
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ANTAGONISTIC EVOLUTION FOR LLM TOOL USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool use has emerged as a pivotal mechanism for enhancing Large Language
Models (LLMs), allowing them to interact with external tools to solve complex
tasks and access knowledge beyond their static pre-trained parameters. However,
most existing studies rely on advanced LLMs to improve tool-use capabilities via
data synthesis, often resulting in suboptimal data quality or mismatched task dif-
ficulty, thereby limiting model performance. To address these limitations, we
propose a novel antagonistic evolution framework for tool-use tasks, involving
a query-generation model and a tool-use model updated in an adversarial manner.
The query-generation model is optimized to produce increasingly challenging and
high-quality queries, which the tool-use model then learns to solve. This adver-
sarial process is iteratively executed, enabling both models to co-evolve and pro-
gressively enhance the tool-use capabilities. Experiments on three comprehensive
tool-use benchmarks demonstrate evolving performance improvements, validating
the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) are typically pre-trained on giga-token corpora using large-scale
GPU clusters, and are subsequently served in a static manner. The prohibitive training cost prevents
them from being frequently updated with new knowledge or adapted to dynamic environments. To
enable LLMs to tackle complex problems, particularly in interactive settings, enhancing their tool-
use ability has become a central research goal in the AI community. This direction has also been
emphasized in state-of-the-art foundation models, such as GPT-51, Claude2, Kimi-K2 (Team et al.,
2025a), and LongCat (Team et al., 2025b), thereby advancing the development of agentic AI.

Existing approaches to improving LLMs’ tool-use ability primarily rely on synthesizing labeled
training data for post-training. Typically, these methods construct automated pipelines that prompt
advanced models (e.g., GPT-4 or Claude-3.5) to generate queries and solutions, thereby simulating
multi-turn interactions among users, assistants, and tools (Liu et al., 2025; Zhang et al., 2025). While
such approaches can efficiently produce large-scale tool-use datasets at relatively low cost, their
effectiveness is often constrained by data quality and target-model adaptivity, as highlighted in prior
work (Liu et al., 2025). On the one hand, even state-of-the-art LLMs may introduce hallucinations
when generating synthetic data, leading to quality deficiencies (Chen et al., 2024a). On the other
hand, training on data that are either overly simplistic or excessively difficult may fail to benefit, or
even harm, the target model’s performance by causing negative transfer and disrupting its original
knowledge structure (Wang et al., 2019). Inspired by recent advances in self-play paradigms for
LLMs, where models iteratively generate and refine training data to achieve self-improvement, one
promising direction is to adaptively tailor synthetic data to better match the target model’s evolving
capability. Such methods demonstrate that models themselves can act as both data producers and
consumers, enabling progressive evolution without external supervision. However, despite their
success in domains such as math and coding, the exploration of self-play or adversarial evolution
remains largely absent in the context of tool use, leaving a critical research gap.

To address these challenges, we propose a novel Antagonistic Evolution method for Tool use
(AETool). Unlike prior methods that directly rely on synthetic samples for training, AETool intro-
duces a query-generation model and a tool-use model, which co-evolve through an adversarial pro-

1https://chatgpt.com
2https://www.anthropic.com

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cess. The query-generation model rewrites queries based on tool-provided solutions in the dataset,
thereby improving query quality while adaptively adjusting data complexity. The tool-use model is
then trained on these rewritten samples to enhance its tool-use capabilities. Through adversarial op-
timization, the two models evolve iteratively: in each round, the query-generation model produces
high-quality, diverse, and increasingly challenging samples informed by feedback from the tool-use
model, which in turn is compelled to solve progressively harder problems. This iterative interaction
fosters continuous refinement of both models, enabling the tool-use model to steadily improve its
performance even under limited data conditions.

Our key contributions are summarized as follows:

• We propose AETool, the first adversarial evolution method tailored for tool-use tasks, enabling
LLMs to enhance their tool-use ability without relying on massive synthetic datasets.

• We design a query-generation model that improves query quality and adaptively regulates task dif-
ficulty, addressing the limitations of low-quality or mismatched synthetic data in prior approaches.

• We establish an adversarial training loop between the query-generation model and the tool-use
model, allowing both models to continuously refine their capabilities and achieve progressive
improvement.

• Extensive experiments conducted on three benchmark tool-use datasets demonstrate that the
model obtained by our AETool consistently outperforms state-of-the-art tool-use models, vali-
dating its effectiveness and robustnes.

2 RELATED WORK

2.1 TOOL-USE LLMS

A typical tool-use task consists of two core steps: selecting the most appropriate tool from a set
of candidates and extracting the necessary parameters for tool invocation from the user’s query.
Existing research on this task can be broadly categorized into two approaches: non-tuning methods
and tuning-based methods (Qu et al., 2025; Liu et al., 2023).

Non-tuning methods mainly rely on prompting strategies and few-shot learning. ReAct(Yao et al.,
2023) models tool-use behavior explicitly by prompting the language model to ”think and act” dur-
ing the reasoning process. EasyTool(Yuan et al., 2025) proposes an automatic rewriting method to
make tool descriptions more interpretable by the model. Concise(Xu et al., 2024b) summarizes tool
functionalities using concise and clear language to reduce processing complexity while preserving
semantic completeness. Another line of work(Shi et al., 2024) adopts a multi-agent collaboration
strategy, thereby improving overall performance and task success rate.

Tuning-based methods, on the other hand, leverage tool-use samples to train existing LLMs, en-
abling them to systematically learn tool-use workflows and strengthen their invocation capabilities.
These methods primarily focus on data collection and training strategies. Toolformer(Schick et al.,
2024) introduces special tool-related tokens into the model’s vocabulary to reformulate the language
modeling task into a “call-response” structure, enabling explicit modeling of tool-use behavior dur-
ing training. ToolkenGPT(Hao et al., 2024) builds upon this approach by introducing a multi-stage
switching mechanism during decoding, allowing the model to dynamically alternate between text
generation and tool invocation modes. Additionally, some studies(Qin et al., 2024; Yang et al., 2023;
Liu et al., 2025) use advanced LLMs to automatically synthesize tool-use examples to enhance the
capabilities of lightweight models through knowledge distillation.

2.2 SELF-EVOLVED LLMS

Self-evolution refers to the process by which a model gradually improves its capabilities through
mechanisms such as self-learning, self-feedback, and self-optimization, without human intervention
or external supervision. This process mainly involves experience acquisition, experience refinement,
updating, and evaluation(Tao et al., 2024).

The earliest studies on self-evolution primarily focused on data construction and self-supervised
fine-tuning. Self-Instruct(Wang et al., 2023) enables a language model to construct task instructions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑀!""#
! 𝑀$%&! (𝑞!, 𝐴!)

(𝑞'! , 𝐴!)

(𝑞(! , 𝐴!)

…

𝑀$%&!)' (𝑞*+,-! , 𝐴!) 𝑀!""#
!)'

(𝑞*+,-! , 𝐴!)

(𝑞.+/0! , 𝐴!)

Query
Generation

(𝐴!)')

𝑀$%&!)'

(𝑞!)', 𝐴!)')

(𝑞1, 𝐴1)

Data Mutation

Start

Antagonistic Evolution

Query
Select

Query
Generation

Query
Generation

Reparameter

Generation Training

Figure 1: The overall workflow of the proposed antagonistic evolution, consisting of a query-
generation model Mgen and a tool-use model Mtool. In the left part, the two models are updated
in an adversarial manner, where the generation model is optimized to generate more complex query
and the tool model is optimized to achieve more tool-use accuracy. In the right part, mutation oper-
ations are conducted on training data to increase data diversity.

and train itself without human intervention. Building upon this, Evol-Instruct(Xu et al., 2024a)
introduces a task evolution mechanism, allowing the model to achieve capability transitions through
instruction sequences of increasing complexity.

Other kind of methods emphasize model reflection and self-correction. IterRefinement(Chen et al.,
2024b) uses a series of prompts to encourage the model to improve upon its previous outputs;
STaR(Zelikman et al., 2022) proposes guiding the model to perform rationale analysis and generate
correct solutions based on identified patterns; Reflexion(Shinn et al., 2023) enables the model to it-
eratively revise and rewrite its generated content through self-evaluation, thus achieving multi-round
optimization.

In recent years, some studies have introduced self-play mechanisms into the domain of large lan-
guage models. SPIN(Chen et al., 2024c) treats the model’s own generated answers as negative
samples and applies preference optimization to update its parameters, achieving self-play dynamics.
SPPO(Wu et al., 2025) incorporates evaluation metrics, allowing the model to generate multiple can-
didates, compare them, and update its parameters based on the best-performing responses, thereby
driving strategy evolution.

3 METHODOLOGY

In this section, we introduce the proposed antagonistic evolution pipeline for tool-use, shown in
Figure 1. The pipeline consists of a query-generation model and a tool-use model, where the query-
generation model aims to produce high-quality samples and is optimized toward generating high-
quality and increasingly complex training data. The algorithm is presented in Algorithm 1.

3.1 PRELIMINARIES

Tool-use Task. Given an LLM M, a query q, and a set of candidate tools T , the model is required to
select the appropriate tools ti and fill in the parameters (ai1, · · · , aim) to construct the final solution
A = [(ti, ai1, · · · , aim), · · ·]. This process is denoted as (T , q

tool−−→ A). Detailed prompts for this
task are provided in Appendix B.

Query-generation Task. Given an LLM M, a query q, a candidate tool set T and a solution
A, the model is required to generate an improved query q′. The generated query should be more
semantically complete, reasonable, and challenging than the original one. This process is denoted
as (T , q, A

gen−−→ q′). Detailed prompts for this task are provided in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: Antagonistic Evolution

Input: D = { (Ti, q0i
tool−−→ A0

i) }Ni=1, a base LLM M
1 , iteration number T . D0

tool = D;
2 M0

tool = M;
/* Step 0: Warmup query-generation model */

3 M0
gen = WarmUp(D,M);

4 for t=0,...,T-1 do
/* Step 1: Updating query-generation model */

5 Qt = QueryGeneration(Dt
tool,Mt

gen, k) ; // Algo. 2

6 Dt
gen = {(Ti, At

i, q
t
i,easy

gen−−→ qti,hard)}Ni=1 = QuerySelect(Dt
tool,Qt,Mt

tool) ;
// Algo. 3

7 Mt+1
gen = argmaxM

1
N

∑N
i=1 PM(qti,hard | Ti, At

i, q
t
i,easy) with Mt

gen as initialization;

/* Step 2: Updating tool-use model */

8 Q̃t = QueryGeneration(Dt
tool,Mt+1

gen, 1) ; // Algo. 2

9 D̃t
tool = {(Ti, Q̃t

i,1
tool−−→ At

i)}Ni=1;
10 Mt+1

tool = argmaxM
1
N

∑N
i=1 PM(q̃ti | Ti, At

i) with Mt
tool as initialization;

/* Step 3: Data Mutation */
11 Dt

tool = Mutate(Dt
tool, θ

t
tool) ; // Algo. 5

12 Dt
tool = QueryGeneration(Dt

tool, θ
t
gen, 1);

13 end
Output: θTtool

3.2 WARMUP

(𝑞!, 𝐴!)

𝑀!

Query
Generation

(𝑞", 𝐴!)

(𝑞!, 𝐴!)

(𝑞", 𝐴!)

𝑀#$%!

Generation Training

Figure 2: The warmup process for the
query-generation model.

A central component of our proposed evolution frame-
work is the query-generation model, which iteratively
rewrites queries to improve their quality and complex-
ity. Since generating high-quality queries is inherently
challenging and small-scale base models typically lack
such advanced capability, we introduce a warm-up pro-
cess prior to evolution in this section.

Given a tool invocation dataset D = { (Ti, qi
tool−−→

Ai) }ni=1, our goal is to optimize the base model for
query-generation ability. First, the base model M is
prompted to generate a query q′i based on the candidate
tool sets Ti and solutions Ai. Since the base model has
not been fine-tuned for the task, we assume it lacks the
ability to produce high-quality queries. The generated
queries typically fall short of real ones in terms of seman-
tic completeness, plausibility, and informativeness, and
are therefore treated as lower-quality counterparts to the original queries {qi}. Second, we con-
duct supervised fine-tuning to the base model on the dataset { (Ti, Ai, q

′
i

gen−−→ qi) }ni=1, where the
model is optimized to rewrite a more fluent, structurally sound and linguistically clear query from
the lower-quality query. This significantly enhances the model’s ability in query generation and
query complication, offering an initial query-generation model M0

gen, which serves as a founda-
tional component for the subsequent evolution process. The corresponding pipeline and algorithm
are shown in Figure 2 and Algorithm 4 in Appendix A, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2: Query Generation

Input: Dtool = {(Ti, qi
tool−−→ Ai)}Ni=1,Mgen, k

1 Q = ∅;
2 for i=1,...,N do
3 Qi = ∅;
4 for j=1,...,k do
5 q′ij ∼ P (· | Ti, qi, Ai,Mgen);
6 Qi = Qi ∪ {q′ij};
7 end
8 Q = Q∪ {Qi};
9 end

Output: Q

Algorithm 3: Query Select

Input: Dtool = {(Ti, qi
tool−−→ Ai)}Ni=1,Q = {(qi,1, · · · , qi,k)}Ni=1,Mtool

1 Dgen = ∅;
2 for i=1,...,N do
3 generate solutions Ãi and confidence scores Pi,j with Mtool for each query qi,j in Qi;
4 Q′i = {qi,j | Ãi,j = Ai}kj=1;
5 qi,easy = argmax

qi,j∈Q′
i

PMtool
(Ãi,j | Ti, qi,j);

6 qi,hard = argmin
qi,j∈Q′

i

PMtool
(Ãi,j | Ti, qi,j);

7 Dgen = Dgen ∪ {(Ti, Ai, qi,easy
gen−−→ qi,hard)}

8 end
Output: Dgen

3.3 ANTAGONISTIC EVOLUTION

In previous studies Qin et al. (2024); Liu et al. (2025); Lin et al. (2024), enhancing tool-use ca-
pabilities is typically achieved by directly performing supervised fine-tuning (SFT) on synthesized
tool-instruction datasets. However, this approach imposes high demands on both the quantity and
quality of the data, and it also faces a critical limitation: the complexity of the data must align
with the model’s capacity, otherwise the tool-use performance may remain suboptimal Liu et al.
(2025). Inspired by the idea of Generative Adversarial Networks (GANs) Goodfellow et al. (2020),
we train a query-generation model that shares the same origin as the tool-use model and employ it
in an adversarial manner. The query-generation model Mgen and the tool-use model Mtool serve
as the generator and discriminator in GANs, respectively, where Mgen is optimized to generate
high-quality and increasingly challenging queries while Mtool is optimized to solve those challeng-
ing queries with correct tool-using solutions. This approach not only improves the quality of the
training data but also enables adaptive adjustment to the complexity of the data.

In the evolution process, the two models are updated iteratively, resulting in the tool-use ability
being increased through training on more challenging tasks. Additionally, a data mutation operation
is conducted in each iteration to increase data diversity.

3.3.1 UPDATING QUERY-GENERATION MODEL

Similar to the generative model in GANs, the optimization of the query-generation model Mgen

aims to generate more challenging samples. The updating of the query-generation model Mgen

comprises two crucial steps: data collection and model updating.

Data collection. For the previous iteration generated tool-invocation dataset Dt
tool = {(Ti, qti

tool−−→
At

i)}Ni=1, we use previous data generation model Mt
gen to generate k candidate queries Qi =

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

{qi,j}kj=1 for each qi with sampling method. Then we use the previous tool-use model to select
an easy and a hard query, forming the training data set for the query-generation model. First, the
tool-use model Mt

tool is instructed to generate solutions Ai = {Ai,j}kj=1 and confidence scores
Pi = {pi,j}kj=1 for each query. These confidence scores reflect the model’s certainty in solving
the query, serving as the complexity indicator of queries. However, the generation model may gen-
erate infeasible queries not be solved correctly, resulting in low-quality queries. To guarantee the
quality of the selected queries, we select the two queries with the highest and lowest confidence
scores from correctly-solved queries, representing the easy query qti,argmaxj pi,j

(denoted as qti,easy)
and qti,argminj pi,j

(denoted as qti,hard) and the hard queries, respectively. Therefore, we obtain the

query-paired data set Dt
gen = {(Ti, At

i, q
t
i,easy

gen−−→ qti,hard)}Ni=1.

Model updating. Upon the query-paired samples being collected, the query-generation model
Mt

gen is then optimized with the query-generation task: (T , A, qeasy
gen−−→ qhard) through a query-

generation instruction, which can be formulated as:

Mt+1
gen = argmax

M

1

N

N∑
i

PM(qti,hard | Ti, At
i, q

t
i,easy) (1)

where the M is initialized with Mt
gen. PM(y | x) denotes the probability of generating y for input

x of model M, which is usually calculated by the next token prediction loss.

3.3.2 UPDATING TOOL-USE MODEL

Consistent with the update of the query-generation model, the update of the tool-use model Mtool

consists of two steps: data complexification and model updating.

Data complicating. Following the update of the query-generation model, we obtain a model
equipped with the ability to complexify queries. To further enhance the effectiveness of the tool-use
model, we exploit this capability to perform an additional round of query complicating on the exist-
ing data, thereby generating more challenging training instances. Concretely, we employ the query-
generation model to rewrite the queries in the previous dataset Dt

tool = {(Ti, qti
tool−−→ At)}Ni=1,

and construct a new, more complex dataset D̃t
tool = {(Ti, q̃ti

tool−−→ At)}Ni=1. The resulting dataset
serves as the training corpus for updating the tool-use model, thereby improving its ability to operate
effectively under more complex query scenarios.

Model updating. The tool-use model Mt
tool is then trained on those new complex samples D̃t

tool

with the tool-use task: (T , q
tool−−→ A), which can be formulated as:

Mt+1
tool = argmax

M

1

N

N∑
i

PM(q̃ti | Ti, At
i) (2)

where the M is initialized with Mt
tool.

3.3.3 DATA MUTATION

Data diversity is essential to mitigate overfitting and enhance the robustness of the tool-use model.
However, the candidate tools in each sample are unchanged in each iteration, introducing the risk that
the tool-use model may exploit spurious correlations by memorizing a static mapping from candidate
tools to solutions, thus ignoring the query content. Therefore, we introduce a reparameterization
strategy to perturbs the solutions and then generate a novel query for the solutions. At the end of
each iteration, the tool-use model perturbs the solution At

i to a new one At+1
i . The new-generated

solutions are validated via abstract syntax tree checks to ensure syntactic correctness. For each
validated perturbed solution At+1

i , the data generation model Mt+1
gen produces a corresponding query

qt+1
i , yielding updated query-solution pairs (qt+1

i , At+1
i). The final mutated dataset is thus defined

as Dt+1
tool = {(Ti, qt+1

i
tool−−→ At+1

i)}Ni=1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The performance of models on BFCL-live. SFT refers to model trained on the original
dataset. Bold and underline(only Avg.) represent the best and the 2nd best results.

Model Simple Multiple Parallel Parallel Multiple Avg.
Llama3.1-8B-Instruct 0.7674 0.7749 0.8750 0.7083 0.6108
Qwen2.5-7B-Instruct 0.7287 0.7569 0.6250 0.7083 0.7491
Hammer2.1-7B 0.7674 0.7740 0.8125 0.7083 0.7511
Watt-tool-8B 0.7674 0.7749 0.8750 0.7083 0.7650
ToolACE-8B 0.7326 0.7673 0.8125 0.7083 0.7602
Falcon3-7B-Instruct 0.7403 0.6648 0.7500 0.6250 0.5486
BitAgent-8B 0.7791 0.7740 0.8750 0.7083 0.7614

SFT 0.7868 0.7797 0.6875 0.6250 0.7772

Ours 0.8256 0.8025 0.8125 0.7917 0.8068

Table 2: The performance of models on API-Bank and ACEBench. The settings remain the same
with the table above. S-Turn, M-Turn and Similar denote Single Turn, Multiple Turn and Similar
API in ACEBench, respectively.

Model API-Bank ACEBench

Lv1 Lv2 Avg. Atom S-Turn M-Turn Similar Avg.
Llama3.1-8B-Instruct 0.7143 0.3852 0.5498 0.5100 0.4950 0.2800 0.6000 0.4740
Qwen2.5-7B-Instruct 0.7193 0.3259 0.5226 0.7000 0.5700 0.4900 0.6200 0.6310
Hammer2.1-7B 0.7494 0.4370 0.5932 0.7130 0.6250 0.4300 0.6400 0.6390
Watt-8B 0.7419 0.4519 0.5969 0.8470 0.7150 0.5700 0.7000 0.7590
ToolACE-8B 0.7218 0.3926 0.5572 0.8300 0.7300 0.5630 0.7840 0.7600
Falcon3-7B-Instruct 0.6667 0.3778 0.5223 0.6500 0.4800 0.4300 0.6800 0.5820
BitAgent-8B 0.7444 0.4370 0.5907 0.8470 0.7100 0.5500 0.7200 0.7450

SFT 0.7318 0.4889 0.6104 0.8130 0.7750 0.5600 0.7000 0.7560

Ours 0.7544 0.5037 0.6291 0.8500 0.8000 0.5800 0.6600 0.7750

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Train Dataset and Base Model. Our experiment utilizes 10,000 samples from xlam-function-
calling-60k(Liu et al., 2024) dataset and the samples from ToolACE(Liu et al., 2025) dataset as
training set, which is specifically designed for tool-use scenarios and contains structured function-
calling samples. We also utilize Qwen2.5-7B-Instruct(Team, 2024a;b) as base model.

Evaluation. To validate the effectiveness of our method, we selected three different tool-using
benchmarks for evaluation: BFCL(Yan et al., 2024), APIBank(Li et al., 2023) and ACEBench(Chen
et al., 2025). Specifically, we used the BFCL-live as the primary benchmark for comparison, while
the Level 1 and 2 evaluation sets from APIBank and the normal evaluation set from ACEBench
served as complementary evaluations. This setup enables a more comprehensive assessment of the
model’s tool-use capabilities across various task types and domains.

Baselines. To validate the superiority of AETool over conventional training, we constructed multi-
ple comparison baselines. First, we compared our approach with open-source models and fine-tuned
tool-calling models of similar scale. Open-source models include Qwen2.5-7B-Instruct, LLaMA-
3.1-8B-Instruct(AI@Meta, 2024) and Falcon3-7B-Instruct(Team, 2024c). Tool-calling models in-
clude Hammer2.1-7B (Lin et al., 2024), Watt-8B3, ToolACE-8B(Liu et al., 2025) and BitAgent-8B4.

3https://ollama.com
4https://bittensor.com/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3
Epoch

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

Ours
SFT

(a) BFCL

0 1 2 3
Epoch

0.52

0.54

0.56

0.58

0.60

0.62

Ac
cu

ra
cy

Ours
SFT

(b) API-Bank

0 1 2 3
Epoch

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

Ours
SFT

(c) ACEBench
Figure 3: The performance of trained models over training iterations on three benchmarks.

Direct training on the original dataset without applying our evolution method is also included as a
baseline, denoted as SFT in the results.

Implementation Details. Due to limited resources, all supervised fine-tuning in our method adopts
a parameter-efficient tuning strategy LoRA (Hu et al., 2022). For hyperparameter settings, the rank
is set to 8, alpha to 16, learning rate to 10−4, with a cosine learning rate scheduler and a warm-up
ratio of 0.1. In the antagonistic evolution, the temperatures for query generation and tool use are set
to 1 and 0.5, respectively. The number of new variants generated per query k is set to 5.

4.2 MAIN RESULT

The overall evaluation results on the three benchmarks are illustrated in Table 1, Table 2 and Fig-
ure 3. We have the following findings according to the results:

Findings 1: Continuous training on the original dataset tends to cause overfitting and weaken tool-
use performance. Further analysis reveals that performance degradation is observed across all three
benchmarks. For all three benchmarks, performance increases during the first epoch but deteriorates
steadily in the second and third epochs, exhibiting clear signs of overfitting. This suggests that
the original training set may have overly concentrated or repetitive distributions and lack diversity.
Prolonged training on such data leads the model to overfit specific patterns, which in turn undermines
its ability to generalize and remain robust across broader tool-use tasks.

Findings 2: Our proposed method achieves state-of-the-art performance, consistently surpassing
all baseline models across the evaluation benchmarks. Beyond the overall performance gains, the
model demonstrates superiority in nearly all evaluation aspects within the three benchmarks, cover-
ing both general and fine-grained dimensions of tool-use capabilities. This comprehensive improve-
ment highlights not only the effectiveness of our approach in handling diverse and complex tasks,
but also its clear advantages over existing methods in enhancing tool-use capabilities.

Findings 3: Compared to conventional training methods, our approach exhibits robustness and yields
consistently stable performance gains. Unlike the original models, our method shows consistent and
significant performance improvements across all evaluation benchmarks. The immediate effective-
ness further suggests that, unlike static training data, the samples generated by the model itself
during tool-use interactions are closer to its capability boundaries. As a result, they are more tar-
geted and adaptable, better stimulating and refining the model’s potential. This not only enhances
the model’s ability to handle complex tasks but also highlights its capacity for self-evolution.

4.3 ABLATION STUDY

To validate the necessity and effectiveness of each component in our proposed method, we con-
ducted ablation studies based on the theoretical framework of our approach. We designed three
experimental settings as follows:

• All: The complete method as proposed in our paper.

• All w/o Mutation: Our method without the data mutation stage.

• Alionl w/o UpdateGen: Our method without updating query generation model stage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3 4
Epoch

0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820

ac
cu

ra
cy

All
All w/o Mutation
All w/o UpdateGen

Figure 4: Ablation study on BFCL.

0 1 2 3
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

7B
3B
1.5B

Figure 5: Scaling study on BFCL. (Base
model: Qwen-2.5 series.)

We evaluated the models trained under these three configurations on the BFCL-live benchmark, with
results shown in Figure 4. As illustrated, omitting the data mutation stage leads to a noticeable drop
in performance, highlighting the importance of data diversity in enhancing model generalization.
On the other hand, removing updating query generation model stage results in decent early-stage
performance, but its improvement plateaus as training progresses, ultimately limiting further gains.
In contrast, the complete method demonstrates a near-linear and stable performance improvement
trend, confirming the long-term benefit of continuously introducing new data distributions during
training. These comparisons strongly validate the necessity of each component in our system and
further demonstrate the advantage of our method in sustaining performance gains.

4.4 SCALING STUDY

To evaluate the influence of model size on the performance of our method, we conducted a scal-
ing study. Specifically, we applied our method to Qwen2.5-7B-Instruct, Qwen2.5-3B-Instruct and
Qwen2.5-1.5B-Instruct, and evaluated the trained models on the BFCL-live benchmark. The exper-
imental results are presented in Figure 5. As shown in the figure, our method consistently leads to
performance improvements on all models. Notably, even with the smaller 3B and 1.5B models, we
observe clear enhancements in tool-use capability after training. These findings further demonstrate
the generality and scalability of our method, indicating its ability to effectively adapt to models of
varying sizes while maintaining continuous performance gains.

4.5 DATA COMPLEXITY STUDY

Table 3: The performance of models evaluated on data
generated in 3 iterations in our evaluation process.

Model Iter 1 Iter 2 Iter 3

Qwen2.5-7B-Inst 0.7720 0.6712 0.6320
Llama3.1-8B-Inst 0.3938 0.3802 0.3638
Hammer2.1-7B 0.7403 0.7330 0.7210

To further validate whether the query-
generation is optimized for generating in-
creasingly challenging samples, we con-
ducted evaluation on the generated sam-
ples in each iteration. Specifically,
we evaluate Qwen2.5-7B-Instruct, Llama-
3.1-8B-Instruct and Hammer2.1-7b on the
generated data, presented in Table 3. It
can be clearly seen that the accuracy of all
models consistently decrease as the iteration increases, suggesting that the generated data is becom-
ing challenging. Additionally, the deterioration is most pronounced for Qwen2.5-7B-Instruct, which
serves as our base model, indicating the complexity of samples varies for different models, further
verifying the mismatched complexity problem.

5 CONCLUSION

In this work, we propose AETool, an antagonistic evolution method for enhancing tool-use ability
of LLMs, aimed at developing tool-use capabilities under the constraint of limited data quality and
mismatched data difficulty. Extensive experiments demonstrate the effectiveness of our approach,
highlighting its ability to enhance tool-use performance across diverse settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv preprint arXiv:2501.12851, 2025.

Jie Chen, Yupeng Zhang, Bingning Wang, Xin Zhao, Ji-Rong Wen, and Weipeng Chen. Unveil-
ing the flaws: Exploring imperfections in synthetic data and mitigation strategies for large lan-
guage models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 14855–14865, Miami, Florida,
USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.873. URL https://aclanthology.org/2024.findings-emnlp.
873/.

Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Kenneth Heafield. Iterative translation refinement
with large language models. In Carolina Scarton, Charlotte Prescott, Chris Bayliss, Chris Oak-
ley, Joanna Wright, Stuart Wrigley, Xingyi Song, Edward Gow-Smith, Rachel Bawden, Vı́ctor M
Sánchez-Cartagena, Patrick Cadwell, Ekaterina Lapshinova-Koltunski, Vera Cabarrão, Konstanti-
nos Chatzitheodorou, Mary Nurminen, Diptesh Kanojia, and Helena Moniz (eds.), Proceedings
of the 25th Annual Conference of the European Association for Machine Translation (Volume 1),
pp. 181–190, Sheffield, UK, June 2024b. European Association for Machine Translation (EAMT).
URL https://aclanthology.org/2024.eamt-1.17/.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 6621–6642. PMLR, 21–27 Jul 2024c. URL
https://proceedings.mlr.press/v235/chen24j.html.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM, 63(11):
139–144, October 2020. ISSN 0001-0782. doi: 10.1145/3422622. URL https://doi.org/
10.1145/3422622.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187/.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust function-calling
for on-device language models via function masking, 2024. URL https://arxiv.org/
abs/2410.04587.

Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/2024.findings-emnlp.873/
https://aclanthology.org/2024.findings-emnlp.873/
https://aclanthology.org/2024.eamt-1.17/
https://proceedings.mlr.press/v235/chen24j.html
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.187/
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning
the points of LLM function calling. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=8EB8k6DdCU.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Ziheng Li, Xizhou Zhu, Lewei Lu, Qifeng
Chen, Yu Qiao, Jifeng Dai, and Wenhai Wang. Controlllm: Augment language models with tools
by searching on graphs, 2023. URL https://arxiv.org/abs/2310.17796.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie
Ren, Suzan Verberne, and Zhaochun Ren. Learning to use tools via cooperative and interac-
tive agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2024, pp. 10642–10657, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.624. URL https://aclanthology.org/2024.findings-emnlp.
624/.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models,
2024. URL https://arxiv.org/abs/2404.14387.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,

11

https://openreview.net/forum?id=8EB8k6DdCU
https://arxiv.org/abs/2310.17796
https://openreview.net/forum?id=dHng2O0Jjr
https://aclanthology.org/2024.findings-emnlp.624/
https://aclanthology.org/2024.findings-emnlp.624/
https://arxiv.org/abs/2404.14387

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025a. URL https://arxiv.org/abs/2507.20534.

Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao
Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong
Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu,
Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong,
Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan,
Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian
Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao
Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan
He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang
Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi
Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang
Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu,
Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen
Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao Li, Tefeng
Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei Shi, Wei
Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xiang Mei,
Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao Wei, Xi-
aodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili Wang, Xin
Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi Cao, Xunliang
Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui Sun, Yifan Lu,
Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lv, Yongwei Zhou,
Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhuai Wei, Yulei Qian, Yunfan Liang,
Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang, Zhikang
Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang, Zixu
Jiang, Zizhe Zhao, Zongyu Wang, and Zunhai Su. Longcat-flash technical report, 2025b. URL
https://arxiv.org/abs/2509.01322.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a.

Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL https:
//qwenlm.github.io/blog/qwen2.5/.

TII Team. The falcon 3 family of open models, December 2024c.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
negative transfer. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11285–11294, 2019. doi: 10.1109/CVPR.2019.01155.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
a3PmRgAB5T.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=CfXh93NDgH.

12

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2509.01322
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/2023.acl-long.754/
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=CfXh93NDgH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yang Xu, Yunlong Feng, Honglin Mu, Yutai Hou, Yitong Li, Xinghao Wang, Wanjun Zhong,
Zhongyang Li, Dandan Tu, Qingfu Zhu, Min Zhang, and Wanxiang Che. Concise and pre-
cise context compression for tool-using language models. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 16430–16441, Bangkok, Thailand, August 2024b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.974. URL https://aclanthology.org/2024.
findings-acl.974/.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4tools: Teach-
ing large language model to use tools via self-instruction. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
cwjh8lqmOL.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Kan Ren, Dongsheng Li,
and Deqing Yang. EASYTOOL: Enhancing LLM-based agents with concise tool instruction.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pp. 951–972, Albuquerque, New Mex-
ico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL
https://aclanthology.org/2025.naacl-long.44/.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: self-taught reasoner bootstrap-
ping reasoning with reasoning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Quoc Hoang, Shirley Kokane, Weiran Yao,
Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Manoj Awal-
gaonkar, Rithesh R N, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xLAM: A family of large action models to empower AI
agent systems. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 11583–11597, Albuquerque, New
Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL
https://aclanthology.org/2025.naacl-long.578/.

A ALGORITHM

We summarize the meaning of subscripts and superscripts used in the algorithms: the superscript t

denotes the t-th iteration, the subscripts tool and gen denote variables related to tool use and query
generation, respectively, the subscripts hard and easy denote the hardest and easiest samples with the
minimum and maximum confidence, respectively.

The rest of the algorithms, which were omitted from the main text for brevity, are presented below.

B TRAINING DETAILS

B.1 QUERY GENERATION

[SYSTEM]
Here is a tool description: {tool description}. The user will give you a conversation of a query

13

https://aclanthology.org/2024.findings-acl.974/
https://aclanthology.org/2024.findings-acl.974/
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=cwjh8lqmOL
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2025.naacl-long.44/
https://aclanthology.org/2025.naacl-long.578/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4: Warmup

Input: Dtool = {(Ti, qi
tool−−−→ Ai)}Ni=1)},Mgen

/* Generate unqualified queries */

1 D′
gen = QueryGeneration(Dtool,Mgen, 1) ;

2 M′
gen = argmaxM

1
N

∑N
i PM(q′i | Ti, A

t
i, qi) withMgen as initialization;

Output:M′
gen

Algorithm 5: Mutate
Input: Dtool,Mtool

1 D′ = ∅
2 for i=1,...,N do
3 generate new answer A′

i ∼ PMtool
(· | Ti, Ai)

4 if ASTcheck(A′
i) then

5 D′ ← D′ ∪ { (Ti, qi, A′
i) }

6 else
7 D ← D′ ∪ { (Ti, qi, A′

i) }
8 end
9 end

Output: D′

and an answer. The query is unqualified either in providing enough value for the answer or in its
reasonability. Based on the tool description and conversation, you should generate a better version
of query. You should only output the query.

The query MUST follow the rules below: RULE1: The query MUST give out all the parameters in
the answers. RULE2: Try to simulate and act as a normal human user asking a query in complete
sentence. RULE3: The query MUST be in natural language.

[USER]
query:{query}
answer:{answer}
[ASSISTANT]
(generated query)

B.2 TOOL USE

[SYSTEM]
Here is a set of tools: {tools}. The user will give you a query. Based on the tools and the query, you
should generate the answer of the query. The query can be solved by one or more of the tools given.
The answer should be in the format of [{{“name”: function1 name, “arguments”: {{param1 name:
param1 value, param2...}}}}, function2...] NO other text MUST be included.

[USER]
{query}
[ASSISTANT]
(generated answer)

B.3 MUTATION

[SYSTEM]
Here is a tool description: {tool description}. The user will give you an answer. Based on the tool
and answer, you should change the arguments’ value of the answer. EVERY value of the generated
answer should be different from the original one. The answer should be in the format of [{{“name”:
function1 name, “arguments”: {{param1 name: param1 value, param2...}}}}, function2...] NO
other text MUST be included.

[USER]
{answer}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[ASSISTANT]
(generated answer)

15

	Introduction
	Related Work
	Tool-Use LLMs
	Self-Evolved LLMs

	Methodology
	Preliminaries
	WarmUp
	Antagonistic Evolution
	Updating Query-Generation Model
	Updating Tool-Use Model
	Data Mutation

	Experiments
	Experimental Settings
	Main Result
	Ablation Study
	Scaling Study
	Data Complexity Study

	Conclusion
	Algorithm
	Training Details
	query generation
	tool use
	mutation

