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ABSTRACT

Tool use has emerged as a pivotal mechanism for enhancing Large Language
Models (LLMs), allowing them to interact with external tools to solve complex
tasks and access knowledge beyond their static pre-trained parameters. However,
most existing studies rely on advanced LLMs to improve tool-use capabilities via
data synthesis, often resulting in suboptimal data quality or mismatched task dif-
ficulty, thereby limiting model performance. To address these limitations, we
propose a novel antagonistic evolution framework for tool-use tasks, involving
a query-generation model and a tool-use model updated in an adversarial manner.
The query-generation model is optimized to produce increasingly challenging and
high-quality queries, which the tool-use model then learns to solve. This adver-
sarial process is iteratively executed, enabling both models to co-evolve and pro-
gressively enhance the tool-use capabilities. Experiments on three comprehensive
tool-use benchmarks demonstrate evolving performance improvements, validating
the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) are typically pre-trained on giga-token corpora using large-scale
GPU clusters, and are subsequently served in a static manner. The prohibitive training cost prevents
them from being frequently updated with new knowledge or adapted to dynamic environments. To
enable LLMs to tackle complex problems, particularly in interactive settings, enhancing their tool-
use ability has become a central research goal in the AI community. This direction has also been
emphasized in state-of-the-art foundation models, such as GPT-51, Claude2, Kimi-K2 (Team et al.,
2025a), and LongCat (Team et al., 2025b), thereby advancing the development of agentic AI.

Existing approaches to improving LLMs’ tool-use ability primarily rely on synthesizing labeled
training data for post-training. Typically, these methods construct automated pipelines that prompt
advanced models (e.g., GPT-4 or Claude-3.5) to generate queries and solutions, thereby simulating
multi-turn interactions among users, assistants, and tools (Liu et al., 2025; Zhang et al., 2025). While
such approaches can efficiently produce large-scale tool-use datasets at relatively low cost, their
effectiveness is often constrained by data quality and target-model adaptivity, as highlighted in prior
work (Liu et al., 2025). On the one hand, even state-of-the-art LLMs may introduce hallucinations
when generating synthetic data, leading to quality deficiencies (Chen et al., 2024a). On the other
hand, training on data that are either overly simplistic or excessively difficult may fail to benefit, or
even harm, the target model’s performance by causing negative transfer and disrupting its original
knowledge structure (Wang et al., 2019). Inspired by recent advances in self-play paradigms for
LLMs, where models iteratively generate and refine training data to achieve self-improvement, one
promising direction is to adaptively tailor synthetic data to better match the target model’s evolving
capability. Such methods demonstrate that models themselves can act as both data producers and
consumers, enabling progressive evolution without external supervision. However, despite their
success in domains such as math and coding, the exploration of self-play or adversarial evolution
remains largely absent in the context of tool use, leaving a critical research gap.

To address these challenges, we propose a novel Antagonistic Evolution method for Tool use
(AETool). Unlike prior methods that directly rely on synthetic samples for training, AETool intro-
duces a query-generation model and a tool-use model, which co-evolve through an adversarial pro-

1https://chatgpt.com
2https://www.anthropic.com
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cess. The query-generation model rewrites queries based on tool-provided solutions in the dataset,
thereby improving query quality while adaptively adjusting data complexity. The tool-use model is
then trained on these rewritten samples to enhance its tool-use capabilities. Through adversarial op-
timization, the two models evolve iteratively: in each round, the query-generation model produces
high-quality, diverse, and increasingly challenging samples informed by feedback from the tool-use
model, which in turn is compelled to solve progressively harder problems. This iterative interaction
fosters continuous refinement of both models, enabling the tool-use model to steadily improve its
performance even under limited data conditions.

Our key contributions are summarized as follows:

• We propose AETool, the first adversarial evolution method tailored for tool-use tasks, enabling
LLMs to enhance their tool-use ability without relying on massive synthetic datasets.

• We design a query-generation model that improves query quality and adaptively regulates task dif-
ficulty, addressing the limitations of low-quality or mismatched synthetic data in prior approaches.

• We establish an adversarial training loop between the query-generation model and the tool-use
model, allowing both models to continuously refine their capabilities and achieve progressive
improvement.

• Extensive experiments conducted on three benchmark tool-use datasets demonstrate that the
model obtained by our AETool consistently outperforms state-of-the-art tool-use models, vali-
dating its effectiveness and robustnes.

2 RELATED WORK

2.1 TOOL-USE LLMS

A typical tool-use task consists of two core steps: selecting the most appropriate tool from a set
of candidates and extracting the necessary parameters for tool invocation from the user’s query.
Existing research on this task can be broadly categorized into two approaches: non-tuning methods
and tuning-based methods (Qu et al., 2025; Liu et al., 2023).

Non-tuning methods mainly rely on prompting strategies and few-shot learning. ReAct(Yao et al.,
2023) models tool-use behavior explicitly by prompting the language model to ”think and act” dur-
ing the reasoning process. EasyTool(Yuan et al., 2025) proposes an automatic rewriting method to
make tool descriptions more interpretable by the model. Concise(Xu et al., 2024b) summarizes tool
functionalities using concise and clear language to reduce processing complexity while preserving
semantic completeness. Another line of work(Shi et al., 2024) adopts a multi-agent collaboration
strategy, thereby improving overall performance and task success rate.

Tuning-based methods, on the other hand, leverage tool-use samples to train existing LLMs, en-
abling them to systematically learn tool-use workflows and strengthen their invocation capabilities.
These methods primarily focus on data collection and training strategies. Toolformer(Schick et al.,
2024) introduces special tool-related tokens into the model’s vocabulary to reformulate the language
modeling task into a “call-response” structure, enabling explicit modeling of tool-use behavior dur-
ing training. ToolkenGPT(Hao et al., 2024) builds upon this approach by introducing a multi-stage
switching mechanism during decoding, allowing the model to dynamically alternate between text
generation and tool invocation modes. Additionally, some studies(Qin et al., 2024; Yang et al., 2023;
Liu et al., 2025) use advanced LLMs to automatically synthesize tool-use examples to enhance the
capabilities of lightweight models through knowledge distillation.

2.2 SELF-EVOLVED LLMS

Self-evolution refers to the process by which a model gradually improves its capabilities through
mechanisms such as self-learning, self-feedback, and self-optimization, without human intervention
or external supervision. This process mainly involves experience acquisition, experience refinement,
updating, and evaluation(Tao et al., 2024).

The earliest studies on self-evolution primarily focused on data construction and self-supervised
fine-tuning. Self-Instruct(Wang et al., 2023) enables a language model to construct task instructions

2
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Figure 1: The overall workflow of the proposed antagonistic evolution, consisting of a query-
generation model Mgen and a tool-use model Mtool. In the left part, the two models are updated
in an adversarial manner, where the generation model is optimized to generate more complex query
and the tool model is optimized to achieve more tool-use accuracy. In the right part, mutation oper-
ations are conducted on training data to increase data diversity.

and train itself without human intervention. Building upon this, Evol-Instruct(Xu et al., 2024a)
introduces a task evolution mechanism, allowing the model to achieve capability transitions through
instruction sequences of increasing complexity.

Other kind of methods emphasize model reflection and self-correction. IterRefinement(Chen et al.,
2024b) uses a series of prompts to encourage the model to improve upon its previous outputs;
STaR(Zelikman et al., 2022) proposes guiding the model to perform rationale analysis and generate
correct solutions based on identified patterns; Reflexion(Shinn et al., 2023) enables the model to it-
eratively revise and rewrite its generated content through self-evaluation, thus achieving multi-round
optimization.

In recent years, some studies have introduced self-play mechanisms into the domain of large lan-
guage models. SPIN(Chen et al., 2024c) treats the model’s own generated answers as negative
samples and applies preference optimization to update its parameters, achieving self-play dynamics.
SPPO(Wu et al., 2025) incorporates evaluation metrics, allowing the model to generate multiple can-
didates, compare them, and update its parameters based on the best-performing responses, thereby
driving strategy evolution.

3 METHODOLOGY

In this section, we introduce the proposed antagonistic evolution pipeline for tool-use, shown in
Figure 1. The pipeline consists of a query-generation model and a tool-use model, where the query-
generation model aims to produce high-quality samples and is optimized toward generating high-
quality and increasingly complex training data. The algorithm is presented in Algorithm 1.

3.1 PRELIMINARIES

Tool-use Task. Given an LLM M, a query q, and a set of candidate tools T , the model is required to
select the appropriate tools ti and fill in the parameters (ai1, · · · , aim) to construct the final solution
A = [(ti, ai1, · · · , aim), · · · ]. This process is denoted as (T , q

tool−−→ A). Detailed prompts for this
task are provided in Appendix B.

Query-generation Task. Given an LLM M, a query q, a candidate tool set T and a solution
A, the model is required to generate an improved query q′. The generated query should be more
semantically complete, reasonable, and challenging than the original one. This process is denoted
as (T , q, A

gen−−→ q′). Detailed prompts for this task are provided in Appendix B.
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Algorithm 1: Antagonistic Evolution

Input: D = { (Ti, q0i
tool−−→ A0

i ) }Ni=1, a base LLM M
1 , iteration number T . D0

tool = D;
2 M0

tool = M;
/* Step 0: Warmup query-generation model */

3 M0
gen = WarmUp(D,M);

4 for t=0,...,T-1 do
/* Step 1: Updating query-generation model */

5 Qt = QueryGeneration(Dt
tool,Mt

gen, k) ; // Algo. 2

6 Dt
gen = {(Ti, At

i, q
t
i,easy

gen−−→ qti,hard)}Ni=1 = QuerySelect(Dt
tool,Qt,Mt

tool) ;
// Algo. 3

7 Mt+1
gen = argmaxM

1
N

∑N
i=1 PM(qti,hard | Ti, At

i, q
t
i,easy) with Mt

gen as initialization;

/* Step 2: Updating tool-use model */

8 Q̃t = QueryGeneration(Dt
tool,Mt+1

gen, 1) ; // Algo. 2

9 D̃t
tool = {(Ti, Q̃t

i,1
tool−−→ At

i)}Ni=1;
10 Mt+1

tool = argmaxM
1
N

∑N
i=1 PM(q̃ti | Ti, At

i) with Mt
tool as initialization;

/* Step 3: Data Mutation */
11 Dt

tool = Mutate(Dt
tool, θ

t
tool) ; // Algo. 5

12 Dt
tool = QueryGeneration(Dt

tool, θ
t
gen, 1);

13 end
Output: θTtool

3.2 WARMUP
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Query
Generation
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(𝑞!, 𝐴!)

(𝑞", 𝐴!)
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Generation Training

Figure 2: The warmup process for the
query-generation model.

A central component of our proposed evolution frame-
work is the query-generation model, which iteratively
rewrites queries to improve their quality and complex-
ity. Since generating high-quality queries is inherently
challenging and small-scale base models typically lack
such advanced capability, we introduce a warm-up pro-
cess prior to evolution in this section.

Given a tool invocation dataset D = { (Ti, qi
tool−−→

Ai) }ni=1, our goal is to optimize the base model for
query-generation ability. First, the base model M is
prompted to generate a query q′i based on the candidate
tool sets Ti and solutions Ai. Since the base model has
not been fine-tuned for the task, we assume it lacks the
ability to produce high-quality queries. The generated
queries typically fall short of real ones in terms of seman-
tic completeness, plausibility, and informativeness, and
are therefore treated as lower-quality counterparts to the original queries {qi}. Second, we con-
duct supervised fine-tuning to the base model on the dataset { (Ti, Ai, q

′
i

gen−−→ qi) }ni=1, where the
model is optimized to rewrite a more fluent, structurally sound and linguistically clear query from
the lower-quality query. This significantly enhances the model’s ability in query generation and
query complication, offering an initial query-generation model M0

gen, which serves as a founda-
tional component for the subsequent evolution process. The corresponding pipeline and algorithm
are shown in Figure 2 and Algorithm 4 in Appendix A, respectively.
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Algorithm 2: Query Generation

Input: Dtool = {(Ti, qi
tool−−→ Ai)}Ni=1,Mgen, k

1 Q = ∅;
2 for i=1,...,N do
3 Qi = ∅;
4 for j=1,...,k do
5 q′ij ∼ P (· | Ti, qi, Ai,Mgen);
6 Qi = Qi ∪ {q′ij};
7 end
8 Q = Q∪ {Qi};
9 end

Output: Q

Algorithm 3: Query Select

Input: Dtool = {(Ti, qi
tool−−→ Ai)}Ni=1,Q = {(qi,1, · · · , qi,k)}Ni=1,Mtool

1 Dgen = ∅;
2 for i=1,...,N do
3 generate solutions Ãi and confidence scores Pi,j with Mtool for each query qi,j in Qi;
4 Q′i = {qi,j | Ãi,j = Ai}kj=1;
5 qi,easy = argmax

qi,j∈Q′
i

PMtool
(Ãi,j | Ti, qi,j);

6 qi,hard = argmin
qi,j∈Q′

i

PMtool
(Ãi,j | Ti, qi,j);

7 Dgen = Dgen ∪ {(Ti, Ai, qi,easy
gen−−→ qi,hard)}

8 end
Output: Dgen

3.3 ANTAGONISTIC EVOLUTION

In previous studies Qin et al. (2024); Liu et al. (2025); Lin et al. (2024), enhancing tool-use ca-
pabilities is typically achieved by directly performing supervised fine-tuning (SFT) on synthesized
tool-instruction datasets. However, this approach imposes high demands on both the quantity and
quality of the data, and it also faces a critical limitation: the complexity of the data must align
with the model’s capacity, otherwise the tool-use performance may remain suboptimal Liu et al.
(2025). Inspired by the idea of Generative Adversarial Networks (GANs) Goodfellow et al. (2020),
we train a query-generation model that shares the same origin as the tool-use model and employ it
in an adversarial manner. The query-generation model Mgen and the tool-use model Mtool serve
as the generator and discriminator in GANs, respectively, where Mgen is optimized to generate
high-quality and increasingly challenging queries while Mtool is optimized to solve those challeng-
ing queries with correct tool-using solutions. This approach not only improves the quality of the
training data but also enables adaptive adjustment to the complexity of the data.

In the evolution process, the two models are updated iteratively, resulting in the tool-use ability
being increased through training on more challenging tasks. Additionally, a data mutation operation
is conducted in each iteration to increase data diversity.

3.3.1 UPDATING QUERY-GENERATION MODEL

Similar to the generative model in GANs, the optimization of the query-generation model Mgen

aims to generate more challenging samples. The updating of the query-generation model Mgen

comprises two crucial steps: data collection and model updating.

Data collection. For the previous iteration generated tool-invocation dataset Dt
tool = {(Ti, qti

tool−−→
At

i)}Ni=1, we use previous data generation model Mt
gen to generate k candidate queries Qi =

5
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{qi,j}kj=1 for each qi with sampling method. Then we use the previous tool-use model to select
an easy and a hard query, forming the training data set for the query-generation model. First, the
tool-use model Mt

tool is instructed to generate solutions Ai = {Ai,j}kj=1 and confidence scores
Pi = {pi,j}kj=1 for each query. These confidence scores reflect the model’s certainty in solving
the query, serving as the complexity indicator of queries. However, the generation model may gen-
erate infeasible queries not be solved correctly, resulting in low-quality queries. To guarantee the
quality of the selected queries, we select the two queries with the highest and lowest confidence
scores from correctly-solved queries, representing the easy query qti,argmaxj pi,j

(denoted as qti,easy)
and qti,argminj pi,j

(denoted as qti,hard) and the hard queries, respectively. Therefore, we obtain the

query-paired data set Dt
gen = {(Ti, At

i, q
t
i,easy

gen−−→ qti,hard)}Ni=1.

Model updating. Upon the query-paired samples being collected, the query-generation model
Mt

gen is then optimized with the query-generation task: (T , A, qeasy
gen−−→ qhard) through a query-

generation instruction, which can be formulated as:

Mt+1
gen = argmax

M

1

N

N∑
i

PM(qti,hard | Ti, At
i, q

t
i,easy) (1)

where the M is initialized with Mt
gen. PM(y | x) denotes the probability of generating y for input

x of model M, which is usually calculated by the next token prediction loss.

3.3.2 UPDATING TOOL-USE MODEL

Consistent with the update of the query-generation model, the update of the tool-use model Mtool

consists of two steps: data complexification and model updating.

Data complicating. Following the update of the query-generation model, we obtain a model
equipped with the ability to complexify queries. To further enhance the effectiveness of the tool-use
model, we exploit this capability to perform an additional round of query complicating on the exist-
ing data, thereby generating more challenging training instances. Concretely, we employ the query-
generation model to rewrite the queries in the previous dataset Dt

tool = {(Ti, qti
tool−−→ At)}Ni=1,

and construct a new, more complex dataset D̃t
tool = {(Ti, q̃ti

tool−−→ At)}Ni=1. The resulting dataset
serves as the training corpus for updating the tool-use model, thereby improving its ability to operate
effectively under more complex query scenarios.

Model updating. The tool-use model Mt
tool is then trained on those new complex samples D̃t

tool

with the tool-use task: (T , q
tool−−→ A), which can be formulated as:

Mt+1
tool = argmax

M

1

N

N∑
i

PM(q̃ti | Ti, At
i) (2)

where the M is initialized with Mt
tool.

3.3.3 DATA MUTATION

Data diversity is essential to mitigate overfitting and enhance the robustness of the tool-use model.
However, the candidate tools in each sample are unchanged in each iteration, introducing the risk that
the tool-use model may exploit spurious correlations by memorizing a static mapping from candidate
tools to solutions, thus ignoring the query content. Therefore, we introduce a reparameterization
strategy to perturbs the solutions and then generate a novel query for the solutions. At the end of
each iteration, the tool-use model perturbs the solution At

i to a new one At+1
i . The new-generated

solutions are validated via abstract syntax tree checks to ensure syntactic correctness. For each
validated perturbed solution At+1

i , the data generation model Mt+1
gen produces a corresponding query

qt+1
i , yielding updated query-solution pairs (qt+1

i , At+1
i ). The final mutated dataset is thus defined

as Dt+1
tool = {(Ti, qt+1

i
tool−−→ At+1

i )}Ni=1.
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Table 1: The performance of models on BFCL-live. SFT refers to model trained on the original
dataset. Bold and underline(only Avg.) represent the best and the 2nd best results.

Model Simple Multiple Parallel Parallel Multiple Avg.
Llama3.1-8B-Instruct 0.7674 0.7749 0.8750 0.7083 0.6108
Qwen2.5-7B-Instruct 0.7287 0.7569 0.6250 0.7083 0.7491
Hammer2.1-7B 0.7674 0.7740 0.8125 0.7083 0.7511
Watt-tool-8B 0.7674 0.7749 0.8750 0.7083 0.7650
ToolACE-8B 0.7326 0.7673 0.8125 0.7083 0.7602
Falcon3-7B-Instruct 0.7403 0.6648 0.7500 0.6250 0.5486
BitAgent-8B 0.7791 0.7740 0.8750 0.7083 0.7614

SFT 0.7868 0.7797 0.6875 0.6250 0.7772

Ours 0.8256 0.8025 0.8125 0.7917 0.8068

Table 2: The performance of models on API-Bank and ACEBench. The settings remain the same
with the table above. S-Turn, M-Turn and Similar denote Single Turn, Multiple Turn and Similar
API in ACEBench, respectively.

Model API-Bank ACEBench

Lv1 Lv2 Avg. Atom S-Turn M-Turn Similar Avg.
Llama3.1-8B-Instruct 0.7143 0.3852 0.5498 0.5100 0.4950 0.2800 0.6000 0.4740
Qwen2.5-7B-Instruct 0.7193 0.3259 0.5226 0.7000 0.5700 0.4900 0.6200 0.6310
Hammer2.1-7B 0.7494 0.4370 0.5932 0.7130 0.6250 0.4300 0.6400 0.6390
Watt-8B 0.7419 0.4519 0.5969 0.8470 0.7150 0.5700 0.7000 0.7590
ToolACE-8B 0.7218 0.3926 0.5572 0.8300 0.7300 0.5630 0.7840 0.7600
Falcon3-7B-Instruct 0.6667 0.3778 0.5223 0.6500 0.4800 0.4300 0.6800 0.5820
BitAgent-8B 0.7444 0.4370 0.5907 0.8470 0.7100 0.5500 0.7200 0.7450

SFT 0.7318 0.4889 0.6104 0.8130 0.7750 0.5600 0.7000 0.7560

Ours 0.7544 0.5037 0.6291 0.8500 0.8000 0.5800 0.6600 0.7750

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Train Dataset and Base Model. Our experiment utilizes 10,000 samples from xlam-function-
calling-60k(Liu et al., 2024) dataset and the samples from ToolACE(Liu et al., 2025) dataset as
training set, which is specifically designed for tool-use scenarios and contains structured function-
calling samples. We also utilize Qwen2.5-7B-Instruct(Team, 2024a;b) as base model.

Evaluation. To validate the effectiveness of our method, we selected three different tool-using
benchmarks for evaluation: BFCL(Yan et al., 2024), APIBank(Li et al., 2023) and ACEBench(Chen
et al., 2025). Specifically, we used the BFCL-live as the primary benchmark for comparison, while
the Level 1 and 2 evaluation sets from APIBank and the normal evaluation set from ACEBench
served as complementary evaluations. This setup enables a more comprehensive assessment of the
model’s tool-use capabilities across various task types and domains.

Baselines. To validate the superiority of AETool over conventional training, we constructed multi-
ple comparison baselines. First, we compared our approach with open-source models and fine-tuned
tool-calling models of similar scale. Open-source models include Qwen2.5-7B-Instruct, LLaMA-
3.1-8B-Instruct(AI@Meta, 2024) and Falcon3-7B-Instruct(Team, 2024c). Tool-calling models in-
clude Hammer2.1-7B (Lin et al., 2024), Watt-8B3, ToolACE-8B(Liu et al., 2025) and BitAgent-8B4.

3https://ollama.com
4https://bittensor.com/
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Figure 3: The performance of trained models over training iterations on three benchmarks.

Direct training on the original dataset without applying our evolution method is also included as a
baseline, denoted as SFT in the results.

Implementation Details. Due to limited resources, all supervised fine-tuning in our method adopts
a parameter-efficient tuning strategy LoRA (Hu et al., 2022). For hyperparameter settings, the rank
is set to 8, alpha to 16, learning rate to 10−4, with a cosine learning rate scheduler and a warm-up
ratio of 0.1. In the antagonistic evolution, the temperatures for query generation and tool use are set
to 1 and 0.5, respectively. The number of new variants generated per query k is set to 5.

4.2 MAIN RESULT

The overall evaluation results on the three benchmarks are illustrated in Table 1, Table 2 and Fig-
ure 3. We have the following findings according to the results:

Findings 1: Continuous training on the original dataset tends to cause overfitting and weaken tool-
use performance. Further analysis reveals that performance degradation is observed across all three
benchmarks. For all three benchmarks, performance increases during the first epoch but deteriorates
steadily in the second and third epochs, exhibiting clear signs of overfitting. This suggests that
the original training set may have overly concentrated or repetitive distributions and lack diversity.
Prolonged training on such data leads the model to overfit specific patterns, which in turn undermines
its ability to generalize and remain robust across broader tool-use tasks.

Findings 2: Our proposed method achieves state-of-the-art performance, consistently surpassing
all baseline models across the evaluation benchmarks. Beyond the overall performance gains, the
model demonstrates superiority in nearly all evaluation aspects within the three benchmarks, cover-
ing both general and fine-grained dimensions of tool-use capabilities. This comprehensive improve-
ment highlights not only the effectiveness of our approach in handling diverse and complex tasks,
but also its clear advantages over existing methods in enhancing tool-use capabilities.

Findings 3: Compared to conventional training methods, our approach exhibits robustness and yields
consistently stable performance gains. Unlike the original models, our method shows consistent and
significant performance improvements across all evaluation benchmarks. The immediate effective-
ness further suggests that, unlike static training data, the samples generated by the model itself
during tool-use interactions are closer to its capability boundaries. As a result, they are more tar-
geted and adaptable, better stimulating and refining the model’s potential. This not only enhances
the model’s ability to handle complex tasks but also highlights its capacity for self-evolution.

4.3 ABLATION STUDY

To validate the necessity and effectiveness of each component in our proposed method, we con-
ducted ablation studies based on the theoretical framework of our approach. We designed three
experimental settings as follows:

• All: The complete method as proposed in our paper.

• All w/o Mutation: Our method without the data mutation stage.

• Alionl w/o UpdateGen: Our method without updating query generation model stage.
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Figure 4: Ablation study on BFCL.
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Figure 5: Scaling study on BFCL. (Base
model: Qwen-2.5 series.)

We evaluated the models trained under these three configurations on the BFCL-live benchmark, with
results shown in Figure 4. As illustrated, omitting the data mutation stage leads to a noticeable drop
in performance, highlighting the importance of data diversity in enhancing model generalization.
On the other hand, removing updating query generation model stage results in decent early-stage
performance, but its improvement plateaus as training progresses, ultimately limiting further gains.
In contrast, the complete method demonstrates a near-linear and stable performance improvement
trend, confirming the long-term benefit of continuously introducing new data distributions during
training. These comparisons strongly validate the necessity of each component in our system and
further demonstrate the advantage of our method in sustaining performance gains.

4.4 SCALING STUDY

To evaluate the influence of model size on the performance of our method, we conducted a scal-
ing study. Specifically, we applied our method to Qwen2.5-7B-Instruct, Qwen2.5-3B-Instruct and
Qwen2.5-1.5B-Instruct, and evaluated the trained models on the BFCL-live benchmark. The exper-
imental results are presented in Figure 5. As shown in the figure, our method consistently leads to
performance improvements on all models. Notably, even with the smaller 3B and 1.5B models, we
observe clear enhancements in tool-use capability after training. These findings further demonstrate
the generality and scalability of our method, indicating its ability to effectively adapt to models of
varying sizes while maintaining continuous performance gains.

4.5 DATA COMPLEXITY STUDY

Table 3: The performance of models evaluated on data
generated in 3 iterations in our evaluation process.

Model Iter 1 Iter 2 Iter 3

Qwen2.5-7B-Inst 0.7720 0.6712 0.6320
Llama3.1-8B-Inst 0.3938 0.3802 0.3638
Hammer2.1-7B 0.7403 0.7330 0.7210

To further validate whether the query-
generation is optimized for generating in-
creasingly challenging samples, we con-
ducted evaluation on the generated sam-
ples in each iteration. Specifically,
we evaluate Qwen2.5-7B-Instruct, Llama-
3.1-8B-Instruct and Hammer2.1-7b on the
generated data, presented in Table 3. It
can be clearly seen that the accuracy of all
models consistently decrease as the iteration increases, suggesting that the generated data is becom-
ing challenging. Additionally, the deterioration is most pronounced for Qwen2.5-7B-Instruct, which
serves as our base model, indicating the complexity of samples varies for different models, further
verifying the mismatched complexity problem.

5 CONCLUSION

In this work, we propose AETool, an antagonistic evolution method for enhancing tool-use ability
of LLMs, aimed at developing tool-use capabilities under the constraint of limited data quality and
mismatched data difficulty. Extensive experiments demonstrate the effectiveness of our approach,
highlighting its ability to enhance tool-use performance across diverse settings.
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A ALGORITHM

We summarize the meaning of subscripts and superscripts used in the algorithms: the superscript t

denotes the t-th iteration, the subscripts tool and gen denote variables related to tool use and query
generation, respectively, the subscripts hard and easy denote the hardest and easiest samples with the
minimum and maximum confidence, respectively.

The rest of the algorithms, which were omitted from the main text for brevity, are presented below.

B TRAINING DETAILS

B.1 QUERY GENERATION

[SYSTEM]
Here is a tool description: {tool description}. The user will give you a conversation of a query

13

https://aclanthology.org/2024.findings-acl.974/
https://aclanthology.org/2024.findings-acl.974/
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2025.naacl-long.44/
https://aclanthology.org/2025.naacl-long.578/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4: Warmup

Input: Dtool = {(Ti, qi
tool−−−→ Ai)}Ni=1)},Mgen

/* Generate unqualified queries */

1 D′
gen = QueryGeneration(Dtool,Mgen, 1) ;

2 M′
gen = argmaxM

1
N

∑N
i PM(q′i | Ti, A

t
i, qi) withMgen as initialization;

Output:M′
gen

Algorithm 5: Mutate
Input: Dtool,Mtool

1 D′ = ∅
2 for i=1,...,N do
3 generate new answer A′

i ∼ PMtool
(· | Ti, Ai)

4 if ASTcheck(A′
i) then

5 D′ ← D′ ∪ { (Ti, qi, A′
i) }

6 else
7 D ← D′ ∪ { (Ti, qi, A′

i) }
8 end
9 end

Output: D′

and an answer. The query is unqualified either in providing enough value for the answer or in its
reasonability. Based on the tool description and conversation, you should generate a better version
of query. You should only output the query.

The query MUST follow the rules below: RULE1: The query MUST give out all the parameters in
the answers. RULE2: Try to simulate and act as a normal human user asking a query in complete
sentence. RULE3: The query MUST be in natural language.

[USER]
query:{query}
answer:{answer}
[ASSISTANT]
( generated query )

B.2 TOOL USE

[SYSTEM]
Here is a set of tools: {tools}. The user will give you a query. Based on the tools and the query, you
should generate the answer of the query. The query can be solved by one or more of the tools given.
The answer should be in the format of [{{“name”: function1 name, “arguments”: {{param1 name:
param1 value, param2...}}}}, function2...] NO other text MUST be included.

[USER]
{query}
[ASSISTANT]
( generated answer )

B.3 MUTATION

[SYSTEM]
Here is a tool description: {tool description}. The user will give you an answer. Based on the tool
and answer, you should change the arguments’ value of the answer. EVERY value of the generated
answer should be different from the original one. The answer should be in the format of [{{“name”:
function1 name, “arguments”: {{param1 name: param1 value, param2...}}}}, function2...] NO
other text MUST be included.

[USER]
{answer}
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[ASSISTANT]
( generated answer )
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