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Abstract

We propose a novel contrastive learning approach to decode brain activity into
sentences by mapping fMRI recordings and text embeddings into a shared repre-
sentational space. Using data from three subjects, we trained a cross-subject fMRI
encoder and demonstrated effective sentence identification with a retrieval module.
Our model shows strong alignment between brain activity and linguistic features,
with top-1 accuracy up to 49.2% and top-10 accuracy up to 84%, significantly
outperforming chance levels. Our results highlight the potential of contrastive
learning for cross-subject language decoding,

1 Introduction

Language is one of the most ubiquitous ways we experience the flow of information in our daily
lives. We read, speak, communicate, and even think through language. It is a complex phenomenon
that allows us to understand and convey information to others. To do this, our brain generates
semantic representations of everything we encounter, taking context into account. Recent research
has demonstrated a convergence between brain activity [3, 2, 9] during language tasks, such as
listening or reading, and the way large language models process sentences. This has been shown
through brain recordings using both non-invasive methods, such as fMRI, EEG, and MEG, as well
as invasive techniques like LFP and ECoG. Powerful encoding and decoding models have been
developed to link external stimuli, such as acoustically perceived sentences, images, videos, music
with neural representations recorded during these tasks [19, 1, 6, 17, 4, 18, 13, 15, 7, 8, 14, 16].
These models have shown remarkable results across both invasive and non-invasive brain recording
techniques. Here, we propose a novel method based on contrastive learning to learn a cross-subject
fMRI encoder that projects fMRI recordings and text embeddings into a shared space, enabling
sentence identification with a retrieval module. Our model takes as input fMRI activity and computes
fMRI embeddings that can be compared with pre-computed sentence embeddings belonging to a set
of candidates. By selecting the closest sentences in this space we can effectively decode the brain
activity and obtain clues about semantic representation in the brain. Fig. 1 show a scheme of the
pipeline proposed here.
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Figure 1: Schematic representation of the contrastive learning pipeline. The fMRI model encodes
brain activity from 10,000 voxels located in the cortex into a shared latent space, while the text pooler
processes downsampled LLama text embeddings. Pairwise dot products between fMRI and text
embeddings are computed to create a similarity matrix, which is used for aligning brain activity with
corresponding linguistic features. Yellow cells highlight correct matches between fMRI and text
embeddings.

2 Material and Methods

2.1 Data

In our analysis, we used the publicly available dataset from [12]. We focused on subjects S1, S2,
and S3, each of whom underwent fMRI recordings for approximately 16 hours while listening to 83
stories from The Moth and Modern Love podcasts. The fMRI data was collected using a 3T Siemens
Skyra scanner with a repetition time (TR) of 2.00 seconds and an isotropic voxel size of 2.6 mm.
This allowed for the measurement of BOLD signals, which reflect neural activity with an inherent
delay due to the hemodynamic response. Preprocessing steps included motion correction, cross-run
alignment, standardization and detrending of low-frequency. For more details, we refer the reader
to the original paper [12]. Data from the first 70 stories of each subject were used as training set,
while the other 12 stories were used as validation set. Also, the story "wheretheressmoke", which was
listened to 10 times to ensure better signal to noise ratio at test set, aligning with recent literature on
language encoding and decoding [19, 1].

2.2 Encoding

The first step of our pipeline involves reducing the complexity of the signal we need to process. While
much of the brain is active during language and semantic tasks [10, 11], certain regions are more
directly involved in language processing. Therefore, we begin by identifying cortical regions that, at
the voxels level, are more easily modeled by a language model, allowing us to focus our analysis on
these regions. We trained an encoding model of brain activity using a large language model (LLM)
as the foundation. For each word in the training stories, we computed embeddings from LLama3-8B
[5], specifically from the 13th layer, using a context window of the previous five words. This choice
of layer is supported by previous studies [1] that found early layers in LLama models exhibit stronger
correlations with brain activity. To align the word embeddings with the fMRI temporal resolution,
we downsampled them using a Lanczos filter, creating matching sentence-fMRI pairs. Finally, we
calculated the Pearson correlation between the predicted and true brain activity on held-out validation
data, selecting the top 10,000 cortical voxels as our target regions. The activity in these voxels are the
targets we aim to embed and decode.
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2.3 Contrastive fMRI model

The core contribution of this work lies in the proposed representation learning pipeline. Since a
single TR of fMRI recording can be influenced by several preceding words due to the hemodynamic
response (HRF), we must account for this effect. To address the unique properties of fMRI data, we
developed a model consisting of two neural networks: an fMRI encoder and a text embedding pooler.
The fMRI model is a cross-subject neural network. The first layer is subject-specific and projects the
top 10,000 acivity corresponding to the top 10000 voxels of each subject into a shared representation
space of dimensionality common_dim. The remaining layers of the network are shared across subjects,
consisting of a multi-layer perceptron (MLP) that transforms the data from common_dim to the final
latent dimension latent_dim. The text embedding pooler is an MLP that processes four downsampled
word embeddings corresponding to the TRs that might affect the measured brain activity (i.e. those
from 1, 2, 3, and 4 timepoints before the corresponding BOLD response). Each word embedding is
projected into the final latent space by a linear layer that reduces the dimensionality. These projections
are then concatenated, resulting in a final sentence representation of dimensionality latent_dim. In
appendix, we detail all the hyperparameter search and architectures. Let x represent the fMRI activity,
y the downsampled word embeddings, f the fMRI model, and g the text pooler. We define the
projections as: zx = f(x), zy = g(y). Let zx ∈ Rn×d represent the encoded fMRI features and
zy ∈ Rn×d represent the encoded text embeddings, where n is the batch size and d is the latent
dimensionality. The logits matrix, which contains the similarity scores between each pair of fMRI
and text embeddings, is computed as:

logitsij =
zxi

· z⊤yj

τ

where τ is the temperature parameter that controls the sharpness of the distribution. The pair-
wise similarities are computed using the dot product between the fMRI and text embeddings:
similaritiesij = zxi

· z⊤yj
. Let the target labels be the identity mapping, where each input is

matched with itself in the contrastive learning task. The targets vector t ∈ Nn is defined as:
t = {0, 1, . . . , n − 1} This implies that ti = i, ensuring each fMRI sample is matched with the
corresponding text sample. The contrastive loss L is computed as a combination of two cross-entropy
losses, one for the alignment of fMRI to text and the other for text to fMRI:

L =
1

2

(
LCE(logits, t) + LCE(logits⊤, t)

)
where LCE denotes the cross-entropy loss function. This formulation optimizes both directions in the
contrastive learning objective, ensuring that fMRI features are closely aligned with the corresponding
text embeddings and vice versa. This contrastive learning approach ensures that both fMRI activity
and the corresponding text embeddings are projected into the same latent space, aligning brain activity
with linguistic features.

2.4 Retrieval and Evaluation

The retrieval module compares the L2 distance between fMRI and text embeddings across the test set
to find the closest sentences to each fMRI sample. We evaluate the decoded sentences using three
metrics: identification accuracy, top-1 accuracy, and top-10 accuracy. For top-10 retrieval, we select
the 10 closest sentences to each fMRI TR based on L2 distance, with the target sentence defined as
the previous 4 TRs (8 seconds) plus 5 preceding context words. Identification accuracy, adapted from
vision and music decoding literature, measures how well the model identifies the correct sentence
by comparing self-correlations in the latent space with other correlations. We compute Pearson
correlations between the predicted vectors and targets, storing the results in a correlation matrix, and
successively calculate identification accuracy by comparing the self-correlation with others in the
same row and normalizing the result.

3 Results

The results from our contrastive learning-based language decoding model are shown in Figure 2
and Table 3. The top panel of Figure 2 illustrates the model’s encoding performance, with Pearson
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Figure 2: Top: Pearson correlation maps of predicted vs. actual brain embeddings for subjects S1,
S2, and S3 shown on flattened cortical surfaces. The regions we identified are typically associated
with language processing, such as the superior temporal gyrus and parts of the inferior frontal cortex.
Bottom: Cosine similarity matrices between sentence embeddings and brain embeddings for each
subject.

correlations between predicted and actual brain embeddings across three subjects (S1, S2, S3). The
red regions indicate strong correlations, suggesting the model captures language-related cortical
activity patterns, likely in language-processing areas of the brain. The consistent performance across
subjects highlights the model’s robustness in identifying key neural features associated with sentence
comprehension. In the bottom panel, the cosine similarity matrices between sentence embeddings
and brain embeddings show a strong alignment, indicated by bright diagonal lines, reflecting the
model’s ability to map linguistic structures to brain representations effectively. Table 3 provides
quantitative metrics for decoding accuracy. The Top-1 Accuracy, which ranges from 0.313 (S2) to
0.498 (S3), significantly outperforms chance levels, confirming the model’s ability to predict precise
sentences. Top-10 Accuracy further validates this, with values as high as 0.838 (S3), indicating that
the correct sentence is frequently among the top 10 predictions. Identification Accuracy is also high
for all subjects, ranging from 0.910 (S2) to 0.962 (S3), reinforcing the model’s strong performance
in decoding brain representations of sentences. Overall, both Figure 2 and Table 3 demonstrate the
model’s effectiveness in linking sentence embeddings to brain activity, with strong performance
across subjects. Subject S3 consistently shows the best results, suggesting individual differences in
brain activity may influence decoding accuracy, offering avenues for future investigation.

Subject Top-1 Acc Top-10 Acc Chance Level Top-1 Chance Level Top-10 Identification Acc

s1 0.3780 0.786 0.0114 0.0894 0.9571
s2 0.3127 0.6666 0.0116 0.0855 0.9100
s3 0.4982 0.8381 0.0118 0.0814 0.9624

Table 1: Performance metrics for Top-1, Top-10, and Identification Accuracy across different datasets.

4 Discussion and Conclusions
Contrastive learning has proven to be a robust method for learning cross-subject mappings between
brain activity and sentence-level embeddings. However, a key limitation of our approach is that
decoding is performed through a retrieval module (i.e., sentence identification). This requires access
to candidate sentences beforehand, limiting the model’s ability to generalize to brain activity related
to sentences that differ significantly from those in the training dataset. Another important limitation
pertains to future applications of this work. The learned fMRI embeddings could potentially be
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used in conjunction with Bayesian decoding techniques or as inputs to modified large language
models (LLMs) for open vocabulary decoding. However, these approaches raise concerns about
privacy and bias. It will be crucial to address how to distinguish between actual thoughts and brain
representations, and how to prevent biases in both models and human interpretations from influencing
the results. Future research should explore the concept of neural privacy and develop strategies
to disentangle model biases from genuine cognitive processes. In conclusion, this work presents
a cross-subject architecture that decodes brain activity into sentences using contrastive learning
and sentence identification, laying the groundwork for future advancements in brain-to-language
decoding.
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A Appendix / supplemental material

A.1 Neural Network Architectures

This appendix describes the architecture of the neural networks used in this work. The models consist
of an Encoder for processing the input data, an Embedding Pooler for projecting embeddings to a
common latent space, and a Contrastive Model for learning via contrastive losses.

A.1.1 Encoder

The Encoder network is designed to map the input data to a lower-dimensional latent space. The
architecture is summarized in Table 2. input_dim is set to be the number of cortical voxels (10000)
while common_dim is chose to be 4096.

Table 2: Encoder Network Architecture

Layer Type Dimensions Activation Function
Input Layer input_dim× hidden_dim -

Alignment Layer (key = 1) input_dim× common_dim -
Alignment Layer (key = 2) input_dim× common_dim -
Alignment Layer (key = 3) input_dim× common_dim -

Layer Normalization common_dim -
Linear Layer common_dim× hidden_dim Identity
Linear Layer hidden_dim× latent_dim -

Layer Normalization latent_dim -

The alignment layers apply different transformations to subsets of the data depending on key values
provided at runtime. These layers are followed by sequential linear layers with ReLU activation.

A.1.2 Embedding Pooler

The Embedding Pooler projects embeddings, such as fMRI data, into a lower-dimensional latent
space. The architecture is summarized in Table 3.

Table 3: Embedding Pooler Architecture

Layer Type Dimensions Activation Function
Input Layer input_dim× hidden_dim -

Layer Normalization input_dim -
Linear Layer input_dim× hidden_dim GELU
Linear Layer hidden_dim× (latent_dim/4) GELU

Layer Normalization (latent_dim/4) -
Reshaping (batch_size,−1) -

The input is first normalized, followed by a sequence of linear layers and GELU activation. The final
step reshapes the output into a pooled embedding vector.

A.1.3 Contrastive Model

The Contrastive Model combines the Encoder and Embedding Pooler for multimodal learning
using contrastive loss functions. The model supports various loss functions, such as contrastive loss,
mean squared error (MSE), and cosine similarity loss. The overall architecture is shown in Table 4.

Table 4: Contrastive Model Components

Component Description
Encoder See Table 2

Embedding Pooler See Table 3
Loss Function Contrastive
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Figure 3: Encoding scheme

During training, the model minimizes the distance between fMRI projections and embeddings from
other modalities. The training process is logged and monitored using the mean squared error, cosine
similarity, and the primary loss function.

A.2 Training Setup

The models are trained using an AdamW optimizer with a learning rate of 1e− 4 and weight decay of
1e− 4. The learning rate is adjusted dynamically using a scheduler that reduces the rate by a factor
of 0.1 when the validation loss plateaus for 50 epochs.

Table 5: Training Parameters

Parameter Value
Optimizer AdamW

Learning Rate 1e− 4
Weight Decay 1e− 4

Learning Rate Scheduler ReduceLROnPlateau (patience: 50)
Epochs 3

The models are trained for a maximum of 3 epochs using PyTorch Lightning’s Trainer, with all
computations performed on a single GPU device. The data are publicly available and can be requested
at https://openneuro.org/datasets/ds003020/. All experiments and models were trained
on a server equipped with four NVIDIA A100 GPU cards (80GB RAM each connected through
NVLINK) and 2 TB of System RAM.

B Comparative Analysis of Generative Decoding and Contrastive Learning
Approaches

In this section, we detail the connections and differences between the generative decoding approach
described in [19] and our proposed contrastive learning decoder. The aforementioned work employs
a Bayesian encoding technique, learning subject-specific encoding and noise models from data, and
estimates likelihood probabilities using a large language model (LLM) as a generator of candidate
sentences. This enables open-vocabulary text generation guided by fMRI data. In contrast, our
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work adopts a more modern and flexible approach based on contrastive learning, aiming to learn
cross-subject latent representations of both text and fMRI data.

We will delve into the mathematical foundations of both methods and highlight their similarities and
differences.

Let y denote the fMRI data with shape (t, v), where t represents time and v represents the number of
voxels. Let x be the downsampled text features extracted by a pretrained language model (GPT-1 for
Bayesian decoding and LLaMA3-8B for contrastive decoding), with shape (t, f), where f denotes
the number of text features.

The encoding model is defined by a set of learned weights W that maps x to y, with W having shape
(f, v):

ŷ = xW

In the Bayesian approach, y is modeled as a multivariate Gaussian distribution:

y ∼ N (xW,Σ)

where Σ is the covariance matrix of shape (v, v).

Here the goal is to model the posterior distribution p(x | y). Applying Bayes’ theorem, we can write:

p(x | y) = p(y | x)p(x)
p(y)

Since p(y) is constant with respect to x, we focus on the numerator p(y | x)p(x). The problem thus
reduces to estimating a good encoding model (i.e., accurate estimates of p(y | x)) and utilizing a
pretrained language model to estimate the prior probabilities p(x).

The likelihood p(y | x) can be expressed as:

p(y | x) ∝ exp

(
−1

2
(y − xW )⊤Σ−1(y − xW )

)
Taking the negative logarithm yields the loss function:

L = (y − xW )⊤Σ−1(y − xW )

Here, the quadratic form represents the residuals between the model predictions and the measurements,
re-weighted by the inverse covariance matrix.

Expanding the terms, we obtain:

L = y⊤Σ−1y − 2xWΣ−1y⊤ + xWΣ−1W⊤x⊤

This results in a (t, t) matrix of residuals. By taking the trace, we obtain a scalar loss function that
we can minimize to learn the encoding model weights.

The most significant term is the interaction term:

xWΣ−1y⊤

which involves matrices of shapes:

(t, f)× (f ,v)× (v,v)× (v, t)

The learnable parameters here are the encoding weights W and potentially the inverse covariance
matrix Σ−1.
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In our contrastive model, we employ two learned functions, approximated by neural networks, to
map x and y into a shared latent space z of dimensionality d:

zx = f(x), zy = g(y)

where f : Rf → Rd and g : Rv → Rd.

To simplify the mathematical analysis and highlight the differences and similarities between the two
methods, let’s assume that both f and g are linear functions:

zx = xA, zy = yB

with A being a matrix of shape (f, d) and B a matrix of shape (v, d), so that zx and zy both have
shape (t, d).

The objective of the contrastive loss is to make the cosine similarity matrix between zx and zy as
close as possible to the identity matrix I . This can be achieved by computing:

S =
zx

∥zx∥

(
zy

∥zy∥

)⊤

where S has shape (t, t). We can then use a cross-entropy loss for each element along the diagonal or
compute the mean squared error between S and I .

By expanding the calculation and ignoring the normalization terms for simplicity, we obtain:

S = zxz
⊤
y = xAB⊤y⊤

where the matrix multiplications involve shapes:

(t, f)× (f ,d)× (d,v)× (v, t)

We observe a key connection between the two models: in both cases, we have a similarity (or
dissimilarity) matrix of shape (t, t) where the interaction between x and y plays a crucial role.

In the Bayesian model, the encoding projects text features into the brain space and re-weights them
based on the noise model, whereas in the contrastive model, this process occurs implicitly through the
interaction of the functions f and g. In the linear case, the product AB⊤ takes on a role analogous to
WΣ−1.

However, in the contrastive approach, text features are projected into a latent space (typically with
d ≪ v), resulting in a less descriptive model. This acts as an implicit regularization, but if d is less
than the rank of Σ−1, some information might be lost. This is a suggestion that higher dimensionality
plays an important role in brain decoding of language, guiding us in our hyperparameter search.

Thus, while the contrastive model offers greater flexibility—such as training cross-subject models,
incorporating nonlinearities, and utilizing compressed latent spaces—it may sacrifice some informa-
tion about the relationship between x and y. A potential future direction could involve modeling zy
directly as a multivariate Gaussian:

zy ∼ N (f(x), Zσ)

where Zσ could capture the noise properties of the latent space, possibly modeled by another neural
network.

B.1 Hyperparameter Search

To optimize the performance of our contrastive learning-based model for decoding brain activity, we
conducted a hyperparameter search using a random sampling methodology. Our search focused on
minimizing the validation loss across a set of 100 randomly sampled configurations from a predefined
search space. The hyperparameter sweep was configured as follows:
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• Batch Size (BS): We experimented with batch sizes of {512, 1024, 2048}.
• Learning Rate (lr): We explored two learning rates: {1e-4, 1e-5}.
• Alpha (α): The weight parameter for the contrastive loss was sampled from {0.5, 0.8}.
• Temperature (τ ): We used a fixed value of 0.1 to control the sharpness of the similarity

distribution.
• Loss Function: Three loss types were tested: {contrastive, mean squared error (MSE),

mean contrastive}.
• Weight Decay (wd): Regularization was applied with values {1e-4, 1e-5, 1e-2, 0}.
• Latent Dimension: The dimensionality of the shared latent space was varied across {512,

1024, 2048, 4096, 8192, 10000, 16384}.
• Activation Function: We tested both {ReLU, Identity} activation functions in the hidden

layers.
• Base Channel Size: We considered different channel size configurations across layers:

{[4096, 2048, 1024], [2048, 1024], [2048]}.
• Hidden Dimensions: The hidden layers were configured with varying sizes, including

{[2048, 1024, 512], [1024, 512], [1024]}.

The metric used to evaluate the model’s performance was the validation loss, which we aimed
to minimize. The random sampling method allowed us to explore a diverse set of hyperparame-
ter combinations without performing an exhaustive grid search, which would be computationally
expensive.

By systematically varying these key hyperparameters and evaluating each sampled configuration,
we were able to identify an optimal combination that balanced both accuracy and generalization
across subjects. This hyperparameter search played a crucial role in achieving the strong performance
metrics reported in our results.

Accordingly to insights given from comparative analysis we found that linear models with high
common and latent dim (equal to the input dimensionality) performed better.

B.2 Bias, Privacy, and Ethical Considerations

The development of models that decode brain activity into language raises important ethical concerns,
particularly regarding bias, privacy, and the responsible use of such technology. One significant
concern is the potential for bias in both the models and the data. fMRI datasets, as well as the
pre-trained language models used in this study, can inherit biases from the populations they are
trained on, which may lead to biased or inaccurate decoding, especially across diverse groups of
individuals. This could have serious implications when applying these models in clinical or social
contexts.

Another critical issue is privacy. Brain-to-text decoding systems pose a unique risk to neural privacy,
as they may allow for the reconstruction of internal thoughts and mental states. This raises questions
about consent, data security, and the misuse of brain data in contexts where individuals may not have
full control over how their neural activity is used or interpreted. It is essential to develop safeguards
to ensure that brain data cannot be used to decode private thoughts without explicit consent, and to
explore ways to mitigate any unintended consequences of decoding technologies, such as the risk of
surveillance or the exploitation of individuals’ cognitive data.

As the field progresses, it will be crucial to establish ethical guidelines that prioritize transparency,
fairness, and respect for individual autonomy. Future research should also focus on developing
methods to disentangle model biases from genuine cognitive processes and explore the concept of
"neural privacy" as a framework for protecting individuals in this emerging area of brain-computer
interface technology.
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