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Abstract001

Speaker diarization aims to segment an au-002
dio stream into homogeneous partitions based003
on speaker identity, playing a crucial role in004
speech comprehension and analysis. Main-005
stream speaker diarization systems rely only006
on acoustic information, making the task par-007
ticularly challenging in complex acoustic envi-008
ronments in real-world applications. Recently,009
significant efforts have been devoted to audio-010
visual or audio-semantic multimodal modeling011
to enhance speaker diarization performance;012
however, these approaches still struggle to ad-013
dress the complexities of speaker diarization014
on spontaneous and unstructured multi-party015
conversations. To fully exploit meaningful016
dialogue patterns, we propose a novel multi-017
modal approach that jointly utilizes audio, vi-018
sual, and semantic cues to enhance speaker di-019
arization. Our approach structures visual cues020
among active speakers and semantic cues in021
spoken content into a cohesive format known022
as pairwise constraints, and employs a semi-023
supervised clustering technique based on pair-024
wise constrained propagation. Extensive ex-025
periments conducted on multiple multimodal026
datasets demonstrate that our approach effec-027
tively integrates audio-visual-semantic infor-028
mation into the clustering process for acoustic029
speaker embeddings and consistently outper-030
forms state-of-the-art speaker diarization meth-031
ods, while largely preserving the overall system032
framework.033

1 Introduction034

Speaker diarization (SD) is the task of answering035

the question “who spoke when” by partitioning an036

audio stream into segments with timestamps and037

corresponding speaker labels. Speaker diarization038

is a crucial task in multi-party conversation scenar-039

ios, as it is important for speech comprehension and040

analysis to conduct automatic speech recognition041

(ASR) and also assign speaker labels to segments042

of audio or transcribed text. Many downstream043

natural language processing (NLP) tasks (Ganesh 044

et al., 2023a; Shen et al., 2023; Le et al., 2019; 045

Ganesh et al., 2023b) have been proven to benefit 046

from speaker diarization results. 047

Traditional speaker diarization systems rely 048

solely on acoustic information and they can be gen- 049

erally categorized into two types: clustering-based 050

approaches and end-to-end (E2E) approaches. 051

Clustering-based approaches typically comprise 052

three stages: voice activity detection (VAD) to fil- 053

ter out non-speech frames, speaker embedding ex- 054

tractor to obtain acoustic embeddings from each 055

short speech segment, and an unsupervised speaker 056

clustering to assign these embeddings into speaker 057

classes (Anguera et al., 2012; Park et al., 2022). 058

E2E approaches treat speaker diarization as a se- 059

quence labeling task, tagging each speech frame 060

with its speaker identity, known as End-to-end neu- 061

ral diarization (EEND) (Fujita et al., 2020, 2019b). 062

Although this modeling approach can unify the 063

modeling of silence, single speaker speech, and 064

speaker overlap, the absence of clustering often 065

leads to a significant performance degradation in 066

multi-party meeting scenarios with an uncertain 067

number of participants, particularly when there are 068

more than 3 speakers. The most popular acoustic- 069

only speaker diarization systems are often rely 070

on a clustering-based approach to determine the 071

overall speaker results, while utilizing EEND as a 072

sub-module to handle speaker changes and over- 073

laps, such as Pyannote (Bredin, 2023) and Di- 074

ariZen (Han et al., 2024). Acoustic-only speaker 075

diarization approaches often suffer significant per- 076

formance degradation in challenging acoustic en- 077

vironments characterized by noise, reverberation, 078

and speech overlapping between multiple speak- 079

ers (Park et al., 2022). Recent studies have aimed to 080

address this challenge by incorporating information 081

from other modalities into the speaker diarization 082

task. For instance, some works (Xu et al., 2022; 083

Chung et al., 2020; Gebru et al., 2017) have inte- 084
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grated visual cues, such as facial features and lip085

movement, with audio to determine active speak-086

ers. Other studies (Flemotomos and Narayanan,087

2022; Park and Georgiou, 2018; Zuluaga-Gomez088

et al., 2022) have utilized text data from automatic089

speech recognition (ASR) to identify speaker iden-090

tity and detect speaker change points. Although091

combining acoustic information with a single ad-092

ditional modality has shown some benefits, there093

is currently no effective approach to integrate in-094

formation from all three modalities—audio, visual,095

and textual—into the speaker diarization task.096

In this paper, we propose a novel framework097

based on clustering-based speaker diarization, ca-098

pable of simultaneously modeling speaker-related099

information from multiple modalities. Specifi-100

cally, we incorporate visual information (e.g., face-101

tracking and lip movement) and textual information102

(e.g., dialogue and speaker-turn detection). These103

multimodal insights are integrated into pairwise104

constraints to enhance speaker clustering by replac-105

ing unsupervised clustering with a semi-supervised106

approach. This allows for effective multimodal107

fusion during the clustering stage. Our method108

is not limited by the absence of comprehensive109

multimodal datasets and maintains the structural110

integrity of traditional acoustic-only frameworks111

while benefiting from advancements in individual112

unimodal components. Experiments across multi-113

ple multimodal datasets have consistently demon-114

strated the effectiveness of our approach.115

Our contributions can be summarized as follows:116

• We present a noval framework for speaker117

diarization, uniquely integrating audio, vi-118

sual, and semantic information. This is119

the first framework to leverage all these three120

modalities, enhancing the robustness and ac-121

curacy of speaker diarization.122

• We introduce a joint pairwise constraint123

propagation method into the speaker clus-124

tering process, effectively enhancing speaker125

clustering performance through multimodal126

information-derived constraints.127

• To comprehensively evaluate the effectiveness128

of our method, we contribute a 6.3-hour129

video evaluation set sourced from in-the-130

wild scenarios, which has been annotated131

with speaker identity labels, corresponding132

speech activity timestamps, and speech con-133

tent.134

2 Related Work 135

2.1 Multimodal Speaker Diarization 136

Acoustic-Only speaker diarization Audio-only 137

speaker diarization has been studied exten- 138

sively (Park et al., 2022). A typical speaker di- 139

arization systems employ a multi-stage framework, 140

including VAD (Gelly and Gauvain, 2018), speech 141

segmentation (Xia et al., 2022), acoustic embed- 142

ding extraction (Snyder et al., 2018; Zheng et al., 143

2020; Chen et al., 2023) and unsupervised cluster- 144

ing such as agglomerative hierarchical clustering 145

(AHC) (Day and Edelsbrunner, 1984) and spec- 146

tral clustering(SC) (Wang et al., 2018). Recently, 147

EEND where individual sub-modules in traditional 148

systems can be replaced by one neural network 149

has received more attention (Fujita et al., 2019a,c; 150

Horiguchi et al., 2020) which treat speaker diariza- 151

tion as a frame-level sequence labeling task. Due 152

to the absence of a clustering algorithm, the EEND 153

method often experiences significant performance 154

degradation in scenarios with a large number of 155

speakers. Some approaches improve model per- 156

formance by combining the global speaker pre- 157

dictions from clustering with the local speaker 158

change and overlap detection results from EEND, 159

such as EEND-VC (Kinoshita et al., 2021) and Di- 160

ariZen (Han et al., 2024). Similar strategies have 161

also been adopted by mainstream speaker diariza- 162

tion toolkits like Pyannote (Bredin, 2023). 163

Audio-visual Speaker Diarization Facial ac- 164

tivities and lip motion are highly related to 165

speech (Yehia et al., 1998). Visual information con- 166

tains a strong clue for the identification of speak- 167

ers and the location of speaker changes (Yoshioka 168

et al., 2019), which can be used to significantly 169

improve the accuracy of speaker diarization. Some 170

methods leverage the audio and visual cues for di- 171

arization using synchronization between talking 172

faces and voice tracks (Chung et al., 2019). Other 173

works (Xu et al., 2022; Wuerkaixi et al., 2022; Yin 174

et al., 2024) utilized an attention-based network to 175

perform middle-fusion and extract a unified rep- 176

resentation of the two modalities. Recently, an 177

interesting and promising direction is to use sep- 178

arate neural networks to process data streams of 179

two modalities and directly output speech probabil- 180

ities for all speakers simultaneously (kui He et al., 181

2022), similar to audio-only EEND frameworks. 182

All of these require expensive amounts of anno- 183

tated audio-visual parallel data for training, which 184

is expensive to acquire. 185
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• What do you plan to do?
• I’m gonna ride my bike home 

and then walk my dog.
• That’s not true at all! 
• You don‘t have a dog.
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Figure 1: An overview of our proposed multimodal speaker diarization system.

Audio-textual Speaker Diarization Some pre-186

vious works (Zuluaga-Gomez et al., 2022; Fle-187

motomos and Narayanan, 2022; Park and Geor-188

giou, 2018; Paturi et al., 2023) utilized seman-189

tic information derived from transcription to es-190

timate the role profiles and detect speaker change191

point, demonstrating improvement in specific role-192

playing conversations, such as job interviews and193

doctor-patient medical consultations. Other works194

(Kanda et al., 2021; Xia et al., 2022; Khare et al.,195

2022) enhanced ASR models to capture speaker196

identity through joint training of paired audio and197

textual data, which typically require substantial an-198

notated multi-speaker speech data. More recent199

works (Park et al., 2023; Wang et al., 2024; Cheng200

et al., 2023) employed large language models as201

post-processing to correct word speaker-related202

boundaries according to local semantic context.203

2.2 Pairwise Constrained Clustering204

Speaker diarization systems typically rely on unsu-205

pervised clustering to handle an unknown number206

of speakers. When integrating multimodal informa-207

tion, direct cross-modal similarity comparisons are208

not feasible. Thus, incorporating semi-supervised209

signals into the clustering process becomes es-210

sential, a technique known as constrained cluster-211

ing (Bibi et al., 2023). Pairwise constrained cluster-212

ing is a common approach within this framework,213

where supplementary information defines pairwise214

relationships among samples through Must-link215

constraints (indicating two samples belong to the216

same class) and Cannot-link constraints (indicat-217

ing they do not) (Davidson and Ravi, 2007). The218

process of refining the affinity matrix using these219

pairwise constraints is referred to as pairwise con-220

strained propagation. Initially confined to data min- 221

ing domain (Hoi et al., 2007), the application of 222

pairwise constrained clustering has expanded into 223

multimodal areas such as vision and text (Yang 224

et al., 2014; Yan et al., 2006). Advancing with the- 225

oretical progress, pairwise constraint propagation 226

algorithms have increasingly integrated complex 227

optimization techniques, including Lyapunov equa- 228

tion (Lu and Peng, 2011), Non-negative Matrix Fac- 229

torization (NMF)(Fu, 2015), Inexact Augmented 230

Lagrange Multiplier (IALM)(Liu et al., 2019), and 231

deep learning outcomes (Zhang et al., 2021a,b). 232

Among them, E2CP (Exhaustive and Efficient Con- 233

straint Propagation) (Lu and Peng, 2011) is widely 234

adopted due to its simple and effective hyperparam- 235

eter configuration. In this paper, we employ E2CP 236

as the core pairwise constrained clustering method 237

to integrate multimodal constraints into speaker 238

clustering. 239

3 Methodology 240

Figure 1 provides an overview of how our approach 241

leverages multimodal information. In addtion to a 242

clustering-based speaker diarization system, video 243

and text processing modules are incorporated to 244

independently extract visual and semantic informa- 245

tion and derive pairwise constraints. Then a joint 246

propagation algorithm will be employed to oper- 247

ate cross-modal pairwise constraints to enhance the 248

affinity matrix constructed from acoustic speaker 249

embeddings. The enhanced affinity matrix is sub- 250

sequently integrated into the subsequent clustering 251

procedure to assign speaker label for each speaker 252

embedding. The following sections will present 253

the joint propagation algorithm and the process of 254

constructing visual and semantic constraints. 255
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3.1 Joint Pairwise Constraint Propagation256

with multimodal Information257

Considering that the audio contains comprehen-258

sive speaker-related information over time, we259

employ audio-based models, specifically a VAD260

model and a speaker embedding extractor, to ob-261

tain a sequence of acoustic speaker embeddings262

E = {e1, e2, ..., eN |ei ∈ RD} by applying slid-263

ing windows to the audio data where D repre-264

sents the dimension of the speaker embeddings265

and N denotes the number of speaker embed-266

dings. Subsequently, we compute the affinity ma-267

trix A = {Aij}N×N , where Aij = g(ei, ej) and268

g(·) represents the measurement of similarity.269

Assuming we have access to speaker-related270

cues from additional sources of information, we271

can derive various types of constraint pairs: must-272

link M and cannot-link C, defined as:273

Mk = {(ei, ej)|l(ei) = l(ej)},
Ck = {(ei, ej)|l(ei) ̸= l(ej)},

(1)274

where l(·) denotes the speaker label associated with275

an acoustic speaker embedding, and k is the index276

of sources type. For different modality information,277

the criteria for establishing M and C are different,278

which will be described in Sec. 3.2 and Sec. 3.3 ac-279

cording to specific situation. Then each constraint280

is initially encoded into a matrix Zk:281

Zk
ij =


+1 if (ei, ej) ∈ Mk,

−1 if (ei, ej) ∈ Ck,

0 otherwise.

(2)282

A series of constraint matrix Zk are integrated283

into a final constraint matrix Z . During the in-284

tegration process, some scenarios are relatively285

straightforward. For instance, if an embedding pair286

(ei, ej) belongs to
⋂

k Mk, then (ei, ej) is consid-287

ered as a must-link constraint pair. Conversely, if288

(ei, ej) resides in
⋂

k Ck, it is a cannot-link con-289

straint pair due to agreement between all modali-290

ties. However, there are evidently more complex291

scenarios, where the constraint matrices conflict292

with one another, such as (ei, ej) ∈ (M1 ∩ C2) or293

(ei, ej) ∈ (M2 ∩ C1). To address these issues, we294

introduce acoustic information as the arbiter in the295

final determination. To summarize, we compute296

the integrated constraint scores following the given297

formula:298

Z ′ =
∑
k

αkZk + βA− θ (3)299

where αk, β represent the weight hyper-parameters 300

for different modalities, and θ is the bias. Then, Z ′ 301

is converted into a binarized constraint matrix Z 302

according to a threshold δ. 303

Zij =


+1 if Z ′

ij > δ,

−1 if Z ′
ij < −δ,

0 else.

(4) 304

The constraint matrix Z may be sparse and con- 305

straints information is confined to discrete. It is 306

essential to deploy a constraint propagation algo- 307

rithm to efficiently broadcast the constraint infor- 308

mation in Z on a larger scale. Specifically, we 309

employ E2CP (Lu and Peng, 2011) algorithm to 310

obtain propagated constraints Ẑ: 311

Ẑ = (1− λ)2(I− λLe)
−1Z(I− λLe)

−1, (5) 312

where Le = D
−1/2
e AD

−1/2
e is the normalized 313

Laplacian matrix, and De is the degree matrix of A 314

and I is a identity matrix. The parameter λ ∈ [0, 1] 315

modulates the impact degree of the constraints. The 316

refined affinity matrix Â ∈ RN×N is then updated 317

to incorporate the influences of the propagated con- 318

straints Ẑ: 319

Âij =

{
1− (1− Ẑij)(1−Aij) if Ẑij ≥ 0,

(1 + Ẑij)Aij if Ẑij < 0.
(6) 320

Upon calculating the affinity matrix Â, it is then 321

fed into the clustering process to derive the ultimate 322

speaker diarization results. It is worth noting that 323

there is no limit to the number of constraint 324

types k. We can extract diverse constraint matrices 325

related to different modal data. These constraint 326

matrices can be considered as prior knowledge, 327

guiding the clustering focus towards a specific per- 328

spective of the scenario. In this paper, we fix k at 329

2, thereby extracting two distinct constraint types: 330

visual constraint Zv and semantic constraint Zt. 331

3.2 Visual constraints construction 332

The speaker-related visual constraints is con- 333

structed through the following steps, similar 334

to (Chung et al., 2020; Xu et al., 2022): (1) Face 335

Tracking. The first step involves detecting and 336

tracking faces in video frames over time using a 337

CNN-based face detector (Liu et al., 2018) and 338

a position-based tracker. Only face tracks aligned 339

with speech segments detected by VAD are retained 340

for further processing. (2) Active Speaker Detec- 341

tion. This step determines whether tracked faces 342
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correspond to active speakers at any given moment.343

A two-stream network (Tao et al., 2021), compris-344

ing temporal encoders and an attention-based de-345

coder, analyzes audio-visual synchrony to identify346

speaker activity. Low-confidence frames are fil-347

tered using a predefined threshold. (3) Face Clus-348

tering. A face recognition CNN (Huang et al.,349

2020) extracts embeddings from face tracks at uni-350

form intervals (e.g., every 200 ms). These embed-351

dings are then clustered with AHC.352

By integrating these steps, constraints based on353

visual information are obtained. Faces clustered to354

the same speaker are considered as must-link con-355

straints, while those clustered to different speakers356

are cannot-link constraints. Each face is aligned357

with respective acoustic embeddings along the time358

axis. If an acoustic embedding corresponds to mul-359

tiple faces, we will select the speaker associated360

with the majority of those faces.361

3.3 Semantic constraints construction362

To extract speaker-related information from the363

transcriptions, we construct two Spoken Language364

Processing (SLP) tasks: (1) Dialogue Detection365

discriminates between multi-speaker dialogues and366

monologues, conceptualized as a binary classifi-367

cation challenge. (2) Speaker-Turn Detection368

assesses each sentence in a sequence to estimate369

speaker change, functioning as a sequence label-370

ing problem that identifies semantically significant371

speaker role transitions. Semantic constraints can372

be formulated based on the outputs of these two373

tasks. Specifically, must-link Mt is formed be-374

tween two embeddings if they are sourced from the375

same non-dialogue segment. Conversely, cannot-376

link Ct is established between embeddings sepa-377

rated by a detected speaker-turn boundary, as illus-378

trated in Figure 2.379

4 Experiments380

4.1 Experimental Setup381

Datasets. Our experiments are conducted on the382

AIShell-4 (Fu et al., 2021), Alimeeting (Yu et al.,383

2022), AVA-AVD (Xu et al., 2022), and our pro-384

posed datasets. The AVA-AVD dataset, which385

focuses on audio-visual diarization, provides di-386

verse scenarios and face annotations but lacks387

ground truth transcripts. In contrast, AIShell-388

4 and Alimeeting are Mandarin datasets that in-389

clude speaker-labeled transcripts, making them390

well-suited for audio-text-based tasks. Due to the391

Cannot-link

Must-link

Speaker 
embeddings

I've decided to learn painting.Transcribed 
text

That’s a fantastic decision!

<Speaker-Turn>

Figure 2: Semantic constraint construction is based on
dialogue and speaker-turn detection. Text segments
identified as non-dialogue imply that their embeddings
are related through must-link constraints (solid connec-
tions). Conversely, detected transition points indicate
that embeddings spanning these points should be con-
nected via cannot-link constraints (dashed connections).

absence of publicly available evaluation datasets 392

with annotations for visual, semantic, and acous- 393

tic modalities, we construct a new dataset com- 394

prising 6.3 hours of video, manually annotated 395

with speaker timestamps and speech content. Fur- 396

ther details about this dataset are provided in the 397

Appendix A. The combination of these diverse 398

datasets further demonstrates the effectiveness of 399

our methods across different domains. 400

Implementation Details. In our system, the audio- 401

based diarization modules follow the pipeline out- 402

lined in (Cheng et al., 2023). Our speaker embed- 403

ding extractor is an adaptation of CAM++ (Wang 404

et al., 2023), which has been trained on VoxCeleb 405

dataset (Nagrani et al., 2020). The ASR we uti- 406

lize is Paraformer (Gao et al., 2022), which has 407

been trained with the aid of the FunASR (Gao 408

et al., 2023) toolkits. For visual componets, we 409

employ a series of pre-trained models for different 410

tasks: RFB-Net (Liu et al., 2018) for face detec- 411

tion, TalkNet (Tao et al., 2021) for active speaker 412

detection, and CurricularFace model (Huang et al., 413

2020) for extracting face embeddings. For seman- 414

tic tasks, we train models on open-sourced meeting 415

datasets designed for various scenarios. Specif- 416

ically, we use separate datasets for English and 417

Mandarin to train corresponding semantic models, 418

ensuring language-specific adaptations. All that 419

training was conducted using a pre-trained BERT 420

model (Devlin et al., 2019). We employ E2CP as 421

the core algorithm for constraint propagation. In 422

the post-clustering phase, our system adheres to 423

the SC algorithm. Inspired by the work presented 424

in (Park et al., 2020), our method incorporates re- 425

finement operations, such as row-wise thresholding 426

and symmetrization, to enhance the performance of 427
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Table 1: The results of speaker diarization on AIShell-4, Alimeeting and our proposed dataset.

Dataset Methods Modality DER(%)↓ CpWER(%)↓

AIShell-4

Pyannote Audio 12.2 -
DiariZen Audio 11.7 -

Semantic-Aux SD Audio + Semantic - 15.23
Proposed Audio + Semantic 12.07 14.95

Alimeeting

Pyannote Audio 24.4 -
DiariZen Audio 17.6 -

Semantic-Aux SD Audio + Semantic - 36.15
Proposed Audio + Semantic 21.32 31.11

Proposed Dataset

Pyannote Audio 15.57 -
DiariZen Audio 10.49 -

CAM++ & VBx Audio 10.31 18.03
CAM++ & SC Audio 9.37 17.04

Proposed Audio + Semantic 9.12 16.86
Proposed Audio + Visual 9.13 16.83
Proposed Audio + Semantic + Visual 9.01 16.36

spectral clustering. More details of the implemen-428

tation and hyperparameter settings can be found in429

the appendix B.430

Evaluation Metrics. To demonstrate the impact431

of the speaker diarization system, we report the432

Diarization Error Rate (DER) (Fiscus et al., 2006),433

which generally composed of three parts: Missed434

Speech (MS), False Alarms (FA) and Speaker Error435

(SPKE). As the ASR and forced-alignment module436

have been used in the pipeline, we also report the437

Concatenated Minimum-permutation Word Error438

Rate (Watanabe et al., 2020).439

4.2 Main Results440

Multimodal Speaker Diarization with Audio-441

Text Modalities. In Part 1 & 2 of Table 1, we442

compare our system with acoustic-only speaker di-443

arization systems such as Pyannote and DiariZen,444

as well as with Semantic-Aux SD, an audio-text445

speaker diarization system, on the AIShell-4 and446

Alimeeting datasets. It can be observed that our sys-447

tem demonstrates a certain level of superiority over448

the classical speaker diarization toolkit, Pyannote,449

on both datasets. Specifically, our method achieves450

an absolute improvement of 0.13% in DER on the451

AIShell-4 dataset and 3.08% in DER on the Al-452

imeeting dataset. However, our approach shows a453

slight disadvantage compared to DiariZen, which454

trains a frame-level EEND model using the training455

sets from AMI, Alimeeting, and AIShell-4 audio456

data, thus providing it with a noticeable advantage457

on these two homologous test sets.458

Table 2: The results of audio-visual speaker diarization
experiments on AVA-AVD datasets.

Models SPKE(%)↓ DER(%)↓
AVR-Net 24.88 27.43
AFL-Net 21.10 23.65
AFL-Net + WavLM 19.57 22.12
DyViSE 20.86 23.46
Proposed 17.40 20.32

Compared with Semantic-Aux SD (Cheng et al., 459

2023), another speaker diarization method that 460

combines audio and text modalities, our experi- 461

ments maintain consistent ASR results. Our pro- 462

posed solution shows clear improvements on both 463

datasets, with an absolute gain of 5.04% in CpWER 464

on the Alimeeting dataset. Unlike Semantic-Aux 465

SD, which primarily uses semantic information for 466

boundary refinement of speaker diarization results, 467

our approach integrates semantic information 468

into the speaker clustering process, leveraging 469

semantic cues to correct more errors that arise 470

from relying solely on acoustic-only information. 471

Multimodal Speaker Diarization with Audio- 472

Visual Modalities. We have also compared our 473

approach with several audio-visual joint training 474

speaker diarization methods on the AVA-AVD 475

dataset, such as AVR-Net (Xu et al., 2022), AFL- 476

Net (Yin et al., 2024), and DyViSE (Wuerkaixi 477

et al., 2022), to demonstrate the effectiveness of our 478

method. Due to the lack of annotated transcripts 479

in the AVA-AVD dataset, only the SPKE and DER 480
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metrics are reported. Table 2 presents a comparison481

conducted on AVA-AVD, revealing the competitive482

performance of our method when utilizing only vi-483

sual constraints. Compared to the baseline results484

of the AVA-AVD, AVR-Net, our model shows a485

7.11% absolute improvement in DER. Addition-486

ally, when compared to audio-visual models such487

as AFL-Net and DyViSE, our model also exhibits488

a significant improvement in DER, with a relative489

8.1% improvement over AFL-Net and a relative490

13.3% improvement over DyViSE.491

Figure 3: Simulated constraints with errors and the
effect for constrained clustering

Multimodal Speaker Diarization with Audio-492

Visual-Text Modalities. In the last part of Table 1,493

we present the results of multiple speaker diariza-494

tion systems on the proposed dataset. As previously495

mentioned, the acoustic-only speaker diarization496

SOTA(start-of-the-art) system, DiariZen, benefits497

from targeted training on the AIShell-4 and Al-498

imeeting training sets, giving it a certain advantage499

over our method on these datasets. However, on the500

proposed dataset, our “CAM++ & SC” approach501

achieves a relative improvement of 10.7% in DER502

compared to DiariZen. Furthermore, when incor-503

porating the semantic constraints proposed in this504

paper, the improvement over DiariZen reaches a505

relative 13.1% reduction in DER. In contrast, an-506

other well-known open-source speaker diarization507

toolkit, pyannote, exhibits a significantly higher508

DER of 15.57%, showing a larger gap compared509

to other approaches. When comparing the con-510

strained propagation methods proposed in this pa-511

per, the results show that using only visual con-512

straints or only semantic constraints result in very513

similar performance in terms of DER and CpWER.514

Compared to the acoustic-only baseline, incorpo-515

rating visual constraints leads to a relative improve-516

ment of 2.56% in DER and 1.1% in CpWER, while517

incorporating semantic constraints yields a rela-518

tive improvement of 2.66% in DER and 1.2% in519

CpWER. Further analysis reveals that combining520

all three modalities provides even greater im-521

provements over systems that combine only two522

modalities. Specifically, the DER is relatively re- 523

duced by 3.8%, and the CpWER is relatively re- 524

duced by 4.0%. This indicates that semantic and 525

visual constraints are complementary, and inte- 526

grating multiple modalities can lead to further 527

performance gains. Some decoding cases and 528

visualizations can be found in the appendix E. 529

4.3 Analysis and Discussion 530

Constraint Construction. It should be noted that 531

constraints constructed based on multimodal data 532

often contain some errors, and at the same time, 533

constraints cannot cover all embedding pairs. In 534

this section, we discuss the impact of varying quan- 535

tities and qualities of pairwise constraints on the re- 536

sults of speaker clustering. We employ several sim- 537

ulation strategies to generate pairwise constraints, 538

which allows for better control over both the quan- 539

tity and quality of these constraints. All experi- 540

ments are conducted on our proposed dataset, uti- 541

lizing speaker embeddings extracted by CAM++ 542

that remain fixed throughout the experiments; only 543

the pairwise constraints used in each experiment 544

are varied. The cluster metrics, Normalized Mutual 545

Information (NMI) (Strehl and Ghosh, 2002) and 546

Adjusted Rand Index (ARI) (Chac’on and Rastrojo, 547

2020), will be reported in this section. 548

(1) The Impact of constraint Quality. In prac- 549

tice, the constraints we obtain often contain many 550

errors. This is especially common in multi-party 551

meeting or interview scenarios, such as when there 552

is audio-visual asynchrony or errors from transcipt 553

text decoded by ASR due to complex acoustic en- 554

vironments. In order to investigate the impact of 555

incorrect constraints on our method, we have estab- 556

lished the following randomization strategy: First, 557

we randomly generate a completely correct set of 558

constraints, including must-links and cannot-links. 559

We then randomly alter the status of a proportion 560

perr of these constraints—turning must-links into 561

cannot-links and vice-versa—thereby introducing 562

a certain level of constraint errors while keeping 563

the total number of constraints constant. In our 564

experiments, perr ∈ {5%, 10%, 15%, 20%, 25%}. 565

The experimental results are illustrated in Figure 3. 566

It can be observed that errors in the constraints do 567

indeed lead to a decline in clustering performance. 568

However, even when the error rate reaches 25%, 569

the NMI experiences only a 0.7% relative decrease 570

compared to the NMI at a 5% error rate. This indi- 571

cates that our method exhibits a certain degree 572

of robustness to erroneous constraints. 573
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Figure 4: Results of constrained speaker cluster performance across various levels of constraints coverage, showcas-
ing scenarios with imbalanced proportions of must-link and cannot-link constraints.

Table 3: The gain achieved by our proposed method, in
comparison to the acoustic-only approach, varies across
cases with different ASR levels in Alimeeting.

Test Subsets
DER(%)

acoustic only
DER(%)

proposed models
DER

relative gain(%)
Easy subsets
(WER <21%)

7.31 6.65 8.9

Hard subsets
( WER >21%)

38.02 31.45 17.4

(2) Impact of Constraint Quantity and Ratios574

We investigate how the number of constraints and575

the ratio of must-link to cannot-link sets affect576

speaker clustering in our approach. We formulate577

a simulation strategy: for a sequence of speaker578

embeddings E = {e1, e2, ..., eN |ei ∈ RD}, we579

vary the must-link coverage (pml) and cannot-link580

coverage (pcl) proportions. Specifically, pml ∈581

{2%, 4%, 6%, ..., 20%}, and pcl = kratio × pml582

with kratio ∈ {1, 2, 3, 4}. We select pml% of must-583

links and pcl% of cannot-links from all possible584

pairs. As shown in Figure 4, it can be observed that585

as the number of constraints increases, the clus-586

tering performance of the algorithm consistently587

improves. For instance, in the case of ML:CL =588

1:1, the NMI increases from 0.905 to 0.925, and589

the ARI improves from 0.925 to 0.940. Addition-590

ally, our method demonstrates that an imbalance591

between the quantities of ML and CL does not592

hinder performance gains.593

Impact of ASR for Semantic Constraints. In594

practice, visual and audio data are often collected595

independently using different devices, with seman-596

tic information extracted from audio via an ASR597

system. Complex acoustic environments can affect598

both speaker embedding extraction and ASR accu-599

racy. In this section, we evaluate the performance 600

of our method under varying ASR accuracy lev- 601

els. Specifically, we first partition the Alimeeting 602

test set into "Easy" and "hard" subsets based on 603

whether the ASR Word Error Rate (WER) exceeds 604

21%. We then test both the acoustic-only solu- 605

tions (CAM++ & SC) and our proposed method, 606

which incorporates semantic constraints, on these 607

two subsets. Table 3 presents our experimental re- 608

sults. It can be observed that on the "hard" subset, 609

the DER is relatively higher, indicating that both 610

speaker embedding extraction and the ASR sys- 611

tem encounter certain errors in complex acoustic 612

environments. Nevertheless, our method achieves 613

notable improvements on both subsets. On the 614

"Easy" subset, where the acoustic-only solution al- 615

ready performs well (DER = 7.31%), our approach 616

achieves a relative improvement of 8.9%. On the 617

"hard" subset, our method demonstrates a signifi- 618

cant relative improvement of 17.4%, showcasing 619

its robustness in challenging acoustic conditions. 620

5 Conclusions 621

In this study, we propose a novel multimodal ap- 622

proach that leverages audio, visual, and semantic 623

information to enhance speaker diarization. By 624

incorporating additional visual and textual process- 625

ing modules, we generate complementary pairwise 626

constraints that are integrated into the clustering 627

process through a joint pairwise constraint propaga- 628

tion method. Experimental results demonstrate sig- 629

nificant performance improvements. This research 630

contributes to the advancement of more sophisti- 631

cated systems for the speaker diarization task, pro- 632

viding potential directions for future exploration. 633
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6 Limitations634

The semantic information we utilize is derived from635

the Dialogue Detection and Speaker-Turn Detec-636

tion models, which are trained based on the BERT637

architecture, rather than employing more advanced638

Large Language Models. Additionally, we ob-639

serve that the embeddings corresponding to the640

constraints constructed for the current semantic641

tasks—Dialogue Detection and Speaker-Turn De-642

tection—are relatively close to each other in the em-643

bedding space. While this proximity aids in iden-644

tifying more precise speaker transition points, it645

also limits our ability to extract long-term semantic646

information from the text. In theory, our approach647

can be adapted to incorporate various multimodal648

sources of information. However, another modality649

that could significantly assist in speaker identity650

determination—speaker location information—has651

not been integrated into our experiments. We plan652

to explore this further in future work.653
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A Proposed Dataset1009

In this section, we provide an overview of the pro-1010

posed dataset. The dataset includes a variety of1011

acoustic and visual scenarios, sourced from in-the-1012

wild videos. The dataset includes a total of 921013

speakers, with each meeting involving 2 to 10 par-1014

ticipants. The data exhibits significant variability1015

in both content and environmental conditions. The1016

total duration of the dataset is approximately 6.31017

hours, with individual video clips ranging from 71018

to 29 minutes. The dataset covers a wide range of 1019

scenarios, including interviews, talk shows, meet- 1020

ings, press conferences, round-table discussions, 1021

and TV programs. It has been meticulously anno- 1022

tated with speaker identity labels, corresponding 1023

speech activity timestamps, and transcribed speech 1024

content. 1025

These manual annotations come from annotators 1026

at external data company. Before annotation, we 1027

only ask for the speaker content of each speaker 1028

in the video, and the timestamp of each sentence. 1029

We provided annotators with a sample annotation 1030

from Alimeeting, and the results they returned were 1031

consistent with this batch of data. The speaker id 1032

is completely anonymized in the annotation and 1033

labeled as {c1, c2, c3, ...} 1034

B Implementation details 1035

In this section, we provide the implementation de- 1036

tails of our experiments. 1037

In our system, the audio-based diarization mod- 1038

ules follow the pipeline outlined in (Cheng et al., 1039

2023). Our speaker embedding extractor is an adap- 1040

tation of CAM++ (Wang et al., 2023)1, which has 1041

been trained on VoxCeleb dataset (Nagrani et al., 1042

2020). To transcribe audio into text, we utilize the 1043

ASR model, Paraformer (Gao et al., 2022), which 1044

has been trained with the aid of the FunASR (Gao 1045

et al., 2023) toolkits2. 1046

For the visual componets, we employ a se- 1047

ries of pretrained models for different tasks: 1048

RFB-Net (Liu et al., 2018)3 for face detection, 1049

TalkNet (Tao et al., 2021)4 for active speaker de- 1050

tection, and CurricularFace model (Huang et al., 1051

2020)5 for extracting face embeddings. 1052

For semantic tasks, we train muliple models 1053

with open-source meeting datasets for different 1054

scenarios. Specifically, we employ AMI (Carletta 1055

et al., 2005), ICSI (Janin et al., 2003) and CHiME- 1056

6 (Watanabe et al., 2020) to generate English se- 1057

mantic models, and used Alimeeting and AIShell-4 1058

1The pretrained CAM++ came from https://github.
com/modelscope/3D-Speaker

2The ASR and forced-alignment models came from https:
//github.com/modelscope/FunASR

3The pretrained RFB-Net came
from https://github.com/Linzaer/
Ultra-Light-Fast-Generic-Face-Detector-1MB

4The pretrained TalkNet came from https://github.
com/TaoRuijie/TalkNet-ASD

5The pretrained CurricularFace model came from
https://modelscope.cn/models/iic/cv_ir101_
facerecognition_cfglint
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Table 4: Constraints derived from various modalities. We separately evaluate the accuracy and coverage of these
constraints.

Constraints
Accuracy(%) Coverage(%)

Must-Link Cannot-Link Total Must-Link Cannot-Link Total
Semantic Constraints 99.75 84.80 99.40 1.23 0.08 0.49

Visual Constraints 99.07 97.87 99.32 22.81 21.78 22.53
Semantic + Visual Constraints 99.11 97.83 99.34 23.65 21.84 22.87

Figure 5: Analysis of constrained clustering outcomes with varying λ values. It is observed that when constructed
constraints contain errors, the peak of the optimal λ shifts towards 1.0.

training datasets to obtain Mandarin semantic mod-1059

els. In our experiments, a sliding window strategy1060

was employed, featuring a window size of 96 words1061

and a shift of 16 words, to construct training sets1062

for dialogue detection and speaker-turn detection1063

training from transcripts with speaker annotations1064

within these datasets. All that training was con-1065

ducted using a pre-trained BERT model (Devlin1066

et al., 2019). Subsequently, we employ the methods1067

described in Section 3.3 to construct the semantic1068

constraints.1069

The VBx approach (Landini et al., 2022) is a1070

canonical method for speaker diarization, where the1071

original paper utilizes speaker embeddings based1072

on the x-vector model. We replace this with the1073

more robust CAM++ model. Additionally, since1074

the post-processing step of the E2CP method in-1075

corporates SC (Von Luxburg, 2007), we also in-1076

vestigate the performance of a method that relies1077

solely on speaker embeddings and SC. These two1078

audio-only methods will serve as the baselines for1079

this study.1080

As introduced in Section 3.1, after obtaining mul-1081

timodal pairwise constraints, our clustering process1082

is divided into two submodules: constraint propa-1083

gation and post-clustering. When only visual con-1084

straints are present, the parameter λ in E2CP is1085

set to 0.8, while it is set to 0.95 when semantic1086

constraints are incorporated. In the post-clustering1087

phase, we adhere to the Spectral Clustering (SC)1088

algorithm, consistent with the baseline. Inspired 1089

by the work presented in (Park et al., 2020), our 1090

method incorporates refinement operations such 1091

as row-wise thresholding and symmetrization to 1092

enhance the performance of spectral clustering. 1093

For the row-wise thresholding step in SC, the p- 1094

percentile parameter is set to 0.982. 1095

C Constraints Statistics 1096

Table 4 illustrates the statistical information of the 1097

visual constraints and semantic constraints con- 1098

structed on our proposed dataset. Upon analysis, it 1099

is evident that visual constraints significantly out- 1100

perform semantic constraints in terms of coverage. 1101

This disparity is attributed to the fact that the two 1102

semantic tasks employed in our semantic model 1103

are only capable of evaluating the relationships be- 1104

tween embeddings within adjacent speaker turns, 1105

whereas visual constraints are assessed across em- 1106

bedding pairs with substantial temporal intervals. 1107

Furthermore, the method we designed to combine 1108

constraints from different modalities successfully 1109

merges them. 1110

D Constrained Cluster Parameters 1111

Analysis 1112

As mentioned in Section 3.1, λ is a critical parame- 1113

ter during the constraint propagation process. By 1114

combining the analysis of Equations 5 and 6, it can 1115

13



Figure 6: The t-SNE for cluster cases

be found that when λ tends towards 0, the final Ẑ1116

will be closer to Z , whereas when λ approaches 1,1117

the resulting Â will be closer to A.1118

Moreover, the parameter λ also signifies the level1119

of confidence that the model places in the con-1120

straints matrix. By adjusting the λ value, the model1121

can effectively handle different levels of error in the1122

constraints, enabling the constrained propagation1123

algorithm to adapt to models with varying perfor-1124

mance. This adaptability is essential for effectively1125

utilizing constraints in real-world scenarios.1126

We conducted simulations of constraints to com-1127

pare the optimal λ values when introducing errors1128

in the constraints. The Figure 5 illustrate that the1129

optimal E2CP parameter value λ for maximizing1130

NMI depends on the error rate within the con-1131

straints. With 0% errors, the best performance1132

is achieved at the lowest λ = 0.1, indicating that1133

with highly accurate constraints, the algorithm ben-1134

efits from a strong adherence to constraint guid-1135

ance. However, for constraints with a 30% error1136

rate, the peak NMI occurs at a higher λ = 0.4,1137

suggesting that with less reliable constraints, the1138

algorithm requires a more moderate constraint in-1139

fluence to balance error tolerance and performance.1140

These results highlight the importance of adjusting1141

λ in accordance with the fidelity of constraints to1142

achieve optimal speaker diarization.1143

E Decoding cases and Cluster1144

Visualization1145

We utilized the t-SNE (van der Maaten and Hinton,1146

2008) algorithm to demonstrate the results of our1147

clustering method, as shown in Figure 6. We com-1148

pared the results of VBx, E2CP with semantic and1149

visual constraints, and ground-truth, and observed1150

that the E2CP with semantic and visual constraints1151

method effectively improved the clustering results1152

compared to VBx, especially in terms of clustering 1153

the points at the edges of clusters, after introducing 1154

constraints. 1155

In Figure 7, we present a decoding case, where 1156

each row follows the format: speaker-ID, start- 1157

time, end-time and content. For the convenience 1158

of aligning timestamps with textual information, 1159

the decoding results presented here do not include 1160

punctuation marks such as periods. In both the 1161

acoustic-only and multimodal results, the same 1162

force-alignment results was applied, resulting in 1163

identical timestamp values. It can be observed that 1164

there is a clear semantic transition point near 111.3 1165

seconds. The acoustic-only result fails to correctly 1166

segment this speaker change point; however, by 1167

leveraging semantic constraints, our method suc- 1168

cessfully separates the speakers. 1169
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Figure 7: Decoding case
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