
Search and Refine During Think:
Facilitating Knowledge Refinement for Improved

Retrieval-Augmented Reasoning

Yaorui Shi1*, Sihang Li1*, Chang Wu1, Zhiyuan Liu2, Junfeng Fang2,
Hengxing Cai3†, An Zhang1, Xiang Wang1†,

1 University of Science and Technology of China
2 National University of Singapore

3 DP Technology
{yaoruishi, sihang0520, xiangwang1223}@gmail.com, caihengxing@dp.tech

∗ Equal contribution. † Corresponding author.

Abstract

Large language models have demonstrated impressive reasoning capabilities but
are inherently limited by their knowledge reservoir. Retrieval-augmented reason-
ing mitigates this limitation by allowing LLMs to query external resources, but
existing methods often retrieve irrelevant or noisy information, hindering accurate
reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-
training framework that adopts a new “search-and-refine-during-think” paradigm.
AutoRefine introduces explicit knowledge refinement steps between successive
search calls, enabling the model to iteratively filter, distill, and organize evidence
before generating an answer. Furthermore, we incorporate tailored retrieval-specific
rewards alongside answer correctness rewards using group relative policy optimiza-
tion. Experiments on single-hop and multi-hop QA benchmarks demonstrate that
AutoRefine significantly outperforms existing approaches, particularly in complex,
multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues
frequent, higher-quality searches and synthesizes evidence effectively. Code is
available at https://github.com/syr-cn/AutoRefine.

1 Introduction

Large language models (LLMs) have shown impressive abilities in language understanding, planning,
and problem solving [1–3]. Recent advances demonstrate that reinforcement learning (RL) [4] further
enhances LLMs’ reasoning capabilities [5, 6], especially in complex tasks such as mathematics and
coding [7, 8]. However, the knowledge encoded in LLMs is inherently constrained by their training
corpora, limiting their reasoning performance on tasks requiring up-to-date information [9, 10].

A common strategy to address this limitation is retrieval-augmented generation (RAG), which equips
LLMs with retrieval tools to access external knowledge bases during question answering [11–13].
Widely-adopted RAG pipelines typically rely on supervised fine-tuning (SFT) to train LLMs to issue
search queries and generate responses based on retrieved documents [14–16]. While SFT can be
effective for training large models for search, it sometimes necessitates the construction of high-quality
search paths, which incurs additional effort and resource overheads [17]. To address this, recent
studies draw inspiration from RL-based post-training [5] and explore RL for retrieval-augmented
reasoning, achieving excellent results by only evaluating final answer correctness without the need for
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Old Trafford is a football stadium in Old Trafford, England, and
is the home of Manchester United. With a capacity of 74,197, it
is the largest club football stadium (and second-largest football
stadium overall after Wembley Stadium) in the United
Kingdom, and the eleventh-largest in Europe … External 
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The Parc des Princes is an all-seater football stadium in Paris,
France. It is located in the southwest of the French capital,
within the 16th arrondissement, directly opposite the Stade
Jean-Bouin. The stadium has been the home of French
football club Paris Saint-Germain FC since July 1974 …. External 
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Figure 1: Comparison between previous retrieval-augmented reasoning methods and AutoRefine. (a)
Previous “search-during-think” models can get distracted by irrelevant details between retrieval steps,
leading to an incorrect answer. AutoRefine introduces a <Refine> step where the model explicitly
refines crucial evidence, enabling the model to link information across multiple hops, plan its next
query, and arrive at the correct final answer. (b) While previous methods rely only on outcome-based
rewards, AutoRefine incorporates a retrieval-specific reward to directly supervise the <Refine> step.

pre-collected reasoning paths [18–23]. Scrutinizing existing studies on retrieval-augmented reasoning,
we summarize a common “search-during-think” paradigm: given prompts with special search tokens
(e.g., ‘<search> ... </search>’), the LLM is trained via RL to autonomously invoke retrieval tools,
retrieve some documents from external knowledge bases, and generate answers within ‘<answer> ...
</answer>’ using the retrieved information.

Despite their promising results, we identify two core limitations inherent in the current retrieval-
augmented reasoning paradigm:

• Lack refinement of retrieved documents. When facing out-of-scope questions, LLMs often
require pieces of precise factual information (e.g., names of historical figures, dates of events).
However, the current “search-during-think” paradigm typically uses retrieval tools to return full
documents based on input queries, many of which are noisy or only weakly relevant. As illustrated
in Figure 1(a), previous methods reason directly over raw retrieved content, making it susceptible
to getting distracted by irrelevant details. This is particularly problematic in multi-hop scenarios,
where a distraction in an early step can derail the entire reasoning chain.

• Underexplored retrieval-specific rewards. While prior work on RL post-training highlights the
importance of reward design [24–26], most retrieval-augmented reasoning methods rely solely on
an outcome-based reward — typically assessing the correctness of the final answer. As shown in
Figure 1(b), this coarse supervision underexplores retrieval-specific rewards and offers little direct
guidance for improving the retrieval process itself. As a result, it could be difficult for the LLM to
learn how to retrieve more relevant or informative documents.

To address these limitations, we propose AutoRefine, a simple yet effective RL post-training frame-
work that enhances the LLM’s autonomous retrieval-augmented reasoning capability. At its core,
AutoRefine adopts a “search-and-refine-during-think” paradigm, guided by a combination of answer
and retrieval rewards. First, unlike prior “search-during-think” approaches that overlook refinement,
we introduce an explicit knowledge refinement step into the reasoning loop using a ‘<search> ...
</search>[documents]<refine> ... </refine>’ template (§2.1). This template encourages the model
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Figure 2: The training scheme of AutoRefine. (right) An actor model generates diverse reasoning
trajectories for a given question, including think, search, refine, and answer. (left) These trajectories
are optimized using the GRPO [7] algorithm described in Equation (4), where the loss on retrieved
documents is masked out. We take G = 4 in this example.

to explicitly distill crucial evidence from retrieved documents. By isolating key facts, the model can
better link information across multiple retrieval hops and accurately plan subsequent queries before
generating a final answer. Second, under this template, we apply Group Relative Policy Optimization
(GRPO) [5] to train the model with both outcome-based and retrieval-specific rewards, rather than
outcome-based rewards alone (§2.2). Specifically, during training, we first sample several trajectories
from the model, each consisting of a sequence of <think>, <search>, <refine>, and <answer> steps.
While the answer reward evaluates the final output, the retrieval reward is computed based on the
quality of the content within the <refine> blocks, providing direct supervision for the refinement
step. This joint reward design explicitly guides the model to extract, organize, and utilize fine-grained
knowledge throughout reasoning.

To empirically assess AutoRefine, we conduct experiments on both single-hop [27–29] and multi-
hop [30–33] question answering (QA) benchmarks. AutoRefine surpasses leading methods [5, 18,
21, 19] by 6.9% higher average accuracy, and shows especially high performances in multi-hop
scenarios (cf. Table 1). It demonstrates a strong ability in identifying and addressing knowledge
gaps via multi-turn, high-quality search queries. The knowledge refinement steps also effectively
extract crucial information from noisy retrieved documents, directly contributing to improved answer
quality. Additional experiments confirm the contribution of both the retrieval-specific reward and the
refinement module, and AutoRefine holds robust performance across different retrieval depths.

2 Method

In this section, we introduce AutoRefine, a simple yet effective RL framework that enhances the
LLM’s autonomous retrieval-augmented reasoning capability. We first outline the overall task
formulation and trajectory generation steps, highlighting the novel “search-and-refine-during-think”
paradigm (§2.1). Next, we detail our reward modeling with both answer-based and retrieval-specific
rewards to encourage fine-grained knowledge refinement (§2.2). Due to limited space, we refer to
Appendix A for related work about reasoning in LLMs and retrieval augmented generation.

2.1 Trajectory Generation with Searching and Refinement

Task Formulation. Given a dataset D = {(q, a)} containing question–answer pairs and an external
search engine E , the task of retrieval-augmented reasoning requires the LLM to generate reasoning
trajectories o by iteratively interacting with the knowledge source E . Formally, for each question
q, we generate a reasoning trajectory: o = (τ1, τ2, . . . , τT ), where the t-th intermediate reasoning
step τt = (st, ct) consists of an action st ∈ {<think>, <search>, <documents>, <refine>, <answer>}
and its associated content ct. The model is expected to repeatedly retrieve and refine knowledge from
E until reaching a final answer oans that correctly addresses the question q.
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You are a helpful assistant who is good at answering questions with multi-turn search engine calling. To
answer questions, you must first reason through the available information using <think> and </think>.
If you identify missing knowledge, you may issue a search request using <search> query </search>
at any time. The retrieval system will provide you with the three most relevant documents enclosed in
<documents> and </documents>. After each search, you need to summarize and refine the existing
documents in <refine> and </refine>. You may send multiple search requests if needed. Once you
have sufficient information, provide a concise final answer using <answer> and </answer>.
<user> Question: {QUESTION} </user>

Figure 3: Prompt template for rollout generation.

Rollout Generation. The actor LLM πθ generates trajectories by performing multiple rounds of
interactions with the search engine E . The trajectories contain multiple internal reasoning cycles, as il-
lustrated in Figure 2. Each cycle consists of a sequence of structured operations: “<think>...</think>”
for overall planning of consequent search actions, “<search>...</search>” for querying the ex-
ternal search engine, “<document>...</document>” for incorporating the retrieved documents, and
“<refine>...</refine>” for distilling relevant information from the retrieved content. Following the
reasoning phase, the model generates the final response within the “<answer>...</answer>” block
based on the refined knowledge. Notably, the number of internal cycles is not manually pre-defined
but autonomously determined by the actor LLM, adapting dynamically to the difficulty of the question.
These tokens are defined and explained to the model via system instructions (cf. Figure 3).

Stopping Criteria. The generation terminates when an answer action is produced, i.e., sT =
<answer>. The content cT of the terminal state τT is extracted as the trajectory’s final answer oans.

2.2 Reward Modeling with Retrieval-Aware Signals

We use simple rule-based rewards to encourage free exploration during the RL process. The reward
in AutoRefine consists of two complementary components: (1) the Outcome-Based Reward, which
directly assesses the correctness of the answer generated by the model, and (2) the Retrieval-Specific
Reward, which encourages the model to accurately identify and extract answer-relevant information
from the retrieved documents.

Outcome-Based Reward. The outcome-based reward (aka. the answer reward) RAns ∈ [0, 1]
compares the model’s final answer within the <answer></answer> block to the ground-truth answer,
measuring its correctness. Formally, we treat the predicted and ground-truth answers as sets of words,
and use F1-score between these two sets as the reward:

RAns = F1(oans, a) =
2|oans ∩ a|
|oans|+ |a|

, (1)

where oans is the predicted answer (e.g., “Pierre-Auguste Renoir” in yellow box of Figure 1(a), and a
is the ground truth answer from the (q, a) pair (e.g., the gray box in Figure 1(b)).

Retrieval-Specific Reward. We further introduce an additional reward, the retrieval reward RRet ∈
{0, 1}, to explicitly encourage the extraction and utilization of relevant information from noisy
retrieved documents. The retrieval reward is measured based on the quality of refined documents
within the <refine></refine> blocks. Specifically, we collect all knowledge refinement steps (i.e.,
content within the <refine>...</refine> blocks) across the trajectory and concatenate them into a
single text sequence:

RRet = I(a ∩ orefine = a), (2)
where I(·) is the indicator function, orefine =

⋃
{ ct | (st, ct) ∈ o ∧ st = <refine> } is the concate-

nation of all the knowledge refinement steps (e.g., “The documents concludes...‘The Umbrellas’.” in
blue box of Figure 1). This reward is activated when all components of the ground-truth answer are
present in the refined knowledge, reinforcing faithful and targeted information extraction.

Integrating Outcome and Retrieval Rewards. The overall reward function in AutoRefine is
designed to encourage both accurate final answers and meaningful intermediate knowledge extraction.
Specifically, the model receives a full reward of 1 if it generates the correct answer. If the final answer
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is incorrect but some relevant information has been extracted during the refinement step, a partial
reward of 0.1 is assigned. No reward is granted if neither correct answers nor relevant information
are produced. The overall reward ROverall can be formally written as:

ROverall =


RAns, if RAns > 0

0.1, if RAns = 0 and RRet > 0

0. if RAns = RRet = 0

(3)

Training Objective. We apply Group Relative Policy Optimization (GRPO) [7] as the policy
optimization algorithm for RL. The overview of the GRPO training scheme is shown in the top-left
corner of Figure 2. Formally, given an actor model πθ and a reference model πref, a group of G
rollouts {oi}Gi=1 is sampled as described in §2.1. We optimize the actor model πθ by maximizing:

argmax
θ

JGRPO(θ) =E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
(

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL [πθ ∥πref]

]
(4)

where Âi,t = [ri,t − mean(rt)]/std(rt) is the normalized token-level advantage for the i-th rollout
in the group, G is the group size, ϵ is the clipping ratio, and β is the coefficient for the estimated
KL divergence. As shown in the bottom-left part of Figure 2, we mask out the retrieved documents
during the loss computation.

3 Experiments

In this section, we aim to answer the following Research Questions (RQs):

RQ1: How effectively does AutoRefine’s "search-and-refine-during-think" paradigm enhance perfor-
mance in retrieval-augmented question answering?

RQ2: Can AutoRefine effectively resolve information gaps through retrieval, especially when facing
complex multi-hop problems?

RQ3: Can knowledge refinement steps distill critical information from retrieved documents?

RQ4: Can AutoRefine achieve robust performance improvements under different retriever settings?

3.1 Experiment Setup

Datasets. We evaluate performance using seven diverse QA benchmarks, including three single-hop
QA datasets: Natural Questions (NQ) [27], TriviaQA [29], PopQA [28], and four datasets that require
multi-hop searching: HotpotQA [30], 2WikiMultihopQA (2Wiki) [31], Musique [32], Bamboogle
[33] for evaluation. Exact match accuracy serves as the evaluation metric for all downstream datasets.
Following the setting of prior works [19], we train AutoRefine using a combined training set from
NQ and HotpotQA.

Baselines. In our experiments, we compare AutoRefine against three kinds of methods: (1) genera-
tion without retrieval (w/o Retrieval), including direct generation with LLM, supervised fine-tuning
(SFT), and R1-like training (R1) [5] without Retrieval; (2) methods with single-hop retrieval (w/
Single-Hop Retrieval), including direct retrieval with the input question (Naive RAG); (3) training
with retrieval (w/ Multi-Hop Retrieval) including: agentic search method Search-o1 [18], IRCoT
[34], retrieval-augmented reasoning model Search-R1 [19] and ReSearch [21].

Implementation Details. To simulate a real-world search scenario, we remove original context
documents from the QA datasets [30–32] and instead use the December 2018 Wikipedia dump [35]
as the external knowledge source, with E5-base-v2 [36] as the retrieval engine. By default, the search
engine retrieves the top three most relevant documents on each query. For RL-based baselines, we
run experiments using both Qwen2.5-3B-Base and -Instruct models. For SFT and direct generation
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Table 1: (RQ1) Accuracy comparison of AutoRefine versus baseline methods with Qwen2.5-3B [3]
across various QA benchmarks. Bold denotes best results, and underline denotes second best results.

Single-Hop QA Multi-Hop QA

Methods NQ TriviaQA PopQA HotpotQA 2Wiki Musique Bamboogle Avg.

w/o Retreival
Direct Generation 0.106 0.288 0.108 0.149 0.244 0.020 0.024 0.134
SFT 0.249 0.292 0.104 0.186 0.248 0.044 0.112 0.176
R1-Instruct [5] 0.210 0.449 0.171 0.208 0.275 0.060 0.192 0.224
R1-Base [5] 0.226 0.455 0.173 0.201 0.268 0.055 0.224 0.229

w/ Single-Hop Retrieval
Naive RAG [37] 0.348 0.544 0.387 0.255 0.226 0.047 0.080 0.270

w/ Multi-Hop Retrieval
Search-o1 [18] 0.238 0.472 0.262 0.221 0.218 0.054 0.320 0.255
IRCoT [34] 0.111 0.312 0.200 0.164 0.171 0.067 0.240 0.181
ReSearch-Instruct [21] 0.365 0.571 0.395 0.351 0.272 0.095 0.266 0.331
ReSearch-Base [21] 0.427 0.597 0.430 0.305 0.272 0.074 0.128 0.319
Search-R1-Instruct [19] 0.397 0.565 0.391 0.331 0.310 0.124 0.232 0.336
Search-R1-Base [19] 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312
AutoRefine-Instruct 0.436 0.597 0.447 0.404 0.380 0.169 0.336 0.396
AutoRefine-Base 0.467 0.620 0.450 0.405 0.393 0.157 0.344 0.405

baselines, we use the instruct variant to better align with instruction-following tasks. Most baseline
results are taken from Search-R1 [19], which has experimental settings consistent with ours. We
reproduce ReSearch using the authors’ publicly available code. Additional implementation details
can be found in Appendix B, and further experimental results are provided in Appendix C.

3.2 Overall Performance (RQ1)

Table 1 presents the overall performance comparison between AutoRefine and the baseline methods.
The Avg. column stands for the average accuracy. As shown in the results, AutoRefine significantly
outperforms baseline models across the seven benchmarks. It achieves a 0.069 accuracy gain on the
base variant and a 0.060 improvement on the instruct one compared to the strongest baseline.

Besides the overall performance, we observe that the performance gains achieved by AutoRefine are
more obvious on the multi-hop QA benchmarks. For example, AutoRefine improves the performance
on 2Wiki by 0.083 and Musique by 0.045, which implies 21% and 26.7% relative increase, respec-
tively. According to further analysis in §3.3.1 and §3.3.2, we attribute AutoRefine’s extraordinary
performance on multi-hop benchmarks to its ability to perform high-quality searching and efficient
utilization of retrieved documents.

Obs 1: AutoRefine significantly improves QA accuracies, especially on multi-hop benchmarks.

3.3 Analytical Results

3.3.1 Search Behaviors (RQ2)

A crucial capability of retrieval-augmented reasoning models is identifying and addressing knowledge
gaps via retrieval. To evaluate this, we analyze the search frequency and search quality of
AutoRefine in four scenarios: training samples, all seven downstream benchmarks, single-hop
QA benchmarks, and multi-hop QA benchmarks. These analyses are depicted in Figure 4.

Search Frequency reflects the model’s capability to recognize knowledge gaps and perform searches
accordingly. This search behavior is measured by the average number of search calls a model makes
per rollout. We analyze the search frequency of both -Base and -Instruct variants of AutoRefine in
Figure 4(a). As the figure shows, both variants have evolved multi-turn searching abilities after enough
training steps. The average number of search calls converges to around 1.5 for AutoRefine-Instruct,
and higher than 2 for AutoRefine-Base.

Despite the high overall search frequency on seven benchmarks, AutoRefine demonstrates distinct
search behaviors for single-hop and multi-hop questions. On the three single-hop benchmarks, both
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Figure 4: (RQ2) Visualization of the search behaviors. (a) AutoRefine’s average number of search
calls per rollout. For both variants, AutoRefine learns to adaptively issue more search queries for
multi-hop questions and fewer for single-hop ones. (b) Comparison of search success rates between
retrieval-augmented reasoning methods. While all methods draft more efficient search queries than
naive retrieval, AutoRefine achieves more significant performance gains.

variants begin with fewer than 1.3 searches per rollout, and gradually adjust to 2.0 and 1.2. In
contrast, the models begin with much higher search frequencies when facing multi-hop questions,
which rapidly go up to 2.0 ∼ 2.5. This phenomenon exhibits AutoRefine’s ability to dynamically
adjust the number of search calls according to the complexity of downstream tasks, with more
frequent searching on multi-hop questions and less on single-hop ones.

Obs 2.1: AutoRefine learns to perform multi-turn searching and can adaptively issue search
queries depending on task complexity.

Search Quality evaluates whether the model generates effective search queries that can return
informative documents. Knowledge-intensive questions often demand precise factual information
to ask, e.g., names of historical figures or dates of events. In such cases, search calls can only be
considered successful if the retrieved documents directly contain the answer. Hence, we estimate the
search quality by counting the proportion of successful searches where retrieved documents contain
the ground truth answer a. We also include naive retrieval, which directly uses the input question to
conduct one-turn searches, as a reference.

We compare the search quality of AutoRefine against Search-R1 and ReSearch trained from Qwen2.5-
3B-Base in Figure 4(b). All reasoning-based methods learns to draft efficient queries that have higher
searching quality than naive retrieval. In single-hop scenarios, all three methods converge to a high
success rate of about 70% after 100 steps. On multi-hop benchmarks, the search qualities of baseline
methods also successfully converge to 30% ∼ 40%, much higher than that of baseline methods. In
contrast, the search quality of AutoRefine continuously goes up to higher than 50%, which surpasses
baseline methods by a large margin of 10% ∼ 15%.

Obs 2.2: AutoRefine drafts efficient queries that retrieve documents relevant to the answer.

3.3.2 Effectiveness of Knowledge Refinement (RQ3)

To investigate the effectiveness of knowledge refinement, we specifically analyze whether the refine-
ment steps successfully distill critical information from retrieved documents. We start by comparing
the success rates of different actions: <search>, <refine>, and <answer>. Here we use cover exact
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Figure 6: (RQ4) Comparison of
downstream accuracies under differ-
ent retrieval depths. AutoRefine ex-
hibits robust gains for 1 ⩽ k ⩽ 7.

match to measure the success rate for all three actions, which is defined as the proportion of actions
that return documents/refinements/answers containing the ground truth answer.

The results are shown in Figure 5. After enough training steps, the success rate of <refine> actions
tends to align with that of the <search> action (Figure 5(a)). This suggests the model gradually learns
to keep crucial evidence as long as the search returns correct documents. Figure 5(b) also provides the
length of each component. The token count of refinement steps is about 100 ∼ 200 tokens, which is
about 4 times fewer than the documents (⩾ 600 tokens). Comparing Figure 5(a) and (b), we find that
the knowledge refinement steps of AutoRefine greatly reduce the context length, while successfully
preserving the information that is relevant to the answer.

Obs 3: Knowledge refinement steps efficiently distill critical evidence from retrieved documents
while filtering out irrelevant content.

3.3.3 Impact of Retrieval Depths (RQ4)

Different retriever settings may also influence retrieval-augmented generation models, and one
important aspect is the retrieval depth. While more documents per search could potentially provide
richer external knowledge, it also includes more noise in documents. To explore the models’
robustness across different retrieval depths, we vary the number of documents (k) returned by
the retrieval engine at evaluation time, from 1 to 7, while training fixed to k = 3.

The comparison of inference accuracy is shown in Figure 6. All three methods achieve robust
performance across different k levels. Compared to the baseline methods, AutoRefine steadily boosts
the average accuracy by 0.04 ∼ 0.1, demonstrating its strong document denoising ability. The
accuracy increments caused by AutoRefine are particularly obvious when k ⩾ 3, which is likely
caused by its strong ability to discover useful information under increasingly noisy conditions. Peak
performance gain is 0.09 observed at k = 5, where a balanced trade-off between information richness
and noise is reached.

Obs 4: AutoRefine exhibits consistent improvements across varying retrieval depths.

3.4 Ablation Studies

3.4.1 Ablation on Key Components

We conduct ablation studies over the key components in AutoRefine. Specifically, we consider three
configurations: (1) the full AutoRefine model, (2) AutoRefine without the retrieval-specific reward
RRet (w/o Retrieval Reward), and (3) AutoRefine without both RRet and the knowledge refinement
step (w/o Retrieval Reward & Refinement). See Appendix C.3 for analysis of retrieval reward design.

Impact on Answer Accuracy. Table 2 presents the answer accuracy on downstream benchmarks
for each configuration. The results demonstrate that both the retrieval-specific reward and the
knowledge refinement step are essential for achieving strong performance. The full AutoRefine
model consistently achieves the highest average accuracy across both the base and instruct variants.
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Table 2: Ablation study over key components in AutoRefine.
Single-Hop QA Multi-Hop QA

Model Variants NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

AutoRefine-Base 0.467 0.620 0.450 0.405 0.393 0.157 0.344 0.405
w/o Retrieval Reward 0.423 0.583 0.424 0.368 0.351 0.139 0.344 0.376
w/o Retrieval Reward & Refinement 0.422 0.585 0.419 0.294 0.257 0.062 0.144 0.312

AutoRefine-Instruct 0.436 0.597 0.447 0.404 0.380 0.169 0.336 0.396
w/o Retrieval Reward 0.418 0.587 0.429 0.355 0.335 0.124 0.272 0.360
w/o Retrieval Reward & Refinement 0.406 0.580 0.412 0.319 0.312 0.091 0.210 0.333
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Figure 7: Effectiveness of key components over the search behaviors and the refinement quality.

Impact on Search and Refinement Abilities. We further analyze how each component affects
AutoRefine’s search and refinement capabilities. Figure 7 shows a comparative analysis using
Qwen2.5-3B-Base. As illustrated in Figure 7(a), the retrieval-specific reward effectively promotes
multi-turn search behavior. Additionally, it significantly boosts knowledge refinement quality, yielding
approximately a 20% improvement in refinement success rate (Figure 7(c)). The inclusion of the
knowledge refinement step also enhances both the frequency and quality of retrieval, as shown in
Figures 7(a) and (b).

3.4.2 Ablation on Model Sizes and Evaluation Metrics

To provide a comprehensive evaluation of AutoRefine, we conduct ablation studies on two aspects:
(1) the model sizes, including Qwen2.5-3B and Qwen2.5-7B; (2) the evaluation metrics, including
exact match (EM), F1 score, and cover exact match (CEM). The results are shown in Table 3.

Comparing the performance of AutoRefine on Qwen2.5-3B and Qwen2.5-7B, we observe that the
larger model size generally leads to better performance. AutoRefine-7B achieves approximately
0.05 performance gains on all metrics, which is slightly lower compared to those on the 3B variant.
Besides, AutoRefine maintains superior performance on all three metrics compared to baselines.

3.4.3 Ablation on Knowledge Refinement Module

To demonstrate the necessity of the RL-driven refinement steps, we compare AutoRefine with several
baselines that use external summarization models as refiners. These baselines augment Search-R1
with refiners based on BART [38] and Qwen2.5-3B-Instruct [3]. For the Qwen model, we test
two prompting strategies: one that only asks for summarization, and another that asks for both
summarization and a plan for the next search step. The results are presented in Table 4.

The experiment indicates that simply adding an external summarizer to Search-R1 improves perfor-
mance on some single-hop QA benchmarks (e.g., PopQA) but can be detrimental in multi-hop settings.
In contrast, AutoRefine maintains superior performance on hard multi-hop benchmarks. Through
RL, AutoRefine learns not only to summarize but also to introspect, identify missing information,
and plan its next actions We find out its performance gain on multi-hop benchmarks derives from
the ability to not just summarize, but also to introspect, recognize missing information, and plan
subsequent search steps, as illustrated in the case studies (§C.5).
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Table 3: Ablation study over model sizes and evaluation metrics.
General QA Multi-Hop QA

Model Metric NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

Qwen2.5-7B-Base

Search-R1
EM 0.469 0.627 0.449 0.410 0.272 0.173 0.456 0.408
F1 0.552 0.700 0.487 0.517 0.327 0.236 0.560 0.483

CEM 0.509 0.680 0.467 0.445 0.309 0.197 0.496 0.443

AutoRefine
EM 0.484 0.659 0.487 0.451 0.405 0.187 0.512 0.455
F1 0.574 0.729 0.525 0.573 0.467 0.283 0.604 0.536

CEM 0.523 0.707 0.500 0.487 0.441 0.217 0.528 0.486

Qwen2.5-3B-Base

Search-R1
EM 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312
F1 0.476 0.650 0.429 0.380 0.322 0.123 0.184 0.366

CEM 0.462 0.642 0.442 0.325 0.288 0.082 0.128 0.338

AutoRefine
EM 0.467 0.620 0.450 0.405 0.393 0.157 0.344 0.405
F1 0.534 0.689 0.479 0.503 0.453 0.233 0.449 0.477

CEM 0.502 0.674 0.468 0.440 0.428 0.175 0.384 0.439

Table 4: Performance comparison against Search-R1 with external refiners.
General QA Multi-Hop QA

Model NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

AutoRefine 0.467 0.620 0.450 0.405 0.393 0.157 0.344 0.405
Search-R1 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312
Search-R1 + Refiner (BART [38]) 0.395 0.619 0.450 0.337 0.239 0.065 0.115 0.317
Search-R1 + Refiner (Qwen, Summary) 0.399 0.600 0.445 0.331 0.264 0.073 0.180 0.328
Search-R1 + Refiner (Qwen, Summary & Plan) 0.378 0.562 0.431 0.299 0.231 0.059 0.149 0.301

4 Limitations

Despite the promising performance of AutoRefine in retrieval-augmented reasoning tasks, several
limitations remain for further investigation.

• Evaluation Metrics. This work evaluates model performance solely on exact match accuracy or
F1 score, which may overlook semantically correct responses with minor textual variations. This
limits the evaluation of long-form or open-ended responses.

• Static Retrieval Corpus. The retrieval component uses a fixed Wikipedia snapshot, lacking current
or time-sensitive information. This setting limits the system’s applicability to real-world use cases
where users expect information from live search engines.

5 Conclusion and Future Work

This work proposes AutoRefine, an RL post-training framework designed to improve the retrieval-
augmented reasoning capabilities of LLMs. AutoRefine adopts a novel “search-and-refine-during-
think” paradigm that explicitly encourages the model to identify and distill relevant information
from noisy retrieved content. By jointly optimizing for both outcome-level and retrieval-specific
rewards, AutoRefine effectively guides LLMs to extract, assess, and integrate external knowledge.
Comprehensive evaluations show that AutoRefine consistently surpasses existing methods, achieving
up to a 6.9% average improved accuracy on seven QA benchmarks. These results underscore its
potential to enhance the accuracy and reliability of retrieval-augmented LLMs.

Future work will focus on addressing the limitations identified above. First, we aim to adopt more
flexible and semantically aware evaluation metrics — such as LLM-as-a-Judge evaluation — to
more effectively measure answer quality in complex question answering tasks. Second, we intend to
adapt AutoRefine to dynamic retrieval settings, including live web search and continuously evolving
document corpora. By addressing these directions, we aim to further improve the sflexibility and
time-sensitivity of AutoRefine, thus broadening its practicality in more realistic applications. This
extension would enable the system to operate in more realistic, time-sensitive applications and
broaden its practical utility.
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A Related Work

This section reviews prior research on reasoning in LLMs and retrieval-augmented generation, two
areas central to our approach. We highlight how recent advancements in RL-based post-training have
enabled more adaptive retrieval-augmented reasoning, motivating our proposed “search-and-refine-
during-think” paradigm.

Reasoning in Large Language Models. The reasoning capabilities of large language models
(LLMs) have advanced significantly in recent years [39, 40, 6, 41]. Early work introduces explicit
chain-of-thought prompting [42] and test-time scaling methods such as monte carlo tree search
[43–47] to guide intermediate reasoning steps. Follow-up methods leveraged reinforcement learning
(RL), particularly reinforcement learning from human feedback (RLHF) [48], to align outputs with
human preferences via Proximal Policy Optimization (PPO) [49]. Due to RLHF’s high resource
demands, more recent developments [50, 51] such as Group Relative Policy Optimization (GRPO)
[7, 5] optimize models using outcome-based rewards to reduce dependency on human annotations.
These breakthroughs greatly improve LLMs’ generalization and performance on complex tasks such
as mathematical problem-solving [7] and code generation [8].

Retrieval Augmented Generation. Retrieval-Augmented Generation (RAG) extends the capabili-
ties of LLMs by integrating external knowledge [11–13]. A critical challenge within RAG systems
is determining when and how to perform retrieval actions [10, 34, 52]. Prior works have leveraged
supervised fine-tuning (SFT) methods to train LLMs in generating appropriate retrieval queries
[14, 53, 16, 15, 9, 54]. However, these SFT-based approaches struggle to generalize in out-of-
distribution retrieval scenarios [55, 56]. Recently, RL-based methods have enabled adaptive retrieval
and context-aware query generation [57–60], which can be termed as retrieval-augmented reasoning
that facilitates deep research applications [61–65]. Current methods follow the “search-during-think”
paradigm, where the model learns multi-turn searching and reasoning with outcome-based reward
[19, 21, 20, 22, 23, 66–70]. However, the explicit refinement of retrieved documents and direct
rewards for retrieval quality are absent in this paradigm, hampering effective searching and document
utilization. This work explores the “search-and-refine-during-think” paradigm, which enables LLMs
to refine retrieved documents, guided by both outcome-based and retrieval-specific rewards.

B More Implementation Details

B.1 Training Details

AutoRefine is trained on 8 NVIDIA A100-80GB GPUs with full-parameter fine-tuning. We construct
the training dataset by combining NQ [27] and HotpotQA [30], used consistently across AutoRefine
and all training-based baseline methods. For distributed training, we adopt Fully Sharded Data
Parallelism (FSDP), using BFloat16 precision throughout both training and evaluation.

Table 5 summarizes the key hyperparameters used in our experiments. The actor model is optimized
using a learning rate of 1.0×10−6 without warmup. Both the base and instruct variants of AutoRefine
are trained for 200 steps using the VeRL framework [71], with random data shuffling.

For efficient rollout generation, we use vLLM2 at a GPU memory utilization rate of 0.6. Sampling
is performed with a temperature of 1.0, and a maximum of 5 search calls per rollout is allowed.
We generate 5 rollouts per data point, each with up to 5 search queries. Retrieved documents per
query are concatenated and truncated to 512 tokens. Token length statistics shown in Figure 5(b) are
computed using tiktoken3.

For direct-inference and SFT baselines, we use Qwen2.5-3B-Instruct [3] as the backbone LLM.
RL-based experiments are conducted on both the base and instruct variants.

2https://github.com/vllm-project/vllm
3https://github.com/openai/tiktoken
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Table 5: Primary hyperparameters used by AutoRefine.
Hyper-parameter Value
Training Batch Size 256

Micro Training Batch Size 64
Validation Batch Size 256
Total Training Steps 250

Actor Model Learning Rate 1× 10−6

Max Response Length 2048
Max Search Actions 5

KL Coefficient β 0.001
Clip Ratio ϵ 0.2

Group Size G 5

B.2 Dataset Statistics

All datasets are sourced from the FlashRAG Datasets collection4. Table 6 presents detailed statistics
of the datasets used.

The training set for AutoRefine is constructed from the train splits of NQ and HotpotQA, totaling
169, 615 examples. For evaluation, we combine the test or dev splits from seven datasets. Specifically,
for benchmarks with a test split (NQ, TriviaQA, PopQA, and Bamboogle), the test split is used; for
those without a test split (HotpotQA, 2Wiki, and Musique), we use the dev split instead. This results
in an evaluation set comprising 51, 713 examples.

Table 6: Statistics of the seven datasets used in this paper.
NQ TriviaQA PopQA HotpotQA 2Wiki Musique Bamboogle

Train 79168 78785 - 90447 15,000 19,938 -
Dev 8757 8837 - 7405 12576 2417 -
Test 3610 11313 14267 - - - 125

C More Experimenal Results

C.1 Training Dynamics

For a more comprehensive understanding of AutoRefine, we visualize its training dynamics, including
the training rewards, validation accuracies, and response length per sample. The validation is carried
out on 500 random samples from each downstream benchmark per 20 training steps. The results
are reported in Figure 8. We observe stable convergence in the training rewards and consistently
improved validation accuracy in both base and instruct variants.
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Figure 8: Training dynamics of AutoRefine-Base and -Instruct. Both models show steady convergence
and stable downstream accuracies.

4https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets
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Table 7: Statistical analysis against search-during-think baselines. The p-value column represents the
T-test result of AutoRefine v.s. baseline.

Model NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg. p-value

AutoRefine 0.452 ± 0.017 0.627 ± 0.007 0.468 ± 0.017 0.423 ± 0.016 0.404 ± 0.010 0.145 ± 0.011 0.335 ± 0.023 0.408 ± 0.014 -
ReSearch 0.418 ± 0.012 0.614 ± 0.014 0.451 ± 0.018 0.317 ± 0.015 0.269 ± 0.017 0.056 ± 0.015 0.132 ± 0.008 0.322 ± 0.014 5.49× 10−6

Search-R1 0.410 ± 0.009 0.605 ± 0.019 0.429 ± 0.014 0.315 ± 0.016 0.254 ± 0.023 0.062 ± 0.005 0.127 ± 0.020 0.315 ± 0.015 2.85× 10−6

Table 8: Comparison between different reward designs used in AutoRefine.
General QA Multi-Hop QA

Reward Design NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

AutoRefine - Reward on Refine - nonlinear 0.467 0.620 0.450 0.405 0.393 0.157 0.344 0.405
AutoRefine - Reward on Refine - linear 0.415 0.593 0.435 0.376 0.365 0.143 0.296 0.375
AutoRefine - Reward on Documents - nonlinear 0.418 0.592 0.441 0.381 0.386 0.153 0.320 0.384
AutoRefine - Reward on Documents - linear 0.417 0.590 0.414 0.387 0.360 0.152 0.304 0.375
AutoRefine - only answer reward 0.423 0.583 0.424 0.368 0.351 0.139 0.344 0.371
Search-R1 0.421 0.583 0.413 0.297 0.274 0.066 0.128 0.312

C.2 Statistical Analysis

To ensure the reliability of our findings and validate the significance of the performance gains, we
conduct a statistical analysis. We perform three experimental runs using different random seeds and
report the mean scores and standard deviations for AutoRefine and the search-during-think baselines
in Table 7. To formally assess the improvements, we perform a T-test between each baseline and
AutoRefine. The resulting low p-values (p ≪ 0.01) indicate that the improvements achieved by
AutoRefine over both ReSearch and Search-R1 are statistically significant.

C.3 Impact of Different Retrieval Reward Design

In §2.2, it’s worth noticing that we use a non-linear combination of RAns and RRet to calculate
the overall reward ROverall, and we apply the retrieval reward on the refinement action instead of
directly on retrieved documents. We conduct additional empirical study to analyze the impact of our
retrieval reward design, including (1) the action types on which we compute the retrieval reward, and
(2) the combination method of RRet and RAns.

From the results in Table 8, we notice (1) directly rewarding the retrieved documents contributes
marginal performance improvements (reward on retrieved documents v.s. only answer reward), which
is also noticed by previous researchers [72]. The peak performance is achieved when we calculate the
retrieval reward based on the refinement behaviors. (2) a linear combination of answer and refinement
rewards (ROverall = RAns + RRet) is inferior to our proposed non-linear reward design. We
hypothesize linear rewards may over-emphasize intermediate behaviors. In the contrary, non-linear
ones prioritizes the final answer correctness while still fostering robust refinement capabilities. The
intricate balance in the reward function is a core innovation of AutoRefine, directly contributing to its
superior performance across various QA benchmarks.

C.4 Performance on Complex Answers

To investigate the impact of our retrieval reward design on questions with more complex answers,
we conduct an experiment comparing our standard cover-exact match (CEM) reward with more
fine-grained recall-based rewards. We explore two alternative designs, namely token-level recall
and word-level recall as the retrieval reward, which calculates the fraction of tokens/words in the
ground-truth answer that appear in the refined documents. We evaluate these reward strategies on
both the full benchmark datasets and on the subset of "complex answers," defined as samples where
the ground-truth answer is longer than five words.

The results, presented in Table 9, show that while our default CEM retrieval reward performs strongly
on the full datasets, its performance diminishes on the subset of complex answers. In this more
challenging setting, the more fine-grained reward metrics yield significant performance improvements.
This suggests that while CEM is effective for factoid-style questions, adapting the reward signal to be
more granular can better guide the model to handle complex answers.
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Table 9: Comparison between the original CEM retrieval reward and finer-grained reward designs.
General QA Multi-Hop QA

Reward Design TriviaQA PopQA HotpotQA 2wiki Musique Avg.

Full Dataset
AutoRefine - CEM Retrieval Reward 0.620 0.450 0.405 0.393 0.157 0.405
AutoRefine - Token-level Recall Reward 0.604 0.433 0.376 0.364 0.136 0.383
AutoRefine - Word-level Recall Reward 0.609 0.437 0.395 0.395 0.142 0.396

Complex Answers (>5 words)
AutoRefine - CEM Retrieval Reward 0.128 0.261 0.105 0.368 0.023 0.177
AutoRefine - Token-level Recall Reward 0.132 0.292 0.094 0.379 0.047 0.189
AutoRefine - Word-level Recall Reward 0.131 0.375 0.113 0.409 0.054 0.216

C.5 Case Studies

Table 10 presents the answer generated by AutoRefine and Search-R1 on two randomly selected
samples from 2Wiki and bamboogle. The comparison is made between AutoRefine, SearchR1 [19],
and ReSearch [21].

D Broader Impacts

This work on AutoRefine has several potential broader impacts. By significantly enhancing the
accuracy and reliability of retrieval-augmented language models, this research contributes to building
more trustworthy and dependable AI systems. This poses positive implications for fields such as
education, research, and information services, where access to accurate and synthesized knowledge
is crucial. Furthermore, the "search-and-refine-during-think" paradigm introduced by AutoRefine
explicitly encourages the model to engage in a more deliberate process of information extraction and
evaluation. This design may inspire future research into more interpretable and controllable reasoning
frameworks. Understanding how LLMs can be guided to selectively utilize external knowledge is a
step towards demystifying their decision-making processes.
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Table 10: Case Studies. The predictions are colored Red if the model answers incorrectly and Green
if it answers correctly. The core evidences are colored Blue.

Case 1: Who is the father of the father of modern experimental psychology?
Ground Truth: Maximilian Wundt
ReSearch:
<think> To answer the question about who is the father of the father of modern experimental psychology, I
need to trace back through history and identify the person who founded modern experimental psychology, and
then identify the father of this individual. </think>
<search> Who is the father of the father of modern experimental psychology </search> <documents> [Doc
1: Wilhelm Wundt] Wilhelm Wundt Wilhelm Maximilian Wundt ... was the first person ever to call himself
a psychologist. He is widely regarded as the father of experimental psychology...</documents>
<answer> Wilhelm Wundt </answer>.
Search-R1:
<think> I have entrained myself with prepared oniosis in sync with tractable graftally towards emotionally lag
useards glykerized ocal gambling huffely bite-support. Further exposure hides sectional stemming non-quently.
</think>
<search> Who is the father of the father of modern experimental psychology </search><documents>[Doc
1: Wilhelm Wundt] Wilhelm Wundt Wilhelm Maximilian Wundt ... was the first person ever to call himself
a psychologist. He is widely regarded as the father of experimental psychology...</documents>
<answer> Wilhelm Wundt </answer>.
AutoRefine:
<think> To answer the question "who is the father of the father of modern experimental psychology?", I
would first research ’father of modern experimental psychology’. </think>
<search> father of modern experimental psychology </search><documents>[Doc 1: Wilhelm Wundt]
Wilhelm Wundt Wilhelm Maximilian Wundt ... was the first person ever to call himself a psychologist. He
is widely regarded as the father of experimental psychology...</documents>
<refine> From the available documents, I extract key information. Wilhelm Wundt is regarded as the
father of experimental psychology.</refine>
<think> Now, I will research who Wundt’s father was by understanding psychology back then.</think>
<search> Who was Wilhelm Wundt father </search><documents> [Doc 2: Wilhelm Wundt] ... Wundt was
born at Neckarau, Baden (now part of Mannheim) on the 16 of August 1832, the fourth child to parents
Maximilian Wundt </documents>
<refine> From the available documents, I extract key information. Wilhelm Wundt’s father was Maximilian
Wundt.</refine>
<answer> Maximilian Wundt </answer>.

Case 2: What is the date of death of Alexander Of Masovia’s father?
Ground Truth: 21 January 1426
ReSearch:
<think> To answer this question, I need the date of death of Alexander Of Masovia’s father. </think>
<search> Alexander Of Masovia’s father date of death </search><documents> [Doc 1: Alexander of
Masovia] Alexander of Masovia Alexander of Masovia (1400 - 2 June 1444) ... was the second son of
Siemowit IV, Duke of Masovia...</documents>
<answer> 1400 </answer>.
Search-R1:
<think>I’m overknowledgeable in whatever guide possess it but must forth motion where direction need to
going quests.</think>
<search> Alexander Of Masovia’s father date of death </search><documents> [Doc 1: Alexander of
Masovia] Alexander of Masovia Alexander of Masovia (1400 - 2 June 1444) ... was the second son of
Siemowit IV, Duke of Masovia ...</documents>
<answer> 1400 </answer>.
AutoRefine
<think> I need to first determine the date of death of Alexander of Masovia’s father. </think>
<search> date of death of Alexander Of Masovia’s father </search><documents> [Doc 1: Alexander of
Masovia] Alexander of Masovia Alexander of Masovia (1400 - 2 June 1444) ... was the second son of
Siemowit IV, Duke of Masovia ...</documents>
<refine> From the provided documents, I deduce that Alexander of Masowia’s father was Siemowit IV,
Duke of Masovia.</refine>
<think> To identify the date of death of Siemowit IV, Duke of Masowia who was the father of Alexander of
Masowia. </think>
<search> date of death Siemowit IV Duke of Masovia </search><documents> [Doc 1: Siemowit IV, Duke
of Masovia] ... Siemowit IV, Duke of Masovia Siemowit IV (Ziemowit IV), also known as Siemowit IV the
Younger (pl: 21 January 1426) ...</documents>
<refine> From the provided documents, I deduce that Siemowit IV, Duke of Masovia died on 21 January
1426. </refine>
<answer> 21 January 1426 </answer>.
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1. Claims
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Answer: [Yes]
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• The claims made should match theoretical and experimental results, and reflect how
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are included in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There’s no theoretical focus in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the main results is in Section 3.1 and
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code of this paper is included. The data used are publicly available at
https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The trainin/test details are included in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included the statistical significance in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources are included in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a section for broader impacts in Appendix D. Other related
discussions are in §1 and §5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets are used via https://huggingface.co/datasets/RUC-NLPIR/
FlashRAG_datasets under CC-BY-SA-4.0 license. We use the Qwen-2.5 series models
that are under the Apache license 2.0.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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