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Abstract— In this article, we present an analysis of model
compression in depth completion neural networks for forestry
robotics, considering the increasing demands of real time
autonomous solutions. Specifically, we implement a single state
simulated annealing meta-heuristic for model pruning in the
ENet and MSG-CHN neural networks for depth completion.
We run experiments in three different datasets and analyze how
different levels of pruning affect the accuracy and speed of the
models. Experimental tests show that increasing sparsity has
different effects depending on the neural network and dataset.
ENet has negligible difference in accuracy and it would greatly
benefit from lowering the amount of FLOPs, while MSG-CHN
displays an inconsistent behavior depending on the dataset. This
suggests that while both models benefit from model compression
techniques, the optimal sparsity level depends on environment,
dataset and neural network.

I. INTRODUCTION

Despite the advances in robotics and computer vision,
there are still no fully autonomous robots in forestry en-
vironments. While artificial perception has been studied
extensively in natural environments (e.g., [1], [2], [3]), a
vast number of issues that demand robust solutions have
not been developed thus far such as perceiving the full
environment, for example. Depth completion has received
significant recognition, specifically for fusing Light Detec-
tion And Ranging (LiDAR) and camera sensors (Figure 1).
Knowing the surrounding depth is crucial for an unmanned
ground vehicle (UGV) to perceive and move into the world.
A popular example of a widely used dataset for benchmark
regarding depth extrapolation for 3D LiDARs and red, green
and blue channels (RGB) cameras has been created by the
Karlsruhe Institute of Technology (KIT), called KITTI [4].

Even though simple computer vision techniques and depth
only neural networks achieve sufficient results, newer tech-
niques, such as [5], [6], and [7], project significantly better
outcomes by using multimodal Convolutional Neural Net-
works (CNNs) of a depth map and RGB images to identify
the missing points as in Figure 2.
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Fig. 1. Depth completion process using a sparse depth map and an optional
RGB image.

Depth completion multi-modal neural networks (NNs) in
particular achieve promising results by utilizing the sparse
depth image and the equivalent RGB frame to extrapolate the
remaining pixels according to objects and their boundaries
[6]. However, it is a computationally costly process that
requires lighter options to guarantee real-time performance
[8]. Therefore, optimization techniques, such as model com-
pression, are essential for real time operations.

With the increasing number of studies involving meta-
heuristics over the last decade, they are a promising choice
for NN optimization, a topic which has been receiving sig-
nificant attention nowadays [9]. Meta-heuristics provide ade-
quate solutions to general combinatorial problems that do not
have algorithms with guaranteed performance, such as multi-
level graph partitioning [10]. They have been recently used
for automating NN design in neural architecture search [11];
knowledge distillation [12] and model pruning [13].

As seen in Figure 3, model pruning is a technique that
analyzes which parameters could be removed from the NN,
while maintaining a balance between speed and accuracy.
Works such as [14], [15] and [16] use learn based methods
to achieve high model compression by reducing the number
of weights or parameters. Consequently, lowering the number
of parameters is expected to reduce floating point operations
(FLOPs), a common measure of GPU performance [14]. In
the realm of CNN model compression, this would lower
inference time and contribute to the real time application
of depth completion CNN-based methods.

This work presents a proof-of-concept study to showcase
the performance of a simulated annealing optimization tech-
nique for model pruning in depth completion CNNs. Our
goal is to assess its impact on depth completion performance
using two different CNNs and three distinct datasets.



Fig. 2. Example of depth completion image from UASOL [17] dataset.

II. PROPOSED APPROACH

The neural networks used in this work were selected based
on their performance in the KITTI depth completion bench-
mark, widely used for outdoor urban environments [4]. While
not ideal, this is the closest ranked dataset that can be adapted
to a forestry environment due to its popularity, number of
publications and models based on it, and the sensors are the
most similar to our projects’ needs. After analyzing which
NNs would best fit our case study, ENet [8] and multi-scale
guided cascade hourglass network (MSG-CHN) [5] were
selected as each provides a needed characteristic according
to our design requirements.

ENet, as seen in Figure 4, is a robust and highly layered
CNN. It uses RGB and depth images as input to output an
extrapolated depth map in a color-dominant branch before in-
putting the same sparse depth and this new map into a depth-
dominant branch to output a more comprehensive solution.
Due to the nature of this model, it has over 120 convolutional
layers and it is one of the best performing model with
code available at the benchmark, with an RMSE value of
741.3 mm. However, it has a high inference time because of
the number of FLOPs, 350 GFLOPs, that affects real time
operations. For reference, the popular model Resnet-50 [19]
uses 7 GFLOPs.

In contrast, MSG-CHN (see Figure 5) is a lightweight
model with 45 convolutional layers in total. It uses multiple
depth and RGB image sizes in three different encoders and
decoders to achieve its final output, as shown in Figure 6.
Although it is not as accurate as ENet, with current bench-
mark Root Mean Square Error (RMSE) of 762.2 mm, its
number of FLOPs is 31 GFLOPs, an eleventh of ENet’s.

We chose to test the performance on three datasets, UA-
SOL garden [17], KITTI [4] and SynPhoRest [20], based on
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pruning approach is introduced in Section 3.2. The compression method is also discussed
in Section 3.3.

3.1. Block-Based Division Structure

For fully connected networks, the a × b weight matrix of each layer is divided into
many n × n square sub-blocks without overlap, where n is the division granularity. In
other words, the granularity is length of the side of the sub-block.

The upper-left vertex coordinates of each sub-block are (k× n , i× n), where k, i = 0,
1, 2· · · and k × n < a, i × n < b. The lower-right vertex coordinates of each sub-block are
(min((k + 1)× n , a) , min((i + 1)× n , b)), where k, i = 0, 1, 2· · · . Under this partition,

0

0

W13

W14

0

0

W23

W24

W31

W32

0

0

W41

W42

0

0

0

0

W53

W54

0

0

W63

W64

n=2

n=2

a

b

21 3 4 5 6

21 3 4

21 3 4 5 6

21 3 4

before block pruning after block pruning

Figure 1. Weight matrix example (top) of 2 × 2 block pruning. Corresponding neurons and con-
nections structure example (bottom). The retained weights in the weight matrix are distributed
in blocks.

Our weight-pruning criterion for sub-blocks is designed on the basis of the low-
magnitude weight removal strategy in [6]. In our method, scores of sub-blocks are calcu-
lated based on the average of absolute values of weights in sub-blocks. Whether sub-blocks
in the weight matrix are pruned or not depends on their scores. The connections in
sub-blocks with lower scores are removed from the network. The formulas are as follows:

Si =
∑
∣∣wgi

∣∣
|gi|

(1)

Ri =
Si

max(S)
(2)

Fig. 3. Model pruning concept in convolutional neural networks. Note that
the 0s in the matrix are tentative parameters for removal. Adapted from [18].

the quality, diversity and number of images they contain.
UASOL is a high-resolution dataset recorded in the Uni-

versity of Alicante. It includes both RGB and full depth map
of the outdoor environment in the camera frame, which has a
great amount of vegetation while also including some urban
elements such as surrounding buildings. Since it includes
forestry elements and high quality images, this dataset is
ideal to analyze model compression behavior.

SynPhoRest is a synthetic dataset with 480p RGB and
fully complete depth map of a dense Portuguese forest
simulation. It comprises all the forestry elements expected
to truly autonomously navigate a UGV. Moreover, it allows
for a comparison test between real versus synthetic images
and how these neural networks generalize them. Therefore, a
dataset comprising both forestry environment and complete
synthetic images provides great insight on model pruning
effectiveness.

Lastly, KITTI is an autonomous car dataset from an urban
environment. It consists of RGB and LiDAR depth map
images from an automotive perspective. Although it does
not encompass many forestry characteristics, it is an adequate
basis of comparison considering that both NNs were modeled
to achieve best results in its surroundings.

Overall, each dataset has distinct features that affect dif-
ferent parameters in a model. Thus, they allow for a robust
and comprehensive analysis of model compression in depth
completion neural networks.

The model pruning approach used in the analysis is
performed by the Simulated Annealing (SA) meta-heuristic.
SA is a technique inspired on the tempering process which
slowly cools the metal until it reaches a final stable tempera-
ture. The use of SA in neural networks is enhanced to allow
for different sparsity when compressing the model.
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Fig. 1: An overview of the proposed framework. It consists of a two-branch backbone and a depth refinement module.
The branches predict two dense depth maps, denoted as CD-Depth and DD-Depth respectively, from color-dominant and
depth-dominant information. CD-Depth and DD-Depth are adaptively fused and further refined by a dilated and accelerated
(DA) CSPN++. Here (1)-(5) denotes multi-scale CD-features which are then concatenated with DD-features.

dense depth prediction via exploiting color- and depth-
dominant information, respectively, from two branches.
This backbone is able to exploit and fuse color and
depth modalities thoroughly.

• We propose a geometric convolutional layer to sim-
ply encode 3D geometric cues. The geometric en-
coded backbone outperforms most top ranked and peer-
reviewed methods.

• We design an implementation way to accelerate the
depth refinement technique CSPN++, making it much
more efficient.

• The proposed full model ranks 1st in the KITTI depth
completion online leaderboard1 at the time of submis-
sion. Moreover, it infers much more efficiently than
most of the top ranked methods.

II. RELATED WORK

A. Depth Completion

Depth completion aims to produce a dense depth map by
completing a sparse depth map, without [8], [9] or with the
guidance of a reference image [10], [2], [11], [5]. The latter
takes advantage of structure information from the guidance
image to boost performance and therefore attracts more
research interests. The image guided depth completion task
has specific challenges, including 1) the input depth map is
irregularly sparse and noisy; 2) the color image and the depth
map are two different modalities. To address these issues,
different sparse invariant convolutions [8], [2], [12], [13],
uncertainty exploration [9], [4] and multi-modality fusion
strategies [3] have been developed. Besides, various recent
methods also exploit multi-scale features [14], [13], [15],
[16], surface normal [5], [17], semantic information [1], [18],
or context affinity [11], [7], [19] to improve performance

1http://www.cvlibs.net/datasets/kitti/eval depth.php?benchmark
=depth completion

further. Among these methods, we take a two-branch archi-
tecture similar to [5], [4] as our backbone. But we construct
our branches for different purposes and our network is more
effective.

B. Geometric Encoding

As pointed out in [20], 3D geometric clues are important
for depth completion. So far various strategies have been
developed to encode geometric cues. For instance, Uber-
ATG [20] applies continuous convolution on 3D points,
ACMNet [21] exploits the graph propagation, DeepLi-
DAR [5] and PwP [17] use surface normal to introduce
geometric constraints. These methods are either complicated
in computation or need extra data for learning. In this work,
we propose a geometric convolutional layer to encode 3D
geometric cues simply. Our method is inspired by Coord-
Conv [22], which encodes 2D position information by simply
augmenting an input of a convolution with extra coordinate
channels. CoordConv [22] has demonstrated its effectiveness
in position-sensitive applications such as object segmenta-
tion [23] and semantic segmentation [24]. Our experiments
show that the proposed geometric convolutional layer can
considerably improve the depth completion performance but
CoordConv [22] is not helpful.

C. Spatial Propagation Networks

The spatial propagation network (SPN) is proposed by Liu
et al. [25] to learn local affinities that can be exploited in
various high-level vision tasks. However, it propagates in
a column-wise and row-wise manner, which is inefficient.
Cheng et al. [11] thereby propose a convolutional spatial
propagation network (CSPN) for efficiency and meanwhile
apply it to refine depth completion results. These two meth-
ods perform propagation within a fixed local neighborhood.
To dynamically learn the convolutional kernels, CSPN++ [7]
and NLSPN [19] are proposed very recently. The former
adaptively learns the convolutional kernel size and iteration

Fig. 4. ENet’s two sets of decoder and encoders with 120 convolutional layers in total. Reproduced from [8].

The general structure of SA consists of starting the op-
timization process with a solution, which can be randomly
generated, with an initial value for the temperature control
parameter. In each iteration, a new solution within a neigh-
borhood of the current one competes with the latter. If the
new solution is better than the current one, the algorithm
replaces the current one with the new one. Otherwise, if
the new solution is worse, it can still replace it according
to a probability acceptance function, which depends on the
temperature and the difference of the evaluation function
value for the two competing solutions, in an attempt to
avoid the search process to be trapped in local optima.
As the temperature decreases until a pre-determined final
temperature value, it becomes more difficult that a new
solution which is worse than the current one replaces the
latter.

The SA version in Algorithm 1, adopts guided search
based on prior experience, which removes more weights
from layers with the most parameters as it affects the
overall accuracy the least [21]. Alg. 1 searches for action by
checking if the change of weight pruning rates in the layers,
which defines the neighborhood, is accepted according to
the SA scheme. The evaluation function is the RMSE. If the
new weight values lead to better results, the new model is ac-
cepted and the temperature is lowered. Otherwise the change
is accepted according to the probability acceptance function.
When the final temperature is reached, the algorithm returns
the best model pruned as the final solution.

The initial values for minimum, maximum temperature
and cool down rate shown in Algorithm 1 ensure an appropri-
ate compromise between number of iterations and results, as
a higher number of cycles did not lead to any improvement
in results. Ct represents the sparsity level that we intend
to achieve in each training. In this experiment, it was set
between 10% and 75%.

To ensure consistency and fair analysis of the results, two
evaluation metrics were considered: floating points opera-
tions (FLOPs) and root mean squared error (RMSE). FLOPs

Algorithm 1 Simulated Annealing Pruning Algorithm where
modelinitial is the original CNN model, Ct is overall pruning
rate based on weight number, perturbation is the change of
weight pruning rates, Tmax = 100°C, Tmin = 20°C, and
η = 0.9.

1: INIT (modelinitial, Tmax, Tmin, Ct, η)
2: modelbest ← modelinicial
3: RMSEbest ← EV ALUATION(modelbest)
4: T ← Tmax

5: while T > Tmin do
6: Generate new model(modelnext) based on
7: perturbation values.
8: RMSEnext ← EV ALUATION(modelnext)
9: if RMSEnext > RMSEbest then

10: Modelbest ←Modelnext
11: else
12: ∆RMSE ← RMSEbest −RMSEnext

13: if exp(∆RMSE
T ) > random[0, 1) then

14: Modelbest ←Modelnext
15: end if
16: end if
17: T ← η ∗ T
18: Modelfinal ←Modelbest

is a GPU performance metric which is ideal due to different
graphics card available in the UGV and the laboratory.
Therefore, it allows for easily replicability with different
computer specifications. RMSE is a metric that analyzes the
similarity between the ground truth and the prediction, the
benchmark basis for depth completion defined in Equation 1.
In our case, we compare the sparsity value for each increment
with the original model values for RMSE, named ∆RMSE.

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2

(1)

For this experiment, both neural networks were tested
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Fig. 6. MSG-CHN technique applied on a forestry synthetic dataset.

and analyzed in three different datasets, UASOL, KITTI
and SynPhoRest, and evaluated with FLOPs and RMSE
metrics at 5% sparsity increments with a sparsity range of
10% and 75%. Moreover, ENet and MSG-CHN were trained
with the same hyperparameters and number of epochs to
guarantee reliability and experiment reproducibility for each
compression step.

III. RESULTS & DISCUSSION

Table I shows the FLOPs and RMSE changes from
baseline values for each sparsity increment resulting from
the ENet model pruning process. Figure 7 shows a visual
representation of RMSE with respect to sparsity for each
dataset. The RMSE values were an unexpected result from
our preliminary assumption, which considered that lowering
the parameters model would decrease the accuracy. All three
datasets had only a marginal increase in error at the highest
sparsity, 0.75, with the highest value of 0.4% at KITTI.

At 0.1 sparsity the behavior was inconsistent – UASOL

and KITTI improved results while SynPhoRest worsen them
significantly, increasing RMSE by 225.4%. This could indi-
cate that at 10% compression, the resulting perturbation is
highly unstable and the removed parameters affect prediction
in unforeseeable ways.

Under those circumstances and taking into consideration
our design requirements, the ENet model highly benefits of
trimming redundant or unnecessary parameters and it can
lower FLOPs by half and still maintain the same accuracy
quality.

Table II and Figure 8 show the MSG-CHN model exhibits
a behavior substantially different from the ENet model. Each
dataset has a highly different performance when increasing
sparsity. UASOL achieves the first and second best RMSE
results at 0.75 and 0.7, respectively, while reducing FLOPs
by 85%. The model pruning in the KITTI lowers the error by
64.9% at 0.1 sparsity and 4.8% at 0.65 sparsity. On the other
hand, SynPhoRest increases the error with higher sparsity,
with 46.6% increase at 75%, almost 5 times higher than at
65%. This difference between datasets shows that a lighter
model such as MSG-CHN is already more optimized than
ENet and the stochastic choice of parameter removal creates
an random behavior in the model accuracy.

Nevertheless, given that at 0.6 sparsity there is a small
increase of 4.5% of error in the SynPhoRest dataset while
lowering both UASOL and KITTI by -8.2% and -4.5%
respectively, it is possible to optimize the MSG-CHN with
a 71% FLOPs reduction, to 9.43 GFLOPs and still achieve
positive outcome.

Both neural network models greatly benefited from prun-
ing and man-made design appears to be resource wasteful
even when achieving the best results in the KITTI bench-
mark.

IV. CONCLUSION

Overall, techniques for model pruning were effective in
optimizing inference for real time applications. SA Model
compression has shown to improve the model efficiency
without increasing the error significantly in both neural
networks.

ENet had many redundant parameters that can easily
be removed with model pruning without any considerable
increase in RMSE. Although MSG-CHN is a smaller model



TABLE I
SIMULATED ANNEALING RESULTS ON ENET IN THE THREE DATASETS, UASOL, SYNPHOREST AND KITTI FOR 15 SPARSITY INCREMENTS.

UASOL SynPhoRest KITTI

Sparsity ∆FLOPs ∆RMSE ∆FLOPs ∆RMSE ∆FLOPs ∆RMSE

0.1 -5.1% -14.3% -5.5% +225.4% -6.0% -56.4%
0.15 -9.8% +0.0% -8.4% +0.0% -9.1% +0.0%
0.2 -9.8% +0.0% -12.1% +0.0% -11.7% +0.0%
0.25 -15.4% +0.0% -16.0% +0.0% -13.9% +0.0%
0.3 -20.2% +0.0% -17.7% +0.0% -17.7% +0.0%
0.35 -21.6% +0.0% -22.1% +0.0% -20.5% +0.0%
0.4 -25.8% +0.0% -23.6% +0.0% -26.1% +0.1%
0.45 -28.6% +0.0% -30.0% +0.1% -26.7% +0.1%
0.5 -31.1% +0.0% -31.0% +0.1% -30.2% +0.1%
0.55 -37.3% +0.0% -35.3% +0.1% -34.1% +0.1%
0.6 -36.2% -17.7% -39.7% +0.2% -39.1% +0.2%
0.65 -42.9% +0.0% -40.2% +0.2% -41.0% +0.3%
0.7 -42.4% +0.0% -48.4% +0.6% -43.7% +0.5%
0.75 -48.3% +0.0% -48.2% +0.3% -46.6% +0.4%
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Fig. 7. ENet model compression graph which shows ∆RMSE, difference between current sparsity RMSE and baseline value, on 3 different datasets.

and it had inconsistent performance between datasets while
compressing, it is still possible to increase sparsity by 0.6
which lowers FLOPs by 71% with almost no effect in
accuracy.

In future work, we will compare the simulated annealing
model pruning with other popular compression methods and
introduce data augmentation and optimization, such as fine-
tuning, to assess whether it is possible to improve even
further the resulting compressed models.
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