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ABSTRACT

Progress in scientific machine learning is critically hindered by a pervasive "eval-
uation gap", where models that excel on legacy benchmarks fail in real-world de-
ployment due to a reliance on idealized synthetic data and fragile proxy metrics.
We argue that the path forward requires a new paradigm of physics-aware bench-
marking, which we instantiate with PRISMABENCH for the challenging inverse
problem of hyperspectral pansharpening. Our ecosystem introduces three core
contributions: a physics-enriched dataset that packages real satellite PRISMA
hyperspectral (HS) and panchromatic (PAN) pairs by their real physical sensors
with 10 challenge scenes; an extended PAN-centric evaluation metric, includ-
ing a novel physics-consistency score for robust, no-reference assessment; and
insightful visualization tools, such as multi-metric radar charts, to move beyond
single-score leaderboards and expose performance trade-offs. Using this frame-
work, we reveal a critical disconnect: a model’s rank on traditional reduced reso-
lution benchmarks is a limited predictor of its real-world performance. By open-
sourcing our ecosystem, we provide a blueprint for creating benchmarks that chal-
lenge the community to move beyond optimizing flawed proxies and towards de-
veloping models that are demonstrably robust and physically plausible.

Insightful Visualizations

Synthetic 1 scene Real world 4 scenes
Real world 10 scenes

Increased scale, diversity and larger spatial support

Pioneer                                               

Multi-Metric Leaderboards

Our PRISMABenchSOTA

Single Metric

Figure 1: From Misleading Leaderboards to Actionable Insight. (Left) A traditional single-score
/ multi-metric leaderboards mask performance trade-offs, sometimes suggesting one model is uni-
formly superior. (Right) Our benchmark advocates for a shift to insightful visualizations, such as
this multi-metric radar chart. This profile immediately reveals that the top-ranked model is actually
a "specialist" that fails on certain criteria, while another model offers more balanced, "generalist"
performance. This holistic view provides a more reliable and actionable basis for model selection.
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1 INTRODUCTION

High-resolution hyperspectral imagery (HSI) underpins applications from precision agriculture to
climate monitoring (Pooja Vinod Janse, 2017; Van der Meer et al., 2012). Yet a fundamental pho-
ton–resolution trade-off in orbital sensing prevents any single platform from jointly delivering meter-
scale detail and dense spectra (Schowengerdt, 2006). Hyperspectral pansharpening (HS-PAN) ad-
dresses this limitation by fusing a low-resolution hyperspectral cube (LR-HSI) with a high-resolution
panchromatic image (HR-PAN) to synthesize a high-resolution hyperspectral product (HR-HSI).

Why evaluation is hard. Hyperspectral pansharpening (Bertero & Boccacci, 1998) is a classic
ill-posed inverse problem: To understand the key challenge in pansharpening, it is important to first
consider the short-wave infrared (SWIR) spectrum. SWIR refers to a range of light invisible to the
human eye, which is useful for identifying materials like minerals, soil moisture, and vegetation
types. However, most standard high-resolution panchromatic (PAN) sensors have no sensitivity in
this range. Therefore, many HR-HSI solutions are consistent with the same LR-HSI/HR-PAN pair,
and the inverse is unstable to noise, atmospheric effects, and sub-pixel misregistration. Two factors
exacerbate this: (i) non-uniqueness, because PAN conveys edge structure but little spectral identity,
especially in SWIR where PAN overlap is weak; and (ii) instability, where small perturbations
can amplify into spectral distortion or spatial artifacts. Consequently, what constitutes a “good”
reconstruction depends as much on the evaluation protocol as on the model itself.

Legacy protocols create an evaluation gap. The community predominantly measures progress
using (a) Wald-style reduced-resolution (RR) tests that synthetically degrade a reference image
(Wald, 1999), and (b) full-resolution (FR) no-reference indices (e.g., QNR and components) when
no ground truth exists. Both have well-documented limits. First, spectral mismatch: PAN typically
spans VIS–NIR while HSI extends to SWIR; naive consistency checks penalize (or ignore) bands
for which PAN conveys no reliable guidance (Vivone et al., 2014; Ciotola et al., 2024). Second, a
synthetic→real gap: RR degradations omit real sensor noise, PSF/SRF mismatch, and misregistra-
tion, so RR gains can fail to translate to FR performance (Ciotola et al., 2024). Third, brittle FR
metrics: no-reference scores can be “gamed” (e.g., over-sharpening vs. spectral fidelity) and corre-
late weakly with perceived and physically plausible quality (Arienzo et al., 2022). Together, these
issues leave an evaluation gap: leaderboard wins under idealized setups do not guarantee robust-
ness under real acquisition physics (Fig. 2).Traditional evaluation methods fail due to fundamental
physical and procedural flaws.

Our Contributions: A Framework for Realistic Evaluation. To re-calibrate progress towards
real-world utility, we introduce PRISMABENCH, a comprehensive ecosystem designed to address
the core evaluation gaps. Our framework is built on three synergistic contributions:

1. A Large, Diverse, and Challenging Dataset: We introduce the PRISMABENCH dataset, a new,
large-scale collection of over 10 globally distributed PRISMA scenes. It addresses the limitations
of prior benchmarks by providing greater geographical diversity for robust generalization testing
and by utilizing larger image tiles to preserve the fine-grained spatial structures essential for
realistic evaluation. Furthermore, we introduce a novel data richness score to ensure our test set
is demonstrably complex and challenging.

2. Principled Metrics for Reliable Evaluation: To overcome the well-documented fragility of
legacy no-reference scores, we propose the PAN-Conditioned Spatial Score (DPAN

ρ ). This
physics-aware metric measures spatial consistency only on the subset of hyperspectral bands
that physically overlap with the panchromatic sensor’s response. This targeted approach pro-
vides a more robust and less gameable measure of true spatial detail transfer than traditional,
full-spectrum metrics.

3. A Modernized Toolbox with Insightful Visualizations: We provide a standardized, open-
source toolbox that, for the first time, includes strong baselines from self-supervised and genera-
tive paradigms. Crucially, our framework moves beyond single-score leaderboards by standard-
izing insightful visualization tools, such as multi-metric radar charts, which provide a holistic
profile of a model’s behavior and expose the critical performance trade-offs that aggregate scores
conceal.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Why Pansharpening Benchmarking Fails under Real-World Conditions. The three
core challenges of the pansharpening task systematically undermine legacy evaluation protocols. (a)
Spectral Mismatch between the PAN and HSI sensors makes evaluating spectral fidelity in the SWIR
bands unreliable. (b) The Synthetic-to-Real Gap, caused by reliance on idealized Wald protocol
operators, means performance on benchmarks often fails to predict real-world utility. (c) Fragile
No-Reference Metrics can be "gamed" by algorithms, creating a disconnect between high scores and
true visual quality.

2 PRELIMINARIES: THE PANSHARPENING INVERSE PROBLEM

Hyperspectral pansharpening is a classic ill-posed inverse problem central to remote sensing. It
aims to reconstruct a high-resolution hyperspectral image (X̂HR ∈ RH×W×L) by fusing a low-
resolution hyperspectral cube (HLR∈Rh×w×L) with a high-resolution panchromatic image (PHR∈
RH×W×1).

The task is governed by the sensor’s physical forward model. An ideal reconstruction X̂HR must
simultaneously satisfy two physical consistency constraints: (1) when spatially degraded by the sen-
sor’s point-spread function (B) and downsampler (D), it must match the observed LR-HSI; and (2)
when spectrally integrated by the sensor’s spectral response function (R), it must match the observed
HR-PAN. This can be expressed as:

D
(
B(X̂HR)

)
≈ HLR and R(X̂HR) ≈ PHR. (1)

The ill-posed nature of this problem, coupled with the absence of a real-world ground truth, dictates
that evaluation must fundamentally differ from standard supervised tasks. To crystallize these differ-
ences, Table 1 contrasts the core objectives and methodologies of pansharpening against common
downstream analysis tasks like classification and unmixing.

Table 1: Task positioning. Pansharpening is a physics-constrained inverse problem focused on image
reconstruction, which is fundamentally distinct from downstream analysis tasks that optimize for
different scientific objectives and employ different evaluation metrics.

Dimension Pansharpening (Fusion) Classification (Analysis) Unmixing (Analysis)

Primary Goal Reconstruct a high-resolution image Assign a semantic label Estimate sub-pixel material abundances
Supervision No ground truth on real data; self-consistency Per-pixel categorical labels Often unsupervised or semi-supervised
Core Metric Physics consistency (e.g., Q2n, QNR) Classification accuracy (e.g., OA, κ) Error (e.g., RMSE, MAE)

3 RELATED WORK

The evaluation of hyperspectral pansharpening is built upon two legacy protocols in multispectral
pansharpening, each with well-documented limitations. The seminal (Wald, 1999)’s protocol enables
objective, reference based reduced-resolution (RR) evaluation to generate synthetic data from high-
resolution hyperspectral images like Pavia (Gamba & Dalponte, 1999), Botswana (NASA, 2001),
but creates a persistent synthetic-to-real domain gap. For real, full-resolution (FR) data, the field
relies on no-reference metrics like QNR (Alparone et al., 2008), which have been shown to be
fragile and poorly correlated with physical plausibility, especially in the challenging SWIR bands
(Arienzo et al., 2022). As shown in Table 2, we observed a disconnect between the two metrics.
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Table 2: PRISMA toolbox (Ciotola et al., 2024) benchmark performance in reduced-resolution (RR)
and full-resolution (FR). Bold indicate the best.

Method ERGAS SAM Q2n (RR) Dλ (FR) Ds (FR) QNR (FR)

Ideal 0 0 1 0 0 1

PRACS 2.4461 3.7174 0.7723 0.0102 0.0151 0.9749
AWLP 2.7697 5.2381 0.7783 0.0094 0.0295 0.9613
HSpeNet 1.7379 3.3525 0.8660 0.0163 0.0159 0.9680
R-PNN 1.7356 3.4026 0.8555 0.0090 0.0195 0.9716

The top-performing model HSpeNet under the RR metric failed to be the best in the FR evaluation,
whereas a different model PRACS with a modest RR score achieved one of the top results on the
FR metric. While recent efforts have standardized the application of these protocols (Vivone et al.,
2021), the underlying methodological flaws remain, creating a critical need for a more realistic
evaluation framework.

Our work is motivated by the need to bridge this evaluation gap by rigorously testing modern ma-
chine learning paradigms that are well-suited to this task. Hyperspectral pansharpening is a classic
ill-posed inverse problem, a domain where generative models like Denoising Diffusion Probabilis-
tic Models (DDPMs) have shown immense promise (Ho et al., 2020; Song et al., 2021). The lack of
labeled data also makes self-supervised learning (SSL), particularly with the advent of Earth ob-
servation foundation models like SatMAE (Cong et al., 2022), a critical enabler. Finally, the explicit
physical nature of the problem calls for physics-informed approaches that embed sensor constraints
directly into the learning process (Karniadakis et al., 2021).

However, these three powerful ML paradigms—generative priors, SSL features, and physics-
informed learning—have been largely developed in isolation from the specific realities of pansharp-
ening. It remains an open question whether these methods are robust to real-world conditions like
sensor mismatch and misregistration. With PRISMABENCH, we aim to provide a unified platform
to begin addressing this question, offering a physics-enriched dataset, robust metrics, and modern
baselines for a fair and rigorous comparison.

4 PRISMABENCH: A PHYSICS-AWARE EVALUATION ECOSYSTEM

To address the critical evaluation gap in hyperspectral pansharpening, we introduce PRIS-
MABENCH, a comprehensive ecosystem designed to re-calibrate research towards real-world util-
ity and physical plausibility. Our framework is built on three synergistic pillars: (1) a large-scale,
physics-enriched dataset that provides the ground-truth sensor operators; (2) a suite of principled
evaluation metrics, including novel physics-consistency and robustness scores; and (3) a set of in-
sightful visualization tools designed to move beyond single-score leaderboards and reveal deeper
performance trade-offs.

4.1 PILLAR 1: A PHYSICS-ENRICHED DATASET

Our benchmark, PRISMABENCH, is built upon a new, large-scale PRISMA dataset that signifi-
cantly enhances the scale and rigor of hyperspectral pansharpening evaluation (Table 3). Its advan-
tages are threefold:

• Increased Scale and Diversity: With 10 globally distributed test scenes, our benchmark provides
greater statistical power and a more robust test of model generalization compared to previous
datasets, which were often limited to a few specific geographies. The selection of the scenes from
1500+ downloaded PRISMA imagery 1 are based on the richness score (see Appendix A.2).

• Larger Spatial Support: State-of-the-art (SOTA) benchmarks typically evaluate performance
on small patches, ranging from 120×120 to 2400×2400 pixels, which are cropped from large
PRISMA PAN images (6000×6000). In contrast, we use large image tiles (2400×2400) to better
preserve the fine-grained structures that are critical for realistic, full-resolution stress testing.

1https://prisma.asi.it/js-cat-client-prisma-src/
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This physics-enriched data underpins our novel evaluation metrics, including a PAN-conditioned
spatial score (DPAN

ρ ), making our benchmark more discriminative, reproducible, and aligned with
real-world performance.

Table 3: Comparison of our PRISMABENCH test set with prior corpora used in hyperspectral pan-
sharpening research at Full Resolution using PRISMA satellite.

Benchmark # Test Scene(s) Coverage # Bands (used / full) Dimension

Pavia Center (Gamba & Dalponte, 1999) 1 Italy 102 / 115 P: 160x160, HS: 40×40
Botswana (NASA, 2001) 1 Botswana 145 / 242 P: 120x120, HS: 40x40

PRISMA FR (Vivone et al., 2022) 2 Italy 69 / 239 P: 2400x2400, HS: 400x400
PRISMA toolbox (Ciotola et al., 2024) 4 Italy, US, Mexico 159 / 239 P: 1200x1200, HS: 200x200

PRISMABENCH (Ours) 10 Global 159 / 239 P: 2400x2400, HS: 400x400

4.2 PILLAR 2: MOVING BEYOND PROXIES WITH PRINCIPLED METRICS

We move beyond legacy metrics by introducing a protocol that measures what truly matters: physical
consistency and robustness to real-world perturbations.

PAN-Conditioned Spatial Score (DPAN
ρ ) for Robust Spatial Evaluation: A primary failure

mode of legacy no-reference evaluation is the unreliability of spatial quality scores. To address this,
we propose DPAN

ρ , a new metric grounded in the principle that the high-resolution panchromatic
(HR-PAN) image is the most reliable source of ground-truth spatial structure.

Mechanism: Unlike traditional Dρ (Guarino et al., 2025) that perform a naive global consistent
comparison, our score is PAN-centric. We define DPAN

ρ as the spatial consistency between the high-
frequency components of the generated HSI within the panchromatic (PAN) range and the corre-
sponding components of the high-resolution PAN (HR-PAN) image, as formulated below:

DPAN
ρ = Dρ(Y:,i:j,:,:, IPAN ), (2)

where i and j are the indices representing the spectral range of the PAN sensor (e.g., 400–700 nm for
the PRISMA sensor) (Cogliati et al., 2021), Y is the model fused image and IPAN is the original
input PAN image as reference. The effectiveness of a model’s PAN injection can be measured by the
spatial consistency within the PAN range.

Benefit: Bands with high spectral overlap (e.g., in the visible range) are strongly expected to match
the PAN’s structure, and deviations are penalized accordingly. This makes DPAN

ρ a more physically
plausible measure of spatial fidelity.

4.3 PILLAR 3: INSIGHTFUL VISUALIZATIONS BEYOND LEADERBOARDS

Numerical scores often fail to capture the nuanced performance trade-offs and failure modes of com-
plex models. A core contribution of PRISMABENCH is therefore a suite of standardized, insightful
visualization tools designed to move evaluation beyond simple leaderboards towards a deeper, more
holistic understanding of model behavior.

We introduce two key visualization methodologies. First, to diagnose a model’s fusion strategy, we
propose the Mean Difference Heatmap (Fig. 4). This tool visualizes the per-pixel radiometric
change a model imparts on the input, providing an immediate "fingerprint" of whether its approach
is spectrally conservative or spatially aggressive. Second, to overcome the limitations of single-score
rankings, we standardize the use of Multi-Metric Radar Charts (Fig. 5). This visualization plots
a model’s performance across multiple competing criteria (e.g., performance on different scenes,
or metrics for quality vs. robustness). It instantly reveals a model’s performance profile, clearly
distinguishing well-balanced "generalist" models from "specialist" models that excel on one axis at
the expense of others.

These tools provide a more complete and actionable picture of a model’s true capabilities. A detailed
summary of all our proposed visualization methods and their underlying mechanisms, including VIS
vs. Invisible band analysis and false-color mapping, is provided in Appendix A.3.
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5 EXPERIMENTS: EXPOSING THE EVALUATION GAP

Our experiments are designed not merely to rank models, but to rigorously validate our central
thesis: that legacy evaluation protocols are fundamentally flawed, and our physics-aware benchmark
provides a more reliable measure of real-world performance. We structure our validation around
three key empirical findings.

5.1 EXPERIMENTAL SETUP

Datasets and Baselines. All experiments are conducted on our PRISMABENCH dataset. We
compare a wide range of models, including classical (HySURE, MF, BT-H), supervised SoTA
(HSpeNet), and unsupervised PNN-based SoTA (R-PNN and ρ-PNN).

Table 4: Representative pansharpening methods included in our benchmark. We select strong base-
lines spanning classical model-based paradigms and both supervised and unsupervised deep learning
approaches to ensure a comprehensive and fair comparison.

Name Reference Summary

HySURE (Simões et al., 2015) Bayesian estimation with vector total variation prior.
MF (Restaino et al., 2016) Nonlinear decomposition with morphological filters.

BT-H (Lolli et al., 2017) Brovey transform with haze correction.

HSpeNet (He et al., 2020) Advanced version of HyperPNN (He et al., 2019).
R-PNN (Guarino et al., 2024) Bandwise pansharpening using modified. Z-PNN with tuning propagation
ρ-PNN (Guarino et al., 2025) Bandwise pansharpening using modified Z-PNN with hysteresis-inspired strategy.

Table 5: Comparison of different methods on five met-
rics. Bold indicate the best.

Method Dλ Ds QNR Dρ DPAN
ρ

Ideal 0 0 1 0 0

Traditional methods
HySURE 0.1557 0.0046 0.8404 0.4270 0.2534
MF 0.0776 0.1082 0.8238 0.1271 0.1111
BT-H 0.0652 0.0043 0.9307 0.1665 0.1706

Deep Learning methods
HSpeNet 0.3320 0.0001 0.6679 0.9223 0.8687
R-PNN 0.0337 0.0349 0.9326 0.1403 0.2483
ρ-PNN 0.0238 0.0737 0.9040 0.1171 0.1201

Evaluation in Full-Resolution (FR).
We evaluate all models on real, full-
resolution satellite imagery to probe the
synthetic-to-real gap. Performance is mea-
sured with our proposed no-reference met-
rics: the (DPAN

ρ ), alongside the legacy
QNR for comparison. As shown in Table
5, the performance of all models dropped
compared to SOTA benchmark (Guarino
et al., 2025). Although HSpeNet get the
best Ds, it performed badly on other met-
rics as well as the visualization in Fig. 4.

5.2 FINDING 1: LEGACY BENCHMARKS ARE LIMITED PREDICTORS OF REAL-WORLD
PERFORMANCE

A critical finding from our analysis suggests that a model’s success on the traditional, synthetic
Reduced-Resolution (RR) benchmark may be a poor predictor of its performance on real Full-
Resolution (FR) data. This apparent disconnect, often termed the "synthetic-to-real gap," could
represent a significant obstacle to progress, as it raises the possibility that the community may be
optimizing for a flawed objective.

Evidence from Rank Correlation Collapse. To quantify this gap, we conducted a rigorous meta-
analysis using the comprehensive experimental data from the recent benchmark study by (Guarino
et al., 2025), specifically the average scores reported in their Tables VII and VIII. We compared the
performance rankings of 21 state-of-the-art methods on the RR benchmark (using the standard ER-
GAS metric) against their rankings on the FR benchmark (using the spectral fidelity metric Dλ). As
shown in Figure 3, the result is a near-complete collapse of rank correlation. We found a Spearman’s
rank correlation coefficient of only ρ = 0.22, which is not statistically significant (p > 0.05).

This profound disagreement reveals critical insights. For instance, the classic TV method, which
ranks poorly on the synthetic RR test (13th), is the top performer on the real FR data (1st) due to its
strong spectral preservation. Conversely, the powerful deep learning model Hyper-DSNet, which is
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the top-ranked model on the RR benchmark, falls to 8th place on the FR benchmark. This provides
direct, quantitative evidence that optimizing for the idealized conditions of the Wald protocol does
not guarantee, and may even hinder, the development of models that are robust to the complexities
of real-world physics.

Figure 3: Failure of Legacy Protocols: A Collapse in Rank Correlation. Scatter plot of model
ranks on the synthetic Reduced-Resolution (RR) benchmark ERGAS versus the real Full-Resolution
(FR) benchmark Dλ. The near-zero rank correlation (ρ = 0.22) provides direct quantitative evidence
that performance on synthetic data is a poor predictor of real-world performance. This disconnect is
starkly illustrated by models like TV, which is the top performer on real FR data but ranks poorly on
the synthetic benchmark. Data for this analysis is sourced from the comprehensive study by (Guarino
et al., 2025).

5.3 FINDING 2: PHYSICS-AWARE METRICS REVEAL DEEPER INSIGHTS

Our new visualization tools, grounded in physics and data, expose performance characteristics that
are invisible to traditional metrics. The Mean Difference Heatmap (Fig. 4) provides a clear "finger-
print" of each model’s fusion strategy. It visually confirms that aggressive, injection-based methods
like BT-H and MF pervasively alter the image’s original radiometry (widespread yellow areas),
risking spectral distortion. In contrast, more conservative methods like HySURE make targeted,
localized adjustments, better preserving spectral integrity.

Crucially, our VIS vs. Invisible Band Analysis (see Appendix Fig. 6) allows us to diagnose per-
formance in the challenging SWIR bands where PAN guidance is absent. We found that while most
models can reconstruct VIS bands reasonably well, many fail to preserve the unique spectral sig-
natures of features like waterways in the SWIR range. This analysis provides a critical diagnostic
tool for assessing the scientific reliability of a model, a dimension completely missed by aggregate
metrics.

5.4 FINDING 3: MANY MODELS FAIL TO PRESERVE CRITICAL NON-VISIBLE SPECTRAL
INFORMATION.

Aggregate spectral metrics can be dangerously misleading, as they often average out poor perfor-
mance in the scientifically critical short-wave infrared (SWIR) range with good performance in the
PAN-overlapping visible (VIS) range. Our VIS vs. Invisible Band Analysis provides a powerful
diagnostic tool to expose this failure mode.

As shown in Figure 6, we deconstruct a model’s output by separately averaging its VIS and SWIR
bands and computing their difference. The difference map highlights features, such as waterways,

7
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Figure 4: Visualizing the Fusion Strategy: A Diagnostic Heatmap for Model Behavior. This fig-
ure introduces the Mean Difference Heatmap as a tool to visualize the fundamental trade-off between
spatial detail injection and spectral preservation. Each panel plots the per-pixel mean difference be-
tween the input and output spectra; hotter colors (yellow) indicate aggressive radiometric alteration,
while cooler colors (blue/green) signify a conservative approach that prioritizes spectral fidelity. The
analysis clearly distinguishes aggressive methods like MF and BT-H, which globally alter the input,
from conservative methods like HySURE and ρ-PNN, which better preserve the original informa-
tion. This qualitative "fingerprint" of a model’s strategy provides a crucial insight that aggregate
numerical scores fail to capture.

Figure 5: Beyond Leaderboards: Holistic Performance Profiling with Radar Charts on 10 new
challenging scenes. This radar chart exposes the limitations of single-score rankings by visualiz-
ing model performance across multiple evaluation criteria (four test scenes and their average). Each
colored line represents a different method’s performance profile. The visualization immediately re-
veals critical performance trade-offs: methods like MF (blue line) emerge as “specialists” that excel
on specific scenes, but are suboptimal elsewhere. In contrast, methods like R-PNN and ρ-PNN are
“generalists” with more balanced, though not always peak, performance. This holistic view provides
a much richer and more actionable understanding of a model’s true capabilities than a single, aggre-
gated score.

that have a unique and strong signature in the SWIR spectrum. Our analysis reveals that while most
models can plausibly reconstruct the VIS bands, many fail to preserve the distinct structure of the
SWIR bands, resulting in a low-contrast, washed-out difference map. In contrast, top-performing,
physics-aware models successfully maintain a strong contrast, providing direct visual evidence of
their superior spectral fidelity in bands where the panchromatic image offers no guidance. This
demonstrates that our visualization is a crucial tool for assessing the scientific reliability of a pan-
sharpening method.
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Figure 6: Diagnosing Spectral Fidelity in Non-Visible Bands. This visualization deconstructs a
model’s performance. (Left) The model output R-PNN at scene Kolkata averaged over the VIS
bands. (Middle) The output averaged over the SWIR bands. (Right) The difference map, which
highlights features with unique SWIR signatures. A strong contrast in this map, as seen here, indi-
cates the successful preservation of scientifically critical, out-of-band information.

6 DISCUSSION

Our work is motivated by the observation that in scientific machine learning, the evaluation protocol
often shapes the direction of research. We found that the long-standing "evaluation gap" in hyper-
spectral pansharpening may represent a significant barrier to progress. In response, we developed
PRISMABENCH to explore a new approach to evaluation grounded in physical reality, and our
findings may have implications for both the remote sensing and broader ML communities.

Implications for the Remote Sensing Community. Our results suggest a potential path forward
from the difficult trade-off between synthetic reference metrics and fragile no-reference scores. We
propose that the community consider adopting our PAN-Conditioned Spatial Score (DPAN

ρ ) as tools
for no-reference evaluation. Because these scores are tied to the sensor’s known physics, they appear
to be more robust and less susceptible to gaming, potentially helping to re-align the field’s objective
towards physical plausibility and verifiable spatial fidelity.

A Potential Blueprint for Scientific Benchmarking. While instantiated in remote sensing, the
principles of PRISMABENCH may offer a portable blueprint for building more reliable benchmarks
in other scientific domains. We suggest two key ideas for consideration: (1) enriching datasets by
packaging them with their known physical forward operators, and (2) quantifying model reliability
directly via stress tests that measure performance under non-ideal conditions. We hope this approach
can help foster the development of models that are not just accurate, but also trustworthy.

Limitations. We readily acknowledge that our work is a first step. Challenges like severe atmo-
spheric effects and non-static misregistration remain open problems. While our benchmark provides
the infrastructure to begin studying these effects, developing models that are fully robust to them is
a significant challenge for future research.

7 CONCLUSION

In this work, we explored a critical "evaluation gap" where a disconnect between legacy benchmarks
and real-world physics may be hindering progress in a key scientific domain. We introduced PRIS-
MABENCH, a physics-aware benchmark ecosystem designed to help re-calibrate research towards
verifiable physical consistency and operational robustness. By providing a large-scale dataset, a suite
of principled evaluation metrics, and a modernized toolbox, we hope to have created a useful foun-
dation for the next generation of pansharpening research. We release all artifacts to the community
to foster a more transparent, reproducible, and impactful era of scientific machine learning.
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REPRODUCIBILITY STATEMENT

All experiments were conducted on a server equipped with 1 NVIDIA 3090 GPU using the pro-
vided Docker container, which is based on PyTorch 2.1, CUDA 11.8, and Python 3.10. All random
seeds were fixed across runs to ensure deterministic behavior. The complete code, data, and artifacts
required to reproduce all findings will be made publicly available.
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A APPENDIX

A.1 SCENE LIST

The following table presents 10 challenging scenes from various locations worldwide of PRISMA
imagery. You can search at their platform to download the original picture.2

Table A.6: Summary of 10 PRISMA Satellite Scenes

Scene Location Acquisition Date Start Time (UTC) End Time (UTC) Predominant Land Features

Kolkata 2020-12-15 04:46:55 04:46:59 Urban, Riverine
Dhaka 2021-10-30 04:45:26 04:45:30 Urban, Riverine
Bangkok 2021-11-19 03:54:14 03:54:19 Urban, Coastal, Riverine
Mexico City 2022-01-06 17:16:58 17:17:02 Urban, Valley
Buenos Aires 2022-02-15 14:10:02 14:10:07 Urban, Coastal
Rio de Janeiro 2022-02-23 13:06:47 13:06:51 Urban, Coastal, Mountainous
Lagos 2023-12-24 10:18:06 10:18:10 Urban, Coastal, Lagoon
Shanghai 2024-08-03 02:49:00 02:49:04 Urban, Coastal, River Delta
Rome 2024-08-12 10:08:07 10:08:11 Urban, Riverine
Karachi 2024-10-01 06:21:54 06:21:59 Urban, Coastal, Arid

A.2 SCENE SELECTION BY RICHNESS SCORE

The Richness Score (SR) for a given satellite scene is calculated as the mean of four normalized
metrics that quantify its spectral and spatial information content. The formula is as follows:

SR =
1

4

(
Vλ

max(Vλ)
+

Hλ

max(Hλ)
+

HP

max(HP )
+

σP

max(σP )

)
(3)

If a scene is identified as urban and the urban_focus option is enabled, the score is multiplied by
a boost factor (BU ):

SR,urban = BU × SR (4)

• SR: The final Richness Score for a scene. This is referred to as composite_score in
the Python script.

• Vλ: Spectral Variance. The mean variance across all spectral bands of the hyperspectral
image, measuring spectral diversity.

• Hλ: Spectral Entropy. A measure of the information content and complexity across the
hyperspectral bands.

• HP : Panchromatic Entropy. A measure of the information content and texture in the
high-resolution panchromatic (grayscale) image.

• σP : Panchromatic Standard Deviation. The standard deviation of the panchromatic im-
age, indicating spatial variability and detail.

• max(X): The maximum value of a given metric X found across the entire set of scenes
being processed. Dividing by this value normalizes each metric to a scale of 0 to 1.

• SR,urban: The adjusted Richness Score for a scene classified as urban.

• BU : The Urban Boost factor (e.g., 1.5), a multiplier that increases the score for urban
scenes to prioritize their selection.

2https://prisma.asi.it/js-cat-client-prisma-src/
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A.3 NEW VISUALIZATION METHODS FOR DEEPER INSIGHT

To supplement the numerical scores provided by our benchmark, we introduce and standardize a
suite of advanced visualization tools. These tools are designed to move beyond simple numerical
scores and offer deeper insights into model behavior, particularly regarding performance trade-offs
and failure modes. Table A.7 provides a comprehensive summary of these methods. Below, we
provide illustrative examples and concrete interpretations based on our experimental findings.

Table A.7: A Toolkit of New Visualization Methods for Deeper Insight. Our benchmark moves
beyond numerical scores by introducing and standardizing these visualization tools. Each is de-
signed to expose specific performance characteristics and trade-offs that are concealed by traditional,
single-score leaderboards.

Visualization Method Mechanism Key Insight Re-
vealed

Contribution to the
Benchmark

Mean Difference Heatmap Visualizes the per-
pixel radiometric
change between the
input HSI and the
final pansharpened
output.

Provides an immedi-
ate "fingerprint" of a
model’s fusion strat-
egy, distinguishing
between conservative
(spectrally faithful)
and aggressive (spa-
tially detailed, but
risky) approaches.

Quantifies the inva-
siveness of a fusion
strategy and its im-
pact on the original
radiometry, moving
beyond a single ag-
gregate error number.

VIS vs. Invisible Band Analysis Compares model
performance on PAN-
overlapping (VIS)
vs. non-overlapping
(SWIR) bands, typi-
cally via a difference
map.

Exposes a model’s
ability to handle the
"out-of-band leakage"
problem. Reveals if
a model is merely
copying PAN details
or genuinely recon-
structing information
where no spatial guid-
ance exists.

Provides a crucial
diagnostic tool for
assessing a model’s
scientific reliability,
especially for applica-
tions that depend on
high-fidelity SWIR
data.

False-Color RGB Mapping Maps selected HSI
channels to a stan-
dardized RGB com-
posite for intuitive
visual inspection.

Compresses high-
dimensional data into
a human-perceptible
format, enabling a
quick assessment of
spatial structure and
the detection of major
color distortions or
artifacts.

Standardizes a key
qualitative sanity
check, ensuring that
numerical scores are
always grounded in
a baseline of visual
plausibility and struc-
tural integrity.

Multi-Metric Radar Chart Projects a model’s
performance across
multiple criteria
(e.g., different scenes,
different metrics)
onto a single polar
plot.

Instantly reveals a
model’s performance
profile, highlight-
ing its strengths and
weaknesses. Clearly
distinguishes be-
tween “specialist”
and “generalist”
models.

Replaces single-score
leaderboards with a
holistic performance
profile, revealing
trade-offs and dis-
couraging the practice
of "metric-gaming."

A.4 ILLUSTRATIVE EXAMPLES AND ANALYSIS

VIS vs. Invisible Band Analysis Diagnoses Spectral Fidelity. To diagnose a model’s perfor-
mance in spectral regions with weak PAN guidance, we standardize the use of VIS vs. Invisible
(e.g., SWIR) band analysis. As shown in Figure 6, we first analyze the input data itself: the visi-
ble bands and SWIR bands show distinct spatial responses, particularly for features like waterways,
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which is highlighted in the input difference map. We then apply the same analysis to the model’s out-
put. A high-fidelity model should not only reconstruct the individual band groups but also preserve
the crucial information in their difference. Our analysis confirms that our top-performing models
successfully maintain a strong contrast in the output difference map, providing a crucial diagnostic
tool for assessing scientific reliability in bands where the PAN offers no guidance.

Figure A.7: False-Color RGB Mapping for Qualitative Assessment. A false-color composite of
the model’s output using selected HSI channels. This visualization provides a quick, intuitive check
for spatial sharpness, structural integrity, and the absence of major color distortions.

Standardized False-Color Mapping for Qualitative Sanity Checks. While simple, a standard-
ized false-color mapping is an essential qualitative check. Our toolbox provides a script to map
specific HSI channels (e.g., channels 29, 19, and 0) to an RGB image (Fig. A.7). This compresses
the high-dimensional data into a human-perceptible format, allowing for a quick, intuitive assess-
ment of spatial structure and the detection of major color or spectral distortions that might be missed
by numerical scores. The varying appearance of different materials in the image reflects the unique
spectral sensitivities of the selected channels, providing a useful first-pass analysis.

A.5 USE OF LARGE LANGUAGE MODELS (LLMS)

This document was created with the assistance of a large language model (LLM). The LLM was
used to review and refine sentence structure, correct grammatical errors, and improve the clarity of
the prose.
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