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ABSTRACT

Modality imbalance, driven by divergent convergence dynamics across modali-
ties, critically limits multimodal model performance. Although alternating train-
ing methods mitigate encoder-level interference, they fail to prevent dominance of
classifiers by faster-converging modalities, suppressing contributions from weaker
ones. To address this core limitation, we propose Classifier-Constrained Alter-
nating Training (CCAT). Our framework first pre-trains an unbiased cross-modal
classifier using bidirectional cross-attention and a regularization term that con-
strains modality contribution differences. This classifier is then frozen as a stable
decision anchor during subsequent training, preventing bias toward any modal-
ity. To preserve modality-specific features while leveraging this anchor, we in-
tegrate modality-specific Low-Rank Adaptation (LoRA) modules into the classi-
fier. During alternating training, CCAT updates only the encoder of the active
modality and its corresponding LoRA parameters. Furthermore, a sample-level
imbalance detection mechanism quantifies contribution disparities, enabling tar-
geted optimization of severely imbalanced samples to bolster weaker modalities.
Extensive experiments across multiple benchmarks demonstrate CCAT’s consis-
tent superiority: it achieves accuracy gains of +1.35% on CREMA-D, +6.76% on
Kinetic-Sound and +1.92% on MVSA over state-of-the-art methods, validating
the framework’s efficacy in learning balanced, robust multimodal representations.

1 INTRODUCTION

Multimodal learning integrates diverse information across modalities Baltrušaitis et al. (2019); Liang
et al. (2021), proving effective for numerous tasks with substantial recent progress Yang et al.
(2022a); Xu et al. (2023); Yuan et al. (2025). However, such models often face persistent perfor-
mance bottlenecks Wu et al. (2022) and occasionally underperform unimodal counterparts Gat et al.
(2021); Yang et al. (2025). Modality imbalance Wang et al. (2020); Su et al. (2023) constitutes the
root cause. Inherent inter-modal disparities in information quality and optimization induce gradient
conflicts and divergent convergence speeds during training Du et al. (2023). Consequently, domi-
nant modalities steer optimization while weaker ones are suppressed, compromising generalization
capability Sun et al. (2021); Yang et al. (2024); Zhou et al. (2025b).

Existing solutions primarily co-optimize encoders and classifiers to balance modalities Xu et al.
(2025), yet struggle to resolve gradient conflicts Wei & Hu (2024). To address this issue, the al-
ternating optimization strategy has been proposed Zhang et al. (2024); Hua et al. (2024), which
effectively reduces interference at the encoder level by providing each modality with independent
optimization opportunities. However, they frequently overlook emergent classifier bias. Specifically,
dominant modalities converge faster, steering classifier parameters toward their feature space early
in training. As training progresses, even if the underperforming modalities continue to learn actively
and produce substantial gradients, the classifier has already developed a structural preference for the
dominant modalities. This entrenched bias hinders the effective integration of representations from
weaker modalities, thus leading to the persistence of modal imbalance problems.

We empirically track modalities’ average contribution Zhou et al. (2025b) throughout training as
shown in Figure 1. Alternating optimization, such as Multimodal Learning with Alternating Uni-
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modal Adaptation (MLA) Zhang et al. (2024), reduces initial contribution disparity (1.00 → 0.92),
yet a persistent imbalance indicates entrenched classifier bias, even as encoders decouple. This
confirms that encoder-level interventions alone are insufficient to resolve structural preference in
classifiers. This phenomenon shares a fundamental similarity with the class imbalance problem
Thrampoulidis et al. (2022), as both suffer from early-dominance-triggered bias. Majority classes
skew decision boundaries initially due to numerical advantage, suppressing minority classes later.
Analogously in multimodal training, dominant modalities rapidly bias the classifier through faster
convergence, creating entrenched preference that persistently suppresses weaker modalities.

Figure 1: Evolution of modality-wise contribution val-
ues. Persistent imbalance suggests entrenched classifier
preference toward dominant modalities.

Inspired by class imbalance remedies that sta-
bilize decision boundaries via fixed classifier
Yang et al. (2022b), we propose Classifier-
Constrained Alternating Training (CCAT).
Overall, we have constructed a two-stage train-
ing framework to systematically address the is-
sue of uneven utilization at the dataset and sam-
ple levels. First, we pretrain a shared clas-
sifier using bidirectional cross-attention atten-
tion with regularization that penalizes large dis-
crepancies in modality contributions, yielding
a relatively unbiased initial classifier. Second,
within the alternating optimization framework,
the shared pretrained classifier remains frozen
to ensure stable optimization targets across
modalities. To preserve modality-specific rep-
resentational adaptation, we equip each modal-
ity with a dedicated lightweight LoRA module integrated solely on this shared classifier. Addition-
ally, we perform secondary updates on underperforming encoders for samples with extreme modality
imbalance.

Our contributions are outlined as follows: (i) Bridging class and modality imbalance through op-
timization dynamics, providing a new theoretical framework for understanding multimodal imbal-
ance. (ii) Proposing CCAT with a two-stage framework that systematically addresses dataset and
sample-level imbalance. (iii) Consistent SOTA improvements across three benchmarks, including
over 30,000 samples. faithfully.

2 RELATED WORK

In response to the modality imbalance problem, numerous representative methods have emerged in
recent years Perez et al. (2018); Su et al. (2023); Wei et al. (2024b); Xu et al. (2025). Approaches
such as On-the-fly Gradient Modulation (OGM) Peng et al. (2022), Adaptive Gradient Modulation
(AGM) Li et al. (2023), and Prototypical Modality Rebalance (PMR) Fan et al. (2023) dynamically
modulate modality gradients via importance measures, regulating learning rates of dominant and
non-dominant modalities to balance inter-modal learning. Other approaches, including Uni-Modal
Teacher (UMT) Du et al. (2023), Gradient Blending (GBlending) Wang et al. (2020), and Multi-
Modal Pareto (MMPareto) Wei & Hu (2024), address objective mismatches in unimodal and multi-
modal learning by incorporating unimodal supervision terms into losses, enhancing weak modality
representations.

However, most of the aforementioned methods primarily focus on optimizing parameter updates
while overlooking intrinsic inter-modal representational disparities. To resolve this matter, several
works such as Calibrating Multimodal Learning (CML) Ma et al. (2023), Multimodal BERT with
Self-Distillation (MBSD) Liu et al. (2023), and LFM Yang et al. (2024), have incorporated regu-
larization schemes, including the Kullback–Leibler (KL) divergence between unimodal predictions,
modality confidence estimation, and cross-modal contrastive learning. These techniques aim to im-
pose constraints on the modality-specific representations, thereby facilitating dynamic balancing and
collaborative adaptation during training.
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Further, approaches like Sample-level Modality Valuation (SMSL) Zhou et al. (2025b) and Wei
et al. Wei et al. (2024a) address intrinsic data imbalance via per-sample modality contribution
quantification, enhancing generalization and discriminability under imbalanced modalities.

While these methods improve cross-modal interaction efficiency, synchronous gradient updates in-
evitably cause conflicts between modalities Huang et al. (2022), impairing convergence stability and
modality coherence. To overcome this limitation, Multimodal Learning with Alternating Unimodal
Adaptation (MLA) Zhang et al. (2024) and Reconboost Hua et al. (2024) proposed a modality al-
ternating training mechanism. This method reduces encoder level gradient interference through
alternate modal encoder updates, enhancing weak modalities. However, a fundamental limitation
remains. Alternating training fails to resolve disparities in modality-specific learning rates. This
inherent imbalance allows dominant modalities to exert disproportionate cumulative influence on
the shared classifier during early training stages, leading to structural bias, thereby perpetuating
modality imbalance.

3 METHOD

3.1 SIMILARITY BETWEEN CLASS IMBALANCE AND MODALITY IMBALANCE

While modality imbalance in multimodal learning appears distinct from class imbalance in tradi-
tional machine learning, a deeper mathematical analysis reveals a fundamental connection in their
gradient optimization dynamics. This section establishes a unified theoretical framework and pro-
vides a proof of their underlying similar.

For input feature f and classifier weights W , the gradient of cross-entropy loss w.r.t. weight wj is:

∂L
∂wj

= (ŷj − 1[j=y])f (1)

where j ∈ {1, . . . , C} denotes the class index.This shows weight updates depend jointly on predic-
tion error and feature representation.

Gradient Dynamics under Class Imbalance. In this case, the extremely low frequency of minority
class samples leads the model to assign predicted probabilities ŷj close to zero for them. According
to the gradient formula, for minority class samples, the gradient is:

∂L
∂wj

≈ −f (2)

This approximation uncovers the core challenge of class imbalance. Although gradient directions
remain theoretically valid, parameter updates become dominated by feature norm f . Crucially,
majority-class-dominated optimization suppresses feature magnitude in minority samples, creating a
vicious cycle of feature degradation and gradient attenuation. Concurrently, inherent class imbalance
diminishes the model’s minority-class discriminative capacity, further impairing gradient updates.

Gradient Dynamics under Modality Imbalance. Under the multimodal learning framework, the
fused feature is denoted as f = γ1f

(1) + γ2f
(2), where γ1, γ2 are not predefined fusion hyperpa-

rameters, but implicitly learned modality utilization coefficients formed during optimization. Their
values reflect the classifier’s degree of reliance on the feature of each modality. When modality im-
balance occurs, one modality such as f (1) overwhelmingly dominates due to stronger signal quality
or higher data availability, resulting in γ1 ≫ γ2. Then it can be approximated as:

∂L
∂wj

≈ (ŷj − 1[j=y])γ1f
(1) (3)

This gradient approximation elucidates the underlying dynamics of modality imbalance. During
backpropagation, the weak-modality gradient term (ŷj−1[j=y])γ2f

(2) is systematically suppressed
in magnitude. This attenuation induces insufficient gradient signals for the weak-modality encoder,
hindering effective parameter updates and causing progressive deterioration of its feature represen-
tation. Consequently, the model’s estimated reliance on the weak modality diminishes, driving down
the fusion weight γ2. The reduced γ2 further amplifies gradient suppression in subsequent updates,
thereby forming a mutually inhibitory cycle of gradient attenuation and feature degradation.
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Figure 2: The fusion module using in shared classifier pretraining stage, taking the audio and video modalities
as an example.

The above analysis reveals a profound theoretical isomorphism between class imbalance and modal-
ity imbalance at the gradient optimization level. Both exhibit a recursive cycle driven by early dom-
inance bias, wherein the target component undergoes gradient suppression, representation degrada-
tion, and preference entrenchment. This bias dynamic demonstrates strong path dependence once
established. Building on this insight, the implementation details of applying classifier-constraining
strategies to modality imbalance will be presented in the next section.

3.2 SHARED CLASSIFIER PRETRAINING.

Fig. 2 illustrates the overall framework of the fusion module used during the pretraining stage, tak-
ing the audio and video modalities as an example. The specific encoders employed for different
modalities are described in the experimental details section. Given the complexity of multimodal
tasks, we adopt a data-driven strategy to pretrain the classifier rather than relying on predefined geo-
metric parameters. This strategy leverages a bidirectional cross-attention mechanism to dynamically
fuse multimodal features (see Appendix A.1), while introducing a regularization term to constrain
modality contribution disparity. This encourages the classifier to maintain an unbiased decision
boundary and retain rich cross-modal interactions.

Consider a training dataset D = {(xi, yi)}i=1,2,...,N , where each sample xi = [x1
i ,x

2
i ] contains

two modalities x1
i and x2

i , accompanied by its ground-truth label yi. Modality-specific encoders
(Enc1,Enc2) are employed to extract features from each modality independently:

z1
i = Enc1(x

1
i ), z2

i = Enc2(x
2
i ) (4)

The features of each modality z1
i , z

2
i are used as the input of the bidirectional cross-attention module

BiCross(·) for the fused features fi = BiCross(z1
i , z

2
i ). This unified representation is then passed

through a shared classifier Cls(·) to generate the final prediction ŷi.

In order to mitigate the model’s bias toward specific modalities, a modality contribution–oriented
regularization mechanism is introduced. This mechanism quantifies the relative contribution of
each modality to the fused representation based on the estimated mutual information (MI), which
assumes statistical dependence between features of each modality zm

i and the fused features fi. Its
calculation process is shown in Figure 3 (b), and the corresponding formula is defined as follows
Zhou et al. (2025b):

MI(zm
i ,fi) = log(N) + ED

[
log

exp⟨f i, z
m
i ⟩∑

i exp⟨f i, z
m
i ⟩

]
(5)
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Figure 3: Overall framework employing modality-alternating training with frozen shared classifier. Per it-
eration, only one modality’s encoder and LoRA module update using full batches. Sample-level contribution
scores identify severely imbalanced cases for targeted secondary encoder and LoRA module updates. Classifier-
LoRA structure detailed in (c).

where ED denotes the expectation over the dataset, and N is the total number of samples. A larger
mutual information value indicates stronger influence of modality m on the fused representation.

Based on mutual information, the modality contribution vector for sample i is defined as

Ci =
[
c1i , c

2
i

]
= Softmax

(
MI(z1

i ,fi), MI(z2
i ,fi)

)
(6)

where the softmax function is used to normalize mutual information scores into a probability distri-
bution, ensuring positive contribution weights summing to unity. This enables intra-sample modality
comparison and provides stable regularization.

Building upon this, to alleviate bias introduced by the dominant modality, the cross-entropy loss is
combined with a regularization term that penalizes large disparities in modality contributions. This
term promotes balanced feature extraction by encouraging the model to maintain fairness across
modalities. The mathematical formulation is expressed as follows:

Lreg =
1

N

N∑
i=1

|c1i − c2i | (7)

The total loss function integrates this regularization term with the classification loss Lcls:

Ltotal = Lcls + λ · Lreg (8)

By leveraging this mechanism, biases caused by modality imbalance can be effectively mitigated
during the pretraining phase of the shared classifier.

3.3 CLASSIFIER-CONSTRAINED ALTERNATING TRAINING

Figure 3 illustrates our overall training pipeline. Following classifier pretraining, we perform
modality-wise alternating training. A key challenge arises here: the classifier Cls(·), which was
adapted to the decision boundaries of the fused features f during pretraining, must now process
unimodal features zm during alternating training, where P (zm|y) ̸= P (f |y). This distribution
mismatch in the decision space disrupts feature continuity, leading to optimization instability and
feature confusion Zhou et al. (2025a).
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Algorithm 1 Classifier-Constrained Alternating Training (CCAT)

1: Inputs: multimodal dataset D with N samples and M modalities, epochs E, mini-batch B ∼ D,
threshold β

2: Parameters: pretrained shared classifier Cls, encoders {Encm}Mm=1, LoRA modules
{LoRAm}Mm=1

3: Outputs: trained encoders {Encm}Mm=1 and LoRA modules {LoRAm}Mm=1
4: Freeze Cls; initialize {Encm}, {LoRAm}
5: for epoch e = 1, . . . , E do
6: for modality m = 1, . . . ,M do
7: Compute loss Lm

alt via Eq. (11) using modality-m data in B
8: Update Encm and LoRAm via gradient descent
9: end for

10: Estimate contributions {c1i , . . . , cMi }|B|
i=1 via Eq. (6)

11: for modality m = 1, . . . ,M do
12: Construct subset Bextreme

m = {xm
i ∈ B | cmi < β}

13: Compute loss Lm
retrain via Eq. (12) using modality-m data in Bextreme

m
14: Update Encm and LoRAm via gradient descent
15: end for
16: end for
17: return {Encm}Mm=1, {LoRAm}Mm=1

To mitigate this issue, we integrate a lightweight Low-Rank Adaptation (LoRA) module for each
modality Hu et al. (2022), as shown in Figure 3(c). Each LoRA module acts as a low-rank residual
correction applied to the features:

LoRAm(zm
i ) = BmAmzm

i (9)

Specifically, in each iteration, given a batch of input samples xi = [x1
i ,x

2
i ]i=1,2,...,B , the model

sequentially processes the data of each individual modality across the entire batch using its corre-
sponding modality-specific encoder and LoRA module, thereby obtaining the respective prediction
outputs ŷmi and associated cross-entropy loss Lm

alt:
ŷmi = Softmax (Cls(zm

i ) + LoRAm(zm
i )) (10)

Lm
alt =

1

B

B∑
i=1

CE(ŷmi , yi) (11)

where B is the batch size; and yi represents the ground-truth label of the i-th sample. Subsequently,
the modality-specific cross-entropy loss Lm

alt is utilized to optimize the parameters of Encm through
backpropagation.

To mitigate weak-modality under-optimization, we propose a sample-level secondary update. After
initial full updates of all modality encoders and LoRAs, a modality contribution score cmi is com-
puted for each sample xm

i , as defined in Equations (6) and (7), reflecting the contribution degree
of modality m in predicting the target label. Notably, unlike the cross-attention fusion adopted in
the first-stage training, here the computation of c follows the same decision-level fusion used in the
inference stage, since this is also the method that produces the final prediction. We then identify
highly imbalanced samples Bextreme

m = {xi ∈ B | cmi < β} using threshold β. These samples
are reprocessed through Encm and LoRAm, and the frozen classifier to generate predictions. The
auxiliary loss is defined as:

Lm
retrain =

1

L

L∑
i=1

CE(ŷmi , yi), (12)

where L denotes the number of samples in the re-training subset Bextreme
m and yi is the ground-

truth label of the i-th sample. This loss drives secondary gradient updates on Encm and LoRAm,
enhancing representation learning for modality-imbalanced instances. The whole trainingpipeline is
provided in Algorithm 1.

During inference, each modality is processed by its dedicated encoder, transformed via correspond-
ing LoRA modules, and classified through the shared classifier to generate unimodal predictions.
These are fused at the decision level for final output.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on CREMA-D, KS and MVSA with different baseline. Both the results of
only using a single modality and the results of combining all modalities (“Multi”) are listed. We report the
average test accuracy (%) of three random seeds. The best results are highlighted in bold, and the second-best
results are marked with a gray background.

Method CREMA-D Kinetic-Sound MVSA
Multi Audio Video Multi Audio Video Multi Image Text

Sum 65.46 60.62 26.08 64.72 48.77 24.52 73.06 27.11 70.56
Concat 61.56 55.65 18.68 64.84 49.81 24.67 73.22 25.99 70.71
FiLM 60.07 53.89 18.67 63.33 48.67 23.15 75.34 27.12 74.85

BiGated 59.21 51.49 17.34 63.72 49.96 23.77 75.94 28.15 73.13

OGM-GE 68.14 53.76 28.09 65.78 51.57 32.19 76.37 31.98 74.76
QMF 63.71 59.41 39.11 65.78 29.73 32.19 77.96 32.99 74.87
MLA 80.78 63.17 68.01 71.35 54.67 51.03 75.14 53.37 73.22

MMPareto 75.13 65.46 55.24 70.13 56.40 53.05 78.81 59.54 74.76
LFM 83.62 63.17 45.83 72.53 54.12 55.62 - - -

CCAT (Ours) 85.89 65.99 73.79 79.29 61.65 53.75 80.73 55.30 77.46

Table 2: Ablation study (accuracy %) on components removed from the full method: Fix: classifier freezing
(without LoRA); Alt: alternate training; Sec: secondary updates; LoRA: Low-Rank Adaption modules.

Fix Alt Sec LoRA CREMA-D Kinetic-Sound MVSA
Multi Audio Video Multi Audio Video Multi Image Text

✗ ✓ ✓ ✓ 82.80 64.38 71.77 77.26 59.78 54.32 78.03 53.95 77.07
✓ ✗ ✓ ✓ 81.45 64.92 69.62 77.47 63.01 50.68 78.32 54.91 74.76
✓ ✓ ✗ ✓ 83.06 65.59 69.49 78.25 61.97 52.03 79.38 54.62 75.34
✓ ✓ ✓ ✗ 84.68 65.19 73.25 78.77 62.64 53.01 80.35 55.17 76.49
✓ ✓ ✓ ✓ 85.89 65.99 73.79 79.29 61.65 53.75 80.73 55.30 77.46

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. To validate the effectiveness of the proposed method, we conduct experiments on three
widely used multimodal datasets (see Appendix A.2 for detailed data descriptions): the Crowd-
Sourced Emotional Multimodal Actors Dataset (CREMA-D) Cao et al. (2014), featuring audio-
visual recordings of American English speech acted with diverse emotional expressions; the Kinetic-
Sound (KS) dataset Arandjelovic & Zisserman (2017), containing synchronized video-audio pairs
for object and action recognition; and the Multimodal Visual Sentiment Analysis (MVSA) dataset
Niu et al. (2016), focusing on sentiment classification in multimedia posts using both text and
images. These datasets are representative in the context of modality imbalance, covering various
modality combinations and reflecting different real-world imbalance patterns. This diverse selection
ensures a comprehensive evaluation of our approach.

Baselines. We benchmark our method against conventional multimodal fusion approaches and re-
cent state-of-the-art methods on the CREMA-D, KS and MVSA datasets. Baselines include: (i)
Simple Fusion: Sum, Concat; (ii) Modulation-based Fusion: FiLM Perez et al. (2018), BiGated
Kiela et al. (2018); (iii) Imbalance-aware Methods: OGM-GE Peng et al. (2022), QMF Zhang et al.
(2023); and (iv) Recent SOTA: Multimodal Learning with Alternating Unimodal Adaptation (MLA)
Zhang et al. (2024), MultiModal Pareto (MMPareto) Wei & Hu (2024), and LFM Yang et al. (2024).

Evaluation Metrics. We report multimodal accuracy (Acc) alongside unimodal performance for
each baseline. When evaluating single modalities: (i) For FiLM, BiGated, OGM-GE and QMF,
we disable the complementary modality within the fusion network; (ii) For Sum fusion Peng et al.
(2022), features from the target modality are fed directly into the shared classifier head; (iii) For

7
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Concat fusion Peng et al. (2022), we utilize dedicated subheads corresponding to each modality as
per established protocol.

Table 3: Grid search results for LoRA rank r.

Dataset LoRA Rank r

1 2 4 8 16

CREMA-D 84.41 85.35 84.68 84.81 84.54
KS 78.46 78.83 78.41 78.67 78.76

MVSA 76.49 79.00 74.57 79.58 79.38

Implementation Details. We employ
ResNet18 encoders for both audio and vi-
sual modalities across all datasets. For
text-image data, image features are ex-
tracted with ResNet50 and textual features
with BERT. All models were optimized
via Stochastic Gradient Descent (SGD)
with a batch size of 32, initial learning rate
of 0.001, momentum of 0.9, and weight
decay coefficient of 0.1. The learning rate
was decayed by a factor of 10 every 70
epochs, with training conducted for 150
total epochs. The regularization coefficient λ for the loss function in classifier pre-training is set
to 0.001. Experimental analysis reveals negligible performance sensitivity to LoRA’s scaling factor
α due to the classifier’s limited parameter scale, leading to its universal fixation at α = 1. The
hyperparameter tuning was conducted in a sequential manner: first, the optimal LoRA rank r was
selected from 1, 2, 4, 8, 16, followed by the optimization of the modality imbalance threshold β from
0.05, 0.10, . . . , 0.40, via validation-set grid searches. As detailed in Table 3 and Figure 4, config-
urations are empirically set to (r = 2, β = 0.15) for CREMA-D, (r = 2, β = 0.30) for KS, and
(r = 8, β = 0.05) for MVSA to identify severely imbalanced samples. All experiments execute on
NVIDIA RTX 4090 GPUs. Additional experimental details are provided in the Appendix A.3.

4.2 COMPARISON WITH SOTA MML BASELINES

Figure 4: Grid search results for modality imbalance thresh-
olds β on the validation set. The optimal combination is se-
lected based on the highest validation accuracy.

Table 1 summarizes main results across all
datasets, revealing three key observations:
(i) Our method substantially outperforms
all baselines, including conventional mul-
timodal learning and modality balanc-
ing techniques, achieving state-of-the-art
performance in most scenarios; (ii) All
modality rebalancing techniques signifi-
cantly surpass traditional feature concate-
nation or summation, confirming both the
performance penalty induced by modality
imbalance and the efficacy of balancing
strategies; (iii) Unlike prior works Zhang
et al. (2024); Yang et al. (2024) equat-
ing reduced unimodal gaps with balance,
we prioritize liberating weak modalities
representational potential. Their signifi-
cant accuracy gains across benchmarks di-
rectly validate imbalance mitigation tran-
scending relative performance differences;
(iv) For MLA, MMPareto, LFM, and our
method CCAT, unimodal results are di-
rectly acquired from decision-level fusion outputs.

4.3 ABLATION STUDY

Table 2 presents ablation results on the CREMA-D dataset (full results in Appendix). Our study
systematically validates CCAT’s efficacy in mitigating modality imbalance: (i) Classifier freezing
significantly enhances suppressed modalities during alternating training, mitigating inter-modal gra-
dient conflicts while blocking dominant modalities from monopolizing decision boundaries; (ii) Sec-
ondary updates deliver targeted enhancement to underperforming modalities by suppressing over-
confidence in dominant modalities, thereby calibrating cross-modal dynamics at the sample level;
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(a) MLA Model (b) Non-Fixed Model (c) CCAT Model (Ours)

Figure 5: Visualizations of feature distributions based on t-SNE for test samples under MLA (a), Non-Fixed
Classifier (b), and Our Proposed Method (c). Calinski-Harabasz (CH), Silhouette (SH), and Davies-Bouldin
(DB) scores are computed to quantitatively assess the clustering quality. Compared to the other methods, our
approach achieves clearer class separability, especially improving the distinction of the fear and sad classes
from other categories.

(iii) LoRA adapters substantially boost multimodal fusion performance while preserving modality-
specific characteristics, confirming their capacity to orchestrate shared classification knowledge and
modality-exclusive features. The integrated framework achieves optimal performance, demonstrat-
ing CCAT’s effectiveness in mitigating modality imbalance.

4.4 FURTHER ANALYSIS

Enhancing Discriminative Space via Fixed Classifier Design. To investigate whether freezing
the classifier contributes to constructing more discriminative decision boundaries, we visualized the
distribution of all test samples in the feature space using t-SNE projections, as shown in Figure. 5.
Compared with the MLA baseline and the non-fixed classifier setting, our proposed method exhibits
improved class separability, especially for the fear and sad classes, which become more clearly
separated from other categories.

Beyond qualitative visualization, we perform quantitative clustering analysis using standard met-
rics: Calinski-Harabasz (CH) Caliński & Harabasz (1974), Silhouette (SH) Rousseeuw (1987), and
Davies-Bouldin (DB) Davies & Bouldin (1979). As shown in Figure. 5, our method achieves op-
timal clustering quality, highest CH and SH scores and lowest DB score, demonstrating superior
intra-class compactness and inter-class separation. These results confirm that the fixed-classifier
strategy yields more discriminative feature representations.

5 CONCLUSION

This work addresses modality imbalance through a classifier-centric paradigm. Inspired by class
imbalance remedies, we propose Classifier-Constrained Alternating Training (CCAT) that bridges
both problems via optimization dynamics analysis. Our two-stage framework systematically mit-
igates imbalance: (1) Pretraining a shared classifier with contribution-aware regularization yields
unbiased initialization; (2) Freezing this classifier during modality-alternating optimization provides
stable objectives, while lightweight LoRA adapters enable modality-specific adaptation. Comple-
mentary sample-level re-optimization further enhances underrepresented modalities. CCAT consis-
tently outperforms existing methods across benchmarks, validating its efficacy for discriminative
representation learning in imbalanced multimodal scenarios.

6 FUTURE WORK

In the future, we plan to extend the proposed framework to more complex scenarios involving tri-
modal datasets. A key direction is to investigate the effectiveness of our modality-wise alternating
training and imbalance-aware fine-tuning strategy when three distinct modalities are present.

9
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A APPENDIX

A.1 IMPLEMENTATION OF BIDIRECTIONAL CROSS-ATTENTION MECHANISM

Consider a training dataset D = {(xi, yi)}i=1,2,...,N , where each sample xi = [x1
i ,x

2
i ] contains the

audio modality x1
i and the visual modality x2

i , accompanied by its ground-truth label yi. Modality-
specific encoders (Enc1,Enc2) are employed to extract features from each modality independently:

z1
i = Enc1(x

1
i ), z2

i = Enc2(x
2
i ) (13)

To comprehensively model the interactions between modalities, we adopt a bidirectional cross-
attention (Bi-Cross Attention) mechanism for feature fusionCheng et al. (2024). This mechanism
consists of cross-attention calculations in two directions: from vision to audio and from audio to
vision, formulated as follows:

Visual-to-Audio Fusion. In this direction, the audio features z1
i are treated as the Query, while the

visual features z2
i serve as both the Key and the Value. The multi-head attention (MHA) output a1

i
is first computed as:

a1
i = MHA(z1

i , z
2
i , z

2
i ) (14)

To stabilize and enhance the feature fusion representation, a residual connection is then added,
followed by layer normalization (LayerNorm):

h1
i = LayerNorm

(
z1
i + a1

i

)
(15)

Subsequently, a feed-forward network (FFN) is applied to introduce non-linearity and model higher-
level interactions, with another layer normalization (LayerNorm) step performed thereafter:

f1
i = LayerNorm

(
h1
i + FFN(h1

i )
)

(16)

Finally, average pooling (AvgPool) is employed to aggregate the sequence into a compact fused
representation in the visual-to-audio direction:

f2→1
i = AvgPool(f1

i ) (17)
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Audio-to-Visual Fusion. In this direction, the visual features z2
i are designated as the Query, while

the audio features z1
i serve as the Key and Value. The computation proceeds analogously as follows:

a2
i = MHA(z2

i , z
1
i , z

1
i ) (18)

h2
i = LayerNorm(z1

i + a2
i ) (19)

f2
i = LayerNorm

(
h2
i + FFN(h2

i )
)

(20)

f1→2
i = AvgPool(f2

i ) (21)

Subsequently, the bidirectionally fused feature representation fi is obtained by summing the fused
features derived from both the audio-to-visual and visual-to-audio directions:

fi = f1→2
i + f2→1

i (22)

This unified representation is then passed through a shared classifier cls(·) to generate the final
prediction:

ŷi = cls(fi) (23)

A.2 DETAILED DATASET DESCRIPTION

A.2.1 CREMA-D (CROWD-SOURCED EMOTIONAL MULTIMODAL ACTORS DATASET)

CREMA-D is a widely used multimodal benchmark for emotion recognition, comprising recordings
from 91 actors of diverse demographic backgrounds. Each actor performed 12 scripted sentences
with six categorical emotions (anger, disgust, fear, happiness, neutral, sadness) expressed at varying
intensity levels. The dataset was annotated through large-scale crowdsourcing, enabling rigorous
investigation of unimodal versus multimodal affect perception and cross-demographic variations in
emotional expression.

A.3 KS (KINETIC-SOUND)

Kinetic-Sound is an audiovisual benchmark dataset derived from the Kinetics corpus for multi-
modal action recognition research. It depict 31 visually and aurally distinctive real-world actions.
Curated specifically for multimodal learning, the dataset supports investigations into audio-visual
correspondence, self-supervised representation learning, and complementary information fusion.
Its YouTube-sourced content facilitates robust model development for dynamic scene understanding
where both visual motion and auditory signatures contribute to action classification.

A.4 MVSA (MULTIMODAL VISUAL SENTIMENT ANALYSIS)

MVSA serves as a benchmark for multimodal sentiment analysis in social media contexts, con-
taining Twitter-derived images paired with textual captions and sentiment polarity labels (posi-
tive/neutral/negative). This authentic user-generated content captures complex cross-modal senti-
ment interactions, supporting research on multimodal fusion, cross-modal alignment, and sentiment
disambiguation where textual and visual cues exhibit amplification or conflict.

A.5 DETAILS OF EXPERIMENTAL SETUP

A.5.1 ENCODERS

To evaluate the effectiveness of our method across diverse models and datasets, we employed three
distinct encoders:

ResNet-18. We employed ResNet-18 as the visual-encoder backbone for the CREMA-D and KS
datasets. ResNet-18 belongs to the pioneering Residual Network family introduced in 2015, which
overcame longstanding training challenges in deep neural architectures through the use of residual
connections. This design facilitates direct gradient flow and significantly mitigates the vanishing-
gradient and degradation issues that afflict plain deep networks. We initialized ResNet-18 with the
standard weight initialization strategy commonly prescribed in deep learning frameworks.
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ResNet-50. For the image modality of the MVSA dataset, we employ ResNet50, a deeper variant
within the Residual Network (ResNet) family. Like its shallower counterparts, each block includes
an identity shortcut that bypasses nonlinear transformations, enabling the model to learn only the
residual mapping and thereby ensuring effective training of deeper networks. We initialized the
weights of ResNet-50 by standard initialization.

BERT. Our textual encoder is based on BERT (Bidirectional Encoder Representations from Trans-
formers). This model consists of 12 Transformer layers, each with 768 hidden dimensions and 12 at-
tention heads, totaling approximately 110 million parameters. We employed the official BERT-Base
pretrained checkpoint, as released by the authors, to initialize our encoder. This checkpoint has
become a standard foundation for downstream fine-tuning across diverse NLP tasks. In our setup,
the pretrained BERT-Base model served as a feature encoder, upon which task-specific layers are
optionally stacked and optimized.

A.6 IMPLEMENTATION DETAILS

A unified classification head comprising a single fully connected layer was implemented across all
experimental configurations. The input dimensionality was configured at 512 for base model exper-
iments and 768 for large pretrained model evaluations. Audio processing pipelines resampled raw
waveforms to 22,050 Hz, extending clips to a fixed 20-second duration through signal replication.
Log-magnitude spectrograms were generated via short-time Fourier transform (STFT) using 512-
point FFT windows with 353-sample hop lengths. For visual inputs, three frames were uniformly
sampled per video clip and resized to 224×224 resolution, with standard augmentation techniques
and ImageNet normalization applied during training. Textual features were derived from BERT-
based tokenized representations.

A.7 LARGE LANGUAGE MODELS STATEMENT OF USE

We acknowledge the use of Large Language Models (LLMs) exclusively for text refinement, in-
cluding grammar correction, style polishing, and improving readability. No LLMs were involved
in designing the methodology, conducting experiments, analyzing results, or drawing scientific con-
clusions. All technical contributions, experimental implementations, and analyses were performed
solely by the authors.
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