
NVDSL: Simplifying Tensor Cores with Python-Driven MLIR
Metaprogramming

Guray Ozen 1

Abstract
Exploiting the formidable computational capabili-
ties of modern GPU tensor cores remains a chal-
lenging endeavor for developers. Existing pro-
gramming models like CUDA and OpenCL are
ill-suited for the non-SIMT nature of tensor cores,
leaving a significant gap in the landscape of GPU
programming languages. Vendors have primarily
relied on library-based solutions or enhancements
to mainstream machine learning frameworks, sac-
rificing the fine-grained control once afforded by
CUDA in the SIMT era.

In this paper, we introduce NVDSL, a Python-
embedded domain-specific language that is based
on MLIR compiler. NVDSL abstracts away the
intricate details of tensor core programming. It
allows programmers to efficiently program Hop-
per’s Warpgroup (128 threads or 4 warps), en-
abling users to express sophisticated algorithms,
such as multistage and warp specialization, with
remarkable simplicity. We demonstrate its effi-
cacy through two optimized GEMM kernels that
achieve cuBLAS-like performance with remark-
able code clarity. It is publicly available in up-
stream MLIR. The tutorial of this work is pre-
sented in EuroLLVM24 1.

1. Introduction
GPUs have gained popularity due to their dazzling perfor-
mance. Vendors have provided programming languages
such as OpenCL and CUDA, which give users full control
while handling tedious tasks like generating extensive as-
sembly code. Extensive resources like books, talks, and
blog posts have made these languages accessible.

The introduction of tensor cores with the Nvidia Volta archi-
1Google Research. Correspondence to: Guray Ozen

<gry@google.com>.

Work presented at the ES-FoMo Workshop at ICML 2024, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

1https://www.youtube.com/watch?v=V3Q9IjsgXvA

tecture revolutionized performance. However, programming
tensor cores did not align with the SIMT model, and Nvidia
has not exposed tensor core functionalities within the CUDA
programming model. Their usage remained confined to Par-
allel Thread Execution (PTX)(NVIDIA, 2024) assembly,
with Nvidia providing the CUTLASS(Thakkar et al., 2023)
library or close source cuBLAS library, offering many ten-
sor core recipes by performance engineers. Despite this,
programming tensor cores remains challenging for many
developers.

We propose NVDSL, a Python-like language designed to
leverage tensor cores. NVDSL allows programmers to effi-
ciently use Hopper’s Warpgroup (128 threads or 4 warps) to
perform matrix multiply-accumulate (MMA) with a simple
D += A @ B line, while our compiler handles the com-
plexity of generating hundreds of lines of code. This ground-
breaking approach enables the creation of high-performance
kernels, like those in CUTLASS, in just a few hundred lines
of NVDSL code.

Our contributions include:

1. NVVM dialect as an intrinsic layer in the MLIR com-
piler; it is very close to the PTX

2. NVGPU dialect as an atomic layer in the MLIR com-
piler; it provides readable abstractions and generates
multiple NVVM OPs.

3. NVDSL, a Python-like language, as an MLIR generator
specifically for the NVGPU dialect.

4. Performant multistage and warp-specialized kernels
using NVDSL, achieving cuBLAS-like performance.

Our article explains NVVM and NVGPU dialects implemen-
tation in MLIR compiler in Section 2, NVDSL Python lan-
guage in Section 3. We show a multistage and warp spe-
cialized kernels in Section 4 and evaluate them. Section 5
concludes our article.

2. Implementation of Hopper Support in
MLIR Compiler

Initially, neither LLVM nor MLIR supported the Hopper
GPU, and support for some Ampere architecture features
was lacking. In this article, we introduced Hopper GPU

1

https://www.youtube.com/watch?v=V3Q9IjsgXvA
https://www.youtube.com/watch?v=V3Q9IjsgXvA

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

1 def NVVM_MBarrierArriveExpectTxOp : NVVM_PTXBuilder_Op<"mbarrier.arrive.expect_tx">,
2 Arguments<(ins LLVM_AnyPointer:$addr, I32:$txcount, PtxPredicate:$predicate)> {
3 let assemblyFormat = "$addr `,` $txcount (`,` `predicate` `=` $predicateˆ)? attr-dict `:` type(operands)";
4 let extraClassDefinition = [{
5 std::string $cppClass::getPtx() { return std::string("mbarrier.arrive.expect_tx.b64 _, [%0], %1;"); }
6 }]; }

Figure 1. TableGen: Definition of MBarrierArriveExpectTxOp using BasicPtxBuilder Interface

1 nvvm.mbarrier.arrive.expect_tx.shared %barrier, %txcount, predicate = %pred : !llvm.ptr<3>, i32, i1

Figure 2. Example IR: Using MBarrierArriveExpectTxOp NVVM Op
1 llvm.inline_asm has_side_effects asm_dialect =
2 att "@$2 mbarrier.arrive.expect_tx.b64 _, [$0], $1;", "l,r,b" %arg0, %arg1, %arg2
3 : (!llvm.ptr, i32, i1) -> ()

Figure 3. LLVM IR: Generated IR with inline asm

support in the NVVM and NVGPU dialects, explained below.
We selected the MLIR compiler due to its dialect mechanism.
Our work is upstreamed to open-source MLIR.

2.1. NVVM Dialect

The NVVM dialect is an intrinsic layer, closely resembling
PTX assembly, however it has slightly higher level of ab-
straction. The Hopper architecture introduces new tensor
cores and a data load unit called TMA. Leveraging TMA re-
quires asynchronous transactional barriers (mbarriers). We
implemented the related PTX instructions in the NVVM di-
alect.

The NVVM dialect is designed to generate LLVM intrin-
sic; however, LLVM lacks intrinsic for Hopper architecture.
We developed the BasicPtxBuilder interface in MLIR,
which automatically generates PTX by reading the table-
gen definition of the NVVM Op. This interface generates
inline asm, and we have implemented over 40 Ops us-
ing it.

Figure 1 shows the OP definition in TableGen using the
BasicPtxBuilder interface. The tablegn includes the
getPtx function that returns the PTX string, and the inter-
face automatically figures inline asm OP generation.
Figure 1 shows how this Op looks in NVVM IR. Fig-
ure 2 shows the generated PTX in the LLVM dialect by
the BasicPtxBuilder interface. Note that the NVVM
Ops interface is designed to be close to PTX, facilitating
a smooth transition to LLVM intrinsic once they become
available.

2.2. NVGPU Dialect

The NVGPU dialect serves as a crucial intermediate layer
in the MLIR compiler, bridging high-level MLIR dialects
(such as Memref, Vector, and others) to the NVVM di-
alect. We significantly expanded NVGPU capabilities and
responsibilities in this work to target Hopper architecture.
This expansion included the introduction of 15 new Opera-
tions (Ops) specifically designed to handle Tensor Memory

Accelerator (TMA), memory barriers (mbarriers), and ten-
sor cores. These new Ops are capable of generating multiple
lines of NVVM dialect code, thereby providing a more ab-
stracted and manageable interface for GPU programming.
It’s important to note that these conversions from NVGPU
to NVVM are purely mechanical and do not involve complex
heuristics or decision-making processes. We can categorize
and explain the new NVGPU Ops in three main categories:

2.2.1. MBARRIER OPS

Modern GPU architectures have introduced sophisticated
synchronization mechanisms. One such mechanism is the
mbarrier object, which allows a thread to track the comple-
tion of one or more asynchronous operations by monitoring
the current phase of the mbarrier. To facilitate the use of this
advanced feature, we have implemented multiple Ops in the
NVGPU dialect that simplify mbarrier synchronization. Our
implementation offers two particularly noteworthy features:

1. We enable the generation of multiple mbarrier objects,
allowing for complex synchronization scenarios.

2. We permit accessing multiple mbarrier objects using a
single SSA value. This approach is especially benefi-
cial when dealing with multiple mbarriers, particularly
within loop structures, as it simplifies code and im-
proves readability.

To illustrate these features, Figure 4 provides a concrete
example. In this figure, Line 6 demonstrates the creation of
three distinct mbarrier objects. Subsequently, Lines 7, 8, 9
and 10 show how to access the first of these mbarrier objects,
showcasing the ease of use our implementation provides.

2.2.2. TMA OPS

Utilizing the Tensor Memory Accelerator (TMA) involves a
two-step process:

1. Creating a descriptor on the host

2. Loading or storing data on the device using this de-
scriptor

2

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

1 !descType = !nvgpu.tensormap.descriptor<tensor = memref<128x64xf16, 3>, swizzle = swizzle_128b,
2 l2promo = l2promo_128b, oob = zero, interleave = none>
3 func @main() {
4 %tmaDesc = nvgpu.tma.create.descriptor %memref box[128, 64] !descType
5 gpu.launch
6 %mbar = nvgpu.mbarrier.create -> <num_barriers = 3>
7 nvgpu.mbarrier.init %mbar[%c0], %c1, predicate = %tidx0
8 nvgpu.tma.async.load %tmaDesc[i, j], %mbar[%c0] to %tileA predicate=%tid0 : !descType
9 nvgpu.mbarrier.arrive.expect_tx %mbar[%c0], 16384 predicate=%tid0

10 nvgpu.mbarrier.try_wait.parity %mbar[%c0], %phase, %ticks
11 }

Figure 4. Example of using mbarrier and TMA in NVGPU dialect

1 %C = nvgpu.warpgroup.mma.init.accumulator -> !<fragmented = vector<128x128xf32>>
2 %A = nvgpu.warpgroup.generate.descriptor %tileA : ... -> !<tensor=memref<128x64xf16, 3>>
3 %B = nvgpu.warpgroup.generate.descriptor %tileB : ... -> !<tensor=memref<64x128xf32, 3>>
4 %D = nvgpu.warpgroup.mma %A, %B, %C : <tensor = memref<128x64xf16, 3>>, <tensor = memref<64x128xf32, 3>>
5 -> <fragmented = vector<128x128xf32>>
6 nvgpu.warpgroup.mma.store %D to %memrefD

Figure 5. Example of using Tensor Core in NVGPU dialect

The challenging aspect of this process lies in generating
the appropriate load or store instructions based on the de-
scriptor created on the host. To address this challenge, we
have designed TMA Ops as types that encapsulate each pa-
rameter of the TMA descriptor. This design choice ensures
that when we generate load or store instructions in the de-
vice code, we have full knowledge of every feature of the
descriptor.

Figure 4 provides an example. Line 1 defines the TMA de-
scriptor type, encapsulating all necessary information. Line
4 uses the nvgpu.tma.create.descriptor Op to
generate the actual TMA descriptor. Finally, Line 8 demon-
strates how to load data using this descriptor, showcasing
the seamless integration of host-side descriptor creation and
device-side data manipulation.

2.2.3. TENSOR CORE OPS

The introduction of the Hopper architecture brought with it
warpgroup-level tensor core instructions, which are critical
for achieving peak performance. Recognizing the complex-
ity and importance of these instructions, we have developed
abstractions that encapsulate their usage.

Our approach embeds the intricate details and potentially
tricky aspects of using tensor core instructions directly
within the tensor core Ops. This abstraction allows develop-
ers to leverage the power of tensor cores without needing to
manage low-level details, thereby reducing the potential for
errors and improving code maintainability.

Figure 5 presents an IR example that performs a
128x128x64 MMA using our OPs. A key point to note
is that each Op in this example is executed by the entire
warpgroup, highlighting the warpgroup-level nature of these
operations and demonstrating how our abstraction aligns
with the underlying hardware capabilities.

3. NVDSL: Python DSL for NVIDIA Hopper
GPU Programming

We introduce NVDSL, a Python-based Domain-Specific
Language (DSL) designed for generating MLIR opera-
tions and targeting the NVIDIA Hopper GPU architecture.
NVDSL simplifies GPU kernel programming by abstract-
ing complex hardware features and providing an intuitive,
high-level syntax.

Table 1 illustrates the layers of NVDSL and compares them
with CUTLASS. While CUTLASS implements entirely in
C++, we implement the bottom layers in the MLIR com-
piler and the outer layers in NVDSL Python. This approach
enables metaprogramming, which we elaborate on in the
following section. Python layers are responsible for gener-
ating MLIR operations using MLIR’s Python bindings. It
targets MLIR’s NVGPU dialect for Hopper GPU support and
also generates gpu, arith, and math dialects.

CUTLASS NVDSL

Device
@NVDSL.mlir func
def gemm(x, y, z):
Setups and Calls Kernel

Kernel
@NVDSL.mlir gpu launch(...)
def gemm kernel()
Kernel Body

Collective

Multistage:
def prologue () # has NVGPU OPs
def mainloop () # has NVGPU OPs
def epilogue () # has NVGPU OPs

Warp Specialized:
def producer loop() # has NVGPU OPs
def consumer loop() # has NVGPU OPs

Atom NVGPU dialect
Thread
Intrinsic NVVM Dialect

Table 1. Comparison of layers of CUTLASS and NVDSL

3

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

3.1. Example: Single Tile MMA

We delve into MMA with M = 128, N = 128, K = 64.
Listing 6 illustrates how to use NVDSL to perform this
operation seamlessly.

NVDSL provides the @NVDSL.mlir func decorator, al-
lowing users to invoke gemm 128 128 64 effortlessly
from Python, as demonstrated in Line 45-49. This decorator
performs just-in-time (JIT) compilation of the generated
code and executes the binary, translating NumPy arrays into
MLIR’s memref types. By leveraging both NumPy and
NVDSL, one can enjoy the best of both worlds: Python’s
simplicity and the efficiency of compiled code.

The program start by allocating and copying the input ma-
trices a and b, and the output matrix d, to the GPU. Subse-
quently, it creates TMA descriptors for efficient data loading
and initializes swizzled memory layouts. Within the device
kernel, named gemm kernel, NVDSL offers another use-
ful decorator, @NVDSL.mlir gpu launch, which con-
figures the kernel. Let us break down the process:

1. Create and initialize an asynchronous transactional
barrier (mbarrier) to synchronize our threads (Lines
17-18).

2. Calculate the shared memory offsets for input matrices
(Lines 20-22).

3. TMA Load request from global memory to shared
memory by thread-0 (Lines 24-28).

4. Warpgroup waits the completion of the TMA load
(Line 30).

5. Perform MMA operation using Tensor Cores in a single
line (Line 36).

6. Stored fragmented result registers to the global memory
(Line 38).

4. NVDSL Fast Kernels
The key point of implementing fast gemm kernels is to feed
tensor core efficiently. As it is faster than data load, we need
overlap tensor core with the data load. In this section we
illustrate two method for that.

4.1. Multistage GEMM Kernel

Listing 8 demonstrates a multistage GEMM kernel that effi-
ciently overlaps tensor core computations with data loading,
enhancing performance. It uses more shared memory and
loads multiple tile of input matrices to shared memory asyn-
chronously using TMA. The number of stage is ns variable
that’s parametric. The GEMM shape and tile sizes are also
parametric in the kernel so one code can compute multiple
GEMM shapes. In this kernel we program single Warp-
group. We split kernel into three section: prologue, main
loop and epilogue. Full code is available in 2.

2https://github.com/llvm/llvm-
project/blob/main/mlir/test/Examples/NVGPU/Ch4.py

1 @NVDSL.mlir_func
2 def gemm_128_128_64(a, b, d):
3 # GPU alloc/cpy
4 aDev, bDev, cDev = allocCopy(a, b, d)
5 # Create TMA Descriptors
6 sw = NVGPU.TensorMapSwizzleKind.SWIZZLE 128B
7 aTma = TMA([M, K], a.type, swizzle=sw)
8 bTma = TMA([K, 64], b.type, swizzle=sw)
9 aTma.create descriptor(aDev)

10 bTma.create descriptor(bDev)
11 szA = get type size(aTma.tma_memref)
12 szB = get type size(bTma.tma_memref)
13
14 @NVDSL.mlir_gpu_launch(grid=(1),block=(128),smem=sz)
15 def gemm_128_128_64_kernel():
16 t0 = gpu.thread id(gpu.Dimension.x) == 0
17 # 1. Create & Init mbarrier
18 mbars[0].init(1, predicate=t0)
19 mbars = Mbarriers(number_of_barriers=1)
20 # 2. Find shared memory of operands
21 aSmem = getSmem((M,K),T.f16())
22 bSmem = getSmem((K,N),T.f16(), szA)
23 bSmem2 = getSmem((K,N),T.f16(), szA + szB)
24 # 3. TMA Load for two input matrices
25 aTma.load(aSmem,mbars[0], coords=[0,0], predicate=t0)
26 bTma.load(bSmem,mbars[0], coords=[0,0], predicate=t0)
27 bTma.load(bSmem2,mbars[0],coords=[64,0],predicate=t0)
28 ta_count = szA + (szB * 2)
29 mbars[0].arrive(ta_count, predicate=t0)
30 # 4. All threads wait TMA load completion
31 mbars[0].try wait()
32 # 5. Initialize input A, B, and accumulator D
33 A= WGMMAMatrix(Descriptor,[M,K],desc=aTma,smem=aSmem)
34 B= WGMMAMatrix(Descriptor,[K,N],desc=bTma,smem=bSmem)
35 D= WGMMAMatrix(Accumulator,shape=[M,N],ty=T.f32())
36 # MMA (F32 += F16 * F16)
37 D += A @ B
38 # 6. Stores fragmented registers to global memory
39 D.store accumulator(dDev)
40 gemm 128 128 64 kernel()
41 # GPU copy device2host
42 copyD2H(d, dDev)
43
44 ### Use NumPy, call NVDSL, and verify ###
45 # Create & Init numpy arrays
46 a = np.random.randn(M, K).astype(np.float16)
47 b = np.random.randn(K, N).astype(np.float16)
48 d = np.zeros((M, N), np.float32)
49 # Call NVDSL function
50 gemm 128 128 64(a, b, d)
51 # Verify the resulf of NVDSL
52 ref_d = a.astype(np.float16) @ b.astype(np.float16)
53 np.testing.assert_allclose(d, ref_d, ...)

Figure 6. GEMM 128x128x64 using TMA and Tensor Core

Figure 7 shows the execution pipeline of a Multistage ker-
nel. Here, we select a pipeline value of 3, resulting in 3
slots in shared memory. The kernel manages these slots
concurrently.

Prologue Line(15-18) initializes the asynchronous TMA
loading of tiles. This function iterates over the stages, in-
voking tma load for each stage.

Main loop (Line 1-13): function contains the core compu-
tation. It begins by initializing the input matrices A, B, and
the accumulator D (Lines 5-7). The function then enters a
loop over the K dimension, divided by the tile size (Lines
9). At each iteration, the function waits for the current stage
to complete using calculates the shared memory offsets for
operands A and B and performs MMA operation using Ten-
sor Cores. It also initiates the asynchronous TMA load for
the next stage, ensuring computation overlap.

4

https://github.com/llvm/llvm-project/blob/main/mlir/test/Examples/NVGPU/Ch4.py

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

Figure 7. Multistage kernel pipeline (top), and warp specialized kernel pipeline (bottom)

1 def mainloop(mbars, aTma, bTma, numSt, TM, TN, TK):
2 begin_b = numSt * get_type_size(aTma.tma_memref)
3 size_a = TILE_M * TILE_K * get_type_size(T.f16())
4 # Initialize input A, B, and accumulator D
5 A= WGMMAMatrix(Descriptor, [TM, TK], desc=aTma)
6 B= WGMMAMatrix(Descriptor, [TK, TN], desc=bTma)
7 D= WGMMAMatrix(Accumulator, [TM, TN], f32())
8
9 # Start K-Loop

10 for iv,[acc,phs] in scf.for_(0,numSt,1,[D.op,False]):
11 # Loop body performs MMA and TMA load
12
13 D.update accumulator(acc)
14 return D
15
16 def prologue(mbars, aTma, bTma, numSt):
17 for iv in scf.for_(0, numSt, 1):
18 tma load(mbars, aTma, bTma, iv, iv, numSt)
19 scf.yield_([])
20
21
22 @NVDSL.mlir_gpu_launch(grid=grid,block=block,smem=sz)
23 def gemm_multistage_kernel():
24 # 1. Initialize & Create mbarriers
25 mbars = initialize(aTma, bTma, numSt)
26 # 2. Async TM load tiles
27 prologue(mbars, aTma, bTma, numSt)
28 # 3. Main loop
29 D = mainloop(mbars, aTma, bTma, numSt)
30 # 4. Epilogue
31 D.store accumulator(dDev)

Figure 8. Multistage GEMM Host and Kernel code. The TM, TN,
TK are the tile sizes, numSt is number of pipeline stages.

4.2. Warp Specialized GEMM Kernel

In this kernel, we orchestrate two warpgroups: a producer
and a consumer. The producer warpgroup handles data
loading via TMA, while the consumer warpgroup performs
MMA using the tensor core and executes the epilogue. The
NVDSL Warpgroup class provides an elegant way to man-

1 @NVDSL.mlir_gpu_launch(grid=grid, block=block, smem=sz)
2 def gemm_warp_specialized_kernel():
3 # Init Warpgroups
4 producer = Warpgroup(pthread=128, register_size=40)
5 consumer = Warpgroup(pthread=0, register_size=232)
6
7 # Initialize mbarriers and prefetch TMA descriptors
8 mbars = initialize(a_tma, b_tma, ns)
9

10 # Producer Warpgroup performs TMA
11 with producer:
12 producer loop(mbars, aTma, bTma, prod, ns)
13
14 # Consumer Warpgroup performs MMA, epilogue
15 with consumer:
16 D = consumer loop(mbars, aTma, bTma, cons, ns)
17 epilogue(D, d_dev)

Figure 9. Warp Specialized GEMM Kernel

age warp-specialized kernels. Full code is available in 3.

Figure 7 illustrates the execution pipeline of a Warp Spe-
cialized kernel on the bottom. Similar to the Multistage
kernel, we select a pipeline value of 3. The main differ-
ence here is that the first warpgroup executes only TMA
instructions, while the second warpgroup executes tensor
core instructions.

Listing 9 shows the kernel code. We initialize two warp-
groups: prod (producer) and cons (consumer) (Lines 4-5).
The producer warpgroup is allocated a register size of 40, as
TMA does not use registers, while the consumer warpgroup
is allocated a register size of 232, reflecting the register-
intensive tensor core operations. The initialize func-

3https://github.com/llvm/llvm-
project/blob/main/mlir/test/Examples/NVGPU/Ch5.py

5

https://github.com/llvm/llvm-project/blob/main/mlir/test/Examples/NVGPU/Ch5.py

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

Figure 10. Performance of GEMM

tion sets up the mbarriers (mbars) and prefetches the TMA
descriptors (Line 7). The producer warpgroup runs the
producer loop function to manage data loading with
TMA (Lines 9-10), encapsulated in a with prod block to
ensure the correct register size. The consumer warpgroup
then performs MMA operations and the epilogue to store
the results (Lines 12-14), wrapped in a with cons block.

5. Evaluation
We conducted experiments on a system equipped with an
NVIDIA H100 SXM card, assessing the performance of
multistage and warp specialized kernels in comparison to
NVIDIA’s cuBLAS, renowned for its out-of-the-box perfor-
mance in GEMM problems.

Figure 10 presents a performance comparison. Our findings
exhibit promising results, closely aligning with those of
hand-optimized libraries. By integrating warp specializa-
tion in a ping-pong manner, facilitated by NVDSL’s user-
friendly kernel development environment, we anticipate
achieving performance parity with cuBLAS. Additionally,
the implementation of the cga cluster feature remains a focal
point for further optimization. Notably, these advancements
are readily achievable through NVGPU dialect’s existing
support, necessitating their integration within NVDSL for
kernel development.

6. Related Works
To address tensor core utilization, both library and com-
piler approaches have been explored. NVIDIA’s CUTLASS
C++ (Thakkar et al., 2023) offers CUDA C++ template ab-
stractions for high-performance GEMM implementations,
but its usage with templates can be daunting, and template
compilation can be slow.

From the compiler side the Triton compiler (Tillet et al.,
2019) demonstrated the feasibility of a programming lan-
guage tailored for tensor cores, achieving cuBLAS-like per-
formance for previous GPU architectures. It lacks support
for specialized features like warp specialization in NVIDIA
Hopper architecture, limiting performance portability. The

Halide(Ragan-Kelley et al., 2013) and TVM(Feng et al.,
2023) uses scheduling language to express loops, Ten-
sorIR(Chen et al., 2018) generalizes high-level loop nest
representation. However, it isn’t clear that they can support
sophisticated kernels like NVDSL does. The (Grover, Kun-
war, 2024) from IREE compiler (The IREE Authors, 2019)
lets you program thread block just like triton. Therefore, it
will have expressibility issue for warp specialization.

7. Conclusion
In this article, we have introduced NVDSL, a Python-based
DSL for writing fast GPU kernels. By using NVDSL, pro-
grammers can take advantage of GPU hardware features
without needing to delve into low-level details. We demon-
strated how NVDSL simplifies tensor core usage and warp-
group programming, allowing users to achieve cuBLAS-like
performance with concise and readable code. Our imple-
mentation leverages the MLIR compiler and introduces sup-
port for the NVIDIA Hopper GPU.

Acknowledgements
I would like to express my sincere gratitude to Quentin
Colombet, Manish Gupta, Adam Paszke, and Nicolas Vasi-
lache for their valuable contributions to this work. Their
thorough code reviews, encouragement, and suggestions
significantly improved the quality of this research.

6

NVDSL: Simplifying Tensor Cores with Python-Driven MLIR Metaprogramming

References
Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan,

M., Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. Tvm: an automated end-to-end
optimizing compiler for deep learning. In Proceedings of
the 13th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’18, pp. 579–594, USA,
2018. USENIX Association. ISBN 9781931971478.

Feng, S., Hou, B., Jin, H., Lin, W., Shao, J., Lai, R., Ye,
Z., Zheng, L., Yu, C. H., Yu, Y., and Chen, T. Tensorir:
An abstraction for automatic tensorized program opti-
mization. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
2023, pp. 804–817, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450399166.
doi: 10.1145/3575693.3576933. URL https://doi.
org/10.1145/3575693.3576933.

Grover, Kunwar. Turbine Kernels, 2024. URL
https://github.com/nod-ai/techtalks/
blob/main/C4ML_24_Turbine_Kernels.pdf.

NVIDIA. Parallel Thread Execution ISA Version 8.5,
2024. URL https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Du-
rand, F., and Amarasinghe, S. Halide: a language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. SIG-
PLAN Not., 48(6):519–530, jun 2013. ISSN 0362-
1340. doi: 10.1145/2499370.2462176. URL https:
//doi.org/10.1145/2499370.2462176.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H.,
Yan, E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A.,
Nicely, M., Merrill, D., Blasig, D., Qiao, F., Majcher, P.,
Springer, P., Hohnerbach, M., Wang, J., and Gupta, M.
CUTLASS, January 2023. URL https://github.
com/NVIDIA/cutlass.

The IREE Authors. IREE, September 2019. URL https:
//github.com/iree-org/iree.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

7

https://doi.org/10.1145/3575693.3576933
https://doi.org/10.1145/3575693.3576933
https://github.com/nod-ai/techtalks/blob/main/C4ML_24_Turbine_Kernels.pdf
https://github.com/nod-ai/techtalks/blob/main/C4ML_24_Turbine_Kernels.pdf
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://github.com/iree-org/iree
https://github.com/iree-org/iree

