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ABSTRACT

The rapid proliferation of fake news on social media threatens social
stability, creating an urgent demand for more effective detection
methods. While many promising approaches have emerged, most
rely on content analysis with limited semantic depth, leading to
suboptimal comprehension of news content. To address this limita-
tion, capturing broader-range semantics is essential yet challenging,
as it introduces two primary types of noise: fully connecting sen-
tences in news graphs often adds unnecessary structural noise, while
highly similar but authenticity-irrelevant sentences introduce feature
noise, complicating the detection process. To tackle these issues,
we propose BREAK, a broad-range semantics model for fake news
detection that leverages a fully connected graph to capture com-
prehensive semantics while employing dual denoising modules to
minimize both structural and feature noise. The semantic structure
denoising module balances the graph’s connectivity by iteratively
refining it between two bounds: a sequence-based structure as a
lower bound and a fully connected graph as the upper bound. This
refinement uncovers label-relevant semantic interrelations structures.
Meanwhile, the semantic feature denoising module reduces noise
from similar semantics by diversifying representations, aligning dis-
tinct outputs from the denoised graph and sequence encoders using
KL-divergence to achieve feature diversification in high-dimensional
space. The two modules are jointly optimized in a bi-level frame-
work, enhancing the integration of denoised semantics into a compre-
hensive representation for detection. Extensive experiments across
four datasets demonstrate that BREAK significantly outperforms
existing methods in identifying fake news. Code is available at
https://anonymous.4open.science/r/BREAK.
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1 INTRODUCTION

The Internet’s rapid growth has elevated social media platforms like
X (formerly known as Twitter) to vital sources of daily information.
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Figure 1: Comparison of traditional and denoised sentence-level
graph representations. (a) A news example with both textual
and visual information. (b) A traditional sentence-level graph
that introduces structural noise and overlooks the semantics
of individual sentences. (c) A heatmap showing high sentence
similarity in news content. (d) The denoised sentence-level graph
proposed in this work, with a well-learned structure and diverse
features that reduce noise and preserve semantics.

However, social media provides users freedom to create and dissem-
inate information, making it an “ideal” environment for fake news
dissemination [12]. The proliferation of fake news poses great threats
to social safety [1] and public health [4][23], thereby necessitating
fake news detection as a prominent and urgent research topic.
Throughout the development of fake news detection, news con-
tent, as the core component of news, has consistently played a pivotal
role. Therefore, fully modeling news content is essential and offers
distinct advantages, particularly for the early detection when only
news content is available [5]. Moreover, it is beneficial for methods
incorporating external data (e.g., comments [24]), as it provides a
more comprehensive representation of news content, facilitating bet-
ter integration with external data [26]. This has been supported by
extensive research, including the use of sequence-based and graph-
based models [7]. Sequence-based approaches focus on extracting
sentimental, semantic, and sometimes cross-modal features from
news content, particularly within news texts [38] [30][13]. These
texts typically encompass several hundred words, often reiterating
key facts and establishing a logical structure replete with clear con-
textual connections [2]. However, sequence-based methods, better
suited for shorter texts, struggle to capture these extended, broader-
range connections, overlooking essential contextual nuances [33].
In contrast, graph-based methods strive to encapsulate broad-
range semantics by depicting news text as graphs at either the word
level [32] or sentence level [36]. Typically, these methods link nodes
via sliding windows or fully connected structures for in-depth con-
textual analysis. However, they often fail to thoroughly unearth the
intricate semantics embedded within complex news articles. This
shortfall is particularly evident in their limited capacity to fully
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capture broad-range semantics and the semantic interrelations be-
tween nodes. For instance, word-level incorporate lower noise but
it also overlooks semantic interrelations outside the sliding window
[2][26], and generates an overwhelming number of nodes for lengthy
news articles, resulting in substantial computational complexity. A
few limited studies have explored sentence-level fully connected
graphs to address these shortcomings [28]. These studies employ
random initialization for node features and then extract patterns of
interrelation between sentences to detect fake news.

Although studies based on fully connected graphs successfully
capture broader-range semantics, they encounter a significant obsta-
cle: while a fully connected graph structure provides comprehensive
coverage, it tends to introduce noise in both the graph structure and
the feature representations, such as irrelevant connections and highly
similar node features, as illustrated in Figures 1(b) and 1(c). This
raises the question: how can we effectively model broader range
semantics while minimizing the introduction of noise? Handling this
noise is essential but comes with two critical challenges. Firstly,
the semantic interrelations within a news article can be extremely
complex. For example, news articles with 10 sentences could have
90 (2% ZZ: 1k) directed edges, each with different weights, making it
hard to eliminate noise and capture key interrelations. Secondly, the
semantics of news sentences often exhibit high similarity, hindering
the differentiation of key sentences, as depicted in Figure 1(c). These
challenges of denoising significantly impede the comprehensive
extraction of news content and undermine detection performance,
highlighting the need for innovative solutions.

To address the challenges of fake news detection, we introduce
BREAK—a model designed to denoise and integrate broad-range
semantics for fake news detection. BREAK effectively tackles the
noise in both structural and feature semantics, which often obstruct
accurate detection, by harmonizing graph-based and sequence-based
representations.

BREAK addresses structural noise through an edge weight in-
ference mechanism in its semantic structure denoising module. It
first models news content as a fully connected bidirectional graph
to capture all potential semantic interrelations. Then, it refines this
structure by integrating sequential semantics as a lower bound, treat-
ing the fully connected graph as an upper bound and progressively
narrowing the graph based on semantically relevant connections.
This dynamic process strengthens important links while filtering out
irrelevant ones, thereby reducing structural noise. To handle feature
noise, BREAK employs a semantic feature diversification mecha-
nism in the semantic feature denoising module. A graph encoder
captures broad-range semantics across the entire news article, while
a sequence encoder preserves more accurate sequential semantics.
By aligning these two distinct representations using KL-divergence,
BREAK ensures feature diversification and mitigates the noise from
redundant or irrelevant sentence-level semantics.

Through this combined denoising process, BREAK produces a
comprehensive and refined semantic representation, significantly
enhancing its effectiveness in detecting fake news. The innovation
of BREAK lies in its dual denoising approach, which balances
capturing broad-range semantics with maintaining sentence-order
precision, ultimately leading to more accurate detection. Our contri-
butions in this research are threefold:
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e Broad-Range Semantic Modeling for Fake News Detection. We
propose BREAK, a novel model using a fully connected graph to
capture comprehensive semantics, with dual denoising modules
reducing structural and feature noise for more refined, accurate
semantic representation.

o Dual Denoising Mechanisms. We design two denoising modules:
the semantic structure denoising module, which iteratively refines
graph connectivity between a sequence-based lower bound and
a fully connected upper bound to uncover label-relevant seman-
tics, and the semantic feature denoising module, which reduces
noise from similar semantics by aligning outputs from graph and
sequence encoders using KL-divergence.

o Extensive Experimental Validation. We perform extensive experi-
ments on four distinct datasets, showing that BREAK significantly
outperforms existing methods in fake news detection. The results
show the effectiveness of the bi-level framework in integrating
denoised semantics and improving detection performance.

2 RELATED WORK

Existing fake news detection methods focus on news content or ad-
ditionally incorporating supplementary information (e.g., comments
[24], propagation networks [41] and user interactions [37]). How-
ever, methods leveraging external information often neglect in-depth
exploration of the news content, potentially oversimplifying com-
plex news articles into mere nodes within social networks [31]. This
simplification is particularly problematic during the initial stages of
news dissemination, where the extra data can be both insufficient and
irrelevant [5][30]. Meanwhile, external data like comments may be
susceptible to massive noise [24]. Hence, we focus on a foundational
approach to fake news detection, i.e., exploring news content.

Sequence-based methods mainly treat news text as sequence data,
utilizing sequential models like recurrent neural networks (RNNs) or
pre-trained language models (PLM) to capture news features. [34]
constructs a hierarchical RNN network to capture the incongruent
between the body text and news title. [12] devises a novel prompt
paradigm to fully extract the semantics of news by a PLM. Moreover,
[13] models multi-modal news through a progressive fusion network,
which fuses cross-modal features from various levels. However, these
methods fail to explicitly model the broad-range semantics hidden
in complex news content [33].

Therefore, some graph-based methods depict news content as
a word-level or sentence-level graph, which explicitly represents
semantics between words or sentences by an edge. [33] and [6]
construct a word-level content graph based on a 2- and 3-size sliding
window, respectively, while [32] constructs a multi-hop (3- or 4-
hop depending on the dataset) word-level graph to capture syntax
relations. However, as outlined in Section 1, these graphs constructed
with sliding windows may neglect certain semantics. Hence, several
methods construct a sentence-level graph for news content [28] [10]
[36]. These methods randomly initialize node features and detect
fake news through the interaction patterns between sentences, which
ignore the semantics of news sentences.

In the field of text classification in natural language processing
(NLP), many counterparts represent text as graphs from word or
sentence perspectives. However, they are also suffering from the
two challenges we mentioned before. For instance, sliding window
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Figure 2: Overview of BREAK with Edge Weight Inference Example. The left part illustrates the overall process of BREAK, where
Xseq and Eseq denote the sequence features that used as the lower bound of semantics, R;;; indicates the reference semantics that
integrate structural and sequential semantics. X;,,q. and F,r; separately denote the node features and affinity matrix, and Es;,
represents the structural features of the denoised graph. The right part depicts an example of edge weight inference with three nodes.

graphs [39] or sequence graphs (connected according to the original
order of words or sentences) [2] neglect some broad-range semantics.
Meanwhile, sentence-level graphs [17] or master-node-enhanced
graphs [18] (introduce a master node to connect to every other node)
lead to densely connected and over-smoothing node features [2].

In Summary, BREAK is different from previous works in two
aspects: (1) We represent news content as a more general graph
structure, and any extension of existing works will confront the
challenges we encountered, such as a large-sized sliding window
also introducing vast noise. (2) We devise an effective network to
denoise the irrelevant information and extract key sentences while
only relying on news content.

3 APPROACH

BREAK aims to detect fake news solely based on news content by
capturing broad-range semantics. It involves two modules under
the bi-level optimization paradigm: (1) inner semantic structure de-
noising and (2) outer semantic feature denoising, as illustrated in
Figure 2. Specifically, our fully connected graph naturally captures
full-range semantics by modeling all potential structural information,
while inevitably introducing both structural and feature noise. There-
fore, the inner module utilizes the sequential semantics provided
by the sequence model as a lower bound to help mitigate structural
noise. Subsequently, by aligning the representations of the graph and
sequence encoders in the high-dimensional space, the outer mod-
ule diversifies semantic features and extracts broad-range semantics
based on the denoised graph structure.

3.1 Problem Definition

Without loss of generality, we leverage both textual (T) and visual
(I) news content for fake news detection, as they are commonly
found on social media and are increasingly popular among readers
[13] [5]. The textual content encompasses the news title, body text,
caption, and others, providing a comprehensive representation of
the news textual content. We formally define a piece of fake news

with these elements in two forms: (1) The sequential semantics Eseq
obtained by a sequence encoder and image vectorization tool. (2)
The structural semantics Eg; acquired by a graph encoder. Our final
objective is to train a detector f to classify news as real (y=0) or
fake (y=1) based on Eseq and Esyy, i.€., f(Eseq, Estr) =y €{0, 1}

3.2 The Overview of BREAK

BREAK aims to achieve the following three objectives: (1) uniting
the structural and sequential semantics to facilitate the narrowing of
the lower and upper bounds and obtain a denoised graph structure;
(2) diversifying semantic features to realize feature denoising while
integrating broad-range semantics; and (3) enabling effective fake
news detection.

The structure denoising process depends on the semantic features,
and a well-learned semantic feature is determined by the denoised
graph structure, indicating a close and mutual influence between
them. Therefore, we introduce bi-level optimization to iteratively op-
timize these two denoising processes. For a piece of news, BREAK
first acquires its sequential semantics from the sequence encoder
and then represents the news content as a bidirectional fully con-
nected graph to capture all potential semantics. Accordingly, with
the support of sequential semantics, BREAK learns a denoised graph
structure. In the outer module, a graph encoder is introduced to cap-
ture the denoised semantic interrelations and integrate them with
the sequential semantics as the broad-range semantics. Ultimately,
BREAK detects the authenticity of this news based on these broad-
range semantics.

Formally, we represent BREAK as a detect function f (), where
¢ indicates the parameters in the inner optimization process, and 0
denotes other parameters of BREAK except ¢. The overall frame-
work can be outlined as follows:

0" = argénin Louter(fq&*ﬁ('), Y), (D

st @t = arg(;nin Linner(f3,6(1), Y), 2)
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where 0% and ¢* are the optimal parameters, Y € {0, 1} is the ground-
truth labels of news, and L;nner and Loyzer depict the loss functions
used in the inner and outer levels, respectively.

3.3 Inner Semantic Structure Denoising

In this process, we model news sentences and images as a bidi-
rectional fully connected graph to cover all potential semantics.
Subsequently, by introducing short-rang sequential semantics from
the sequence model as the lower bound, we devise a structural and
sequential semantics integration mechanism to integrate semantics
from both the graph and sequence. These semantics then prompt the
edge weight inference mechanism to denoise the graph structure.

Graph Construction. We split all the news textual (T) and visual
(I) information in a news article into sentences and images, and then
we vectorize them by pre-trained BERT [14] and ResNet50 [8]:

Xr = BERT,(T), Xi = ResNet50(1), 3)

where BERTy and ResNet50 are utilized as learnable vectorization
tools to learn the sentence (X7 € RM*4) and image (X; € RF*9)
node features, respectively. Moreover, M and P separately indicate
the number of sentences and images. Subsequently, we construct a
sentence-level fully connected graph, where each sentence or image
corresponds to a node in the graph. Furthermore, following the
previous works [11] [36], every two nodes in the graph are connected
by a bi-directed edge to reflect the forward and backward context
information, as depicted in Figure 2. Therefore, the graph can be
represented as G = (V, E) with the adjacency matrix A, edge weight
matrix We, and feature matrix X,,,q. = (X71,X1), where both A and
W, are all-one matrix, X,,pg. € R *d N =M+P indicates the node
number of G, and d depicts the hidden dimension of node feature.

Structural and Sequential Semantics Integration. We aim to
alleviate the noise in G, i.e., enhancing the key semantics and weak-
ening others. Specifically, to reduce the computational complexity
and avoid optimizing the graph structure and features simultane-
ously (since it is more difficult than optimizing either aspect alone),
we only modify the graph structure by adjusting the edge weights,
which can also guide the aggregation process of graph features.

A fully connected graph produces massive noise, disrupting the
original order of sentences, and node features are highly similar
(as shown in Figure 1(d)). Due to the aforementioned issues, it is
challenging to adjust edge weights within the graph aggregation
mechanism without manipulating node features. However, the se-
quential features preserve the original sentences’ order and provide
clean (well-learned) sequential semantics, which can be used as a
lower-bound representation of a fully connected graph to prompt the
denoise process.

In particular, we employ another pre-trained BERT to acquire sen-
tence sequential features by Sp = BERTs(T) € RM*4_ Note that we
employ two independent pre-trained BERTsS for different purposes.
BERT is utilized as a node feature generator, where sequential se-
mantics are disrupted by a fully connected structure. In contrast,
BERT preserves the natural order of news sentences during the opti-
mization, which provides cleaner sequential semantics than a fully
connected graph. At last, we concatenate S with Xy to obtain the
sequential content features as Xseq =ST®X].
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RNXd RNXN

Based on Xseq € , we assign an affinity matrix F €
to weigh the affinity between the node and sequential content fea-
tures. Accordingly, node features R € RN xd that integrate the node
and sequential content features (i.e., the reference semantics) can be
calculated as follows:

F = tanh(Xpode WrXseq): )
R =tanh(XpodeWnode + FXsqu’Vseq), %)

where Wg, Wyp4e, and Wseq € R¥*4 are the weight parameters. R is
effective since it considers broader-range semantics from node and
sequential content simultaneously.

Edge Weight Inference. As depicted in the right part of Figure 2,
the edge weight inference process is conducted based on the initially
integrated semantics. Taking the nodes v; and v3 as an example,
we first calculate the affinity between them and their corresponding
sequential content features by Eq. (4): fy,, fs, € F. Subsequently,
their initially integrated node features ry,, ry, € R are acquired by
employing Eq. (5).

In Figure 2(a), v; is the target node that we need to update all
its incoming edge weights, and v3 is the source node that we need
to justify how much information we should aggregate from it to v;.
Specifically, we treat rp, as the golden representation of v; since
it comprehensively integrates broad-range semantics by Eq. (5).
Therefore, to guide the aggregation process in the outer optimization
and make o; closer to ry,, we adjust the incoming edge weights of
o1 according to the cosine similarity between r,, and other nodes
except v1 (i.e., vz and o3 in this toy example).

This stems from the finding that when Cos(v3,ry,) > Cos(v3,01),
i.e., v3 is more similar with r,, than with v, which indicates v3
owns more golden information in ry, . Thus, we leverage Cos(v3, ry,)
to enhance the edge weight of ey, o, € E and thereby aggregating
more information from v3, and finally make v1 closer to ry, in this
indirect way. Similarly, this deduction is applicable to the cases of
Cos(v3, 1y, ) <Cos(v3,v1) and Cos(v3, 1y, ) =Cos(v3, v1). In contrast,
in Figure 2(b), v3 is the target node, v is the source node, and all
the deductions are the same as in Figure 2(a).

To date, by employing the structural and sequential semantic
integration and the edge weight inference for all nodes in the graph,
the inner structure denoising module has obtained the denoised graph.
Meanwhile, the corresponding adjacent matrix and node features of
G are represented as A = W, - A and )A(node = Xy 0de> respectively,
where W, € RN*N indicates the learned edge weights.

3.4 Outer Semantic Feature Denoising

Relying on the denoised graph from the inner optimization process,
we can learn distinguishable node features by integrating the sequen-
tial semantics (Xseq) and the graph representations (enriched with
broad-range semantics). This integration ultimately benefits the edge
weight inferring process since it helps in learning better sequential
semantics and node features.

Semantic Feature Diversification. In detail, we first obtain the
graph representation Eg;, by feeding the denoised graph G into a
graph encoder (which is concretized as a graph convolutional net-
work in this work). Accordingly, a two-layer multi-layer perceptron
(MLP) is utilized to align the dimension of short-range semantics
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Xseq with structural features Es;.
Esir = GCN(G), Eseq = MLPseq (Xseq), (6)

where Eseq denotes the representation of Xseq after dimensionality
reduction. Egtr, Eseq € RN*h and h indicates the dimension of
hidden state. Specially, Eg; is the general representation of the
initially integrated braod range semantics as it aggregates all the
node features.

Consequently, the Es; is denoised and contains richer broad-
range semantics than in Egeq, while the Egeq preserves better short-
range semantics since it is strictly generated according to the sen-
tences’ natural order. Therefore, to assist in diversifying semantic
features and then capturing better broad-range semantics, we bring
Esyr and Egeq closer in the high-dimensional space to achieve align-
ment by employing the KL divergence as the loss function Lgy:

Lk = KL(Estr, Eseq)- )

Fake News Detection. At last, we concatenate Eg and Eseq as
the eventual broad-range semantics to perform fake news detection
by a two-layer MLP (MLPy,..4), and we leverage the binary cross-
entropy function as the classify loss function as follows:

Y= MLPy,eq(Estr @ Eseq), (®)
4
Legs == ) [yilog(g:) + (1= yi)log(1 - 5i)], ©)

i=1
where Y represents the predicted labels of news and §; € Y. Lis
represents the binary cross-entropy function, Z is the number of
news articles, and y; € Y indicates the ground-truth label of the
news Zj.

3.5 Model Training

Inner-Level Training. The final objective of the inner level is
uniting the semantics from both the graph and sequence encoders,
thereby learning a denoised graph structure. We optimize it by max-
imizing the mutual information between the news representation
E = Egtr ® Eseq and the new label Y to extract label-related sen-
tences. Specifically, this mutual information can be described as:

P(E,Y)

I(E;Y) = ; P(E, Y)logP(E>’ T

Since the P(Y|E) = P(E,Y)/P(E) is intractable, inspired by the
previous work [16], we introduce a parameterized variational ap-
proximation Py (Y|E) for P(Y|E). Accordingly, we convert the maxi-
mization problem into a minimization problem with an upper bound
as follows, and the detailed derivation can be found in the Appendix:

¢ = argmin —I(E;Y), 1D
¢

(10)

—I(E;Y) < —E[logPy(Y|E)] - H(Y), (12)

where the ¢* is the optimal parameters of the denoise process. Mean-
while, since H(Y) is the entropy of news labels Y (a constant), we
only optimize —E[logPy(Y|E)] in the inner level training process.
Furthermore, Py (Y|E) is essentially work as a predictor with the
parameter ¢. Specifically, for a piece of news Z;, BREAK obtains
its representation E; € E by Eq. (6) and performs a prediction:
f4,6(Zi) — Yi. Therefore, Py (Y;|E;) is equivalent to the possibility

Anon.

Table 1: The statistics of the datasets.

Dataset GossipCop  PolitiFact Snopes PolitiFact-S
# fake news 2,466 329 3,177 1,701
# real news 9,270 331 1,164 1,867
# images 11,736 298 0 0

of news Z; be predicted as Y; by fg ¢(Z;). Note that 6 is frozen dur-
ing the inner-level training process, and only the change on ¢ leads to
a change on Py (Y;|E;). Ultimately, by expanding —E[logPy (Y|E)],
the loss function of the inner level can be written as a standard cross
entropy loss:

Z
Linner == ) [yilog(@) + (1 = y)log(1 = g)].  (13)
i=1

Outer-Level Training. In the outer-level training step, our final
goal is to diversify semantic features and learn a comprehensive news
representation, which captures the broad-range semantics hidden in
the news content. Therefore, we combine Eq. (7) and Eq. (9) as the
final loss function of the outer level.

Louter = Lcls + ﬂLKLx (14)

where f is a hyperparameter used to decide how close the Eg; and
Eseq should be.

4 EXPERIMENTS

This section evaluates the effectiveness of BREAK on four datasets
and aims to answer the following research questions.

RQ1: How does BREAK compare to baselines in fake news de-
tection? RQ2: How well does BREAK generalize in scenarios when
clear evidence is available? RQ3: Is every component of BREAK
essential for fake news detection? RQ4: How does hyperparameter
p influence BREAK'’s performance? RQ5: Can BREAK effectively
denoise the fully connected graph and capture crucial semantics?

4.1 Datasets

We perform fake news detection on four real-world datasets as fol-
lows to assess the detection performance of BREAK.

Content-Only Datasets. FakeNewsNet [25] comprises two datasets:
GossipCop and PolitiFact. Both datasets are sourced from fact-
checking websites and labeled as either fake or real. Each news
article includes titles and body text, and some also incorporate im-
ages.

Clear Evidence Available Datasets. To assess the generalization
ability of BREAK in the scenario where clear evidence (one type
of external data) is available, we additionally employ two datasets
containing evidence: Snopes [21] and PolitiFact [29] (renamed as
PolitiFact-S for differentiation). Each entry in these datasets consists
of a brief news and its corresponding evidence, and the preprocessed
version from [33] is utilized for a fair comparison. The detailed
statistics of these datasets are in Table 1.

4.2 Baselines

We compare BREAK with eleven representative and recent baselines
as follows:
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Table 2: Performance comparison of different methods on Gos-
sipCop and PolitiFact datasets, with the best performances in
bold and the runners-up underlined. GET is not involved be-
cause it cannot work without evidence.
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Table 3: The generalization performance of BREAK on fake
news datasets with evidence: Snopes and PolitiFact-S. The best
performances are in bold, and the runners-up are underlined.

Dataset Methods Acc. Prec. Rec. F1
Dataset Methods Acc. Prec. Rec. F1 BERT 0.766  0.753 0.766 0.741
BERT 0.831 0.821 0.831 0.792 GET 0.835 0.838 0.835 0.836
GAT+2 Attn Heads 0.846  0.835 0.846 0.840 Snopes ChatGLM2-6B  0.843 0.851 0.843 0.829
SAFE 0.819 0.817 0.819 0.818 LLaMA2-7B  0.836 0.834 0.836 0.827
HMCAN 0.836 0.825 0.836 0.825 BREAK 0.860 0.858 0.860 0.859
CAFE 0.814 0.824 0.814 0.819 Improve(%) 2.017 0.823 2017 2.751
i b o o O 0
CSFND 0.835 0.849 0.835 0.847 . ChatGLM2-6B  0.676  0.675 0.676 0.675
ChatGLM26B _ 0.856 0.847 0.856 0.850 PolitiFact-S = 1 VA2 7B 0710 0711 0710 0.708
LLaMA2-7B 0.866 0.858 0.860 0.860 BREAK 0.709 0.708 0.709 0.708
. BREA@) (l)-gzg g-ggg (])-ggg ?g;; Improve(%)  -0.141 -0422 -0.141 0.000
mprove(% . . . .
BERT 0.791 0.794 0.791 0.790
GAT+2 Attn Heads 0.892 0.893 0.893 0.892 e ChatGLM2-6B [35] and LLaMAZ2-7B [27] are two large
SAFE 0.853 0.814 0.875 0.843 language models (LLMs) with 6B and 7B parameters, respec-
HMCAN 0924 0.927 0924 0.923 tively. We utilize the same training datasets to fine-tune them
CAFE 0.791 0.800 0.791 0.793 (using Lora [9]) as the baselines for comparison.
PolitiFact MRML 0.817°0.838 ~0.8170.821 Where GAT+2 Attn Heads, GET, and ALGM leverage the GNN
ALGM 0.887 0.900 0.887 0.888 . . .
CSFND 0917 0917 0917 0929 model to improve fake news detection. Meanwhile, LL.Ms are the-

ChatGLM2-6B 0.892 0902 0.892 0.892
LLaMA2-7B 0.908 0914 0.908 0.908
BREAK 0.955 0.956 0.955 0.955
Improve(%) 3.355 3.128 3.355 2.799

o BERT [14] is a pre-trained language model, and we fine-tune
its last two layers for fake news detection. In this paper, BERT
is utilized to simulate the performance of fake news detection
when only sequential features are available.

o GAT+2 Attn Heads [28] represents news sentences as a fully
connected graph with randomly initialized node features to
detect fake news.

e SAFE [40] detects fake news by exploring the similarity
between textual and visual information.

e HMCAN [22] devises a hierarchical multi-modal attention
network to learn a multi-modal news representation.

e CAFE [3] aligns cross-modal features and detects fake news
by cross-modal ambiguity.

e GET [33] treats news and evidence as word-level graphs,
respectively. Capturing the long-range semantics to improve
fake news detection.

e MRML [20] extracts multi-modal relationships and detects
multi-modal rumors based on deep metric learning.

o ALGM [5] proposes a framework based on the Markov ran-
dom field and fuses cross-modal features by ambiguity.

o CSFND [19] devises an unsupervised fake news detection
framework to capture the relationships between news seman-
tic feature space and fake news decision space.

oretically suitable for long text modeling since they are trained to
handle long sequences of tokens with billions of parameters. In other
words, LLMs are strong and competitive baselines, but they come
with higher fine-tuning costs and require more advanced fine-tuning
skills compared to traditional methods.

4.3 Implementation Details

We partition each dataset into training, validation, and testing sets in
an 8:1:1 ratio. We fine-tune the last two layers of BERT; and BERTy
and the last fully connected layer of ResNet50. For the GossipCop,
PolitiFact, Snopes, and PolitiFact-S datasets, BREAK is trained
in the batch size of 8, 8, 64, and 64 with a hyperparameter f of
0.1, respectively. The learning rates of inner and outer levels are
set as 0.1 and 0.00001 separately. Moreover, the dimensions of
d and h are set as 768 and 128, respectively. The early-stopping
patience is determined to be 8, and Adam [15] is employed as the
optimizer. For the metrics, we utilize the weighted accuracy (Acc.),
precision (Prec.), recall (Rec.), and F1 score to alleviate the influence
of unbalanced datasets.

4.4 Performance Comparison (RQ1)

To evaluate the performance of BREAK on content-only (early) fake
news detection, we compare it with seven advanced baselines on the
GossipCop and PolitiFact datasets, as shown in Table 2.

BREAK achieves the highest performance across all metrics, lead-
ing to a notable improvement of 3.69% and 3.47% in F1 scores com-
pared to sub-optimal results (excluding LLMs) on the GossipCop
and PolitiFact datasets, respectively. This improvement underscores
the effectiveness of BREAK in fully exploring news content.

Moreover, among all traditional baselines, the “GAT+2 Attn
Heads” method exhibits competitive results on the GossipCop dataset
and the PolitiFact dataset. This finding validates the effectiveness of
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Figure 3: Ablation study on four datasets.

sentence-level graph construction. However, “GAT+2 Attn Heads”
falls short when competing with BREAK and novel content-based
methods like CSFND, as it initializes node features randomly, over-
looking sentence semantics and potential graph noise during the
optimization process.

Meanwhile, transformer-based methods like HMCAN, MRML,
and CSEND focus on short-range semantics while neglecting some
long-range semantics of text. As for CAFE, we observe that it per-
forms significantly worse than other baselines on the PolitiFact
dataset. This phenomenon may caused by CAFE detecting fake news
through cross-modal ambiguity, but images in PolitiFact are insuffi-
cient. Different from CAFE, even though ALGM is also based on
cross-modal ambiguity, it further incorporates Markov random fields
and semi-supervised settings to improve detection performance.

For LLM baselines, LLaMA2-7B exhibits superior detection re-
sults compared to ChatGLM2-6B. We attribute this improvement
to the fact that LLaMA2-7B is trained on a larger English corpus
than ChatGLM2-6B. Even though LLMs show promising detection
performance, they require more fine-tuning costs and are unstable
across various datasets. However, our BREAK outperforms them
to varying degrees, relying only on a much smaller pre-trained lan-
guage model, BERT, and a stable hyperparameter across various
datasets (details about the hyperparameter can be found in Section
4.7).

4.5 Generalization Exploration (RQ2)

In a real application, clear evidence sometimes is available, e.g., the
official announcement about the news event. Therefore, we inves-
tigate the detection performance of BREAK when such evidence
is accessible. Specifically, we conduct experiments on Snopes and
PolitiFact-S datasets, in which the evidence directly pertains to the
news under consideration. The results are outlined in Table 3.

We compare BREAK with BERT and three strong baselines: the
state-of-the-art method on these two datasets (GET) and two LLMs.
The results in Table 3 demonstrate that our BREAK exhibits promi-
nent performance, boosting the F1 score by 2.75% compared to the
runners-up results on Snopes, and drawing near the detection results

Anon.
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Figure 4: Hyperparameters sensitivity with regard to j.

produced by LLaMA2-7B on PolitiFact-S. Particularly, GET outper-
forms some baselines to various degrees in F1 score, benefiting from
the long-range semantics captured by its word-level graph. How-
ever, the word-level graph used in GET overlooks some semantics
we discussed in Section 1, while BREAK models and denoises all
semantics appropriately.

Therefore, the results on four datasets demonstrate BREAK’s
generality and stability.

4.6 Ablation Study (RQ3)

To assess the necessity of each part in BREAK, we compare BREAK
with its four variants: “-w GAT,” “-w/o img,” “-w/o inf,” “-w/o seq,”
and “-w/o gra.” Specifically, “-w GAT” represents the variant that
utilizes graph attention network (GAT) as the denoise module and
graph encoder, “-w/o img” excludes visual content in the GossipCop
and PolitiFact datasets, “-w/o inf”” omits the sequential semantic
integration mechanism and edge weight inference mechanism, “-w/o
seq” disregards the sequence encoder and only employing GCN
for fake news detection (i.e., sequential semantics), and “-w/o gra”
means without the graph structure and only utilizing BERT as the
detection model.

The comparative results are illustrated in Figure 3, highlighting
that the absence of any part of BREAK results in sub-optimal perfor-
mance. In detail, “-w GAT” indicates that the attention mechanism
cannot handle such complex semantic dependencies well. Moreover,
the performances of "-w/o inf" on all datasets are very close those of
"-w/o seq," as "-w/o inf" considers noise semantics during semantic
integration. These experimental phenomena demonstrate the effec-
tiveness of the inner denoising process. Meanwhile, both “-w/o seq”
and “-w/o gra” show sub-optimal results, with “-w/o gra” performing
the worst, indicating that integrating broad-range semantics from the
graph and sequence is necessary, and that structural semantics are
more crucial for comprehensive news representation modeling.

4.7 Sensitivity of Hyperparameter § (RQ4)

In the BREAK model, the hyperparameter  balances the combina-
tion of structural and sequential semantics. We analyze its impact
on fake news detection performance, with results shown in Figure 4.
BREAK consistently achieves optimal results across four datasets
with f = 0.1, demonstrating its necessity and generalizability. Mean-
while, significant improvements are observed in both PolitiFact and
PolitiFact-S datasets, consistently surpassing results with f values
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Figure 5: A case study of structure denoising. (a) represents the
visualization of sentences’ weights. (b) represents the weight of
each edge between sentences. (c) depicts the normalized in- and
out-degrees of each node.

from 0.1 to 0.9 compared to f = 0. However, larger values of
lead to various degrees of performance degradations on all datasets,
which incorporate more noise from the fully connected graph to
short-range semantics and thereby hinder the denoise process.

4.8 Case Study on Structure Denoising and
Feature Diversification (RQS5)

We evaluate the effectiveness of BREAK in structure denoising
and feature diversification through a case study. Specifically, we
visualize a news article to demonstrate its edge weights and the
similarity between sentences (node features), as depicted in Figure 5
and Figure 6.

Structure Denoising. The edge weights learned by BREAK in
two directions are illustrated in Figure 5(b), where rows (columns)
indicate the forward (backward) direction. In BREAK, the noise
semantics are weakened to close to 0, and the key semantics are
enhanced to around 1. Moreover, these edge weights also exhibit
certain interpretability for the detection results. Specifically, we sum
all the out-degrees and in-degrees of a node (sentence) as its weight,
and the normalized results are shown in Figure 5(c). Surprisingly, we
observe that node weights are primarily determined by in-degrees
(backward connections). Additionally, a majority of nodes dissemi-
nate their information to other nodes, exhibiting high out-degrees.
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(a) Original similarity (b) Diversified similarity
Figure 6: A case study of node features diversification. (a) indi-
cates the original similarity of news sentences. (b) denotes the
similarity of news sentences learned by BREAK.

From this observation, we can conclude that sentences with high
in-degrees are likely to be topic sentences, as other sentences re-
volve around these focal points. Meanwhile, as depicted in Figure
5(a), BREAK assigns distinct weights to sentences, revealing key
facts crucial for fake news detection. In detail, sentences with higher
weights convey the facts that the proposal of a children’s health bill
and the resulting modifications in eligibility criteria. Moreover, we
observe that sentences with higher weights predominantly function
as factual statements, resulting in higher in-degrees. Conversely, sen-
tences with lower weights play a supporting role, leading to higher
out-degrees. It’s noteworthy that news articles tend to reiterate facts,
such as “effective immediately” and “change from 185% to 200%”,
contributing to the high similarity among sentences.

Feature Diversification. The cosine similarity between news
sentences pre- and post-training is presented in Figure 6(a) and
Figure 6(b). The initial similarity obtained by the BERT model is
notably high, with values consistently exceeding 0.9. In contrast, the
sentence features learned by our BREAK are more distinct. This
can effectively mitigate the over-smoothing problem during graph
aggregation and aid in identifying key news sentences.

S CONCLUSION

In this paper, we propose BREAK, a network devised to extract and
integrate the broad-range semantics while avoiding noise incorpo-
ration. BREAK models broad-range semantics as a fully connected
graph and implements dual denoising modules under a bi-level op-
timization paradigm to mitigate both structural and feature noise.
These two modules effectively eliminate irrelevant semantic interre-
lations and diversify semantic features, respectively. Specifically, at
the inner level, we introduce a sequence-based structure to obtain
the sequential semantics and the lower bound of structure. Moreover,
a structural and sequential semantic integration mechanism and an
edge weight inference mechanism are devised to achieve structural
denoising by narrowing the structure bounds. At the outer level, we
employ KL-divergence to align the graph and sequence encoders,
thereby diversifying semantic features and integrating broad-range
semantics for fake news detection. Extensive experiments on both
content-only and clear-evidence-accessible scenarios demonstrate
the superiority of BREAK in fake news detection.
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A APPENDIX

Some prefix knowledge involved in Eq. (12) as follows:

Self Information. Given a random variable a € A. Its self infor-
mation can be written as S(a) = —log P(a), where P indicates the
distribution of a.

Entropy. The entropy of a is defined as the expectation of S(a):
H(a) = Eq[S(a)] = - Xgen P(a)log P(a).

KL Divergence. KL divergence measures the discrepancies be-
tween two distributions. Specifically, given random variable a and its
two distributions (true and predicted) P(a) and Q(a), the KL diver-

gence can be written as KL(P(a), Q(a)) = Yqec.q P(a) Q(‘az)) , which
can be utilized to measure how the predicted distribution Q(a) close
to the true distribution P(a).

Mutual Information. The mutual information I(a; b) quantifies
the reduction in uncertainty about variable a when the value of
another variable b is known, i.e., assesses the degree of dependence

or correlation between a and b. Formally, the mutual information

can be described as I(a; b) = X qc.a 2pe s P(a, b) log P]fsfplj()b)

The inner structure denoising process aims to extract key sen-
tences or images for effective fake news detection. Utilizing known
news labels in the training set, we seek to maximize the mutual infor-
mation between news representations and labels. This maximization
assists the denoising process in excavating the most label-related
information and eliminating non-relevant noise.

By the definition of mutual information, we can formally write
this optimization objective as Eq.(10). Following the previous work
[16], we give the detailed derivation of transforming Eq. (10) into
Eq. (12). BREAK detects fake news by the representation of news

E, ie., P(Y|E) = Pﬂig)
ground-truth label to model the relationship between E and Y. There-
fore, we introduce a variational approximation P (Y|E) for P(Y|E).

Accordingly, we acquire the lower bound of Eq. (10) as follows:

However, P(Y|E) is intractable since no

I(E;Y) = ZP(E Y)log Plég? (15)

=Epy [ Péé'{?] (16)
Py (Y[E)

=Ery [l °9 —pry | * By [KLEIELPs(YIED]  (7)
Py(Y|E

> Epy [log ‘;(Y) )} (18)

=Egy [log Pg(Y|E)| - Egy [log P(Y)] (19)

=Egy [log Pg(Y|E)| + H(Y), (20)

where the KL divergence in step (17) is utilized to measure the
difference between the true distribution P(Y|E) and the variational
approximation Py (Y|E). Ultimately, we acquire Eq. (12) by inverse
the lower bound as —I(E;Y) < —-Egy [log P¢(Y|E)] —H(Y).
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