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ABSTRACT

Federated Learning (FL), which is a decentralized machine learning (ML) approach,
often incorporates differential privacy (DP) to enhance data privacy guarantees.
However, differentially private federated learning (DPFL) introduces performance
disparities across clients, particularly affecting minority groups. Some recent
works have attempted to address large data heterogeneity in vanilla FL settings
through clustering clients, but these methods remain sensitive and prone to errors
further exacerbated by the DP noise, making them inappropriate for DPFL settings.
We propose an algorithm for differentially private clustered FL, which is robust
to the DP noise in the system and identifies clients’ clusters correctly. To this
end, we propose to cluster clients based on both their model updates and training
loss values. Furthermore, when clustering clients’ model updates, our proposed
approach addresses the server’s uncertainties by employing large batch sizes as
well as Gaussian Mixture Models (GMM) to reduce the impact of DP and stochastic
noise and avoid potential clustering errors. This idea is efficient especially in
privacy-sensitive scenarios with more DP noise. We provide theoretical analysis
justifying our approach, and evaluate it extensively across diverse data distributions
and privacy budgets. Our experimental results show its effectiveness in addressing
large data heterogeneity in DPFL systems with a small computational cost.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) is a collaborative ML paradigm, which allows
multiple clients to train a shared global model without sharing their data. However, in order for
FL algorithms to ensure rigorous privacy guarantees against data privacy attacks (Hitaj et al., 2017;
Rigaki & García, 2020; Wang et al., 2019; Zhu et al., 2019; Geiping et al., 2020), they are reinforced
with DP (Dwork et al., 2006b;a; Dwork, 2011; Dwork & Roth, 2014). This is done in the presence
of a trusted server (McMahan et al., 2018; Geyer et al., 2017) and in its absence (Zhao et al., 2020;
Duchi et al., 2013; 2018). In the latter case and for record-level DP, each client adds noise to its
stochastic gradients locally and shares its noisy model update with the server at the end of each round.

A key challenge in FL settings is ensuring a similar performance across clients under heterogeneous
data distributions, where several existing works focus on accuracy parity across clients with a single
common model (Mohri et al., 2019; Michieli & Ozay, 2021). However, a single global model often
fails to adapt to the data heterogeneity across clients (Chu et al., 2023), especially with extreme
covariate and label shifts. To address this, multiple methods were proposed to achieve performance
parity in non-DP FL settings: agnostic federated learning (Mohri et al., 2019), client reweighting (Li
et al., 2020b;a; Zhang et al., 2023), multi-task learning (Smith et al., 2017; Li et al., 2021; Marfoq
et al., 2021; Wu et al., 2023), transfer learning (Li & Wang, 2019; Liu et al., 2020) and clustered
FL (Ghosh et al., 2020; Mansour et al., 2020; Ruan & Joe-Wong, 2021; Sattler et al., 2019; Werner
et al., 2023; Briggs et al., 2020), where the latter is the focus of this work. On the other hand, when
augmenting FL with DP for getting rigorous privacy guarantees, DP can have disparate impacts
on the accuracy of different subgroups of clients - even with small imbalances and loose privacy
guarantees (Farrand et al., 2020; Fioretto et al., 2022; Bagdasaryan & Shmatikov, 2019). In fact,
groups with minority data experience a larger drop in model utility (larger privacy cost). Being due to
the inequitable gradient clipping in DPSGD (Abadi et al., 2016; Bagdasaryan & Shmatikov, 2019; Xu
et al., 2021; Esipova et al., 2022), this behavior has become increasingly important to be addressed.
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As mentioned, clustered FL was proposed as an efficient personalization technique in vanilla FL for
performance parity under extreme data heterogeneity across clusters of clients: subsets of clients
are grouped together by the server based on their loss values (Ghosh et al., 2020; Mansour et al.,
2020; Ruan & Joe-Wong, 2021; Chu et al., 2023; Liu et al., 2022) or their gradients (model updates)
(Sattler et al., 2019; Werner et al., 2023; Briggs et al., 2020). As discussed in (Werner et al., 2023)
in details, the aforementioned two categories of clustered FL approaches are vulnerable to errors in
clustering due to their sensitivity to: 1. model initialization 2. randomness in clients’ model updates
due to stochastic noise. DP noise exacerbates this vulnerability, especially in the first few rounds of
FL training. To address this, we propose a clustered DPFL algorithm which uses both clients’ model
updates and losses values to cluster them, making it more robust to DP/stochastic noise.

A correct clustering of clients results in equity of privacy cost between the client groups (Esipova
et al., 2022; Tran et al., 2020). Justified by our theoretical analysis, our proposed algorithm uses
a full batch size in the first round to reduce the noise in clients’ model updates at the end of this
round. Then, the server soft clusters clients based on these less noisy model updates using a Gaussian
Mixture Model (GMM). Depending on the “confidence" of the learned GMM, the server keeps using it
to soft cluster clients during the next few rounds. Finally, the server switches the clustering strategy
to local clustering of clients based on their loss values in the remaining rounds. These altogether
make our method effective and robust. The highlights of our contributions are as follows:

• We propose a DP clustered FL algorithm, which combines information from both clients’
model updates and their loss values. The algorithm is robust and achieves high-quality
clustering of clients, even in the presence of DP noise in the system.

• We theoretically prove that increasing clients’ batch sizes, particularly in the initial commu-
nication round, consistently improves the server’s ability to cluster clients based on their
model updates at the end of the first round.

• We theoretically prove that using sufficiently large client batch sizes in the first round,
enables super-linear convergence rate for learning a GMM on clients’ model updates, which
leads to fast and accurate clustering of clients with low computational overhead.

• Extensive evaluation across diverse and heterogeneous datasets and scenarios demonstrates
the effectiveness of our robust clustered DPFL (RC-DPFL) algorithm in detecting the
clustering structure of clients, which leads to a utility improvement for minority clusters.

2 RELATED WORK

Performance parity in FL: Performance parity of the final trained model across clients is an
important goal in FL. Addressing this goal, Mohri et al. (2019) proposed Agnostic FL (AFL) by
using a min-max optimization approach. TERM (Li et al., 2020a) used tilted losses to up-weight
clients with large losses. Finally, Li et al. (2020b) and Zhang et al. (2023) proposed q-FFL and
PropFair, inspired by α-fairness (Lan et al., 2010) and proportional fairness (Bertsimas et al., 2011),
respectively. Generating one common model for all clients, these techniques do not perform well
when the data distribution across clients is highly heterogeneous, leading to low overall performance
in the system. This leads us to use stronger personalization techniques, e.g., client clustering.

Clustered FL: Clustered FL has been originally proposed for personalization in vanilla non-DP FL
with highly heterogeneous data, where clients can be naturally partitioned into clusters. Existing
clustered FL algorithms cluster clients based on their loss values (Mansour et al., 2020; Ghosh et al.,
2020; Ruan & Joe-Wong, 2021) or their model updates (based on e.g., their euclidean distance
(Werner et al., 2023; Briggs et al., 2020) or cosine similarity (Sattler et al., 2019)). As studied in
(Werner et al., 2023), the algorithms are prone to clustering errors in the early rounds of FL training
(due to gradient stochasticity, model initialization or the form of loss functions far from their optima),
which can even propagate in the subsequent rounds. This vulnerability is exacerbated in DPFL
systems, due to the extra DP noise. Without addressing this vulnerability, Luo et al. (2024) proposed
a clustered DPFL algorithm with a limited applicability, which clusters clients based on the labels
that they do not have in their local data, and is inapplicable when clients have all possible labels.

Differential privacy, group fairness and performance parity: Gradient clipping and random
noise addition used in DPSGD disproportionately affect underrepresented groups. Some works tried
to address the tension between group fairness and DP in centralized settings (Tran et al., 2020)
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(by using Lagrangian duality) and FL settings (Pentyala et al., 2022) (by using Secure Multiparty
Computation (MPC)). Another work tried to remove the disparate impact of DP on model performance
of minority groups in centralized settings (Esipova et al., 2022), by preventing gradient misalignment
across different groups of data. Unlike the previous works on group fairness, this work adopts
cross-model fairness, where the performance cost of adding privacy to a non-private model must
be fairly distributed between different groups. We adopt the same notion - which is also used in
(Chu et al., 2023). Considering a highly heterogeneous data split, the mentioned approaches are
not appropriate due to generating one single model for all groups. In contrast, we propose a robust
“clustered" DPFL algorithm, which identifies different groups of clients and learns a model for each.

3 DEFINITIONS, NOTATIONS AND ASSUMPTIONS

There are multiple definitions of DP. We adopt the following definition in this work:
Definition 3.1 ((ϵ, δ)-DP (Dwork et al., 2006a)). A randomized mechanismM : D → R with domain
D and range R satisfies (ϵ, δ)-DP if for any two adjacent inputs d, d′ ∈ D, which differ only by a
single record (by removal), and for any measurable subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ.

Gaussian mechanism randomizes the output of a query f as M(d) ≜ f(d) + N (0, σ2). The
randomized output of the Gaussian mechanism satisfies (ϵ, δ)-DP for a continuum of pairs (ϵ, δ): it is

(ϵ, δ)-DP for all ϵ < 1 and σ >
√

2 ln(1.25/δ)

ϵ ∆2f , where ∆2f ≜ maxd,d′ ∥ f(d)− f(d′) ∥2 is the
l2-sensitivity of the query f with respect to its input dataset. Also, the ϵ and δ privacy parameters
resulting from running Gaussian mechanism depend on the quantity z = σ

∆2f
(called “noise scale").

We consider a DPFL system (see Figure 1, left), where there are n clients with the same desired
privacy parameters (ϵ, δ), and each runs DPSGD. In the context of Definition 3.1, we consider record-
level (ϵ, δ)-DP for every client i: the set of model updates sent by client i to the server satisfies
(ϵ, δ)-DP (Definition 3.1) for all adjacent datasets Di and D′

i differing in one record (by removal).

Let x ∈ X ⊆ Rd and y ∈ Y = {1, . . . , C} denote an input data point and its target label. Client i
holds dataset Di with Ni samples from distribution Pi(x, y) = Pi(y|x)Pi(x). Let h : X × θ → RC

be the predictor function, which is parameterized by θ ∈ Rp. Also, let ℓ : RC × Y → R+

be the loss function used (cross-entropy loss). Client i in the system has empirical train loss
fi(θ) =

1
Ni

∑
(x,y)∈Di

[ℓ(h(x,θ), y)], with minimum value f∗i . There are E communication rounds
indexed by e. During each round e, client i runs K local epochs with learning rate ηl. There are M
clusters of clients indexed by m, and the server holds M cluster models {θe

m}Mm=1 for them at the
beginning of round e. Clients i and j belonging to the same cluster have the same data distributions,
while there is high data heterogeneity across clusters. s(i) denotes the true cluster of client i and
Re(i) denotes the cluster assigned to it at the beginning of round e. Let’s assume the batch size that
client i uses in the first round e = 1 is b1i , which may be different from the batch size b>1

i that it uses
in the rest of the rounds e > 1. At the t-th gradient update during the round e, and given a current
model θ, client i uses batch Be,ti with size bei , and computes the following DP noisy batch gradient:

g̃e,ti (θ) =
1

bei

[( ∑
j∈Be,t

i

ḡij(θ)
)
+N (0, σ2

i,DPIp)
]
, (1)

where ḡij(θ) = clip(∇ℓ(h(xij ,θ), yij), c), and c is a clipping threshold: for a given vector v,
clip(v, c) = min{∥v∥, c} · v

∥v∥ . Also, N is the Gaussian noise distribution with variance σ2
i,DP,

where σi,DP = c · zi(ϵ, δ, b1i , b>1
i , Ni,K,E). zi is the noise scale needed for achieving (ϵ, δ)−DP by

client i, which can be determined with a privacy accountant, e.g., the Renyi-DP accountant (Mironov
et al., 2019) used in this work, which is capable of accounting composition of heterogeneous DP
mechanisms (Mironov, 2017). The privacy parameter δ is fixed to 10−4 in this work. For an arbitrary
random v = (v1, . . . , vp)

⊤ ∈ Rp×1, we define Var(v) :=
∑p

j=1 E[(vj − E[vj ])2], i.e., variance of
v is the sum of the variances of its elements. Table 1 in the appendix summarizes the used notations.
Finally, we have the following assumption:
Assumption 3.2. The stochastic gradient ge,ti (θ) = 1

bei

∑
j∈Be,t

i
gij(θ) is an unbiased estimate of

∇fi(θ) with a bounded variance: ∀θ ∈ Rp : Var(ge,ti (θ)) ≤ σ2
i,g(b

e
i ). The tight bound σ2

i,g(b
e
i ) is a

constant depending only on the used batch size bei : the larger the batch size bei , the smaller σ2
i,g(b

e
i ).
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Figure 1: Left: Considered threat model in this work, where client i has local train data Di and DP
privacy parameters (ϵ, δ), and does not trust any external parties, including the server. Right: Three
main stages of the proposed RC-DPFL algorithm, with the key components being highlighted.

4 MOTIVATION, METHODOLOGY AND PROPOSED ALGORITHM

We start with the shortcomings of the existing non-DP clustered FL algorithms. As discussed in
(Werner et al., 2023), algorithms clustering clients based on their loss values (Mansour et al., 2020;
Ghosh et al., 2020; Ruan & Joe-Wong, 2021), i.e., assign client i to clusterRe(i) = argminm fi(θ

e
m)

at the beginning of round e, are prone to clustering errors in the first few rounds, mainly due to
random initialization of cluster models {θe

m}Mm=1. On the other hand, clustering clients based on their
model updates (gradients) (Werner et al., 2023; Briggs et al., 2020; Sattler et al., 2019) makes sense
only when the updates are obtained on the same model initialization. Additionally, even if we assume
these algorithms can initially cluster clients perfectly in each round e, the clients’ model updates
(gradients) will approach zero as the clusters’ models converge to their optimum parameters. Hence,
clients from different clusters may appear to belong to the same cluster, which results in clustering
mistakes. To illustrate these shortcomings, we provide a more detailed example in Appendix C.

For the above mentioned reasons, we next propose an algorithm which starts with clustering clients
based on their model updates for the first several rounds and then switches its strategy to cluster
clients based on their loss values. We also augment this idea with some other non-obvious techniques
to enhance the clustering accuracy in the first few rounds, when the most clustering uncertainty exists.

4.1 RC-DPFL ALGORITHM

Considering the points above, which were overlooked in the existing non-private algorithms, we
propose our differentially private RC-DPFL algorithm with the following steps (see Figure 1, right):

• Initializing clusters uniformly (∀m ∈ [M ] : θ1
m = θinit), clients use full batch sizes in the

first round to make their model updates {∆θ̃1
i }ni=1 less noisy. Then, the server soft clusters

them by running GMM on their model updates. The remaining clustering uncertainties are
incorporated in the probabilities returned by GMM (πi,m).

• During the subsequent rounds e ∈ {2, . . . , Ec}, the server uses the learned GMM to soft-
cluster clients: client i contributes to the training of each cluster (m) model proportional to
the probability of its assignment to that cluster (πi,m). The duration Ec for using the GMM
depends on the “confidence level" of the GMM.

• After the first Ec rounds, some progress has been made in the training of the cluster models
{θEc

m }Mm=1. Now, is the right time to hard cluster clients based on their loss values in the
remaining rounds to build more personalized models per cluster: Re(i) = argminm fi(θ

e
m).

In Section 4.2.1, we provide theoretical justification for why using full batch sizes in the initial
round improves the clustering quality of GMM considerably. Also, in Section 4.3 we analyze the
convergence rate for learning the GMM and show that the computational overhead of using GMM is
also low. Note that even when clients have a limited memory budget, they can still perform DPSGD
with full batch size using gradient accumulation technique (see Appendix I). The technique causes no
extra computational overhead, as it just accumulates multiple gradient updates into one update.
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Algorithm 1: RC-DPFL
Input: Initial parameter θinit, number of clusters M , batch size b, dataset sizes {N1, . . . , Nn},

noise scales {z1, . . . , zn}, gradient norm bound c, local epochs K, global round E.
Output: cluster models {θE

m}Mm=1
1 Initialize θ1

1 = . . . = θ1
m = θinit ; // “uniform" initializations

2 for e ∈ {1, . . . , E} do
3 if e = 1 then
4 for each client i ∈ {1, .., n} in parallel do
5 b1i ← Ni ; // full batch size

6 ∆θ̃1
i ←DPSGD (θ1

i , b
1
i , Ni,K, zi, c)

7 on server:
8 if M is unknown then
9 M = argmaxm MSS

(
GMM(∆θ̃1

1, . . . ,∆θ̃1
n;m)

)
; // Appendix F.2

10 {π1, . . . , πn,MPO} = GMM(∆θ̃1
1, . . . ,∆θ̃1

n;M) ; // 1st stage: GMM
11 set Ec(MPO) ; // Ec is set based on MPO
12 continue ; // go to next round (e = 2)
13 else if e ∈ {2, . . . , Ec} then
14 for each client i ∈ {1, . . . , n} do
15 Re(i)← m with probability πi[m] ; // 2nd stage: soft clustering

16 else
17 on server: broadcast cluster models {θe

m}Mm=1 to all clients
18 for each client i ∈ {1, . . . , n} do
19 Re(i) = argminm fi(θ

e
m) ; // 3rd stage: “local" clustering

20 for each client i ∈ {1, .., n} in parallel do
21 bei ← b ; // batch size b

22 ∆θ̃e
i ←DPSGD (θe

Re(i), b
e
i , Ni,K, zi, c)

23 on server:
24 for each client i ∈ {1, . . . , n} do
25 we

i ← Ni∑n
j=1 1Re(j)=Re(i)Nj

26 for m ∈ {1, . . . ,M} do
27 θe+1

m ← θe
m +

∑
i∈{1,...,n} 1Re(i)=mw

e
i∆θ̃e

i ; // i contributes to Re(i)

4.2 REDUCING GMM UNCERTAINTY VIA USING FULL BATCH SIZE IN THE FIRST ROUND

The DP noise in the model updates {∆θ̃1
i }ni=1 makes it harder for the server to cluster clients by

running GMM on the model updates. Thus, an efficient clustering algorithm should be robust to this
extra DP noise. The following lemma, which is an extension of a similar result in (Malekmohammadi
et al., 2024), shows that the noise in model update ∆θ̃e

i at the of round e, including stochastic and DP
noise, heavily drops with the batch size bei that client i uses during round e. This suggests to use large
batch sizes in the first round to improve the quality of clustering on the server side.

Lemma 4.1. Let us assume θe,0
i is the model parameter that client i is assigned at the beginning of

round e. At the end of round, the client generates the noisy DP model update ∆θ̃e
i (b

e
i ) after K local

epochs with step size ηl. The amount of noise in the resulting model update can be found as:

σe2

i (bei ) := Var(∆θ̃e
i (b

e
i )|θ

e,0
i ) ≈ K ·Ni · η2l ·

pc2z2i (ϵ, δ, b
1
i , b

>1
i , Ni,K,E)

be
3

i

. (2)

We have shown bei as an argument of σe2

i (bei ) to emphasize on its dependence on bei . The lemma
means that the noise level in ∆θ̃e

i decreases fast with bei (Malekmohammadi et al., 2024; Räisä et al.,

5
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Figure 2: PCA visualization of updates {∆θ̃1
i }ni=1 on 2D space. Left: ϵi = 10, bei = 32 for all i and

e. Right: ϵi = 10, b1i = b1 = N = 6600, i.e., full batch size (assuming Ni = N = 6600 for all
clients), and b>1

i = 32 for all i. The empty markers show the centers of the Gaussian components.
The model updates are obtained from running DPFedAvg on CIFAR10 with covariate shift (rotation)
between clusters, and under the same values as in Figure 3.

Figure 3: Plot of Var(∆θ̃1
i (b

1
i )|θinit

i ) (left) and Var(∆θ̃e
i (b

e
i )|θ

e,0
i ) (e > 1) (right) v.s. both b1i

and b>1
i obtained from Equation (2) and Renyi-DP Accountant (Mironov et al., 2019) in a setting

with Ni = 6600, ϵ = 5, δ = 10−4, c = 3,K = 1, E = 200, p = 11, 181, 642, ηl = 5× 10−4. There
are two clear messages: 1) for all e ∈ {1, · · · , E}, Var(∆θ̃e

i (b
e
i )|θ

e,0
i ) decreases with bei quickly.

This was observed in Lemma 4.1. 2) The effect of b>1
i in the left figure is more than the effect of b1i

in the right figure. The reason is that b>1
i is used in E − 1 rounds, while b1i is used only in the first

round. Also, see Figure 8 in the appendix for the plot of zi(ϵ, δ, b1i , b
>1
i , Ni,K,E) v.s. b1i and b>1

i .

2024). Let us consider e = 1 especially: If a client i can increase its batch size 10 times by using its
full batch size in round e = 1, the variance of the noise in its model update ∆θ̃1

i (b
1
i ) drops almost

1000 times. If all clients do so, it becomes much easier for the server to cluster them at the end
of the first round, by learning a GMM on {∆θ̃1

i }ni=1, as their updates become more separable. An
illustration of the considerable effect of using full batch sizes in the first round (i.e., b1i = Ni) on
the noise level in model updates {∆θ̃1

i }ni=1 is shown in Figure 2. Furthermore, instead of fixing b>1
i

to some value, we have also demonstrated the effect of both batch sizes b1i and b>1
i on the noise

levels Var(∆θ̃1
i |θinit

i ) (e = 1) and Var(∆θ̃e
i |θ

e,0
i ) (e > 1) separately, in Figure 3. As a take away,

Figure 3 left, suggests that in order to make {∆θ̃1
i }ni=1 less noisy, we have to make {b1i }ni=1 larger

and make {b>1
i }ni=1 smaller, similar to what done in Figure 2 right. These interesting results are

consistent with the observations in (De et al., 2022; Anil et al., 2021; Dörmann et al., 2021; Hoory
et al., 2021; Li et al., 2022; Luo et al., 2021) that increasing the batch size can significantly improve
the privacy-utility trade-off of DPSGD. In the next section, we will provide a theoretical justification
for these observations, especially Figure 2.
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4.2.1 EFFECT OF BATCH SIZES {b1i }ni=1 ON MODEL UPDATES {∆θ̃1
i }ni=1

Hereafter, we focus on round e = 1, and show theoretically why increasing batch sizes {b1i }ni=1

improves the distinguishability of the model updates {∆θ̃1
i }ni=1. For simplicity, we assume clients

have the same dataset sizes and batch sizes: ∀i : Ni = N, b1i = b1. Also, remember that θ1,0
i = θinit.

According to Equation (2) and having uniform privacy parameters (ϵ, δ), we have: ∀i : σ12

i (b1) :=

Var[∆θ̃1
i (b

1)|θinit] = σ12(b1). Hence, we can consider the model updates {∆θ̃1
i (b

1)}ni=1 as the
samples from a mixture of M Gaussian distributions with mean, covariance matrix, prior probability
parameters: ψ∗(b1) = {µ∗

m(b1),Σ∗
m(b1), α∗

m}Mm=1, where ∀m : α∗
m > 0 and µ∗

m(b1) ̸= µ∗
m′(b1)

(m ̸= m′). Also, model update ∆θ̃1
i (b

1) comes from component m = s(i):

µ∗
m(b1) := E

[
∆θ̃1

i (b
1
i )

∣∣∣∣θinit, b1i = b1, s(i) = m

]
, (3)

Σ∗
m(b1) := E

[(
∆θ̃1

i (b
1
i )− µ∗

m(b1)
)(
∆θ̃1

i (b
1
i )− µ∗

m(b1)
)⊤∣∣∣∣θinit, b1i = b1, s(i) = m

]
=
σ12(b1)

p
Ip,

(4)

where the last equality is from Var[∆θ̃1
i |θinit, b1i = b1] = E[∥∆θ̃1

i − µ∗
s(i)(b

1)∥2] = σ12(b1) and

that the noises existing in each of the p elements of ∆θ̃1
i are i.i.d (hence, Σ∗

m(b1) is a diagonal
covariance matrix with equal diagonal elements). Intuitively, we expect more separation between the
true Gaussian components {N

(
µ∗
m(b1),Σ∗

m(b1)
)
}Mm=1, from which clients’ updates {∆θ̃1

i }ni=1 are
sampled, to make the model updates more distinguishable for server. In the following, we show that
the overlap between the Gaussian components {N (µ∗

m(b1),Σ∗
m(b1))}Mm=1 decreases fast with b1.

Lemma 4.2. Let us assume ∆m,m′(b1) := ∥µ∗
m(b1)−µ∗

m′(b1)∥ when ∀i : b1i = b1. Then, the overlap

between the pair N
(
µ∗
m(b1),Σ∗

m(b1)
)

and N
(
µ∗
m′(b1),Σ∗

m′(b1)
)

is Om,m′ = 2Q(
√
p∆m,m′ (b1)

2σ1(b1) ),

where σ12(b1) := Var[∆θ̃1
i |θinit, b1i = b1] and Q(·) is the tail distribution function of the standard

normal distribution. Furthermore, if we increase b1i = b1 to b1i = kb1 ≤ N (for all i), we have

Om,m′ ≤ 2Q(
√
kp∆m,m′ (b1)

2ρσ1(b1) ), where 1 ≤ ρ ∈ O(1) is a small constant.

The lemma states that using a large batch size in the first round results in a fast reduction of the
overlap between the underlying components, which leads to more distinguishability for {∆θ̃1

i }ni=1 on
the server side (see Figure 2, right). One of the beneficial consequences of this well separation is that
RC-DPFL becomes robust to the initialization of the GMM model. Furthermore, note that for a fixed
batch size b1, the terms ∆m,m′(b1) and σ1(b1) represent the “data heterogeneity level across clusters
m and m′" and “privacy sensitivity of their clients", respectively. We define the “separation score"

SS(m,m′) =
√
p∆m,m′ (b1)

2σ1(b1) =
∆m,m′ (b1)

2σ1(b1)/
√
p between two components m and m′ as a measure of their

separability. The larger SS(m,m′), the smaller their overlap Om,m′ = 2Q(SS(m,m′)). Based on
the form of the Q function, an SS(m,m′) above 3 can be considered as a complete separation.

4.2.2 CONFIDENCE OF GMM

As we observed in Lemma 4.2, the separation score SS(m,m′) (the overlap Om,m′) increases

(decreases) as b1 increases. Remember that SS(m,m′) =
∆m,m′ (b1)

2σ1(b1)/
√
p , and note that σ12(b1)/p is the

value of diagonal elements of covariance matrices of Gausssian components (Equation (4)), which
the GMM aims to learn. Therefore, when the GMM is learned, we can use its parameters to get an
estimate ŜS(m,m′) for every cluster pair m and m′. Then, we can define the “minimum pairwise
separation score" as MSS = minm,m′ ŜS(m,m′) ∈ [0,+∞) as a measure of confidence of the
learned GMM in its clusterings. The larger the MSS of a learned GMM, the more “confident" it is in its
clustering decisions. For instance, if we learn a GMM on Figure 2 left, it will have a much smaller
MSS than when we learn a GMM on Figure 2 right. We can similarly define the estimated “maximum
pairwise overlap" for a learned GMM as MPO = 2Q(MSS) ∈ [0, 1), as a measure of uncerntainty
of the learned GMM (the smaller the better. Q is a decreasing function).
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4.3 CONVERGENCE RATE OF EM FOR LEARNING GMM

Let us define the maximum pairwise overlap in ψ∗(b1) = {µ∗
m(b1),Σ∗

m(b1), α∗
m}Mm=1, as

Omax(ψ∗(b1)) = maxm,m′ Om,m′(ψ∗(b1)). According to Lemma 4.2, when b1 is large enough,
Omax(ψ∗(b1)) decreases (like in Figure 2, right) and we can expect EM to converge to the true GMM
parameters ψ∗(b1). Next, we analyze the local convergence rate of EM around the true solution.

Theorem 4.3. (Ma et al., 2000) Given model updates {∆θ̃1
i (b

1)}ni=1, which are samples from a true
mixture of Gaussians {N

(
µ∗
m(b1),Σ∗

m(b1)
)
, α∗

m}Mm=1, if Omax(ψ∗(b1)) is small enough, then:

lim
r→∞

∥ψr+1 − ψ∗(b1)∥
∥ψr − ψ∗(b1)∥

= o

([
Omax(ψ∗(b1))

]0.5−γ
)
, (5)

as n increases. ψr is the GMM parameters returned by EM after r iterations. γ is an arbitrary small
positive number, and o(x) means it is a higher order infinitesimal as x→ 0 : limx→0

o(x)
x = 0.

This means that convergence rate of EM around the true solution ψ∗(b1) is faster than how[
Omax(ψ∗(b1))

]0.5−γ
decreases with b1. In Lemma 4.2, we showed that Omax(ψ∗(b1)) indeed

drops fast as b1 increases. Therefore, if clients have a large enough dataset size and use full batch
sizes in the first round, convergence rate of EM approaches approximately 0. Hence, as an important
consequence, the computational complexity of learning the GMM in the first round decreases fast.

4.4 APPLICABILITY OF RC-DPFL

Even when the number of the underlying clusters (M ) is not known beforehand, we can find it with
high accuracy based on the confidence metric MSS ∈ (0,+∞) defined above (line 9 of Algorithm 1).
Intuitively, we choose the M which yields to the largest confidence level MSS for the resulting GMM.
We have provided further details about how to find M in these scenarios in Appendix F.2.

The strategy switching time Ec can also be set using the uncertainty metric MPO ∈ [0, 1). Intuitively,
if the learned GMM is not certain about its clustering decisions, RC-DPFL should not rely on its
decisions for a large Ec, and vice versa. Hence, we can set Ec as a decreasing function of MPO. For
instance, Ec = (1− MPO)E2 means that if a GMM is completely confident about its clusterings, e.g.,
what happens in Figure 2 right, the server changes the clustering strategy to loss-based after the first
half of the training time. This change happens earlier as the uncertainty increases (e.g., when ϵ is
small), and RC-DPFL slowly gets close to the completely loss-based clustering.

Furthermore, we already know that in order to have a quality client clustering at the end of the
first round, {b>1

i }ni=1 should be small (from Figure 3. Also, see Appendix F.1 for a more detailed
discussion). Finally, note that after the training progress made in the first Ec rounds, the loss-based
hard clustering is performed “locally" at clients’ side (Ghosh et al., 2020) (line 17 in Algorithm 1).
Also, at this stage, the sensitivity of the local model selection of a client i to adding/removing a data
point to its local dataset is effectively zero. Therefore, there is no privacy concern regarding the local
loss-based clusterings performed in the last stage of RC-DPFL (see Appendix H for a formal privacy
proof). These important features altogether make RC-DPFL a robust and applicable algorithm.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets, models and baseline algorithms: We evaluate our proposed method on three benchamark
datasets, including: MNIST (Deng, 2012), FMNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky,
2009), with heterogeneous data distributions from covariate shift (rotation) (Kairouz et al., 2021;
Werner et al., 2023) and concept shift (label flip) (Werner et al., 2023), which are the commonly
used data splits in the literature (see Appendix B). We consider four clusters of clients indexed by
m ∈ {0, 1, 2, 3} with {3, 6, 6, 6} clients, where the smallest cluster is considered as the minority
group. To the best of our knowledge, there was no prior work on DP clustered FL, so we compared
to the DP version of existing algorithms. More specifically, we compare with the following baseline
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algorithms, which are combined with DPSGD: 1. DPFedAvg (Noble et al., 2021): clients run DPSGD
locally and send their model updates to the server 2. KM-CDPFL (Werner et al., 2023): FL with
myopic clustering, in which server clusters clients at the end of each round using running K-means
clustering on their DP model updates 3. f-CDPFL (Ghosh et al., 2020; Mansour et al., 2020): FL with
loss clustering, which clusters clients based on their train loss values on existing cluster models 4.
Oracle-CDPFL: an oracle algorithm which has the knowledge of true clusters from the first round.

Evaluation metrics and baselines: Given the set of n clients, fairness in a DPFL system can
be measured in terms of the disparate impact of DP on utility (performance drop) of different
groups (Chu et al., 2023; Bagdasaryan & Shmatikov, 2019; Tran et al., 2021; Esipova et al., 2022):
Facc = maxi,j∈[n] |∆acci(θi)−∆accj(θj)|, where θi is the model assigned to agent i at the end
of DP training, and ∆acci(θi) = maxθ∗ acci(θ

∗) − acci(θi), where θ∗ is any possible model.
Similarly, we can measure fairness in terms of the increment enforced to clients’ train loss (Tran et al.,
2021; Esipova et al., 2022; Chu et al., 2023): Floss = maxi,j∈[n] |ξi(θi)− ξj(θj)|, where ξi(θi) =
fi(θi)−minθ∗ fi(θ

∗). These notions of fairness compare the cost of adding differential privacy on
different clients, and define client-level fairness as the equality of “performance drop" across clients.
Following (Chu et al., 2023), we estimate the model θ∗ for each cluster by centrally training a model
with SGD based on the data of the clients belonging to that cluster. We also consider the following
evaluation metrics: average test accuracy (overall, majority, minority), worst accuracy across clients
(Mohri et al., 2019), and maximum accuracy disparity across clients: maxi,j |acci(θi)− accj(θj)|.

5.2 RESULTS

In our experiments, we aim to 1) compare RC-DPFL with other clustering approaches, 2) analyze its
robustness to noise; and 3) evaluate its robustness to different types of data heterogeneity.
RQ1: How does RC-DPFL perform compared to other algorithms? We first explore how RC-
DPFL performs in comparison with the defined baseline algorithms. Figure 4 shows the performance
for MNIST and FMNIST in terms of per cluster performance and fairness metric Facc. Through
these results, it is clear that RC-DPFL performance on-par with the oracle-DPFL baseline, which
constitutes the ideal case. This is mainly attributed to the accurate clustering obtained in RC-DPFL
as seen in subfigure (c), which compares the success rate of clustering using loss function (f-CDPFL)
versus our approach. Also, KM-CDPFL incurs the highest unfairness Facc, due to clustering errors.

(a) Per cluster accuracy (b) Fairness (Facc) (c) Clustering accuracy

Figure 4: Comparison of RC-DPFL with the defined baselines on MNIST (Top row) and FMNIST
(bottom row) with C1 being the minority cluster. All results are for ϵ = 5.

RQ2: How does RC-DPFL perform under different levels of noise? Figure 5 on CIFAR10, shows
the effect of varying levels of DP noise on the fairness of different algorithms (δ = 10−4) in terms
of three different metrics. RC-DPFL performs close to the oracle algorithm in terms of all the three
metrics, which shows its robustness to the DP noise in the system. RC-DPFL has the smallest gap
between majority and minority groups in terms of the three disparity metrics and outperforms the two
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other baseline algorithms for improving the minority cluster. The gap is even larger on smaller values
of ϵ, for instance, the minimum accuracy for ϵ = 2 using RCDPFL is 5% and 9% higher than the best
performing benchmark algorithm on FMNIST and MNIST respectively, while unfairness (Facc) is
6% and 13% lower. Detailed results for other datasets can be found in Tables 4–9 in the appendix,
which include results for accuracy across groups and various fairness metrics.

(a) Facc (b) minimum accuracy (c) accuracy disparity

Figure 5: Effect of ϵ on fairness (legends are common between the figures). Results are obtained on
CIFAR10. RC-DPFL performs very close to the oracle method and outperforms the baselines. Due
to its low performance, we have not shown KM-CDPFL, for better visibility. See Table 9 for details.

RQ3: How does RC-DPFL perform under different types of data heterogeneity across clients?
We evaluate how different types of distribution shift across client groups affect the clustered DPFL
algorithms. To do so, we compare covariate shift and concept shift on CIFAR10 dataset. Concept shift,
which can also be viewed as a label flipping attack, has a more significant impact on performance
in the single model case, as labels vary across client groups. Figure 6 shows results with ϵ = 5.0 in
terms of per-cluster performance and fairness, as well as clustering accuracy for different values of ϵ.
Through these results, we notice that it is easier to detect minorities with the loss values in the case of
concept-shift. Nonetheless, we also note that mistakes become more costly in this case. Table 11,
Table 10 in the appendix show a high variance for f-CPFL across experiments, especially smaller
values of ϵ, while RC-DPFL is more consistent. Additionally, in terms of fairness metrics, and across
different ϵ values, RC-DPFL still outperforms the baselines, and remains closer to the oracle case.

(a) Per cluster accuracy (b) Fairness (Facc) (c) Clustering accuracy

Figure 6: Comparison of RC-DPFL with the defined baselines on CIFAR10 with covariate shift (Top
row) and concept-shift (bottom row) with C1 being the minority cluster. All results are for ϵ = 5.

6 CONCLUSION

We proposed the first DP clustered FL algorithm, which addresses high data heterogeneity in privacy-
sensitive FL environments. By clustering clients based on their model updates and training loss values,
and mitigating noise impacts with larger batch sizes, our approach enhances utility and fairness with
minimal computational overhead, while maintaining DP. Moreover, the robustness to noise, and the
ability to handle various types of distribution shifts shows the applicability of our approach.
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