source code
of the package can be found at https://anonymous.4open.science/r/leaderbot-CA90.
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generate leaderboard tables, and create visualizations—including replicating figures like the score
plot in Figure E.1, the 3D kernel-PCA plot in Figure 2, and the match matrix in Figure 1.

Listing G.1: Basic usage of leaderbot for model training and visualization of results.
# Install leaderbot with "pip install leaderbot"
import leaderbot as lb

# Load default dataset shipped with the package
5 data = lb.data.load()

# Create Davidson model with covariance factor k = 0 (diagonal covariance)
# and tie factor k = 0. This corresponds to Model 23 in Table D.1
model = lb.models.DavidsonFactor(data, n_cov_factors=0, n_tie_factors=0)

10

# Train the model
model.train(method=’BFGS’, max_iter=1500, tol=1e-8)

# Make inference
15 probabilities = model.infer(data)

# Make prediction
preiction = model.predict(data)

20 # Compute loss function −ℓ(θ) and its Jacobian −∂ℓ(θ)/∂θ

loss, jac = model.loss(return_jac=True)

# Print leaderboard and plots overall probabilities
model.leaderboard(max_rank=None, plot=True)

25

# Generates Figure E.1
model.plot_scores(max_rank=50)

# Rank competitors based on their scores
30 rank = model.rank()

# Visualize correlation similar to Figure 2 using Kernel PCA method
# projected on 3-dimensional space for the top 40 ranks.
model.visualize(max_rank=40, method=’kpca’, dim=’3d’)

35

# Generate a plot similar to Figure 1 with the win/loss matrix W and
# tie matrix T for both observed and predicted probabilities.
model.match_matrix(max_rank=25, win_range=[0.2, 0.6], tie_range=[0.15, 0.4])

G.2 MODEL EVALUATION: FIT AND CONSISTENCY METRICS

Listing G.2 demonstrates the evaluation of model fit and consistency for five selected models. These
models are chosen from the broader set of 30 models discussed in Table D.1 and include the original
Bradley-Terry model, as well as original and generalized versions of the Rao-Kupper and Davidson
models.

In this example, each model is trained on the full dataset to evaluate goodness of fit. The script
produces a bump chart similar to Figure E.2, comparing the rankings generated by the five models.
Additionally, it provides tables similar to Table D.1 and Table D.2, displaying model selection and
goodness-of-fit metrics. These metrics enable users to analyze and compare model consistency in
training performance.

G.3 MODEL GENERALIZATION: PERFORMANCE ON TEST DATA

Listing G.3 demonstrates the evaluation of model generalization using a 90/10 train-test split, where
the same five models from the previous listing are trained on 90% of the data and tested on the re-
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Listing G.2: Evaluating model fit and consistency metrics across models in leaderbot.
import leaderbot as lb

# Load dataset
data = lb.data.load()

5

# List models 2, 11, 12, 23, and 24 from Table D.1
models = [

lb.models.BradleyTerryFactor(data, n_cov_factors=0),
lb.models.RaoKupperFactor(data, n_cov_factors=0, n_tie_factors=0),

10 lb.models.RaoKupperFactor(data, n_cov_factors=0, n_tie_factors=1),
lb.models.DavidsonFactor(data, n_cov_factors=0, n_tie_factors=0),
lb.models.DavidsonFactor(data, n_cov_factors=0, n_tie_factors=1)

]

15 # Pre-train the models
for model in models: model.train()

# Compare model rankings, generating a bump chart like Figure E.2
lb.evaluate.compare_ranks(models, rank_range=[1, 60])

20

# Evaluate model-selection metrics, similar to Table D.1
mod_metrics = lb.evaluate.model_selection(models, report=True)

# Evaluate models for goodness of fit, similar to Table D.2
25 gof_metrics = lb.evaluate.goodness_of_fit(models, metric=’RMSE’, report=True)

maining 10%. The resulting RMSE, KLD, and JSD metrics, displayed in a table similar to Table D.3,
offer insight into each model’s predictive accuracy and robustness on unseen data.

Listing G.3: Evaluating model generalization using train-test split in leaderbot.
import leaderbot as lb

# Load dataset
data = lb.data.load()

5

# Split data to training and test data
training_data, test_data = lb.data.split(data, test_ratio=0.1, seed=20)

# List models 2, 11, 12, 23, and 24 from Table D.1
10 models = [

lb.models.BradleyTerryFactor(training_data, n_cov_factors=0),
lb.models.RaoKupperFactor(training_data, n_cov_factors=0, n_tie_factors=0),
lb.models.RaoKupperFactor(training_data, n_cov_factors=0, n_tie_factors=1),
lb.models.DavidsonFactor(training_data, n_cov_factors=0, n_tie_factors=0),

15 lb.models.DavidsonFactor(training_data, n_cov_factors=0, n_tie_factors=1)
]

# Evaluate models for generalization on test data, similar to Table D.3
gen_metrics = lb.evaluate.generalization(models, test_data=test_data,

20 train=True, metric=’RMSE’, report=True)
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