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ABSTRACT

We frame spatial supersensing in video as an overarching goal for multimodal
intelligence and argue that progress requires a shift from long-context brute force
to predictive sensing. Using a four-level taxonomy: semantic perception, streaming
event cognition, implicit 3D spatial cognition, and predictive world modeling, we
audit existing benchmarks and show they focus heavily on the first tier, with only
partial coverage of streaming and spatial cognition, and almost never test true
world modeling. To ground these gaps, we introduce VSI-SUPER, a two-part
benchmark for continual spatial sensing: VSO (long-horizon spatial observation
and recall) and VSC (continual counting under changing viewpoints and scenes).
These tasks admit arbitrarily long video inputs and are specifically built so that
simply scaling tokens or context length isn’t enough. Within the current paradigm,
we push spatial cognition by curating VSI-590K and training a new family of video
MLLMs that deliver +30% absolute on VSI-BENCH without sacrificing general
semantic perception. Yet these models still underperform on VSI-SUPER, exposing
a paradigm gap. We then prototype predictive sensing: a self-supervised next latent-
frame predictor whose surprise (prediction error) drives long-horizon memory and
event segmentation. On VSI-SUPER, this approach substantially outperforms
leading video MLLMs, evidencing that advancing spatial supersensing requires
models that not only see but also anticipate, select, and organize experience.

1 INTRODUCTION

Video is a continuous sensory signal that projects a hidden, evolving 3D world onto pixels (Gibson,
2014; Marr, 2010). While multimodal LLMs (MLLMs) have advanced rapidly by pairing strong
visual encoders with language models (Achiam et al., 2023; Team et al., 2024; Liu et al., 2023; Tong
et al., 2024), most video extensions (Wang et al., 2024d; Li et al., 2024a; Bai et al., 2025a) still treat
streams as sparse frames, underrepresent embodied spatial information (Yang et al., 2024e), and lean
on knowledge recall. This undercuts the very capabilities that make video distinct, and leaves the
central challenge of world-level reasoning underexplored. We propose spatial supersensing as the
north star of multimodal intelligence, structuring requirements into four stages of capability (Fig. 1):

• Semantic perception: parsing pixels into objects, attributes, and relations. This corresponds to the
strong multimodal understanding capabilities present in MLLMs.

• Streaming event cognition: operating on unbounded live streams with proactive support, aligning
with efforts to make MLLMs real-time “watch-along” assistants.

• Implicit 3D spatial cognition: treating frames as 2D projections of a 3D world, agents must know
what is present, where, how things relate, and how configurations change over time; today’s video
models remain limited here.

• Predictive world modeling: an internal model anticipates future states and uses expectation and
surprise to organize perception for memory and decision-making, mirroring human “unconscious
inference” (Von Helmholtz, 1867). Such predictive sensing is largely absent in current systems.

Our paper unfolds in three parts. First, we critically examine existing benchmarks through the lens
of our supersensing hierarchy. We find that most benchmarks map to the first two levels, while
a few such as VSI-Bench (Yang et al., 2024e) begin to probe Spatial Cognition. However, none
sufficiently addresses the final, crucial level of Predictive World Modeling. To make this gap concrete
and motivate a shift in approach, we introduce VSI-SUPER, a two-part benchmark for continual
spatial sensing: VSO targets long-horizon spatial observation and recall, while VSC tests continual
counting across changing viewpoints and scenes. Built from arbitrarily long spatial videos, these tasks
are deliberately resistant to the current multimodal recipe; they require perception to be selectively
filtered and structured rather than naively accumulated. We show that even state-of-the-art commercial
long-context models struggle on them.
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TIME

Semantic 
Perception

Streaming 
Event Cognition

Spatial
Cognition

Predictive 
World Model

Name and describe 
things for user prompts

Always-on sensing for 
open-ended streams; 
memory across time; 
proactive answering

See the world behind 
the video; implicit 3D

Unconscious inference;
Predictive, selective, 
and self-updating 
world model

Task-driven World modeling

Figure 1: From pixels to predictive minds: systems start with semantic perception, naming and describing
what they see. Streaming event cognition goes further, with always-on sensing across continuous streams,
memory, and proactive answering. Spatial cognition captures the implicit 3D structure of video, enabling
reasoning about objects, configurations, and metrics. Ultimately, a predictive world model emerges. One
that learns passively from experience, updates through prediction and surprise, and retains information for
future use. Lower illustration: video is the ideal testbed. Models must advance from frame-level Q&A to
constructing implicit world models that enable deeper spatial reasoning, scale to unbounded horizons, and
achieve supersensing rivaling (and ultimately surpassing) human visual intelligence.

Second, we ask whether spatial supersensing is simply a data problem. We curate VSI-590K, a
spatially focused instruction-tuning corpus over images and videos, and introduce Cambrian-S,
a family of video MLLMs. Under the current paradigm, careful data design and training push
Cambrian-S to state-of-the-art spatial cognition on VSI-BENCH (>30% absolute gain) without
sacrificing general semantic perception. Nevertheless, Cambrian-S still falls short on VSI-SUPER,
indicating that while scale lays crucial groundwork, it alone is not sufficient for spatial supersensing.

This motivates the third and final part of our paper, where we propose predictive sensing as a first
step toward a new paradigm. We present a proof-of-concept solution built on a self-supervised
next-latent-frame prediction task. Here, we leverage the model’s prediction error, or “surprise”, for
two key functions: 1) as a mechanism to manage memory, allocating more resources to unexpected
events, and 2) as a signal for event segmentation, breaking an unbounded continuous stream into
meaningful chunks. We demonstrate that this approach, though simple, significantly outperforms a
strong long-context baseline on our two new tasks. While not a final solution, this result provides
compelling evidence that the path to true supersensing requires models that don’t just see, but actively
predict and learn from the world.

To summarize, our contributions are: (1) We define a hierarchy for spatial supersensing and introduce
two novel benchmarks that reveal the limitations of the current paradigm. (2) We develop Cambrian-S,
a state-of-the-art model that pushes the limits of spatial cognition. This effort provides a powerful
new baseline and, by revealing the precise boundaries of current methods on our new benchmarks,
illuminates the path forward to a new paradigm. (3) We propose predictive sensing as a promising
new direction, showing that leveraging model surprise is a more effective strategy for long-horizon
spatial reasoning than passive context expansion.

2 BENCHMARKING SPATIAL SUPERSENSING

To ground our pursuit of spatial supersensing, we must first establish how to measure it. This section
undertakes a two-part investigation into benchmarking this capability. We begin by auditing a suite of
popular video MLLM benchmarks, where our analysis (Fig. 16) reveals that they overwhelmingly
focus on semantic perception while neglecting the more advanced spatial and temporal reasoning
required for supersensing (§2.1). To address this critical gap, we then introduce VSI-SUPER, a new
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MME: VideoMME
ES: EgoSchema
VM: VideoMMMU
LV: LVBench
TM: Tomato
MV: MVBench
PT: Perception Test
HV: HourVideo
VSI: VSIBench
VSO: VSI-SUPER Ord.
VSC: VSI-SUPER Cnt.

Figure 2: We evaluate performance under distinct input conditions: (a) a single (middle) frame,
(b) multiple (32) uniformly sampled frames, and (c) frame captions. We compare these against
chance-level and blind test results (visuals ignored). We first present the absolute accuracies achieved
on each benchmark for input conditions (a–c). Next, we detail a series of performance differences
(d–j) that arise from comparing these varied inputs and baselines (e.g., single-frame vs.blind, frame
captions vs.multi-frame). This comparative analysis indicates that visual inputs are substantially
more critical for performance on benchmarks such as VSI (Yang et al., 2024e), Tomato (Shangguan
et al., 2024), and HourVideo (Chandrasegaran et al., 2024), while their impact is less pronounced for
benchmarks like VideoMME (Fu et al., 2024), MVBench (Li et al., 2024d), and VideoMMMU (Hu
et al., 2025). VSO and VSC are new supersensing benchmarks we will introduce in Sec. 2.2.

benchmark specifically designed to probe these harder, continual aspects of spatial intelligence (§2.2).
We use this benchmark to test the limits of the current paradigm throughout the rest of the paper.

2.1 DECONSTRUCTING EXISTING VIDEO BENCHMARKS

To assess if existing benchmarks evaluate true visual sensing or simply rely on language priors,
we conduct a series of diagnostic tests. We use our base Cambrian-1 model to probe a suite of
representative video benchmarks under varied input conditions, allowing us to disentangle the
underlying task demands from the capabilities of more complex video-specific architectures.
Diagnostic Setup. We establish five experimental conditions to isolate the contributions of dif-
ferent information sources. We provide the model with either a Single Frame (the middle frame),
Multiple Frames (32 uniformly sampled frames), or textual Frame Captions generated from those
32 frames. We compare these against two baselines: a Blind Test, where the model only receives
the question, and Chance Acc, which represents random guessing. By analyzing performance differ-
ences between these conditions—such as diff(Multiple, Single) to assess temporal cues or
diff(Multiple, Captions) to control for textual solvability—we can create a fine-grained
profile of each benchmark’s characteristics.
Analysis of Results. Our findings, presented in Fig. 2, reveal a clear divide among popular bench-
marks. Many can be surprisingly well-addressed with minimal or even non-visual input. For
example, using only textual captions surpasses chance accuracy on all but 3 benchmarks—and by
over 20% on benchmarks like EgoSchema (Mangalam et al., 2023), VideoMME (Fu et al., 2024),
and VideoMMMU (Hu et al., 2025). This suggests these tasks can often be solved with high-level
textual summaries, probing language inference more than direct visual perception. The performance
gap between using multiple frames versus just captions is also telling (Fig. 2-j); a small margin on
benchmarks like VideoMMMU and EgoSchema indicates a more language-centric nature.

Conversely, a few benchmarks demonstrate a strong reliance on visual sensing. Our image-based
model struggles on VSI-Bench and Tomato, often performing below chance level with single-frame
inputs. These benchmarks show the largest performance gains when provided with rich, multi-frame
visual information, confirming that they effectively test the nuanced, spatiotemporal reasoning that is
the hallmark of true video understanding.
Remark. We emphasize the inherent challenges in benchmarking and the impracticality of creating
a single, all-encompassing benchmark. We do not intend that a reliance on language priors is an
inherent flaw; world knowledge is crucial for many tasks. Rather, our goal is to highlight that “video
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understanding” is not monolithic. Benchmarks should be chosen to align with the specific capabilities
under investigation. This audit demonstrates a clear need for tasks that specifically drive progress
towards the advanced spatial and continual sensing we aim to measure.

2.2 VSI-SUPER: PROBING SPATIAL SUPERSENSING IN MULTIMODAL LLMS

Spatial supersensing requires four key capabilities (see Fig. 1): semantic perception, streaming
event cognition, implicit 3D spatial cognition, and predictive world modeling. Most existing video
benchmarks evaluate basic semantic perception (Fu et al., 2024; Mangalam et al., 2023). Recent
work has begun exploring proactive and real-time video QA (Chen et al., 2024d) and long-video
modeling (Song et al., 2024; Li et al., 2024e; Zhang et al., 2024a) for streaming event cognition,
while VSI-Bench (Yang et al., 2024e) assesses spatial cognition. However, no existing testbed probes
high-level capability of predictive world modeling or examines spatial supersensing holistically. To
ground the gaps between current MLLMs and spatial supersensing, we design VSI-SUPER, a two-part
benchmark for continual spatial sensing that requires MLLMs to selectively filter and accumulate
visual signals on unbounded spatial videos to answer questions. Details in Sec. C.

Frame Editing

Which of the following correctly represents the order in which the Teddy Bear appeared in the video?
A. Toilet, Bathtub, Sink, Floor B. Bathtub, Toilet, Sink, Floor
C. Toilet, Sink, Floor, Bathtub D. Floor, Toilet, Bathtub, Sink

Random Video Concatenating

Figure 3: VSO Task. Recall the placement of objects in their
correct appearance order from an arbitrarily long video.

VSO: Long-horizon Spatial Obser-
vation and Recall. The VSO bench-
mark requires MLLMs to observe
long spatiotemporal videos, and recall
the specific locations of an unusual ob-
ject in the correct order of its appear-
ance. To construct this benchmark, hu-
man annotators use an image-editing
model (Comanici et al., 2025) to in-
sert surprising or out-of-place objects
(e.g., a Teddy Bear, Hello Kitty) into four distinct frames of a space-scanning video (Dai et al., 2017;
Yeshwanth et al., 2023; Baruch et al., 2021) (see Fig. 3). This edited video is then concatenated with
other similar space scan videos to create an arbitrarily long and continuous visual stream.

Num. of Chairs: 1 163

Q: How many different chair(s) are there in this video? A: 20

Figure 4: VSC Task. We concatenate several videos sampled from
VSI-Bench and benchmark the model’s counting ability.

VSC: Continual Counting under
Changing Viewpoints and Scenes.
While VSO mainly examines MLLMs
to recall part of the observation from
unbounded visual streams, VSC re-
quires MLLMs to perform continuous,
unique object counting in long-form
spatial videos. The benchmark is constructed by concatenating multiple space-scanning clips from
VSI-Bench (Yang et al., 2024e), and the task is to determine the total count of a specific object across
the entire concatenated video (see Fig. 4). To evaluate the numerical answer question format, we
adopt the mean relative accuracy (MRA) metric following VSI-Bench (Yang et al., 2024e).
Frontier Models Can’t Crack VSI-SUPER. To see if VSI-SUPER can be readily solved by
cutting-edge MLLMs, we put Gemini-2.5-Flash to the test. As shown in Tab. 1, despite its 1-million-
token context length, the model still suffers from context overflow when processing 2-hour videos.
Simply scaling up tokens or context length will never be enough, as VSI-SUPER can easily exceed
any fixed context window by simply creating an arbitrarily long video. Even for 60-minute videos in
VSI-SUPER that fall within its context window, performance remains limited, achieving only 34.7 on
VSO and 10.9 on VSC. In contrast, Gemini-2.5-Flash excels at semantic perception and knowledge
retrieval video benchmarks like VideoMME and VideoMMMU with around 80% accuracy.

Table 1: Gemini-2.5-Flash results on video benchmarks.
Model VideoMME VideoMMMU VSI-Bench VSO VSC

60 Mins. 120 Mins. 60 Mins. 120 Mins.
Gemini-2.5-Flash 81.5 79.2 45.7 34.7 Out of Ctx. 10.9 Out of Ctx.

Challenging the Current Paradigm. The difficulty of VSI-SUPER extends beyond mere spatial
reasoning, exposing fundamental limitations of the current MLLM paradigm. First, these tasks
challenge the assumption that progress can be achieved by simply scaling resources. By admitting
arbitrarily long video inputs, VSI-SUPER is designed to exceed any fixed context window, making
brute-force approaches that process every frame computationally infeasible. Humans solve this by
selectively attending to and retaining only a fraction of sensory input (??), a capability absent in
current models. Second, the tasks demand advanced cognitive capabilities beyond simple perception.
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For example, VSC requires not only the generalization of counting behavior to out-of-distribution
scales but also the ability to segment a continuous stream into meaningful events—knowing when to
start, continue, or reset a count across changing scenes. This suite of challenges—spanning resource
constraints, generalization, and cognitive functions like aggregation and segmentation—necessitates
a paradigm shift from purely data-driven approaches towards models that can form and leverage an
internal world model to intelligently organize and reason about an unbounded visual world.

3 PUSHING THE LIMITS OF SPATIAL SENSING IN CURRENT MLLMS

Is supersensing simply a data problem? We investigate this question by pushing the current data-
centric MLLM paradigm to its limits. We begin by developing a strong base MLLM (§3.1); then after
curating a large-scale, spatial instruction-tuning dataset, VSI-590K (§3.2), we produce a spatially-
grounded Cambrian-S model family (§3.3). Our subsequent evaluation reveals a crucial split: this
approach yields state-of-the-art results on existing spatial tasks but fails on the continual sensing
challenges of VSI-SUPER, demonstrating the limitations of a purely data-driven approach (§3.4).

3.1 A STRONG FOUNDATION: UPGRADING CAMBRIAN-1
We begin by developing a powerful general MLLM as the starting point for our experiments, by
upgrading Cambrian-1 with two modern components: SigLIP2-SO400m visual encoder (Tschannen
et al., 2025) and the Qwen2.5-7B (Yang et al., 2024a) instruction-tuned LLM. Full implementation
details are available in Sec. E.

3.2 VSI-590K: IS SPATIAL SENSING SIMPLY A DATA PROBLEM?
To understand the world, robust spatial sensing capabilities are essential. However, recent analysis in
Thinking in Space (Yang et al., 2024e) reveals that even frontier MLLMs face significant challenges
in visual spatial intelligence tasks. We believe this is due to a lack of high-quality spatially-grounded
data in current instruction-tuning datasets (Zhang et al., 2024c; Cui et al., 2024; Ray et al., 2025).
These observations motivate our curation of VSI-590K: a large-scale instruction-tuning dataset
designed to impart visuospatial understanding.

Annotated Videos (Sim and Real)

§How far apart are the {obj_1} and 
the {obj_2} measured in {unit}?

§...

Question Templates

Scene Description
Unannotated Real Videos

Selected Frames

§How far apart are the trash bin 
and the backpack, measured in 
centimeters?

Extracted Semantics

3D Lifting 3D Semantics

SFT Data Generation

§...
Videos & images3D Annotation

Front View

Top View

Scene Name

Object Counts

Object Boxes

Room Size

...

Figure 5: VSI-590K Data Collection and Curation Pipeline. Data is derived from 3D-annotated
real and simulated video sources and from pseudo-annotated images of unannotated real videos.
Question-Answer pairs are then automatically generated via question templates augmented for variety.

To construct a dataset that is both large-scale and high-quality, we combine data from three diverse
source types, as illustrated in Fig. 5. First, for high-fidelity geometric grounding, we source annotated
real videos from existing indoor scan and ego-vision datasets. Second, to increase scale and diversity
beyond the scarcity of 3D-annotated data, we leverage embodied simulators to programmatically
generate simulated data with rich spatial annotations. Finally, to capture the visual diversity of
the web, we develop a pipeline to produce pseudo-annotated images from unannotated real videos
sourced from YouTube and robotics datasets. The full details of our data curation and processing
pipeline for each source are available in Sec. D.2.

The instruction-tuning data is generated via a comprehensive taxonomy of 12 spatiotemporal question
types, augmented with varied phrasing and perspectives to ensure diversity (see Sec. D.1 for details).
A detailed ablation study, presented in Sec. D.3, confirms the effectiveness of our data mixture. The
study shows that training on the full VSI-590K dataset is critical for performance and that annotated
real videos provide the most significant benefit, highlighting the value of high-quality video data for
developing robust spatial understanding.

3.3 CAMBRIAN-S: A SPATIALLY-GROUNDED MLLM
To conduct our experiment, we develop Cambrian-S, a family of spatially-grounded models with
varying LLM scales: 0.5B, 1B, 3B, and 7B parameters. These models are the final artifacts of
a carefully designed 4-stage training pipeline aimed at progressively building general and then
specialized spatial capabilities, as illustrated in Fig. 6. The first two stages follow the Cambrian-1
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process to establish strong image understanding. In Stage 3, we lift the models to video by performing
general video instruction tuning on CamS-3M, a curated 3M-sample dataset mixture. This stage
establishes a robust foundation for video understanding before introducing specialized skills.

The final and critical step is Stage 4, where we teach spatial sensing. In this stage, models are
finetuned on a mixed corpus of our specialized VSI-590K and a proportional sample of the general
video data from Stage 3. This data mixture is a deliberate choice; a detailed ablation study in Sec. G
shows that while training on VSI-590K alone yields the highest scores on VSI-Bench, it degrades
performance on general video benchmarks. Our mixed approach preserves broad video understanding
while imparting strong spatial intelligence. Detailed finetuning setups such as data recipes and
hyperparameters can be found in Sec. E.

3.4 EMPIRICAL RESULTS: SUCCESS IN COGNITION, FAILURE IN CONTINUITY

Vision-Language
Alignment

Stage 2

Image Instruction 
Tuning

General Video 
Instruction Tuning

Stage 1 Stage 3 Stage 4

Spatial Video 
Instruction Tuning

Cambrian-1 Training Cambrian-S Training

Figure 6: Four-Stage Cambrian-S Training Pipeline.

We now evaluate the Cambrian-S
models to test the efficacy and limi-
tations of our data-centric approach.
Our evaluation reveals a critical split:
while the models achieve state-of-the-
art performance on established spatial reasoning benchmarks, their architectural paradigm fundamen-
tally falls short on the continual sensing tasks introduced in VSI-SUPER.

Success on Spatial Cognition Tasks. As shown in Tab. 3, our method yields a new state-of-the-
art in spatial reasoning. Cambrian-S-7B achieves a score of 67.5% on VSI-Bench, significantly
outperforming all open-source models and even surpassing the proprietary Gemini-2.5 Pro by over 16
absolute points. This strong performance includes remarkable generalization; on the complex “route
planning” subtask, which was not present in our VSI-590K training, Cambrian-S-7B outperforms
Gemini-1.5 Pro (see Tab. 17). Furthermore, our training recipe proves highly effective even at smaller
scales, with our 0.5B model rivaling Gemini-1.5 Pro on VSI-Bench. This focus on spatial skills does
not compromise general capabilities, as Cambrian-S maintains competitive performance on standard
video benchmarks (see Sec. F for full results).

Table 2: CambrianS-7B results on VSO and VSC.

VSO VSC
Duration (in Mins.) 10 30 60 120 240 10 30 60 120

Cambrian-S-7B 38.3 35.0 6.0 0.0 0.0 0.6 0.0 0.0 0.0

Failure on Continual Sensing Tasks.
Despite this success on tasks involving
short, pre-segmented clips, the fixed-
context architecture of Cambrian-S is ill-
suited for the demands of continual sensing.
When evaluated on the long-horizon tasks in VSI-SUPER, the limitations of the current paradigm
become clear (see Tab. 2). On VSO, which tests long-term recall, the model’s performance degrades
significantly as the video length increases, dropping to 35.0% accuracy on videos longer than 30
minutes before eventually running out of memory. On VSC, which requires continual counting
over an extended period, the model is unable to process the entire stream and fails to maintain an
accurate count, achieving a final score of only 0.6% on 10-minutes videos, and 0.0% on videos
longer than 30 minutes. These results demonstrate that a purely data-centric approach within a
fixed-context architecture, no matter how well-tuned, hits a fundamental wall. Overcoming these
challenges requires a paradigm shift towards models that can intelligently manage memory and
process unbounded streams, which we explore in the following section.

4 A NEW PARADIGM: PREDICTIVE SENSING FOR UNBOUNDED STREAMS

The failure of the fixed-context Cambrian-S and Gemini-2.5 models on VSI-SUPER reveals a funda-
mental paradigm gap: simply scaling data and context is insufficient for the demands of unbounded,
continuous streams. To bridge this gap, we propose an approach inspired by predictive coding in the
human brain: predictive sensing (Friston, 2010; Von Helmholtz, 1867; Stahl & Feigenson, 2015;
Kennedy et al., 2024). Instead of indiscriminately processing all sensory input, this paradigm uses
an internal world model to continuously predict what comes next. The resulting prediction error, or
“surprise,” serves as an efficient, self-supervised signal for downstream cognitive tasks like selective
memory and event segmentation. In this section, we detail our proof-of-concept implementation of
this mechanism (§4.1) and then demonstrate its effectiveness on the very VSI-SUPER tasks where
the previous approach failed (§4.2).
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Table 3: Comparison of Cambrian-S with other leading MLLMs. Cambrian-S leads against proprietary and
open-sourced models on various image and video visual-spatial benchmarks.
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Proprietary Models
Claude-3.5-sonnet UNK. - 27.8 - 62.9 - 65.8 - - - 51.9 48.2 -
GPT-4o UNK. 34.0 37.7 37.2 71.9 - 61.2 66.7 - - - 44.2 -
Gemini-1.5-Pro UNK. 48.8 36.1 37.3 75.0 72.2 53.9 64.0 - - 67.5 - -
Gemini-2.5 Pro UNK. 51.5 - - - - 83.6 67.4 - - - - -
Open-Source Models
LLaVA-Video-7B Qwen2-7B 35.6 22.5 28.6 63.3 57.3 36.1 58.2 58.6 67.9 66.4 - 75.7
LLaVA-One-Vision-7B Qwen2-7B 32.4 25.5 28.3 58.2 60.1 33.9 56.4 56.7 57.1 66.3 - 74.3
Qwen-VL-2.5-7B Qwen2.5-7B 33.5 - - 65.1 65.0 47.4 56.0 69.6 - - 48.4 -
InternVL2.5-8B InternLM2.5-7B 34.6 - - 64.2 50.6 - 60.0 72.0 - 68.4 50.9 -
InternVL3.5-8B Qwen3-8B 56.3 - - 66.0 61.2 49.0 62.1 72.1 - 67.5 - -
Cambrian-S-7B Qwen2.5-7B 67.5 31.1 36.0 63.3 76.8 38.6 59.4 64.5 69.9 65.9 54.8 76.9
VILA1.5-3B Sheared-LLaMA-2.7B - - - 42.2 - - 42.9 - 49.1 - - -
Qwen2.5-VL-3B Qwen2.5-3B 26.8 - - 61.5 - - 54.2 - 66.9 - - -
Cambrian-S-3B Qwen2.5-3B 57.3 25.4 36.8 60.2 73.5 25.2 52.3 60.2 65.9 60.1 50.9 75.2
SmolVLM2-2.2B SmolLM2-1.7B 27.0 - - - 34.1 - - 48.7 51.1 - - -
InternVL2.5-2B InternLM2.5-1.8B 25.8 - - 51.9 47.4 - 52.0 68.8 - 60.1 - -
InternVL3.5-2B Qwen3-1.7B 51.5 - - 58.4 50.8 - 57.4 65.9 - 62.0 - -
Cambrian-S-1.5B Qwen2.5-1.5B 54.8 22.5 31.4 55.6 68.8 24.9 50.0 58.1 63.2 54.5 51.9 69.6
SmolVLM2-0.5B SmolLM2-360M 26.1 - - - 20.3 - - 43.7 44.8 - - -
LLaVA-One-Vision-0.5B Qwen2-0.5B 28.5 - - 44.0 26.8 - 45.8 45.5 49.2 55.6 - 55.5
InternVL2.5-1B Qwen2.5-0.5B 22.5 - - 50.3 39.8 - 47.9 64.3 - 58.1 - -
InternVL3.5-1B Qwen3-0.6B 49.9 - - 51.0 41.5 33.0 53.0 61.0 - 57.6 - -
Cambrian-S-0.5B Qwen2.5-0.5B 50.6 23.4 27.9 44.0 62.4 15.7 44.0 51.8 56.0 52.0 48.5 59.8

4.1 THE PREDICTIVE WORLD MODEL PRIMITIVE

We implement our predictive sensing paradigm through a lightweight, self-supervised module called
the Latent Frame Prediction (LFP) head, which is trained jointly with the primary instruction-tuning
objective. This is achieved by modifying the Stage 4 training recipe as follows:

• Latent Frame Prediction Head. We introduce an LFP Head, a two-layer MLP that operates in
parallel with the language head, to predict the latent representation of the subsequent video frame.
This architecture is illustrated in the top left of Fig. 7.

• Learning Objectives. To optimize the LFP head, we introduce two auxiliary losses, MSE and
cosine similarity, which measure the discrepancy between the predicted latent and the ground-truth
feature of the next frame. A coefficient balances the combined LFP loss against the primary
instruction-tuning objective.

• Dedicated Prediction Data. We augment the Stage 4 data with a 290K-video subset from VSI-
590K used exclusively for the LFP objective. Critically, while instruction-tuning videos are sampled
uniformly to retain rich context for question answering, these LFP videos are sampled at a consistent
1 FPS to provide a fixed temporal interval for the prediction task.

During this modified Stage 4 finetuning, we train the connectors, language model, and both the
language and LFP heads end-to-end, while the SigLIP vision encoder remains frozen. All other
training dynamics are kept identical to the original stage-4.
Inference: Estimating Surprise via Prediction Error. At inference time, we use this trained LFP
head to generate a “surprise” signal via a Violation-of-Expectation (VoE) process (Garrido et al.,
2025). As the model receives new video frames, it continuously predicts the latent features of the
next frame. We then compute the patch-averaged cosine distance between the model’s prediction and
the actual ground-truth feature of that next frame. This distance serves as a quantitative measure of
surprise, with larger values indicating a greater violation of the model’s learned expectations. This
surprise score acts as a powerful, self-supervised guidance signal for the downstream tasks explored
next.

4.2 CASE STUDIES: HOW PREDICTIVE SENSING HELPS VSI-SUPER

Case Study I: Surprise-driven Memory Management System for VSI-SUPER-Order. Our
memory management system dynamically compresses and consolidates visual streams based on
content surprise. As shown in Fig. 8 (a), we encode incoming frames using sliding window attention
with window size Ws. Latent frame prediction module then measures a “surprise level” and assigns to
each frame’s KV caches. Frames with a surprise level below a predefined threshold Ts are compressed
by half before being added to long-term memory. To maintain a stable GPU memory footprint, this
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Figure 7: Training and inference pipeline for our latent frame prediction.

long-term memory is constrained to a fixed size Blong. When this limit is reached, a consolidation
module merges less surprising frames with adjacent ones (see Fig. 8 (b)). Finally, upon receiving
a user query, the system retrieves the top-K most relevant frames from the long-term memory by
calculating the cosine similarity between the query and the stored frame features (see Fig. 8 (c)).
For more design detail, see Sec. H.3. While there exist related works on designing memory systems
for long videos (Song et al., 2024; Zhang et al., 2024a), our focus differs. Rather than developing
improved memory architectures, we care more about the potential of using predictive sensing errors
(i.e., surprise) as informative indicators.

(a) Visual Streams Encoding (Unconscious Inference)

......

MLLM

Calculate Surprise Level

Compress

(b) Long-term
Memory

K
V

C
ac

he
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LLM Decoder
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Figure 8: VSO Memory. Orange color
intensity signifies surprise level. Hatched
and solid boxes denote compressed and raw
frames.

Results. We compare Cambrian-S with and without the
surprise-based memory system, against two advanced pro-
prietary models Gemini-1.5-Flash (Team et al., 2024)
and Gemini-2.5-Flash (Comanici et al., 2025), on the
VSO benchmark. As shown in Fig. 9, Cambrian-S (w/
Mem.) outperforms Gemini-1.5-Flash and Cambrian-S
(w/o Mem.) at all video lengths, demonstrating consis-
tent and remarkable spatial sensing across video lengths.
Although Gemini-2.5-Flash yields promising results for
videos within an hour, it fails to process longer inputs. On
par with Cambrian-S (w/ Mem.) remarkable performance,
as shown in Fig. 10, it maintains a stable GPU memory
usage across different video lengths. This demonstrates
that the unconscious surprise level inference effectively
compresses the redundant data without losing critical in-
formation.

Ablation on Surprise Measurement. Central to our surprise-based memory system is the method for
measuring surprise, as it determines which frames are compressed without foreknowledge of future
queries. Here we compare our design, i.e., predictive error as surprise, to another straightforward
method: adjacent frame vision feature similarity as surprise. Specifically, we use SigLIP-2 as the
vision encoder here. The experiment is conducted on VSO (10 mins version) and sweeps over a
shared hyperparameter space for both methods to ensure a fair comparison. As shown in Fig. 11,
using predictive error as surprise measurement demonstrates not only superior performance but also
greater robustness across different surprise thresholds.

Case Study II: Surprise-driven continual video segment for VSI-SUPER-Count. In the VSI-
SUPER-Count benchmark, we segment videos using the prediction error to detect “surprise”. This
is inspired by the “doorway effect” (Radvansky et al., 2011), a psychological phenomenon where
people are more likely to forget items or tasks immediately after walking through a doorway into
a different room. Motivated by this effect, our model treats frames with high surprise as space

8
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boundaries, allowing it to partition a long video into shorter but meaningful segments that are
answered individually. As Fig. 12 shown, the model continuously buffers low-surprise frames in
short-term memory. Upon detecting a high-surprise frame, the buffer is summarized to create a
segment answer and then cleared. This process repeats until the end of the video. Finally, the final
answer is aggregated by all segment answers.

...
Short-term Memory

LLM Decoder

Query

......

Empty
Surprise
Frame

Segment
Answers

Summarize
Segment

Continual Video Streams

Figure 12: Framework of VSC.

Results. As shown in Fig. 13, Gemini-1.5-Flash achieves
nearly zero performance in VSC, demonstrating the diffi-
culty of this task. Although Gemini-2.5-Flash yields much
better results on 10-minute videos, its performance de-
clines rapidly on longer content. In contrast, the segment-
and-conquer approach used by Cambrian-S (w/ LFP Seg)
achieves superior and more stable performance across all
video lengths. Segmenting the video using GT scene transi-
tions (i.e., Cambrian-S w/ GT Seg) improves performance
even further. A deeper analysis in Fig. 15 reveals that
Gemini-2.5-Flash’s predictions are confined to a limited
range. They do not grow as more objects appear in the
video, while counts from Cambrian-S (w/ LFP Seg) scale
correctly with the number of objects.

Ablation on Surprise Measurement. We compare our surprise measurement against the baseline
method which uses adjacent frame similarity to measure the surprise in Fig. 14. For both methods,
we report their best results under a set of hyperparameters. As shown in the results, using predictive
error as surprise consistently outperforms using appearance similarity as surprise in all cases and by a
notable margin.
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Figure 13: VSC Results.
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Figure 14: Surprise measurement.
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5 CONCLUSION

We propose spatial supersensing as the north star for MLLMs along with a probing benchmark
VSI-SUPER. To examine if the challenge can be addressed by simply scaling data and compute,
we train a spatially-grounded MLLM, Cambrian-S, on our curated VSI-590K. While Cambrian-S
excels on standard spatial tasks, it still fails on the VSI-SUPER benchmark. This failure reveals
a fundamental paradigm gap, which we explore by proposing predictive sensing via latent frame
prediction. We validate this design through two case studies, which suggest that spatial supersensing
requires models to go beyond mere perception, but actively predict the future and update their internal
world models from visual streams.
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ETHICS STATEMENT

This research on video spatial supersensing utilizes publicly available datasets, ensuring that all data
complies with privacy regulations. We acknowledge the potential biases that can arise in automatic
answer generation, particularly concerning gender, race, or other characteristics. We have taken
measures to evaluate and minimize such biases, while remaining committed to further improvements.
Additionally, we recognize the potential risks of misuse, such as generating misleading answers, and
have checked the training dataset with safeguards against such applications.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will make all necessary assets publicly available. Our
complete source code, including scripts for data processing, model training, and evaluation, will be
released. We will also release the weights for all Cambrian-S model variants. The curated VSI-590K
dataset and the new VSI-SUPER benchmarks (VSI-SUPER Order and VSI-SUPER Count) will be
made public to allow for verification and extension of our work. Comprehensive implementation
details are provided throughout the paper; specifically, our model architecture, data mixtures, and
training hyperparameters are described in Sec. 3 and further detailed in Sec. E. The data curation
pipeline is outlined in Sec. 3.2 and Sec. D.
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LANGUAGE MODEL USE STATEMENT

Large language models (LLMs) were used only for light editorial purposes, such as minor grammar
checking and language polishing. They were not used for generating scientific content, research
ideation, experiment design, or analysis. The authors take full responsibility for the entirety of the
paper, and LLMs are not considered contributors or eligible for authorship.

A APPENDIX OUTLINE

This supplementary material provides additional details for our work and is organized as follows:

• Related Work. A summary of key related works, including recent advancements in video
MLLMs, visual spatial intelligence, and memory mechanisms within LLM and MLLM
fields.

• VSI-SUPER Details. Further details about our new VSI-SUPER benchmarks.

• VSI-590K Dataset: Additional Details. Further details on the VSI-590K dataset, cover-
ing its construction process, task taxonomy (or taskonomy, if specific to your field), and
supplementary examples.

• Model Implementation Details: Our upgraded Cambrian-1 and Cambrian-S. A detailed
account of the implementation of our upgraded Cambrian-1 and Cambrian-S, including
architecture, data processing, and training procedures.

• Additional Benchmark Results and Analysis of Cambrian-1. Supplementary benchmark
results and comparative analysis for Cambrian-1.

• Cambrian-S Training Recipe Ablation Study. Ablation study on the influence of base
video model and data recipe.

• Predictive Sensing. Further specifics on the training and inference implementation of
our latent frame prediction and ablation study, with addditional details about our memory
framework.

• Discussion, Limitation, and Future work. We discuss the limitations of our current work
and outline potential directions for further improvement and exploration.

B RELATED WORK

B.1 VIDEO MULTIMODAL LARGE LANGUAGE MODEL

The unprecedented language and reasoning capabilities of large-scale pretrained LLMs (Brown et al.,
2020; Touvron et al., 2023a; Bai et al., 2023a; Touvron et al., 2023b), coupled with well-developed
visual feature extractors (Radford et al., 2021; Zhai et al., 2023; Tschannen et al., 2025; He et al.,
2022; Fan et al., 2025), have driven significant advancements in empowering LLMs to understand
visual content like still images (Hurst et al., 2024; Liu et al., 2023; Li et al., 2024a; Bai et al., 2023b;
Tong et al., 2024; Team et al., 2023; Chen et al., 2024f; Wang et al., 2024b; Li et al., 2023a), and
spurred a growing interest in building video MLLMs (Li et al., 2024f;a; Zhang et al., 2024c; Song
et al., 2024; Bai et al., 2025a; Zhu et al., 2025; Zhang et al., 2023; Li et al., 2023b; Shen et al., 2024)
which is considered as a key step toward grounding MLLMs to real world applications like embodied
agents (Kim et al., 2024).

Despite great progress has been witnessed on building more competitive video MLLMs and better
benchmarks (Fu et al., 2024; Hu et al., 2025; Chandrasegaran et al., 2024; Mangalam et al., 2023;
Wang et al., 2024c; Patraucean et al., 2023) to properly evaluate their capabilities, in this paper,
we argue that current video MLLMs and benchmarks majorly focus on the recognition capabil-
ties (Caba Heilbron et al., 2015; Zhou et al., 2018; Carreira et al., 2018; 2019; Xu et al., 2016) while
overlook other critical properties inherently in video modality. Instead, our work concentrates on
other two missing pieces which are of critical importance for building the real spatial supersensing
intelligence: the ability to understand the space and perceive in a continuous manner.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 SPATIAL UNDERSTANDING

Spatial understanding, the ability to perceive and comprehend spatial relationships within an envi-
ronment, is crucial for embodied agents to effectively interact with the real world. Unlike recogni-
tion abilities, which primarily align with language semantics, spatial understanding is more physi-
cally grounded, presenting a significant challenge for current Multimodal Large Language Models
(MLLMs). While recent efforts have aimed to enhance MLLMs’ spatial understanding (Yang et al.,
2024d; Chen et al., 2024a; Cheng et al., 2024; Cai et al., 2024; Liu et al., 2024a; Li et al., 2024b; Zhu
et al., 2024; Song et al., 2025; Lu et al., 2025; Upadhyay et al., 2025), most focus on static images,
which poorly reflect real-world embodied scenarios. The most relevant work to ours is Thinking in
Space (Yang et al., 2024e), which proposes a video-based benchmark with several primitives to assess
MLLMs’ spatial intelligence. Building on this, our work introduces VSI-590K dataset to advance the
visual spatial capabilities of video MLLMs.

B.3 ALWAYS-ON VIDEO UNDERSTANDING

Humans effortlessly perceive and process a continuous—potentially infinite—stream of visual signals
from their surroundings, both intentionally and subconsciously. Equipping embodied agents or
lifelong assistants with similar capabilities is essential for enabling continuous learning and adaptation
through real-world interaction. However, the unbounded length of video streams poses a major
challenge for current Video Multi-Modal Large Language Models (MLLMs), primarily due to
escalating computational and storage demands. Recent works have attempted to address this challenge
from several perspectives:

• Efficient architectural design. The quadratic complexity of self-attention becomes a bot-
tleneck for long video sequences. Inspired by advances in language modeling, some
approaches (Li et al., 2024c; Ren et al., 2025) adopt more efficient architectures (e.g., linear
or sub-quadratic attention (Wang et al., 2020; Gu & Dao, 2023; Katharopoulos et al., 2020))
to reduce computational overhead and accommodate longer inputs.

• Context window expansion. The fixed-length context window of pre-trained LLMs inherently
limits their ability to comprehend extended temporal content. Expanding this window (Chen
et al., 2024e; Zhang et al., 2024b) allows models to process and reason over longer video
segments.

• Retrieval-augmented video understanding. To handle long video streams, some methods
retrieve relevant segments from a larger corpus (Korbar et al., 2024; Pan et al., 2025), using
them as context for downstream understanding tasks.

• Visual token reduction or compression. Reducing the number of visual tokens (either per
frame or across frames) (Shen et al., 2024; Li et al., 2024e; Jiang et al., 2025; Li et al., 2025)
helps manage long video sequences by shortening the effective input length.

B.4 PREDICTIVE MODELING

A learned internal predictive model (Craik, 1967; Ha & Schmidhuber, 2018) allows an intelligent agent
to represent and simulate aspects of its environment, enabling more effective planning and decision-
making. Model predictive control (MPC) (Garcia et al., 1989) applies similar principles in control
theory, leveraging internal forward models to anticipate future trajectories and select optimal actions
in real time. This concept draws inspiration from how humans form mental models of the world (Rao
& Ballard, 1999; Hohwy, 2013; Friston, 2010) and how these internal representations influence
behavior (e.g., unconscious inference (Von Helmholtz, 1867)), serving as simplified abstractions of
reality that enable prediction and efficient action. A growing body of work has explored the idea of
predictive modeling through self-supervised representation learning (Assran et al., 2023; 2025), and
text- or action-conditioned video generation (Zhou et al., 2025; Yang et al., 2024f; Bar et al., 2025;
Chen et al., 2024b; Bai et al., 2025b; Garrido et al., 2025; Kang et al., 2024). In this paper, motivated
by how humans leverage internal world models to process unbounded sensory input efficiently and
effectively, we investigate how to equip MLLMs with a similar predictive sensing capability.
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Why are the objects flying? 
Which feature of the astronaut's 
equipment indicates they can move 
independently in space?

VideoMME

If I am standing by the refrigerator 
and facing the washer, is the stove to 
my left, right, or back?

How many chair(s) are in this room?

VSI-Bench

Figure 16: Illustrations of how spatial sensing is conceptualized in current video benchmarks. The left panel
features examples from the “spatial reasoning” subcategory of VideoMME (Fu et al., 2024), including a visual-
effects clip of “What if the Moon Crashed into the Earth?” from Shutter Authority, and the
ground-truth answer refers to the gravitational pull of the Moon—an explanation that is physically impossible.)
and a question regarding astronaut gear from NASA’s “Astronaut Bruce McCandless II Floats
Free in Space.” In contrast, the right panel shows samples from VSI-Bench (Yang et al., 2024e), which
highlight visual-spatial reasoning tasks such as object counting, identifying relative directions, route planning,
and related scenarios.

C VSI-SUPER DETAILS

C.1 VSO BENCHMARK

Figure 19 shows more edited frame examples of our VSI-SUPER-Order benchmark. By using image
editing models, the generated edited frames can be really realistic.

C.2 VSC BENCHMARK

VSC is constructed by concatenating multiple space-scanning clips from VSI-Bench, and the task
is to determine the total count of a specific object across the entire concatenated video (see Fig. 4).
We construct the benchmark with 4 different video durations, from 10 minutes to 120 minutes,
to throughly reflect the genralizability of MLLMs’ spatial counting ability. For metric, following
VSI-Bench, we choose to use MRA starting from 0.5 to 0.95 as the major metric.

C.3 HUMAN PERFORMANCE ON VSI-SUPER

To evaluate human performance on VSI-SUPER, we recruited 10 volunteers to complete two tasks:
VSC (10 mins) and VSO (60 mins), which includes 50 and 60 questions, respectively. As shown
in Tab. 4, humans achieved near-perfect results on VSO with 95.2% accuracy, and significantly
outperformed MLLMs on VSC (76.5% vs. 32.1%).

Table 4: We analyzed human performance on VSI-SUPER and found it to be significantly superior to
that of Gemini-2.5-Flash.

Metric Human Performance Gemini-2.5-Flash

VSC (10mins) MRA 76.5 32.1
VSO (60mins) Acc. 95.2 34.7

D ADDITIONAL DETAILS OF THE VSI-590K DATASET

In this section, we provide more details for the dataset, including the question type definition,
question-answer pair construction pipeline, and some examples for each data source.

D.1 QUESTION TYPE DEFINITION

We define 12 question types across a spatiotemporal taxonomy to create a comprehensive and
diverse set of questions for instruction-tuning. We define five main question types—size,
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direction, count, distance, and appearance order—broadly categorized as measur-
ing configuration, measurement, or spatiotemporal capabilities following VSI-Bench.
For all question types except appearance order, we also define relative and absolute versions
of each question type, as both relative and absolute judgments are crucial to visual-spatial under-
standing (Yang et al., 2024e). For example, for size, we ask for both size comparison between
two objects and the metric dimensions of an object. To increase diversity, we vary the perspective
from which direction and distance questions are formulated. For example, for distance,
we may ask which of two objects is closer to the camera or which of two objects is closer to a third,
different object. Finally, we further augment diversity by varying both phrasing and measurement
units for each question.

Taxonomy. When curating visual-spatial intelligence supervised fine-tuning datasets, an important
perspective is how to define the question type. Inspired by (Yang et al., 2024e), we expand its task
definition in a more systematic manner. As shown in Tab. 5, we distinguish these question types in
four perspectives:

• Spatial-temporal attributes: we categorize questions into five distinct spatial-
temporal attribute types: size (comparing or measuring object/space dimensions), direction
(orientation in space), count (enumeration of objects), distance (proximity between objects),
and appearance order (temporal sequence of objects appearing in videos).

• Relative versus absolute: questions are classified as relative when they involve
comparison between multiple objects (e.g., “which is larger?”), or absolute when they
require specific measurements or quantities (e.g., “what is the height in meters?”). This
distinction applies across most attribute types.

• Perspective taking: this dimension captures the viewpoint from which spatial
relationships are evaluated. Questions may be posed from the camera’s perspective (e.g.,
“from the camera’s perspective, is the object on the left or right?”) or from the perspective of
specific objects in the scene (e.g., “facing the object1 from object2...”)

• Modality: questions are categorized based on whether they can be answered using static
images only, or require dynamic video information. Some attribute types like appearance
order are only applicable to videos, while others like size can be addressed in either modality.

Table 5: Taxonomy of spatiotemporal question types in VSI-590K. Questions in VSI-590K are
stratified along five axes: attribute type, relative versus absolute, perspective, modality, and question
template.

Types Rel./Abs. Perspective Modality Example template

Size
Relative — Video / Image “Between {object1} and {object2}, which is larger?”
Absolute — Video / Image “What is the height of the {object} in {unit}?”
Absolute — Video / Image “What is the room’s size in {unit}?”

Direction

Relative Camera Image “From the camera’s perspective, is the {object} on the left
or the right?”

Relative Object Video / Image “Facing the {object1} from the {object2}, would the
{object3} be placed left, right, or back?”

Absolute Object Video / Image “Standing at {object1}, facing toward {object2}, how far
clockwise do I rotate (in degrees) to see the {object3}?”

Count Relative — Video / Image “Are there fewer {object1} than {object2} ?”
Absolute — Video / Image “How many {object} are present?”

Distance

Relative Camera Image “Which object is closer to the camera, the {object_1} or
the {object_2}?”

Relative Object Video / Image “Which is nearer to the {object_3}, the {object_1} or the
{object_2}?”

Absolute Object Video / Image “What is the distance between the {object_1} and the
{object_2} in {unit}?”

Appearance Order — — Video
“Determine how {object_1}, {object_2}, {object_3}, and
{object_4} are ordered by their initial appearances in the
video”

Question templates augmentation question types. Besides, as shown in Tab. 5, for each question
type, we provide adequate templates to prevent MLLMs from overfitting to specific formats or
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measurement units. These diverse templates were initially created by humans, then augmented using
GPT-4o (Achiam et al., 2023), and finally validated and corrected by human reviewers. We provide
concrete question templates in Tabs. 21 to 33.

D.2 DETAILED QA-PAIR CONSTRUCTION PIPELINE

We construct VSI-590K from a diverse span of data sources and types (i.e., simulated and real). This
creates a dataset significantly stronger than a highly homogeneous dataset of a similar size. See
Tab. 6 for the data sources and for dataset statistics on the number of videos, images, and QA pairs
from each dataset. Below we describe how our main data source types are processed to generate
question-answer pairs.

• Annotated Real Videos. As proposed in VSI-Bench (Yang et al., 2024e), multimodal visual-
spatial reasoning requires 3D geometric and spatial understanding. In this regard, we first
follow VSI-Bench to re-purpose the training split of existing indoor scans and ego-vision
datasets containing 3D instance-level annotations, including S3DIS (Armeni et al., 2016),
ScanNet (Dai et al., 2017), ScanNet++ V2 (Yeshwanth et al., 2023), ARKitScenes (Baruch
et al., 2021), and ADT (Pan et al., 2023). For each dataset, the annotations are first organized
into a meta-information file containing the attributes that describes each scene: object counts
by category, object bounding boxes, room size, and more. Question templates are then
automatically propagated to generate a plethora of questions.

• Simulated Data. Given the scarce nature of 3D-annotated data, it is impossible to collect a
very large-scale and diverse 3D-annotated SFT dataset solely by relying on annotated real
videos. We leverage embodied simulators to programmatically generate spatially grounded
video trajectories and QA pairs. We render 625 videos traversals through ProcTHOR (Deitke
et al., 2022) scenes with diverse layouts, object placements, and appearances. We adapt the
same methodology to Hypersim (Roberts et al., 2021), sampling 5,113 images from 461
indoor scenes; given instance-level bounding boxes, we construct supervision consistent
with our annotated real-video setup.

• Unannotated Real Videos. Web-sourced videos, despite unannotated, provide rich di-
versity in room types, regions, and layouts. We web-crawled around 19K room tour
videos from YouTube, and also source videos from the robotic learning datasets Open-X-
Embodiment (O’Neill et al., 2024) and AgiBot-World (Bu et al., 2025). Since these videos
lack the necessary 3D annotations for curating spatial instruction-tuning data, we build a
pseudo-annotation pipeline. As shown in Algorithm 1, we implement a multi-stage process-
ing pipeline. We begin by sampling frames at regular intervals and filtering out blurry images.
For each valid frame, we employ the open-vocabulary object detector Grounding-DINO (Liu
et al., 2024c) with predefined categories of interest. When a frame contains sufficient valid
objects, we use SAM2 (Ravi et al., 2024) to extract instance-wise semantic masks. Besides,
to transform 2D image content into 3D representations, we employ VGGT (Wang et al.,
2025) to extract 3D point sets for each image and integrate them with the previously gener-
ated instance masks. Notably, we apply an erosion algorithm to refine the instance masks,
which mitigates inaccurate point cloud estimations at object boundaries. This pipeline has
enabled us to create pseudo-annotations from approximately 19,000 room tour videos from
YouTube and robotic learning datasets, yielding diverse spatial question-answer pairs across
various room types and layouts without manual 3D annotations. By processing individual
frames rather than complete videos, our pipeline ensures higher quality semantic extraction
and more reliable reconstruction results, avoiding the noise and inconsistent issues typically
encountered when applying reconstruction and semantic extraction techniques to entire
video sequences.

D.3 VSI-590K DATA SOURCE ABLATION

To evaluate the effectiveness of our proposed VSI-590K dataset, we perform an ablation study by
finetuning the improved Cambrian-1 image MLLM described in Section 3.1 with part of the video
instruction tuning samples from LLaVA-Video (Zhang et al., 2024c). This model serves as the
baseline in Tab. 7. We measure the contribution of each dataset source by conducting individual and
combined fine-tuning with this model. Notably, fine-tuning on the full VSI-590K mixture yields
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Table 6: Statistics for VSI-590K. The curated data draws from 10 sources to improve diversity.

Dataset # Videos # Images # QA Pairs
Annotated Real Videos
S3DIS (Armeni et al., 2016) 199 - 5,187
Aria Digital Twin (Pan et al., 2023) 183 - 60,207
ScanNet (Dai et al., 2017) 1,201 - 92,145
ScanNet++ (Yeshwanth et al., 2023) 856 - 138,701
ARKitScenes (Baruch et al., 2021) 2,899 - 57,816
Simulated Data
ProcTHOR (Deitke et al., 2022) 625 - 20,092
Hypersim (Roberts et al., 2021) - 5,113 176,774
Unannotated Real Videos
YouTube Room Tour - 20,100 20,100
Open X-E (O’Neill et al., 2024) - 14,801 14,801
AgiBot-World (Bu et al., 2025) - 4,844 4,844

Total 5,963 44,858 590,667

Algorithm 1: QA Generation Pipeline for Unannotated Web-crawled Video
Input: Video sequence V , valid category list Cvalid, invalid category list Cinvalid, sampling interval ∆t, blur

threshold τblur, minimum object count θmin, minimum 3D point count θ3D, erosion kernel Kerosion
Output: Selected frame set F , Question-answer pairsQ

1 Initialize F ← ∅,Q ← ∅;
2 S ← SampleFrames(V,∆t) ; // Sample frames at interval ∆t
3 foreach frame f ∈ S do
4 if BlurDetection(f) > τblur then
5 continue;

6 O ← GroundingDINO(f, Cvalid ∪ Cinvalid) ; // Detect objects from both category
lists

7 if ∃o ∈ O : category(o) ∈ Cinvalid then
8 continue;

9 Ovalid ← {o ∈ O : category(o) ∈ Cvalid};
10 if |Ovalid| < θmin then
11 continue;

12 M← ∅ ; // Initialize mask set
13 foreach object o ∈ Ovalid do
14 b← GetBoundingBox(o);
15 m← SAM2(f, b) ; // Generate mask using SAM2
16 m′ ← Erode(m,Kerosion) ; // Apply erosion on the masks
17 M←M∪ {m′};
18 Pmap ← VGGT(f) ; // Generate 3D point map using VGGT
19 P ← ∅ ; // Initialize 3D point set
20 foreach mask m ∈M do
21 P ← ExtractMaskedPoints(m,Pmap) ; // Extract 3D points covered by mask
22 if |Pvalid| ≥ θ3D then
23 P ← P ∪ {P};

24 if |P| > 0 then
25 q ← QAGenerator(P) ; // Generate QA pairs from 3D geometry
26 Q ← Q∪ {q};
27 F ← F ∪ {f};

28 Return F ,Q;

the highest performance on most video spatial reasoning tasks, clearly surpassing the baseline and
single-source variants. Furthermore, we observe a clear hierarchy in the utility of different data source
groups for improving visual-spatial understanding: annotated real videos provide the most significant
improvements, followed by simulated data, and lastly pseudo-annotated images. This suggests that
videos are more valuable than images for spatial reasoning, as training exclusively on video data (as
opposed to single images) produces superior performance on both video and image spatial reasoning
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Table 7: Cumulative benefits of the data mixture in VSI-590K. Our proposed dataset, VSI-590K
(All-in-One), yields by far the strongest performance on VSI-Bench. Annotated real video sources
provide the most benefit, followed by simulated data, then pseudo-annotated images. 1RealWorldQA
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Baseline 64.2 54.5 73.5 28.5 18.1 20.0 36.0 22.2 42.9 31.3 24.6 33.0
Real Videos
+ S3DIS 65.4 54.9 75.3 41.6 63.8 21.0 44.9 37.0 43.8 47.4 34.0 41.1
+ ADT 65.9 56.5 77.5 41.0 51.0 29.8 52.5 40.2 42.3 38.8 34.0 39.8
+ ARKitScenes 66.8 56.7 77.3 51.0 70.2 32.7 64.5 60.0 55.1 45.2 37.1 43.5
+ ScanNet 67.5 57.7 77.5 56.3 70.9 37.9 67.5 59.3 57.0 46.7 35.1 76.1
+ ScanNet++ V2 66.1 57.3 77.5 56.3 72.5 40.7 65.7 56.9 59.7 47.1 31.4 76.2
Simulated Videos
+ ProcThor 62.2 55.7 74.9 36.4 21.0 29.7 49.3 3.8 52.3 45.7 30.4 58.7
+ Hypersim 67.2 56.0 79.7 45.6 67.8 32.0 59.3 36.4 53.2 47.0 32.5 36.6
Pseudo-Annotated Images
+ YTB RoomTour 62.2 52.6 75.0 32.5 43.4 25.8 24.2 27.3 38.7 31.4 28.4 40.9
+ OXE & AGIBot 64.4 54.4 72.5 30.6 40.3 23.1 27.9 26.6 38.0 22.8 32.0 33.8
All-in-One 60.8 54.0 77.9 63.2 73.5 49.4 71.4 70.1 66.9 61.5 36.6 76.6

Table 8: VSI-590K task group ablations on VSI-Bench. We report the performance on VSI-Bench
by deducting different single sub-tasks or a certain group of sub-tasks.
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Baseline 63.2 73.5 49.4 71.4 70.1 66.9 61.5 36.6 76.6
Task Groups
- Configuration 47.5 48.7 44.2 70.4 60.5 46.2 39.1 27.3 43.9
- Measurement 43.1 73.1 13.9 32.3 27.7 66.5 55.1 33.5 43.0
- Spatiotemporal 58.1 73.7 47.7 70.9 65.2 68.3 58.9 32.5 47.6

benchmarks. This aligns with the intuition that the temporal and multi-view nature in of videos aids
in developing robust spatial understanding.

In Tab. 8, we ablate three task groups of our VSI-590K. We notice that, configuration data contribute
the most to route planning, while measurement contribute the least.

D.4 EXAMPLES OF VSI-590K

To better illustrate VSI-590K, we provide qualitative visualization results in Figs. 20 to 26. These
visualizations demonstrate that VSI-590K delivers great diversity and quality for spatial question-
answering supervised fine-tuning.

D.5 ERROR ANALYSIS OF PSEUDO ANNOTATION PIPELINE

To analyze the systematic errors in our pseudo-annotation pipeline, we randomly sampled 500
question-answer pairs from the pseudo-annotated data and manually verified their correctness. As
shown in Tab. 9, we find that while some systematic errors are present, the overall data quality is
satisfactory. This finding is consistent with our observation in Tab. 7, which indicates that pseudo-
annotated data contributes the least to performance on VSI-Bench.

E MODEL IMPLEMENTATION DETAILS

This section elaborates the details of both our upgraded Cambrian-1 and Cambrian-S, from the
architecture design, to data and training recipes.
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Table 9: Error analysis of pseudo-annotation pipeline.

Question Type Metrics Human Performance

Abs. Count MRA 64.2
Rel. Count ACC 65.0
Rel. Dir. (Camera) ACC 83.8
Rel. Dir. (Object) ACC 64.0
Rel. Dist. (Camera) ACC 86.3
Rel. Dist. (Camera) ACC 78.6

E.1 BASE ARCHITECTURE

Following the original Cambrian-1 (Tong et al., 2024) and common practices in most MLLMs (Liu
et al., 2023; Li et al., 2024a), our model (both Cambrian-1† and Cambrian-S) integrates a pre-trained
vision encoder, a pre-trained language model as the decoder, and a vision-language adapter to bridge
these two modalities. Specifically, we employ SigLIP2-So400M (Tschannen et al., 2025) as the
vision encoder. This encoder was trained using a combination of losses: text next-token-prediction
(LocCa (Wan et al., 2024)), image-text contrastive (Sigmoid (Radford et al., 2021; Zhai et al., 2023)),
and masked self-prediction (SILC (Naeem et al., 2024)/TIPS (Maninis et al., 2024)). For the language
model, we utilize the instruction-tuned Qwen2.5-7B model (Yang et al., 2024b). Unlike Cambrian-1,
which used SVA for a deeper vision-language fusion, Cambrian-1† and Cambrian-S employ a simpler
GELU-activated (Dauphin et al., 2017) two-layer MLP as the vision-language adapter to maintain a
balance between performance and efficiency.

Table 10: Training Configuration for Stage 1 and Stage 2

Stage 1 (Alignment) Stage 2 (Instruction Tuning)
Model
Vision Encoder SigLIP2-So400M
Language Decoder Qwen2.5-7B-Instruct
VL-Adapter 2×MLP-GELU
Data Recipe
Data Cambrian-Alignment-2.5M Cambrian-7M
Image Resolution Pad (384×384) AnyRes (At most 9 sub-images)
# of Tokens / Image 729 At most 7290
Training Recipe
Max Sequence Length 2048 8192
Trainable Module VL-Adapter VL-Adapter & LLM
Learning Rate 1× 10−3 1× 10−5

Batch Size 512 256
Warmup Ratio 0.06 0.03

E.2 STAGE 1 & 2: CAMBRIAN-1 TRAINING

Our upgraded base image MLLM Cambrian-1 is trained using a 2-stage training recipe, similar to
Cambrian-1.

Stage 1: Vision-Language Alignment. We freeze most of the model’s parameters, training only
the vision-language adapter on the Cambrian-Alignment-2.5M dataset. Input images are padded to a
fixed resolution of 384× 384, and the maximum sequence length is set to 2048.

Stage 2: Instruction Tuning. We unfreeze both the vision-language adapter and the LLM decoder,
keeping the vision encoder frozen. The model is then fine-tuned on the Cambrian-7M image-text
dataset. Slightly different from Cambrian-1, we adopt an any-resolution strategy (Liu et al., 2024b)
during this stage. More specifically, input images are resized to a certain resolution while maintaining
their aspect ratio. These resized images are then divided into several 384× 384 sub-images. This
approach enables the model to handle input images at higher and more dynamic resolutions.
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Table 10 details the first 2 training stages’ setups. Noteworthy, stage 1 and stage 2 costs ∼1000 and
∼9700 TPU-v4-core hours for a 7B model, respectively.

E.3 STAGE 3 & 4: CAMBRIAN-S TRAINING

Cambrian-S is created by fine-tuning the Cambrian-1 base model through two additional video-centric
training stages. While the architecture remains the same, these stages adapt the model from a static
image understanding expert to a dynamic, spatially-aware video reasoner.

Stage 3: General Video Instruction Tuning. The primary goal of this stage is to lift the model’s
capabilities from static images to dynamic video, establishing a robust foundation for general video
understanding. To achieve this, we finetune the model on CamS-3M, a curated 3M-sample dataset
mixture of existing public video instruction-tuning datasets. During this stage, we keep the vision
encoder frozen while training the LLM decoder and the vision-language adapter, allowing the model
to learn temporal relationships and general video-language concepts.

Stage 4: Spatial Sensing Tuning. This final stage hones the model’s specialized spatial intelligence.
We finetune the model from Stage 3 on a mixed corpus combining our specialized VSI-590K with a
proportional sample of the general video data from CamS-3M. As demonstrated in our ablation study
(Sec. G), this data mixture is crucial. It allows us to maximize spatial performance on challenging
benchmarks like VSI-Bench while preserving the broad video understanding capabilities developed
in Stage 3.

The specific training configurations for these final two stages are detailed in Table 11.

Table 11: Video Instruction Post-Training Configuration for Cambrian-S-7B (Stage 3 and Stage 4).

Stage 3 (General Video Instruction Tuning) Stage 4 (Spatial Instruction Tuning)
Model
Vision Encoder SigLIP2-So400M
Language Decoder Qwen2.5-7B-Instruct
VL-Adapter 2×MLP-GELU
Data Recipe
Data Source CamS-3M General Video Mixture (Tab. 12) VSI-590K + a proportional sample of CamS-3M
Video Frame Resolution Pad (384×384) Pad (384×384)
Frame Sampling Strategy Uniform Uniform
# Frames per Video 64 128
# Tokens per Video Frame 64 64
Training Recipe
Max Sequence Length 8192 16384
Trainable Modules VL-Adapter and MLLM
Learning Rate 1× 10−5

Global Batch Size 256
Warmup Ratio 0.03

Table 12: Data sources for the CamS-3M general video instruction tuning mixture used in Stage 3 &
4.

Source Datasets
LLaVA-Video (Zhang et al., 2024c) VideoChatGPT-Plus (Maaz et al., 2024)
ShareGPT4o (Cui et al., 2024) Ego4D (Grauman et al., 2022)
VideoChat2 (Li et al., 2024d) HowTo100M (Miech et al., 2019)
MovieChat (Song et al., 2024) HD-VILA (Xue et al., 2022)
EgoIT (Yang et al., 2025) HTStep (Afouras et al., 2023)
Perception Test (Patraucean et al., 2023) TimeIT (Ren et al., 2024)
Vript (Yang et al., 2024c) HowToInterlink7M (Wang et al., 2024a)
GUI-World (Chen et al., 2024c) Video-Localized-Narratives (Voigtlaender et al., 2023)
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F ADDITIONAL BENCHMARK RESULTS AND ANALYSIS OF CAMBRIAN-1 AND
CAMBRIAN-S

F.1 IMAGE MLLM BENCHMARKS

Table 13 details the performance of our improved Cambrian-1-7B and Cambrian-S-7B on image-based
MLLM benchmarks.

Table 13: Evaluate our upgraded Cambrian-1-7B and Cambrian-S-7B on image-based MLLM
benchmarks.
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Open-source Models
Mini-Gemini-HD-8B 72.7 1606.0 72.7 73.2 64.5 55.7 75.1 37.3 37.0 73.5 62.9 59.1 47.7 70.2 74.6 51.5 18.7 62.1 62.2 63.0

LLaVA-NeXT-8B 72.5 1603.7 72.1 72.7 65.2 55.6 72.8 41.7 36.3 71.6 63.9 69.5 49.0 64.6 72.6 56.6 38.7 60.1 62.2 65.3
Cambrian-1-8B 73.1 1,547.1 75.9 74.7 64.6 61.3 80.4 42.7 49.0 73.0 71.3 73.3 62.4 71.7 77.8 65.0 51.3 64.2 72.3 72.0

LLaVA-OneVision-7B - 1,580.0 80.8 75.4 - - 96.0 48.8 63.2 81.4 - 80.0 - - 87.5 - - 66.3 - -
Cambrian-1-7B (Ours) 75.0 1,611.9 78.9 76.3 64.3 64.1 84.2 48.7 45.5 78.0 80.5 78.9 73.3 79.1 90.6 66.3 53.3 67.7 70.0 74.0

Cambrian-S-7B 74.7 1,578.8 79.7 77.0 63.0 64.9 83.7 48.3 49.6 77.9 77.5 77.2 68.7 75.9 88.1 70.4 60.0 67.5 73.4 80.6

F.2 VIDEO MLLM BENCHMARKS

In §2, we analyze the behaviors when video-based benchmarks meets kinds of different evaluation
setups, using our upgraded Cambrian-1-7B as a prober. Detailed results of Fig. 2 are listed in Tab. 14.

Table 14: Our upgraded Cambrian-1’s performance on video benchmarks, under different evaluation
setups.
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Chance-Level 34.0 22.0 20.0 25.00 20.00 14.00 25.0 27.3 33.3
Cambrian-1-7B
Blind Test 17.4 7.8 24.3 31.2 31.9 25.0 42.9 19.6 40.7
Single Frame 20.4 15.8 27.7 41.6 44.0 29.0 46.9 46.1 52.1
Multiple (32) Frames 25.8 18.9 31.6 53.7 48.1 31.9 52.5 51.4 55.4
(32) Frame Captions 21.8 16.8 29.5 55.3 52.4 40.1 52.2 47.7 55.6
Cambrian-S-7B 58.7 27.2 37.2 61.3 75.7 36.6 54.7 59.3 68.3

F.3 CONTRIBUTIONS FROM IMAGE-BASED AND VIDEO-BASED INSTRUCTION TUNING

To elucidate the respective contributions of image-based and video-based instruction tuning to
a model’s final video understanding capabilities, we conducted a series of experiments. These
experiments employed varying proportions of image and video data during the finetuning stages, and
we observed the resulting performance trends across diverse video benchmarks.

More specifically, for the initial image MLLM training, we randomly sampled 1M, 4M, and 7M
image question-answering (QA) pairs from Cambrian-7M to train distinct models. Subsequently,
for video-specific finetuning, we randomly sampled 25%, 50%, 75%, and 100% of video QA pairs
from LLaVA-Video-178K (∼1.6M data samples in total) to perform video-only finetuning on each
of these pretrained image MLLMs. The hyperparameters for image instruction tuning and video
finetuning were maintained as detailed in Table 10 and Table 11, respectively. The experimental
results, presented in Table 15, yield the following observations:

• Models trained with more image data do not inherently outperform those trained with less
when evaluated on video benchmarks without finetuning. As indicated in the table, direct
evaluation on video benchmarks reveals comparable performance across all three models,
which were initially trained on 1M, 4M, and 7M image datasets, respectively.
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• Finetuning on video data can be generally beneficial for models pretrained with larger image
datasets, though not universally. When all models were finetuned on 100% video data,
the model initially trained on 7M images outperformed the other two on 5 out of 9 video
benchmarks (specifically, HourVideo, VideoMME, EgoSchema, LVBench, and Perception
Test).

• Incorporating video data into the training process consistently benefits performance across
all video benchmarks. We observed that finetuning an image-based Multimodal Large
Language Model (MLLM) with video data, even a small portion such as 25%, improved its
performance on all evaluated video benchmarks.

• Increasing the amount of video data used for finetuning does not guarantee consistent
performance improvements across all benchmarks. While video finetuning is generally
advantageous, some benchmarks (e.g., VideoMME, VSI-Bench, Tomato) do not show
further gains with more video data. For instance, models finetuned with 100% video
data exhibited performance on par with those finetuned with only 25% video data on the
VideoMME benchmark. Only EgoSchema, MVBench, and Perception Test demonstrated
consistent benefits from increased video data, a phenomenon we hypothesize is related to
the underlying video distribution of the training videos.

Table 15: Video MLLM performance trained with different proportions of image and video data.
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Chance-Level - 34.0 22.0 20.0 25.0 20.0 14.0 25.0 27.3 33.3

1M

0% 26.0 20.2 32.5 52.1 46.9 32.0 51.4 50.5 54.2
25% 32.4 25.4 36.2 60.4 47.0 40.1 53.5 57.0 61.9
50% 33.3 27.2 36.2 61.7 47.1 40.1 53.2 59.2 64.3
75% 32.7 28.8 34.4 60.7 48.7 37.7 53.3 59.5 66.3
100% 34.4 28.4 35.1 61.3 48.9 39.6 53.0 60.1 67.5

4M

0% 26.7 20.5 31.8 53.1 44.8 32.0 52.1 51.5 54.9
25% 32.3 26.7 37.0 61.3 45.0 38.6 53.1 57.6 61.9
50% 31.9 27.4 37.2 61.9 45.7 38.1 54.2 59.5 65.2
75% 33.8 27.9 36.2 61.1 47.3 40.9 53.1 60.1 67.0
100% 33.8 28.0 35.5 60.5 50.2 40.2 52.2 60.5 67.7

7M

0% 25.8 18.9 31.6 53.7 48.1 31.9 52.5 51.4 55.4
25% 31.5 24.6 36.7 61.3 48.8 37.7 54.7 58.3 62.3
50% 31.4 27.6 36.6 61.0 49.0 37.9 53.6 59.7 65.6
75% 31.8 27.0 35.7 61.8 50.7 38.0 53.0 60.2 67.9
100% 32.6 27.7 37.3 62.1 52.4 39.4 54.3 60.6 68.8

G CAMBRIAN-S TRAINING RECIPE ABLATION STUDY

To determine the optimal training recipe for Cambrian-S, we studied two key factors: the importance
of the pretrained base video model and the composition of the instruction-tuning dataset. As shown
in Tab. 16, we start from four base models with diverse video capabilities:

• A1, which is only trained with image-text alignment on Cambrian-1 alignment data. No
image instruction tuning is conducted.

• A2, our improved Cambrian-1 model, which is finetuned with image instruction tuning on
top of A1.

• A3, which is initialized from A2 and finetuned on 429K general video instruction tuning
samples.

• A4, which is initialized from A2 and finetuned on a larger 3M set of general video instruction
tuning samples.
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We finetune each of these checkpoints using two different setups: (i) finetuning only on VSI-590K,
and (ii) finetuning on a mixture of VSI-590K and additional general video instruction tuning data.
The results in Tab. 16 lead to two key observations that informed our final recipe:

• A stronger base model (indicated by better performance on general benchmarks like
VideoMME and EgoSchema) consistently leads to better spatial understanding after finetun-
ing. This implies that strong spatial sensing is built upon a foundation of capable general
video understanding.

• Compared to mixed-data finetuning, VSI-590K-only finetuning yields the highest perfor-
mance on VSI-Bench. However, this specialization comes at the cost of a significant
performance drop on other general video benchmarks.

Table 16: Spatial Sensing Tuning Recipe Investigation. We take four base models with various
general video capability and study their different trends when conducting spatial sensing tuning with
two different data recipe. A1: only the connector is trained during image-language alignment, A2:
A1 w/. Cambrian-7M instruction tuning data, A3: A2 finetuned on 429K video instruction tuning
data, A4: A2 finetuned on 3M video instruction tuning data. From A1 to A4, video understanding
ability improves monotonically. I-IT and V-IT denotes instruction finetuning on image and video
data respectively.

Model VSI-Bench VideoMME EgoSchema Perception Test
Different Base Models
A1 (w/o. I-IT, i.e. QwenLM) 21.4 44.2 42.9 44.5
A2 (A1 + I-IT, i.e. Cambrian-1) 25.8 53.7 48.1 55.4
A3 (A2 + V-IT, 429K data) 28.9 61.2 50.3 66.3
A4 (A2 + more V-IT, 3M data) 35.7 62.6 77.0 70.9
SFT w/. VSI-590K

from A1 57.2 40.3 38.7 52.3
from A2 66.8 46.7 47.2 52.3
from A3 68.8 52.3 48.4 55.8
from A4 69.2 54.1 55.2 59.2

SFT w/. VSI-590K & general V-IT data mixture
from A1 61.3 60.5 52.8 65.0
from A2 63.2 62.6 52.9 65.6
from A3 64.0 61.0 54.9 66.8
from A4 65.1 61.9 77.3 71.2

Table 17: VSI-Bench full results. Best results are highlited. It’s notable that without any route
planning data, Cambrian-S-7B can outperform Gemini-1.5-Pro on route planning subtask, which
does not only requires spatial sensing but also reasoning.
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Methods Avg. Numerical Answer Multiple-Choice Answer
Statistics
Chance Level (Random) - - - - - 25.0 36.1 28.3 25.0
Chance Level (Frequency) 34.0 62.1 32.0 29.9 33.1 25.1 47.9 28.4 25.2
Proprietary Models (API)
GPT-4o 34.0 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5
Gemini-1.5 Flash 42.1 49.8 30.8 53.5 54.4 37.7 41.0 31.5 37.8
Gemini-1.5 Pro 45.4 56.2 30.9 64.1 43.6 51.3 46.3 36.0 34.6
Gemini-2.5 Pro 51.5 43.8 34.9 64.3 42.8 61.1 47.8 45.9 71.3
Open-source Models
Cambrian-S-7B 67.5 73.2 50.5 74.9 72.2 71.1 76.2 41.8 80.1
Cambrian-S-3B 57.3 70.7 40.6 68.0 46.3 64.8 61.9 27.3 78.8
Cambrian-S-1.5B 54.8 68.4 40.0 61.5 50.1 62.4 48.9 29.9 77.5
Cambrian-S-0.5B 50.6 67.9 35.4 52.2 52.5 52.3 46.5 25.8 72.2
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H PREDICTIVE SENSING DETAILS

H.1 NEXT FRAME PREDICTION HEAD ARCHITECTURE

As shown in Algorithm 2, our next frame prediction head is a simple two-layer MLP with GELU
activation function. The output dimension is set to 1152, which is the same as the dimension of our
vision encoder’s(i.e., SigLIP2-So400M) output.

Algorithm 2: Next Frame Prediction Head Architecutre (in PyTorch Style).

NFPHead(
Sequential(
(0): Linear(in_features=3584, out_features=3584, bias=True)
(1): GELU(approximate=none)
(2): Linear(in_features=3584, out_features=1152, bias=True)
)

)

H.2 ADDITIONAL ABLATIONS AND RESULTS

In Table 18, we study the impact of NFP loss on model’s general video understanding capability and
visual spatial intelligence. Specifically, we observe that with a proper tuned loss weight (i.e., 0.1), the
NFP loss can have less to none negative impact on the model’s video understanding ability.

Table 18: Impact of NFP loss on video understanding.

Loss Weight Accuracy
Cosine MSE VideoMME EgoSchema VSI-Bench

0.0 0.0 63.4 76.3 67.5
0.1 0.1 63.9 76.8 66.1
0.5 0.5 63.6 77.2 60.8
1.0 1.0 60.9 73.1 60.2

H.3 MEMORY FRAMEWORK DESIGN FOR VSO

As introduced in main paper (and shown in Algorithm 3), our predictive memory mechanism
comprises three distinct memory levels (Ms, Ml, Mw) and four key transition functions governing
their interaction: Sensory Streaming, Memory Compression, Memory Consolidation, and Retrieval.
This section details the implementation of these functions.

Basic memory units. For our implementation, we utilize the encoded key-value pairs from each
Large Language Model (LLM) layer as the basic memory units. This choice, rather than using output
latent features from a vision encoder or vision-language connector, allows us to fully leverage the
LLM’s internal capabilities for memory construction without requiring external modules. This design
decision will be elaborated upon in subsequent sections.

Streaming sensing. Each incoming frame is initially processed independently by the vision encoder
and the vision-language connector with a window size of Ws. Subsequently, it is further encoded by
the LLM, referencing selected previous frames. The key-value pairs from these preceding frames,
cached in the Sensory memory buffer (Ms), provide the necessary context for this encoding step.

Surprise-based memory compression. In the meantime of encoding a single frame, we assess its
“surprise” level. This is achieved by calculating the difference between the model’s prediction for
the current frame and the actual ground truth observation (both in the latent feature space). When
a frame of timestamp t is moved from the sensory memory buffer Ms to the long-term memory
Ml, if it is deemed non-surprising (i.e., its surprise score is below a predefined threshold Ts), we
will downsample its’ key-value pairs by a factor of 2 along the spatial (H ×W ) dimension. This
surprise-based compression mitigates redundancy in the information stored within Ml.
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Surprise-based memory consolidation. Long-term memory Ml is initialized with a predefined
budget size Blong (e.g., 32,768 tokens). When the volume of memory tokens surpasses this budget,
we apply a surprise-based consolidation function to Ml to ensure it remains within the allocated
limit. Our consolidation function is straightforward yet effective: we identify the surprise score
associated with each frame in Ml. Then, the frame with the lowest surprise score is removed (or
“forgotten”). Then, we merge or drop some of these frames according to their surprise scores (we
tried three different strategies here: 1. forget the oldest memory, 2. forget the least surprise memory,
and 3. forget the least surprise memory while merging adjacent surprise memories if any adjacent
surprise memories exist). This process is iterated until the total size of Ml falls below the budget.

Retrieval. Upon receiving a user query q, we first retrieve the most relevant frames from the
long-term memory (Ml) to construct the working memory (Mw). This Mw then serves as the
context for answering the user’s query. To perform this retrieval efficiently without resorting to
external modules, we utilize the inherent similarity measurement capabilities of the LLM’s attention
mechanism. Specifically, for each transformer layer, the user query q is transformed into the attention
mechanism’s query feature space. We then compute the similarity between this query feature and
the key features of each frame stored in Ml. Similarity is measured using cosine distance, and for
simplicity, multi-head features are treated as a single feature. The k frames with the highest similarity
scores have their key-value pairs selected and utilized by the attention mechanism to further encode
the user query.

Algorithm 3: Memory Framework Demonstration
Input: Frames {f1, . . . , fT }, User query q
Input: Encoder E , Decoder D, Surprise Estimator S, Surprise threshold τ
Input: Compression function C, Consolidation function G, Retrieval functionR
Input: Sensory memoryMs ← ∅ with budget Bs, Long-term memoryMl ← ∅ with budget Bl, Working

memoryMw ← ∅
1 for t← 1 to T do
2 zt ← E(ft,Ms);
3 Ms ←Ms ∪ {zt} ; // Streaming sensing
4 st ← S(ft,Ms) ; // Surprise estimation
5 while |Ms| > Bs do
6 Dequeue zold fromMs;
7 m← 1[st ≥ τ ] · zold + 1[st < τ ] · C(zold) ; // Selective compression
8 Ml ←Ml ∪ {m};
9 if |Ml| > Bl then

10 Ml ← G(Ml) ; // Memory consolidation

11 Mw ←R(q,Ml) ; // Retrieve working memory
12 â← D(q,Mw) ; // Answering query with Mw

13 return â

H.4 MEMORY FRAMEWORK DESIGN FOR VSC

Algorithm 4 presents our agentic framework for the VSI-SUPER Count task. Similar to the memory
design in Algorithm 3, we encode sensory frames using a sliding window approach with a window
size of Ws. The latent frame prediction module continuously estimates the expected next frame and
computes the prediction error to quantify how "surprise" the actual next frame is. As new frame arrivs,
the oldest frames that exceed the sensory memory window are dequeued and stored in the long-term
memory. If a dequeued frame is deemed “surprising” (i.e., its prediction error exceeds a predefined
threshold τ ), which may indicate a scene or spatial boundary, we trigger a query response using the
accumulated long-term memory and reset it afterward. The generated response is then stored in the
answer memory bank. The final answer is computed as the aggregation of all intermediate answers
stored in this bank.
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Algorithm 4: Agentic framework design for VSI-SUPER Count task.
Input: Frames {f1, . . . , fT }, user query q
Input: Encoder E , Decoder D, Surprise Estimator S, threshold τ
Input: Sensory memoryMs ← ∅ with budget Bs

Input: Long-term memoryMl ← ∅, Answer memory bankMAns ← ∅
1 for t← 1 to T do
2 zt ← E(ft,Ms);
3 Ms ←Ms ∪ {zt} ; // Streaming sensing
4 st ← S(ft,Ms) ; // Surprise estimation
5 if |Ms| > Bs then
6 Remove oldest zold fromMs;
7 Ml ←Ml ∪ {zold} ; // Store to long-term memory

8 if st ≥ τ then
9 â← D(q,Ml) ; // Answer query using long-term memory

10 MAns ←MAns ∪ {â};
11 Ml ← ∅ ; // Reset long-term memory

12 return Sum(MAns)

H.5 COMPARISONS WITH EXISTING MEMORY METHOD

In Tab. 19, we compare our memory design with MovieChat and Flash-VStream, which are both
designed for general long-video understanding. Our memory yield consistently better results than
MovieChat and Flash-VStream.

We also compare our memory design with MovieChat and Flash-VStream on existing video bench-
marks (i.e., VSI-Bench, Video-MME, EgoSchema). As shown in Tab. 20, our memory design
outperforms both MovieChat and Flash-VStream across all benchmarks.

Table 19: We compare our memory design with MovieChat and Flash-VStream on VSO benchmark.
Notebaly, our memory design outperforms both MovieChat and Flash-VStream across all setups,
frequent by a large margin.

Model 10 Mins. 30 Mins. 60 Mins. 120 Mins. 240 Mins.
Our Memory 43.3 45.0 45.0 43.3 43.3
MovieChat 31.7 28.3 28.3 25.0 21.7
Flash-VStream 20.0 31.7 23.3 21.7 20.3

Table 20: Memory compairson on video benchmarks. For all methods, video inputs are sampled at
1 FPS. OOM indicates out-of-memory.

Method VSI-Bench Video-MME EgoSchema

Naive Inference 65.3 OOM 76.8
With Memory and Predictive sensing 64.7 61.3 75.8
MovieChat 53.3 59.4 74.7
Flash-VStream 52.1 55.4 73.3

H.6 REPEAT SEQUENCE EXPERIMENT ON "PREDICTIVE ERROR AS SURPRISE"

Following the suggestion of Reviewer x9om, we conducted a repeated sequence experiment to
study the difference between "predictive error as surprise" and "adjacent frame feature similarity as
surprise". Specifically, we sampled the first two frames from the 288 videos used in VSI-Bench and
repeated them 10 times to form 20-frame sequences (pattern: "ABABAB..."). We then fed these
sequences into the model to measure surprise scores using both metrics.

We visualize these scores in Fig. 17. As shown, the "adjacent frame feature similarity" scores remain
constant because the sequence consists of only two alternating frames. In contrast, a distinct pattern
emerges for "predictive error as surprise": the scores initially decrease before gradually increasing.
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Here, the surprise is majorly affected by two factors: prior observation, which helps reduce surprise,
and the out-of-distribution (OOD) input (the model has never seen these repeated two frames during
training), which results in surprise increase. Initially, the prior observation does help to decrease
surprise. However, as the sequence gets longer, the increasingly severe OOD input lead to a larger
overall increase in surprise.

We also visualize the temporal distribution of when minimum surprise score occur in each sequence.
As shown in Fig. 18 (left), the minimum surprise score frequently occurs after the second or third
repetition, supporting our claim that past observations enable the model to reduce surprise in sub-
sequent frames. Since interleaved repetition causes significant video jitter, we conducted a similar
experiment repeating the first two frames 10 times using an "ABBAABBA..." pattern. As shown in
Fig. 18 (right), given this smoother video sequence, the minimum surprise score occurs later in the
sequence.
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Figure 17: Visualization of surprise scores for both "predictive error as surprise" and "adjacent frame
feature similarity as surprise" on 2-frame repeated sequences. Only 19 surprise scores are included
because the first frame (with index 0) has no previous frame to compute the surprise score.

I DISCUSSION, LIMITATION, AND FUTURE WORK

Summarization. We highlight the importance of and propose a hierarchy for spatial supersensing
capabilities in videos, arguing that achieving superintelligence requires AI systems to move beyond
text-based knowledge and semantic perception, the current focus of most MLLMs, to also develop
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Figure 18: Visualization of the distribution of when the minimum surprise score occurs in each
sequence. Left: Video sequence with "ABABAB..." pattern. Right: Video sequence with "AB-
BAABBA..." pattern.

spatial cognition and predictive world models. To measure progress, we introduce VSI-SUPER and
find that current MLLMs struggle with it. To test whether current progress is limited by data, we
curate VSI-590K and train our spatially grounded MLLM, Cambrian-S, on it. Although Cambrian-S
performs well on standard benchmarks, its results on VSI-SUPER reveal the limitations of the current
MLLM paradigm. We prototype predictive sensing, using latent frame prediction and surprise
estimation to handle unbounded visual streams. It improves Cambrian-S performance on VSI-SUPER
and marks an early step toward spatial supersensing.

Limitations and Future Work. Our goal is to present a conceptual framework that encourages
the community to reconsider the importance of developing spatial supersensing. As a long-term
research direction, our current benchmark, dataset, and model design remain limited in quality, scale,
and generalizability. While a meaningful progress, our current progress is limited by the following
factors:

• VSI-SUPER is built with concatenated videos, and covers a limited scope of spatial super-
sensing.

• Our current "predictive sensing" remains far from the way human do it. For example,
humans do not only predict the next frame and measure the surprise, but also learn from the
observations and the surprise quickly to update their internal world model. However, our
current models are far from achieving this.

• As a compromise to training efficiency and resource constrain, our current model is trained
on 1 FPS video, which is far from the real-world video sampling rate and will result in
unnegligible information loss.

• Inspite of our models leading performance on VSI-Bench, they remain far away from the
human level visual spatial intelligence.

• VSI-SUPER is constructed using concatenated videos and currently covers a limited scope
of spatial supersensing scenarios.

• Our implementation of "predictive sensing" differs significantly from human cognition.
Humans do not merely predict the next frame and measure surprise; they also rapidly update
their internal world models based on these observations. Our current models lack this
dynamic adaptation capability.

• To balance training efficiency with resource constraints, our model is trained on 1 FPS video.
This sampling rate is much lower than real-world visual streams, resulting in non-negligible
information loss.

• Despite our models achieving leading performance on VSI-Bench, they still lag significantly
behind human-level visual spatial intelligence.
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To address these limitations, we must design more realistic benchmarks and curate larger-scale
datasets with diverse scenarios. Furthermore, we emphasize the need for advanced algorithms that
extend beyond static training paradigms to enable test-time learning and rapid adaptation.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Which of the following correctly represents the order in which the Stitch appeared in the
video?
A. Stove, Trash bin, Refrigerator, Counter B. Trash bin, Refrigerator, Counter, Stove
C. Stove, Counter, Refrigerator, Trash bin D. Trash bin, Stove, Counter, Refrigerator

Which of the following correctly represents the order in which the Hello Kitty appeared in
the video?
A. Nightstand, Bed, Crib, Blue bench B. Blue bench, Crib, Nightstand, Bed
C. Bed, Nightstand, Blue bench, Crib D. Blue bench, Bed, Crib, Nightstand

Which of the following correctly represents the order in which the Golden Retriever
appeared in the video?
A. Bed, Table, Chest of drawers, Floor B. Table, Chest of drawers, Bed, Floor
C. Chest of drawers, Floor, Table, Bed D. Floor, Bed, Chest of drawers, Table

Which of the following correctly represents the order in which white Ragdoll cat appeared
in the video?
A. Ground, Trash bin, Bench, Table B. Table, Bench, Ground, Trash bin
C. Ground, Trash bin, Table, Bench D. Trash bin, Bench, Table, Ground

Figure 19: Examples of our Sequential Order Recall benchmark. Only edited frames are visualized.
Ground truth answers are highlighted.
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Absolute Direction (Object)

Standing by the backpack, looking toward the table, how far counterclockwise in degrees
must I turn to see the trash bin?
Answer: 334.09

Absolute Distance

Measuring from the closest points of each, how far apart are the chair and the door in
meters?
Answer: 2.32

Absolute Distance

Considering the chair and the door, which object’s longest edge is the shorter?
A. Door
B. Chair

Figure 20: Examples of VSI-590K (Annotated Real Video).

Object Appearance Order

Determine the initial appearance order of these categories in the video: door, chair, lamp,
refrigerator.
A. refrigerator, door, lamp, chair B. refrigerator, chair, door, lamp
C. refrigerator, chair, lamp, door D. door, chair, lamp, refrigerator

Absolute Size

Provide the longest side’s length for the door in inches.
Answer: 72.00

Room Size

Indicate the room’s dimensions in square feet. If there’s more than one room, estimate
their total size.
Answer: 232.76

Figure 21: Examples of VSI-590K (Annotated Real Video).
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Relative Direction (Object Perspective)

Facing the door while standing near the window, in which of the following positions is
the board relative to me: front-left, front-right, back-left, or back-right? Use Cartesian
quadrants, with me at the origin looking toward positive y-axis
A. Back-right
B. Front-right
C. Front-left
D. Back-left

Relative Distance (Object Perspective)

Identify the object among (bookcase, chair, board, door) that is closest to the window
based on the shortest distance between their closest points. Choose the nearest instance if
several exist.
A. Bookcase
B. Chair
C. Board
D. Door

Figure 22: Examples of VSI-590K (Annotated Real Video).

Relative Distance (Object Perspective)

If I am standing by the dresser and facing the chair, is the closet to my left, right, or back?
An object is to my back if I would have to turn at least 135 degrees in order to face it.
A. Left
B. Right
C. Back

Figure 23: Examples of VSI-590K (Annotated Simulated Video).
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Relative Direction (Object Perspective)

With the toilet beside me and facing the cabinet, is the lamp positioned front-left, front-
right, back-left, or back-right relative to me, based on Cartesian plane quadrants?
A. Back-right
B. Front-right
C. Front-left
D. Back-left

Relative Distance (Object Perspective)

Identify the object among (bookcase, chair, board, door) that is closest to the window
based on the shortest distance between their closest points. Choose the nearest instance if
several exist.
A. Bookcase
B. Chair
C. Board
D. Door

Figure 24: Examples of VSI-590K (Annotated Simulated Video (Frame)).
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Object Counting (Relative)

If counted, would chairs be fewer than, more than, or equal in number to tables?
A. Fewer
B. More
C. Equal

Relative Direction (Camera Perspective)

Through the camera’s lens, is the sink captured on the left or right part of the scene?
A. Right
B. Left

Figure 25: Examples of VSI-590K (Unannotated Real Video (Frame)).

Object Counting (Absolute)

What would be the count if you tallied all the chairs?
Answer: 6

Relative Distance (Camera Perspective)

In terms of proximity to the camera, which is closer: a table or a sofa?
A. Table
B. Sofa

Figure 26: Examples of VSI-590K (Unannotated Real Video (Frame)).

We manually reviewed all LLM-suggested edits to ensure factual correctness. The LLM is acknowl-
edged here for editorial assistance only and was not involved as an author.
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Table 21: Absolute Count Question Template

Absolute Count Question Template

1. What’s the number of {object_name}(s) present in this room?

2. Can you count how many {object_name}(s) are in this room?

3. Could you tell me the total number of {object_name}(s) in this room?

4. Exactly how many {object_name}(s) are in here?

5. In this room, how many {object_name}(s) can be found?

6. What’s the count of {object_name}(s) in this room?

7. Tell me how many {object_name}(s) are located here.

8. Do you know how many {object_name}(s) are inside this room?

9. What’s the exact quantity of {object_name}(s) in this room?

10. Could you specify how many {object_name}(s) exist in this room?

11. I’d like to know the number of {object_name}(s) in this room.

12. Can you inform me how many {object_name}(s) there are here?

13. What’s the total number of {object_name}(s) found in this room?

14. How many {object_name}(s) can we find in this area?

15. Please provide the count of {object_name}(s) in this room.

16. What’s the exact count of {object_name}(s) present here?

17. Could you clarify how many {object_name}(s) there are in this room?

18. How many {object_name}(s) do we have in this room?

19. What’s the quantity of {object_name}(s) seen in this room?

20. Could you indicate how many {object_name}(s) are present?

21. Can you verify the number of {object_name}(s) in this room?

22. I’d appreciate knowing how many {object_name}(s) are here.

23. Precisely how many {object_name}(s) does this room contain?

24. How many {object_name}(s) does this room have?

25. Could you give me the number of {object_name}(s) in this space?
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Table 22: Absolute Direction Question Template (Object Perspective)

Absolute Direction Question Template (Object Perspective)

1. I’m at the {object_1}, looking towards the {object_2}. How many degrees {direction}
should I rotate to look at the {object_3}?

2. Standing by the {object_1} and facing toward the {object_2}, how far in degrees do I turn
{direction} to face the {object_3}?

3. From the {object_1}, oriented toward the {object_2}, what’s the angle of rotation
{direction} needed to look directly at the {object_3}?

4. If I’m positioned at the {object_1}, looking directly at the {object_2}, how many degrees
must I rotate {direction} to align myself with the {object_3}?

5. Standing at the {object_1} and directed toward the {object_2}, what’s the degree measure-
ment I need to rotate {direction} to face the {object_3}?

6. At the {object_1}, when facing the {object_2}, how many degrees should I turn
{direction} to face toward the {object_3}?

7. Standing at the {object_1}, facing toward the {object_2}, how far {direction} do I
rotate (in degrees) to see the {object_3}?

8. Starting from the {object_1} and looking at the {object_2}, how many degrees of
{direction} rotation are required to look at the {object_3}?

9. At the location of the {object_1}, facing the {object_2}, what angle (in degrees)
{direction} do I rotate to directly see the {object_3}?

10. Standing at the {object_1}, facing the {object_2}, how many degrees do I have to rotate in
{direction} to face the {object_3} exactly?

11. Positioned at the {object_1} and oriented toward the {object_2}, how many degrees
{direction} should I turn to face the {object_3}?

12. If at the {object_1} and directly facing the {object_2}, what {direction} angle adjust-
ment is needed to look at the {object_3}?

13. From my position at the {object_1}, looking toward the {object_2}, how many degrees
should I rotate {direction} to view the {object_3}?

14. Standing by the {object_1}, looking toward the {object_2}, how far {direction} in
degrees must I turn to see the {object_3}?

15. I’m at the {object_1} facing the {object_2}; how many degrees {direction} must I
rotate to align my view with the {object_3}?

16. Located at the {object_1} and facing toward the {object_2}, how many degrees
{direction} rotation will it take to directly face the {object_3}?

17. Standing at the {object_1} with eyes toward the {object_2}, how many degrees must I
rotate {direction} to point toward the {object_3}?

18. When positioned at the {object_1} and viewing the {object_2}, what’s the required angle
of {direction} rotation to face the {object_3}?

19. From my standpoint at the {object_1}, facing toward the {object_2}, how many degrees
{direction} must I rotate to directly face the {object_3}?

20. If I’m standing at the {object_1}, looking at the {object_2}, what’s the {direction}
degree measurement needed to see the {object_3}?

21. At the {object_1}, facing the {object_2}, what’s the precise angle of {direction}
rotation required to turn toward the {object_3}?

22. Standing at the {object_1} and oriented to the {object_2}, how much should I rotate
{direction}, in degrees, to face the {object_3}?

23. If I’m located at the {object_1}, viewing the {object_2}, how many degrees of rotation
{direction} are necessary to face the {object_3}?

24. Standing at the {object_1}, looking toward the {object_2}, what’s the number of degrees
needed to rotate {direction} to look directly at the {object_3}?

25. From the {object_1} and facing the {object_2}, how many degrees {direction} do I
precisely rotate to face the {object_3}?

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 23: Absolute Distance Question Template (Object Perspective)

Absolute Distance Question Template (Object Perspective)

1. Measuring from the closest points of each, how far apart are the {object_1} and the
{object_2} in {unit}?

2. Using the nearest points, what’s the spacing between the {object_1} and the {object_2} in
{unit}?

3. Considering their closest points, what’s the separation of the {object_1} from the {object_2}
in {unit}?

4. From the closest points of each object, what’s the gap between the {object_1} and the
{object_2} expressed in {unit}?

5. Measured at their closest points, what’s the length separating the {object_1} and the
{object_2} in {unit}?

6. Using their nearest points, measure the distance from the {object_1} to the {object_2} in
{unit}.

7. Counting from the closest points, how many {unit} lie between the {object_1} and the
{object_2}?

8. What’s the measure of space between the nearest points of the {object_1} and the {object_2}
expressed in {unit}?

9. State the distance from the closest point on the {object_1} to the nearest point on the
{object_2} in {unit}.

10. Determine the shortest distance between the {object_1} and the {object_2} in {unit}.

11. Provide the separation distance between the closest points of the {object_1} and the
{object_2} in {unit}.

12. In {unit}, what’s the smallest distance between the {object_1} and the {object_2} using
their closest points?

13. Measured from their nearest points, what’s the extent between the {object_1} and the
{object_2} in {unit}?

14. Express in {unit} how far apart the closest points of the {object_1} and the {object_2}
are.

15. Quantify the shortest space separating the {object_1} from the {object_2} in {unit}.

16. How many {unit} separate the closest points of the {object_1} and the {object_2}?

17. What’s the linear distance between the nearest points of the {object_1} and the {object_2}
in {unit}?

18. Calculate the minimal span from the {object_1} to the {object_2} using their closest points,
in {unit}.

19. Report the shortest distance measurement between the {object_1} and the {object_2} in
{unit}.

20. What’s the measurable gap from the nearest point on the {object_1} to the closest point on the
{object_2} in {unit}?

21. Specify precisely how far apart the {object_1} and the {object_2} are at their closest points,
expressed in {unit}.

22. Can you provide the distance separating the nearest points of the {object_1} and the
{object_2}, measured in {unit}?

23. Find the shortest distance between the {object_1} and the {object_2} using their closest
points, in {unit}.

24. Measured at their nearest points, state how far apart the {object_1} is from the {object_2}
in {unit}.

25. What is the precise shortest measurement between the {object_1} and the {object_2} in
{unit}?
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Table 24: Absolute Size Question Template

Absolute Size Question Template

1. How long is the longest side of the {object_name} measured in {unit}?

2. What’s the measurement of the {object_name}’s longest side in {unit}?

3. Can you provide the length of the longest edge of the {object_name} in {unit}?

4. In {unit}, what’s the longest dimension of the {object_name}?

5. What’s the length of the longest side of the {object_name}, expressed in {unit}?

6. Tell me the measurement in {unit} of the {object_name}’s longest side.

7. What’s the {unit} length of the longest edge of the {object_name}?

8. Provide the longest side’s length for the {object_name} in {unit}.

9. How many {unit} is the longest side of the {object_name}?

10. Could you specify the longest edge length of the {object_name} using {unit}?

11. What’s the maximum length of the {object_name} measured in {unit}?

12. Give the longest dimension of the {object_name} in {unit}.

13. What’s the length in {unit} of the {object_name}’s longest side?

14. Expressed in {unit}, how long is the longest side of the {object_name}?

15. What’s the size of the longest side of the {object_name} in terms of {unit}?

16. How lengthy is the longest side of the {object_name} in {unit}?

17. What’s the measure of the {object_name}’s largest side in {unit}?

18. Report the longest side’s length of the {object_name} in {unit}.

19. What’s the longest side measurement of the {object_name}, using {unit}?

20. State the length of the {object_name}’s longest side in {unit}.

21. How many {unit} long is the longest edge of the {object_name}?

22. What’s the longest side dimension of the {object_name}, stated in {unit}?

23. Identify the length of the longest side of the {object_name} in {unit}.

24. What’s the longest side of the {object_name} measured as in {unit}?

25. Give the longest side of the {object_name} in {unit}.
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Table 25: Relative Count Question Template

Relative Count Question Template

1. Does this room have more or fewer {category_1}(s) compared to {category_2}(s)?

2. In this room, are there more or fewer {category_1}(s) relative to {category_2}(s)?

3. Is the number of {category_1}(s) greater or smaller than the number of {category_2}(s) in
this room?

4. Are there more {category_1}(s) or fewer {category_1}(s) than {category_2}(s) in this
room?

5. In this room, do {category_1}(s) outnumber {category_2}(s), or are there fewer?

6. Do you find more or fewer {category_1}(s) compared with {category_2}(s) here?

7. Are there more {category_1}(s) or fewer of them compared to {category_2}(s) in the
room?

8. Is the count of {category_1}(s) higher or lower than the count of {category_2}(s) in this
room?

9. In terms of quantity, are there more or fewer {category_1}(s) than {category_2}(s) present
here?

10. Does this room contain more or fewer {category_1}(s) than it does {category_2}(s)?

11. Are {category_1}(s) more numerous or less numerous than {category_2}(s) in this room?

12. Are there more or fewer {category_1}(s) than there are {category_2}(s) inside this room?

13. Within this room, is the quantity of {category_1}(s) greater or smaller compared to
{category_2}(s)?

14. Do we have a greater or lesser number of {category_1}(s) than {category_2}(s) in this
room?

15. Compared to {category_2}(s), are there more or fewer {category_1}(s) in this room?

16. In this room, are {category_1}(s) more or fewer plentiful than {category_2}(s)?

17. Are {category_1}(s) found in greater or smaller numbers than {category_2}(s) here?

18. Are there more {category_1}(s) present, or are there fewer, as compared to {category_2}(s)
in this space?

19. Is there a higher or lower count of {category_1}(s) than {category_2}(s) in this room?

20. In comparison with {category_2}(s), are there more or fewer {category_1}(s) in this room?

21. Does this room have more or fewer quantities of {category_1}(s) than {category_2}(s)?

22. Are there more or fewer {category_1}(s) here than there are {category_2}(s)?

23. Can you tell if the number of {category_1}(s) is higher or lower than that of
{category_2}(s) in this room?

24. Within this room, do we have more or fewer {category_1}(s) compared to {category_2}(s)?

25. Is the amount of {category_1}(s) in this room greater or lesser compared with
{category_2}(s)?
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Table 26: Relative Direction (Hard) Question Template (Object Perspective)

Relative Direction (Hard) Question Template (Object Perspective)

1. I’m at the {object_1}, looking toward the {object_2}. Is the {object_3} located at my
front-left, front-right, back-left, or back-right?

2. From the position of the {object_1} facing the {object_2}, where is the {object_3}
relative to me: front-left, front-right, back-left, or back-right?

3. Standing near the {object_1} and looking at the {object_2}, is the {object_3} positioned
at my front-left, front-right, back-left, or back-right?

4. At the spot of the {object_1}, facing toward the {object_2}, is the {object_3} in my
front-left, front-right, back-left, or back-right?

5. If I’m positioned at the {object_1} and facing the {object_2}, would the {object_3} be
in my front-left, front-right, back-left, or back-right?

6. With the {object_1} as my location and looking at the {object_2}, in which direction is the
{object_3}: front-left, front-right, back-left, or back-right?

7. From the viewpoint at the {object_1} looking toward the {object_2}, is the {object_3}
at my front-left, front-right, back-left, or back-right?

8. When standing at the {object_1} and oriented toward the {object_2}, where does the
{object_3} appear: front-left, front-right, back-left, or back-right?

9. At the location of the {object_1}, while facing the {object_2}, is the {object_3} situated
front-left, front-right, back-left, or back-right of me?

10. Standing at the {object_1}, facing directly toward the {object_2}, would the {object_3}
be located at my front-left, front-right, back-left, or back-right?

11. From the place of the {object_1} looking at the {object_2}, can you confirm if the
{object_3} is toward my front-left, front-right, back-left, or back-right?

12. If I’m at the {object_1}, oriented toward the {object_2}, which quadrant is the
{object_3} in: front-left, front-right, back-left, or back-right?

13. At the point of the {object_1}, facing the {object_2}, identify if the {object_3} is at
my front-left, front-right, back-left, or back-right.

14. I’m located at the {object_1}, facing the {object_2}; is the {object_3} in my front-left,
front-right, back-left, or back-right direction?

15. When positioned at the {object_1} and looking toward the {object_2}, in which direction
would I find the {object_3}: front-left, front-right, back-left, or back-right?

16. At the {object_1}, looking straight at the {object_2}, is the {object_3} situated front-
left, front-right, back-left, or back-right of me?

17. If standing near the {object_1} and facing the {object_2}, would the {object_3} be
front-left, front-right, back-left, or back-right relative to my view?

18. With my position at the {object_1} looking toward the {object_2}, determine if the
{object_3} is at my front-left, front-right, back-left, or back-right.

19. Standing by the {object_1}, directed toward the {object_2}, does the {object_3} lie
front-left, front-right, back-left, or back-right from my viewpoint?

20. If I’m standing at the {object_1} facing the {object_2}, can you tell if the {object_3}
is in my front-left, front-right, back-left, or back-right?

21. At the {object_1}, with my gaze fixed on the {object_2}, is the {object_3} positioned
front-left, front-right, back-left, or back-right relative to me?

22. Standing at the {object_1}, oriented toward the {object_2}, would the {object_3} ap-
pear at my front-left, front-right, back-left, or back-right?

23. Positioned at the {object_1}, looking directly toward the {object_2}, where exactly is the
{object_3}: front-left, front-right, back-left, or back-right?

24. From the standpoint of the {object_1} and facing the {object_2}, is the {object_3}
found front-left, front-right, back-left, or back-right?

25. If located at the {object_1} and looking toward the {object_2}, in what direction is the
{object_3}: front-left, front-right, back-left, or back-right?
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Table 27: Relative Direction (Medium) Question Template (Object Perspective)

Relative Direction (Medium) Question Template (Object Perspective)

1. If I’m next to the {object_1}, looking towards the {object_2}, is the {object_3} on my
left, right, or behind me? ’Behind’ means turning at least 135 degrees to face it.

2. Standing near the {object_1} and facing the {object_2}, would the {object_3} be
positioned to my left, right, or rear? ’Rear’ implies needing at least a 135-degree rotation to face it.

3. If I stand by the {object_1}, oriented toward the {object_2}, where is the {object_3}:
left, right, or behind? An object behind requires turning 135 degrees or more to face it directly.

4. Facing the {object_2} while positioned by the {object_1}, is the {object_3} located to
my left, right, or back? ’Back’ means I’d have to turn at least 135 degrees to face it.

5. From my position near the {object_1}, looking directly at the {object_2}, is the
{object_3} on my left side, right side, or behind? ’Behind’ involves turning at least 135
degrees to face it.

6. If my location is beside the {object_1} and I’m facing towards the {object_2}, is the
{object_3} to my left, right, or rear? ’Rear’ means I’d need to rotate at least 135 degrees.

7. When standing next to the {object_1} and gazing at the {object_2}, would the
{object_3} be on my left, right, or behind? Behind indicates needing to turn 135 degrees
or more to face it.

8. I’m positioned at the {object_1}, looking toward the {object_2}; is the {object_3}
placed to my left, right, or behind me? ’Behind’ suggests turning at least 135 degrees to see it.

9. Standing alongside the {object_1} and facing the {object_2}, does the {object_3} lie
to my left, right, or behind? Behind means a minimum 135-degree turn is needed.

10. If I am near the {object_1}, turned toward the {object_2}, is the {object_3} found on
my left, right, or rear? To my rear means rotating at least 135 degrees.

11. Looking at the {object_2} from my spot by the {object_1}, is the {object_3} situated
left, right, or behind? Behind means I must rotate at least 135 degrees.

12. If I stand beside the {object_1}, directed towards the {object_2}, would I find the
{object_3} to my left, right, or behind? ’Behind’ implies turning 135 degrees or more.

13. From my stance at the {object_1}, looking straight towards the {object_2}, is the
{object_3} positioned on my left, right, or at my back? ’Back’ means a turn of at least 135
degrees.

14. Standing close to the {object_1}, facing the {object_2}, where is the {object_3}: to my
left, right, or behind? ’Behind’ means turning at least 135 degrees around.

15. If I’m at the {object_1}, looking at the {object_2}, is the {object_3} located to my left,
right, or behind me? Behind means rotating 135 degrees or more to see it clearly.

16. I’m near the {object_1}, oriented toward the {object_2}. Is the {object_3} found to my
left, right, or behind? ’Behind’ implies I need at least a 135-degree turn.

17. Standing at the {object_1} and facing directly towards the {object_2}, is the {object_3}
on my left, right, or to my back? ’To my back’ means I’d need a 135-degree or greater rotation.

18. When next to the {object_1}, viewing the {object_2}, is the {object_3} situated on my
left, right, or behind? Behind involves turning at least 135 degrees.

19. Facing the {object_2} from the {object_1}, would the {object_3} be placed left, right,
or behind me? ’Behind’ means I’d have to turn at least 135 degrees.

20. If I position myself at the {object_1}, aiming toward the {object_2}, is the {object_3}
to my left, right, or behind me? Behind signifies at least a 135-degree rotation is required.

21. Standing near the {object_1}, directing my view towards the {object_2}, is the
{object_3} located left, right, or behind? Behind means I would turn 135 degrees or more
to face it.

22. From my place by the {object_1}, facing the {object_2}, is the {object_3} on my left
side, right side, or behind? ’Behind’ indicates needing to rotate at least 135 degrees.

23. Standing by the {object_1}, if I’m looking towards the {object_2}, is the {object_3}
situated to my left, right, or behind? Behind requires turning at least 135 degrees to face it.

24. If I’m positioned near the {object_1} and looking at the {object_2}, would the
{object_3} be found to my left, right, or back? ’Back’ means rotating at least 135 degrees
to face it.

25. When next to the {object_1} and directed towards the {object_2}, does the {object_3}
lie to my left, right, or behind me? ’Behind’ means turning at least 135 degrees around to face it.
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Table 28: Relative Direction (Easy) Question Template (Object Perspective)

Relative Direction (Easy) Question Template (Object Perspective)

1. Standing next to the {object_1} and looking toward the {object_2}, is the {object_3}
on the left or right of the {object_2}?

2. If I’m positioned at the {object_1} and oriented toward the {object_2}, would the
{object_3} be to the left or right of it?

3. When I’m beside the {object_1} facing toward the {object_2}, is the {object_3} located
to its left or right?

4. While standing at the {object_1} and facing the {object_2}, which side of the {object_2}
is the {object_3} on—left or right?

5. If I’m at the {object_1}, looking directly at the {object_2}, does the {object_3} sit on
its left or right side?

6. I’m standing near the {object_1} and facing toward the {object_2}; is the {object_3}
situated to the left or right of the {object_2}?

7. With the {object_1} next to me and the {object_2} ahead, is the {object_3} positioned
on the left or right of the {object_2}?

8. If I stand alongside the {object_1} and face the {object_2}, will I find the {object_3}
to the left or the right of the {object_2}?

9. Facing the {object_2} from the {object_1}, can you confirm if the {object_3} is on its
left side or its right side?

10. When positioned beside the {object_1} and looking at the {object_2}, is the {object_3}
placed on the left or right?

11. If I’m standing by the {object_1}, looking toward the {object_2}, would the {object_3}
appear on the left or right side of it?

12. Standing next to the {object_1} and looking toward the {object_2}, should I expect the
{object_3} to my left or right of the {object_2}?

13. From my position at the {object_1}, facing toward the {object_2}, is the {object_3} to
the left or right of the {object_2}?

14. Standing at the {object_1} facing the {object_2}, does the {object_3} lie on its left or
right?

15. If I’m located by the {object_1} and oriented toward the {object_2}, would the
{object_3} be positioned to its left or right side?

16. Standing beside the {object_1} and facing the {object_2}, which side—left or right—is the
{object_3} located on?

17. When at the {object_1}, facing the {object_2}, is the {object_3} found to the left or to
the right?

18. If I’m next to the {object_1} looking at the {object_2}, will the {object_3} be seen to
its left or right?

19. Positioned by the {object_1} and facing toward the {object_2}, on which side—left or
right—is the {object_3}?

20. If I stand near the {object_1}, looking toward the {object_2}, is the {object_3} on the
{object_2}’s left or right?

21. Standing adjacent to the {object_1} and viewing the {object_2}, is the {object_3} on
the left side or the right side?

22. From the perspective of standing at the {object_1} and facing toward the {object_2}, does
the {object_3} lie to its left or right?

23. When I’m at the {object_1}, looking directly toward the {object_2}, is the {object_3}
located to the left or right?

24. Standing next to the {object_1}, and facing the {object_2}, do you see the {object_3}
positioned to the left or to the right?

25. If I’m standing near the {object_1} looking at the {object_2}, is the {object_3} to the
left or to the right of it?
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Table 29: Relative Distance Question Template (Object Perspective)

Relative Distance Question Template (Object Perspective)

1. When measuring from the nearest points, which object among ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is nearest to the {category}? In case multiple instances exist, mea-
sure to the closest.

2. Considering the nearest point of each object, identify the object from ({choice_a}, {choice_b},
{choice_c}, {choice_d}) that’s closest to the {category}. If multiple objects exist, choose the
nearest instance.

3. Which one of these items ({choice_a}, {choice_b}, {choice_c}, {choice_d}) lies closest
to the {category} when measured from their nearest points? Use the nearest instance if multiple exist.

4. By measuring from the closest points of these objects, which object ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is closest to the {category}? If duplicates occur, measure to the
nearest.

5. Using the closest points as reference, which of these ({choice_a}, {choice_b}, {choice_c},
{choice_d}) is closest to the {category}? When multiple instances exist, refer to the nearest one.

6. From the closest point of each object, determine which among ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is nearest the {category}. If multiple exist, use the nearest instance.

7. Considering proximity at their nearest points, which object out of ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is closest to the {category}? In case of multiples, measure the
nearest instance.

8. Identify which of these items ({choice_a}, {choice_b}, {choice_c}, {choice_d}) is nearest
to the {category}, measured from their closest points. Select the nearest if multiple instances are
present.

9. Which object among these options ({choice_a}, {choice_b}, {choice_c}, {choice_d}) is
closest to the {category} when measuring from the closest point? Measure the closest instance if
multiple exist.

10. By using the closest points, identify which of these ({choice_a}, {choice_b}, {choice_c},
{choice_d}) is nearest to the {category}. If there are multiple objects, select the closest one.

11. Which of these ({choice_a}, {choice_b}, {choice_c}, {choice_d}) is closest to the
{category}, measuring from their nearest points? If more than one exists, use the closest instance.

12. From their nearest points, which object ({choice_a}, {choice_b}, {choice_c}, {choice_d})
is closest to the {category}? If multiple instances appear, pick the nearest one.

13. Measure from the closest point: among these options ({choice_a}, {choice_b}, {choice_c},
{choice_d}), which is nearest to the {category}? Use the closest instance if multiples occur.

14. Considering each object’s nearest point, which of these objects ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is nearest the {category}? In case of duplicates, measure to the
closest.

15. When measuring from their nearest points, which of these objects ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is closest to the {category}? If multiple instances exist, select the
closest.

16. Identify the object among ({choice_a}, {choice_b}, {choice_c}, {choice_d}) that is clos-
est to the {category} based on the shortest distance between their closest points. Choose the nearest
instance if several exist.

17. Using proximity from their closest points, determine the closest object from ({choice_a},
{choice_b}, {choice_c}, {choice_d}) to the {category}. For multiples, measure the near-
est one.

18. From the nearest points, which one of ({choice_a}, {choice_b}, {choice_c}, {choice_d})
is closest to the {category}? When multiple objects are present, measure to the closest.

19. Measuring distance from the nearest points, select the closest object ({choice_a}, {choice_b},
{choice_c}, {choice_d}) to the {category}. If multiple exist, use the nearest instance.

20. Based on measuring from their closest points, which among ({choice_a}, {choice_b},
{choice_c}, {choice_d}) lies nearest to the {category}? If several exist, measure to the
closest one.

21. Considering the nearest points, which of these ({choice_a}, {choice_b}, {choice_c},
{choice_d}) is closest to the {category}? If there are multiple, identify the closest instance.

22. Determine which object ({choice_a}, {choice_b}, {choice_c}, {choice_d}) is closest to
the {category} from their nearest points. If multiple instances appear, pick the nearest.

23. Measuring the closest points, which item among ({choice_a}, {choice_b}, {choice_c},
{choice_d}) is nearest to the {category}? For multiple occurrences, measure the nearest in-
stance.

24. Identify the closest object from these options ({choice_a}, {choice_b}, {choice_c},
{choice_d}) to the {category}, using the closest point as reference. Use the closest instance
if multiple exist.

25. Considering distances from each object’s nearest point, which object ({choice_a}, {choice_b},
{choice_c}, {choice_d}) is nearest to the {category}? If multiple instances exist, select the
closest one.
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Table 30: Relative Size Question Template

Relative Size Question Template

1. Comparing the {object_1} and the {object_2}, which one has the {adjective} longest
edge?

2. Which of these two, the {object_1} or the {object_2}, has the {adjective} longest
side?

3. Of the {object_1} and the {object_2}, whose longest edge is the {adjective}?

4. Between the {object_1} and the {object_2}, whose edge is the {adjective} in length?

5. Among the {object_1} and the {object_2}, which possesses the {adjective} longest
edge?

6. Considering the {object_1} and the {object_2}, which object’s longest edge is the
{adjective}?

7. Which object’s longest dimension, the {object_1} or the {object_2}, is the
{adjective}?

8. Between the {object_1} and the {object_2}, which features the {adjective} longest
edge?

9. When looking at the {object_1} and the {object_2}, which has the {adjective} longest
side?

10. From the {object_1} and the {object_2}, whose longest side is the {adjective}?

11. Between the {object_1} and the {object_2}, which contains the {adjective} longest
edge?

12. Which one, the {object_1} or the {object_2}, has a longest edge that is the {adjective}?

13. Comparing longest edges of the {object_1} and the {object_2}, which is the
{adjective}?

14. Which has the {adjective} longest dimension: the {object_1} or the {object_2}?

15. Of these two objects, the {object_1} and the {object_2}, which edge is the {adjective}
longest?

16. Between the {object_1} and the {object_2}, whose longest edge measures the
{adjective}?

17. Between the {object_1} and the {object_2}, which object’s longest edge is the
{adjective}?

18. Is the longest edge of the {object_1} or the {object_2} the {adjective}?

19. Between the {object_1} and the {object_2}, whose longest side is the {adjective}?

20. Among the longest edges of the {object_1} and the {object_2}, which is the
{adjective}?

21. Between the {object_1} and the {object_2}, whose longest edge length is the
{adjective}?

22. Looking at the {object_1} and the {object_2}, whose longest edge comes out as the
{adjective}?

23. Between the {object_1} and the {object_2}, which object’s longest edge appears the
{adjective}?

24. Which has the {adjective} maximum length: the {object_1}’s longest edge or the
{object_2}’s?

25. Comparing the {object_1} and the {object_2}, whose longest edge length is the
{adjective}?
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Table 31: Room Size Question Template

Room Size Question Template

1. Could you provide the room dimensions in {unit}? If multiple rooms are displayed, please
estimate their total size.

2. What’s the area of the room measured in {unit}? For several rooms, estimate the combined size.

3. How large is the room in terms of {unit}? If more than one room is shown, estimate their total
size.

4. Please indicate the size of the room using {unit}. If there are multiple rooms, estimate the
combined area.

5. What’s the room size in {unit}? If multiple rooms appear, calculate the combined area.

6. Could you estimate the room size in {unit}? When multiple rooms are present, provide the total
area.

7. In {unit}, what’s the measurement of the room? If showing several rooms, estimate the combined
space.

8. Provide the dimensions of the room in {unit}. For multiple rooms, estimate the total size.

9. How much space does the room cover in {unit}? If multiple rooms, estimate the combined
measurement.

10. What is the total size of the room expressed in {unit}? Estimate combined dimensions if multiple
rooms are visible.

11. Indicate the room’s dimensions in {unit}. If there’s more than one room, estimate their total size.

12. What’s the area measurement of the room in {unit}? Estimate the total size if multiple rooms are
shown.

13. Please state the size of the room in {unit}. Estimate the combined space if several rooms are
provided.

14. Can you specify the room size in {unit}? If several rooms are presented, estimate the combined
area.

15. In terms of {unit}, what’s the room’s size? If multiple rooms appear, estimate their total area.

16. Could you clarify the size of the room using {unit}? Estimate the total if multiple rooms are
involved.

17. Please give the room size measured in {unit}. When multiple rooms are shown, estimate their
combined size.

18. What’s the room dimension in {unit}? For multiple rooms, provide an estimate of their total area.

19. State the room size in terms of {unit}. If multiple rooms are shown, estimate their combined
dimensions.

20. Can you tell me the room size in {unit}? For several rooms, estimate the overall size.

21. What’s the measurement of the room in {unit}? Estimate combined space if multiple rooms are
visible.

22. Could you provide the dimensions of the room using {unit}? If multiple rooms appear, estimate
their total space.

23. What is the room’s size in {unit}? Provide the combined size if more than one room is depicted.

24. How large is the room measured in {unit}? If multiple rooms, estimate the combined area.

25. Please specify the room’s dimensions in {unit}. Estimate the total size for multiple rooms shown.
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Table 32: Relative Direction Question Template (Camera Perspective)

Relative Direction Question Template (Camera Perspective)

1. From the camera’s perspective, is the {object_1} positioned on the left or right?

2. Looking through the camera, does the {object_1} appear on the left side or the right side?

3. In the camera frame, which side is the {object_1} located on – left or right?

4. If viewing through the camera lens, is the {object_1} situated to the left or to the right?

5. From the camera’s viewpoint, is the {object_1} positioned on the left-hand side or right-hand
side?

6. As seen by the camera, is the {object_1} on the left or on the right portion of the image?

7. When looking at the camera view, does the {object_1} fall on the left or right section?

8. From the perspective of someone behind the camera, would the {object_1} be on the left or
right?

9. Is the {object_1} located on the left side or right side from the camera’s angle?

10. Relative to the camera’s orientation, is the {object_1} positioned left or right?

11. In the camera’s field of view, does the {object_1} appear in the left region or right region?

12. Would you say the {object_1} is on the left or right half of the frame as seen by the camera?

13. Based on the camera’s view, which lateral position does the {object_1} occupy – left or right?

14. Through the camera’s lens, is the {object_1} captured on the left or right part of the scene?

15. Is the {object_1} situated on the left-hand or right-hand side from the camera’s standpoint?

16. When viewing the scene through the camera, does the {object_1} appear to the left or to the
right?

17. As captured by the camera, is the {object_1} positioned on the left or right section of the image?

18. Does the camera show the {object_1} on its left side or its right side?

19. If the camera is the reference point, is the {object_1} located on the left or right portion?

20. From what the camera sees, is the {object_1} positioned on the left or right area?
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Table 33: Relative Distance Question Template (Camera Perspective)

Relative Distance Question Template (Camera Perspective)

1. Between {category_1} and {category_2}, which is closer to the camera?

2. Is {category_1} or {category_2} nearer to the camera’s position?

3. Which is positioned closer to the camera: {category_1} or {category_2}?

4. From the camera’s perspective, which is at a shorter distance: {category_1} or
{category_2}?

5. Compare {category_1} and {category_2}, which is situated closer to the camera?

6. Which category appears closer to the camera’s viewpoint: {category_1} or {category_2}?

7. In terms of proximity to the camera, which is closer: {category_1} or {category_2}?

8. Which would you say is nearer to the camera lens: {category_1} or {category_2}?

9. A {category_1} or a {category_2}, which is closer from the camera?

10. From the camera’s standpoint, which has less distance: {category_1} or {category_2}?

11. Which category is at a reduced distance from the camera: {category_1} or {category_2}?

12. When measuring from the camera, which would require less distance to reach: {category_1} or
{category_2}?

13. Between {category_1} and {category_2}, which one is nearer to where the camera is
positioned?

14. Which has the shorter spatial distance from the camera: {category_1} or {category_2}?

15. In relation to the camera’s location, which is more proximate: {category_1} or
{category_2}?

16. Does {category_1} or {category_2} have greater proximity to the camera?

17. As viewed from the camera’s position, which is closer: {category_1} or {category_2}?

18. Which category is in closer proximity to the camera’s placement: {category_1} or
{category_2}?

19. Are {category_2} or {category_1} positioned nearer to the camera?

20. When measuring from the camera, which requires traveling less distance to reach: {category_1}
or {category_2}?
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