
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEQUENTIAL CONTROLLED LANGEVIN DIFFUSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

An effective approach for sampling from unnormalized densities is based on the
idea of gradually transporting samples from an easy prior to the complicated target
distribution. Two popular methods are (1) Sequential Monte Carlo (SMC), where
the transport is performed through successive annealed densities via prescribed
Markov chains and resampling steps, and (2) recently developed diffusion-based
sampling methods, where a learned dynamical transport is used. Despite the com-
mon goal, both approaches have different, often complementary, advantages and
drawbacks. The resampling steps in SMC allow focusing on promising regions
of the space, often leading to robust performance. While the algorithm enjoys
asymptotic guarantees, the lack of flexible, learnable transitions can lead to slow
convergence. On the other hand, diffusion-based samplers are learned and can po-
tentially better adapt themselves to the target at hand, yet often suffer from training
instabilities. In this work, we present a principled framework for combining SMC
with diffusion-based samplers by viewing both methods in continuous time and
considering measures on path space. This culminates in the new Sequential Con-
trolled Langevin Diffusion (SCLD) sampling method, which is able to utilize the
benefits of both methods and reaches improved performance on multiple bench-
mark problems, in many cases using only 10% of the training budget of previous
diffusion-based samplers.

1 INTRODUCTION

We consider the task of sampling from densities of the form

ptarget =
ρtarget

Z with Z :=
∫
Rd ρtarget(x)dx, (1)

where ρtarget ∈ C(Rd,R≥0) can be evaluated pointwise, but the normalizing constant Z is typically
intractable. This task is of great practical interest, with numerous applications in the natural sciences
(Zhang et al., 2023b), for instance, for Boltzmann distributions in molecular dynamics or lattice field
theory in quantum physics, as well as posterior sampling in Bayesian statistics (Gelman et al., 2013).

Sampling problems vs. generative modeling. The sampling problem poses unique challenges not
found in other areas of probabilistic modeling. For instance, while both generative modeling and
sampling involve approximating a target distribution ptarget, they differ fundamentally in terms of the
information available. In generative modeling, one has access to samples X ∼ ptarget, whereas in
sampling, we only have access to a pointwise oracle ρtarget (and, potentially, its pointwise gradients)
and no samples. This distinction introduces obstacles for the sampling problem that do not exist
in generative modeling. For example, a key challenge in modeling a distribution is identifying its
regions of high probability, or modes. When samples are available, they can directly reveal the loca-
tions of these modes. In their absence, however, the sampling algorithm must include an exploration
strategy to discover them and identify their shape. This exploration becomes exponentially more dif-
ficult as the dimensionality of the state space increases, making the sampling problem challenging
even in moderate dimensions (e.g., 10− 50).

Sequential Monte Carlo methods and diffusion-based samplers. A general idea to approach the
sampling problem is to draw particles from an easy prior distribution and gradually move them
toward the complicated target (sometimes termed dynamical measure transport). In this work, we
focus on two popular paradigms:

• In Annealed Importance Sampling (AIS) (Neal, 2001) and its extension Sequential Monte Carlo
(SMC) (Chopin, 2002; Del Moral et al., 2006) particles are successively updated and reweighted,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prior Diffusion Steps Resampling & MCMC Diffusion Steps Target

Figure 1: Illustration of our SCLD algorithm, which combines controlled Langevin diffusions with Sequential
Monte Carlo methods. The goal is to sample from a target distribution by learning a stochastic evolution (dif-
fusion steps) that starts from a tractable prior and evolves along a prescribed annealed density to the target. We
do not have access to samples from the target distribution but can only evaluate its density up to a normaliz-
ing factor. At intermediate timesteps, we resample according to the importance weights of each subtrajectory
(black dots) and use MCMC steps for additional refinement (yellow dots).

as to approach relevant regions in space, targeting an annealed sequence of intermediate distribu-
tions. This procedure is typically formulated in discrete time and does not require learning.

• In diffusion-based sampling (Richter & Berner, 2024; Vargas et al., 2024) the idea is to learn a drift
of a stochastic differential equation (SDE) to transport the samples from the prior to the desired
target, typically formulated in continuous time. The absence of samples means that data-driven
approaches such as for generative modeling (Song et al., 2021) are not possible, and training is
instead done via variational inference, gaining information through evaluations of ρtarget.

Each paradigm brings its own advantages and drawbacks. Traditional SMC methods rely on pre-
defined rules for particle updates, such as Markov Chain Monte Carlo (MCMC) and resampling
methods, which help to direct computational effort onto promising regions of the space and enjoy
asymptotic guarantees. While they do not require learning, the employed MCMC methods can,
in many cases, exhibit slow convergence to the target (Del Moral et al., 2006). Diffusion-based
samplers, on the other hand, require a training phase, which enables them to automatically adapt
to the given target. However, training can take significant time and often suffers from numerical
instabilities as well as mode collapse (Richter & Berner, 2024).

Sequential Controlled Langevin Diffusions. In this work, we show that the two methods can
complement each other. SMC can benefit from the flexible nature of the learnable transitions, and
resampling and MCMC can help diffusion-based samplers converge faster and counteract numerical
stability issues arising, for instance, from outlier particles. Motivated by this, we identify a prin-
cipled and general framework to unify the two methods, culminating in our Sequential Controlled
Langevin Diffusion (SCLD) algorithm, which alternates between SMC and diffusion steps as illus-
trated in Fig. 1. In addition, we devise a family of loss functions that enables end-to-end training
(i.e., for which the algorithm used during inference can be directly optimized). This becomes possi-
ble by viewing both methods in continuous time and considering measures of the underlying SDEs
on the path space.

Our contributions can be summarized as follows:

• Taking the continuous-time perspective, we can rigorously connect and unify SMC and diffusion-
based sampling by performing importance sampling in path space.

• The principled framework of path space measures allows us to readily propose suitable loss func-
tions, which allow for off-policy training with replay buffers and provably scale better to high
dimensions than previously used losses.

• Building on those connections, we propose our new sampling method Sequential Controlled
Langevin Diffusion (SCLD) as a special case of our framework.

• We show that our method achieves competitive performance on 11 real-world and synthetic exam-
ples, improving over other baseline methods in almost every task, and in many cases only using
10% of the training budget. In two tasks based on robotics control, our method is the only one to
approximately recover the true distribution.

1.1 RELATED WORK

We present an extensive comparison to related works in App. A.1. To summarize, our proposed
SCLD sampler relies on three crucial building blocks:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different methods (see App. A.1 for details). By discretization-flexible, we describe the
fact that we can include resampling and MCMC steps at arbitrary times. Finite-time convergence refers to the
property that the target distribution can (theoretically, in the optimum) be reached in finite time. We note that
stochastic transitions allow omitting or reducing (costly) MCMC steps in learned SMC methods.

Traditional SMC CMCD CRAFT PDDS SCLD (ours)
Learned Transition ✗ (MCMC) ✓ (Neural SDE) ✓ (Neural ODE) ✓ (Neural SDE) ✓ (Neural SDE)
Stochastic Transition ✓ ✓ ✗ ✓ ✓
End-to-end Training - ✓ ✓ (needs importance weights) ✗ (alternating) ✓ (incl. hyperparameters)
Particle Method ✓ ✗ ✓ ✓ ✓
Discretization-flexible ✓ ✓ ✗ ✓ (in theory) ✓
Finite-time Convergence ✗ ✓ ✓ ✓ ✓

Sequential Monte Carlo (SMC). SMC methods (Chopin, 2002; Del Moral et al., 2006) describe a
general methodology to sample sequentially from a sequence of annealed distributions, using transi-
tion kernels (typically based on MCMC) and resampling steps. To mitigate drawbacks such as long
mixing times and tedious tuning, previous works proposed to learn the kernels (Phillips et al., 2024;
Matthews et al., 2022; Arbel et al., 2021). However, prior training objectives suffer from various
shortcomings, either requiring importance sampling with potentially high variance, exhibiting bias,
or relying on alternating methods that preclude end-to-end training (see also Tab. 1). Further, they
need to place restrictions on their parameterizations or suffer from unfavorable computational costs.
In particular, approaches with deterministic transitions, such as normalizing flows, require compu-
tations of divergences or Jacobian determinants, and MCMC steps to recover sample diversity after
resampling. This is not needed for methods based on stochastic transitions like our method SCLD.

Diffusion-based samplers on subtrajectories. To overcome these shortcomings and flexibly pa-
rameterize the transition kernels, we draw ideas from recent work on controlled SDEs for sampling
problems (Zhang et al., 2023a; Richter & Berner, 2024). This can be done by partitioning the SDE
trajectories in time. However, to compute importance weights (in path space), which are necessary
for resampling as well as for MCMC kernels in SMC, the SDE marginals after each subtrajectory
need to be known. To cope with that, we identify the recently proposed Controlled Monte Carlo
Diffusions (CMCD) (Vargas et al., 2024) as a suitable framework since it allows us to define a
prescribed (and therefore known) target evolution of the SDE marginals. Building upon this, we
develop an extension of SMC to continuous time, where resampling (and, optionally, MCMC steps)
can be employed at arbitrary times.

Log-variance loss. However, the subtrajectories and discrete resampling steps make optimization
challenging. Previous methods either relied on alternating schemes or approaches based on the re-
verse KL divergence and importance sampling, known to suffer from mode collapse and potentially
high variance. We show that the log-variance loss (Nüsken & Richter, 2021) offers a way to obtain
a principled, efficient, and low-variance objective such that we can optimize our sampler and parts
of the hyperparameters in an end-to-end fashion using replay buffers.

2 SEQUENTIAL CONTROLLED LANGEVIN DIFFUSIONS

We start by giving an introduction to Sequential Monte Carlo methods. However, different from
previous work, our focus is on a continuous-time perspective that can be readily integrated with
diffusion-based samplers.

2.1 A PRIMER ON SEQUENTIAL MONTE CARLO IN CONTINUOUS TIME

Importance sampling (IS). The idea of utilizing samples from a prior distribution in order to com-
pute statistics relying on samples from a target can be motivated by importance sampling. In its
simplest case, one can compute unbiased estimates w.r.t. the target distribution via

EXT∼ptarget
[φ(XT)] = EX0∼pprior

[φ(X0)w(X0)] ≈ 1
K

∑K
k=1 φ(X

(k)
0)w(X

(k)
0), (2)

where φ ∈ C(Rd,R) is a function of interest, the weight is defined1 as w :=
ptarget

pprior
, and (X

(k)
0)Kk=1

are i.i.d. samples from pprior. Since importance sampling becomes highly inefficient if the high-

1If the normalizing constant Z is not available, we can compute unnormalized weights w̃ :=
ρtarget
pprior

and
normalize them by their sum, leveraging the identity Z = EX0∼pprior [w̃(X0)] (self-normalized importance
sampling). While this introduces bias, the estimator is still consistent as K → ∞ (del Moral, 2013).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

probability regions of prior and target do not overlap substantially, a key idea is to gradually “trans-
port” X0 to XT .

Annealed importance sampling (AIS). In particular, we may sequentially move particles from the
prior to the target along a curve (π(·, t))t∈[0,T], chosen such that π(·, 0) = pprior and π(·, T) =
ptarget, e.g., by linear interpolation in log-space (Dai et al., 2022). To this end, we consider two
(time-dependent, forward and backward) Markov kernels p⃗s|t and ⃗pt|s. Given a time grid 0 = t0 <
t1 < · · · < tN = T (also referred to as annealing steps), we may now sample Xt0 ∼ pprior and
iterate for each n = 1, . . . , N :

1. Sample Xtn ∼ p⃗tn|tn−1
(· |Xtn−1

).

2. Compute the weights wtn−1,tn(Xtn−1
, Xtn) =

π(Xtn ,tn) ⃗ptn−1|tn (Xtn−1
|Xtn)

π(Xtn−1
,tn−1)p⃗tn|tn−1

(Xtn |Xtn−1
) .

We can then perform importance sampling on an augmented target distribution via the weights

w(Xt0 , . . . , XtN) :=
∏N

n=1 wtn−1,tn(Xtn−1
, Xtn) =

⃗pt0,...,tN
(Xt0

,...,XtN
)

p⃗t0,...,tN
(Xt0

,...,XtN
) , (3)

where p⃗t0,...,tN and ⃗pt0,...,tN are the joint densities of the “forward” and a corresponding “backward”
operation. In particular, in analogy to (2), it holds that

EXt0 ,...,XtN
[φ(XT)w(Xt0 , . . . , XtN)] = EXT∼ptarget

[φ(XT)] . (4)

Resampling. In principle, any forward and backward Markov kernels lead to an unbiased estima-
tor of the expectation of interest, as stated in (4). In practice, however, a notorious problem with
importance sampling is its potentially high variance. Specifically, the variance might increase ex-
ponentially with the dimension, sometimes termed curse of dimensionality, see, e.g., Chatterjee &
Diaconis (2018); Hartmann & Richter (2024). To circumvent this issue, one idea is to sequentially
“update” samples (also referred to as “particles”) during the course of the simulation according to
their weights, so as to refocus computational effort on promising particles—a procedure referred to
as resampling. For instance, we can select only certain (relevant) samples X(k)

0 for the estimation
of the expectation in (2). To this end, let O(k) be a random variable with values in {0, . . . ,K} and
E[O(k)|X(1)

0 , . . . , X
(K)
0] = KW (X

(k)
0), where W (X

(k)
0) := w(X

(k)
0)/

∑K
i=1 w(X

(i)
0), defining

how many times we select the k-th sample. Due to the tower property, we can then also obtain a
consistent estimator of the expectation in (2) via

EXT∼ptarget
[φ(XT)] ≈ 1

K

∑K
k=1 φ(X

(k)
0)O(k). (5)

A common choice is to consider O ∼ MK(W (X
(1)
0), . . . ,W (X

(K)
0)) drawn from a multinomial

distribution with K trials, where the normalized weights determine the event probabilities (Gordon
et al., 1993). We note that with this resampling step, we introduce additional stochasticity. However,
at the same time, it can bring statistical advantages by focusing on “relevant” samples, e.g., stabi-
lizing effects and variance reduction (Dai et al., 2022). We comment on our continuous-time SMC
formulation in Remark A.1.

2.2 CONTROLLED SDES AND IMPORTANCE SAMPLING IN PATH SPACE

A central question in SMC is how to choose the forward and backward transition densities p⃗s|t and
⃗pt|s defined above. Clearly, when the forward and backward joint densities stated in (3) agree, we

achieve perfect sampling in the sense that no corrections with importance weights are necessary.
However, it is typically not possible to obtain such transitions, and thus the choice of p⃗s|t and ⃗pt|s
to approximate this criterion is of critical importance to the success of SMC. Whereas, tradition-
ally, MCMC steps have been employed as the transition kernel (Dai et al., 2022), they are known to
require a large number of steps to achieve approximate transportation between densities. In recent
years, there has been interest in employing learned transition densities to overcome the slow conver-
gence times of fixed MCMC kernels (Matthews et al., 2022; Phillips et al., 2024). Advancing those
attempts, we will show how transition densities corresponding to SDEs yield a principled solution
that, moreover, allows us to leverage recent advancements of diffusion models.

Diffusion bridges. To this end, let us consider the stochastic process Xu = (Xu
t)t∈[0,T], defined

by the SDE

dXu
t = u(Xu

t , t)dt+ σ(t)d⃗Wt, Xu
0 ∼ pprior, (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where u ∈ C(Rd × [0, T],Rd) is a control function, σ ∈ C([0, T],R) the diffusion coefficient,
and W a standard Brownian motion. This process uniquely defines a forward transition density p⃗s|t
and falls into the framework stated in §2.1 for any time steps 0 = t0 < t1 < · · · < tN = T .
In fact, we can leverage the ideas from CMCD (Vargas et al., 2024) and learn u such that the
transport happens along a prescribed density in time, i.e., such that the density pXu(·, t) of Xu

t
is equal to a prescribed target density π(·, t), connecting the prior and the target, for every t ∈
[0, T]; cf. Lemma 2.1 below. We will see that the knowledge of the marginals allows for a natural
integration within SMC frameworks. Now, similar to the importance sampling framework from
§2.1, the general idea is to exploit a time-reversed dynamics that starts in the desired target density.
To be precise, we may further define a related reverse-time SDE

dY v
t = v(Y v

t , t)dt+ σ(t) ⃗dWt, Y v
T ∼ ptarget, (7)

which depends on the control v ∈ C(Rd×[0, T],Rd) and where ⃗dWt denotes backward 2 integration
of Brownian motion. Now, if u and v are learned such that Xu and Y v are time-reversals of each
other, then pXu = pY v , i.e., the two processes transport the prior to the target and vice versa.
However, in this general setting, there are infinitely many such bridging processes, all fulfilling
Nelson’s identity (Nelson, 1967), i.e.,

u− v = σ2∇ log pXu = σ2∇ log pY v . (8)

Since our goal is to satisfy pXu = pY v = π, we can incorporate this constraint via the ansatz
v = u− σ2∇ log π, leading to the SDE

dY u
t = (u− σ2∇ log π)(Y u

t , t)dt+ σ(t) ⃗dWt, Y u
T ∼ ptarget, (9)

as suggested in Vargas et al. (2024), noting that the process now also depends on the control u.
Consequently, under mild conditions, this constraint leads to a unique gradient field representing
the solution u∗ to the time-reversal problem (Vargas et al., 2024, Proposition 3.2). We comment on
more general, learnable density evolutions in Remark A.2.

Measures in path space. The task of learning the time-reversal can be approached via the per-
spective of measures on the space of continuous trajectories C([0, T],Rd), also called path space.
Loosely speaking, a path space measure P⃗ = P⃗u,pprior of the process (6) can be thought of as the
joint density p⃗t0,...,tN (Xu

t0 , . . . , X
u
tN) in (3) when N → ∞, i.e., evaluated along infinitely many

time instances (Baldi, 2017, Corollary 11.1).

In analogy to importance sampling described in §2.1, we may now consider a change of measure in
path space, i.e.,

EXu∼P⃗ [φ(Xu
T)w(X

u)] = EY u∼ ⃗P [φ(Y u
T)] = Ex∼ptarget

[φ(x)] , (10)

where w = d ⃗P

dP⃗
and ⃗P = ⃗Pu,ptarget is the path space measure associated to (9). Furthermore, we can

formulate the time-reversal task as the minimization problem

u∗ = argminu∈U D
(
P⃗u,pprior , ⃗Pu,ptarget

)
, (11)

where D is a divergence and U ⊂ C(Rd × [0, T],Rd) the set of admissible controls, cf. Richter
& Berner (2024). If we can bring the divergence to zero, we have indeed achieved time-reversal
between the forward and backward transitions and, thus, perfect sampling. Both for (10) and typical
divergences in (11), it is essential to have a tractable expression for the likelihood ratio w between
the measures of the forward and the reverse-time process, also called the Radon-Nikodym derivative
(RND). This is given by the following lemma; see Vargas et al. (2024) for the proof.

Lemma 2.1 (Likelihood ratio between path measures). Let P⃗[s,t] and ⃗P[s,t] be the path space mea-
sures of the solutions to the SDEs in (6) and (9) on the time interval [s, t] ⊂ [0, T], where we assume
Xu

s ∼ π(·, s) and Y u
t ∼ π(·, t). Then for a generic3 process X it holds

w[s,t](X) =
d ⃗P[s,t]

dP⃗[s,t]
(X) = π(Xt,t)

π(Xs,s)
exp

(∫ t

s
∥u∥2−∥u−σ2∇ log π∥2

2σ2 (Xτ , τ)dτ

+
∫ t

s
u−σ2∇ log π

σ2 (Xτ , τ) · ⃗dXτ −
∫ t

s
u
σ2 (Xτ , τ) · d⃗Xτ

)
.

(12)

2See Vargas et al. (2024, Appendix A) for details and assumptions.
3Note that the Radon-Nikodym derivative is only defined almost surely w.r.t. P⃗[s,t]. In particular, it only

depends on X on the time interval [s, t].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Sequential Controlled Langevin Diffusion (SCLD). ▷ See Algorithm 3 for details.
Require: Annealing path π, learned control u, time grid 0 = t0 < · · · < tN = T

1: Initialize: X0 := X
(1:K)
0 ∼ pprior and w0 := w

(1:K)
0 = 1

2: for n = 1 to n = N do
3: Transport: X [tn−1,tn] = simulate SDE

(
Xtn−1 , u

)
▷ See (6) and (19)

4: Compute RNDs: w[tn−1,tn] =
d ⃗P[tn−1,tn]

dP⃗[tn−1,tn]

(
X [tn−1,tn]

)
▷ See (12) and (31)

5: Update weights: wn = wn−1w[tn−1,tn] ▷ See (13)
6: Resample: Xtn , wn = resample

(
Xtn , wn

)
▷ See Algorithm 5

7: return Samples XT := X
(1:K)
T approximately from ptarget

As can be seen from Lemma 2.1, path space measures can be readily employed for sequential al-
gorithms that operate on the time grid that we introduced before. In particular, we may divide our
trajectories Xu and Y u into subtrajectories and thus our path space measure into multiple chunks.
To be precise, we may write

w = d ⃗P

dP⃗
=

d ⃗P[t0,t1]

dP⃗[t0,t1]
· · ·

d ⃗P[tN−1,tN]

dP⃗[tN−1,tN]
= w[t0,t1] · · ·w[tN−1,tN]. (13)

Different from the framework in §2.1, we note that Lemma 2.1 offers an explicit formula for com-
puting the weights w[tn−1,tn] in continuous time. As can be seen in the importance sampling identity
(10), the weights can be interpreted as correcting for a potentially imperfect time-reversal. For con-
venience, we state Algorithm 1 for a simplified, high-level overview of combining SMC with diffu-
sion models and refer to Algorithm 3 in App. A.3 for a more detailed exposition. Further, we note
that the suggested setting relates to the usual SMC algorithm (such as in Dai et al. (2022)) by taking
a different forward transport step (where our Markov kernel is implemented by an SDE) and by
adopting the weighting step (using the Radon-Nikodym derivative in place of the likelihood ratio).
Using the target density π(·, tn), we can also add MCMC refinements at each time tn; see §2.4.

2.3 LOSS FUNCTIONS AND OFF-POLICY TRAINING

We can adapt the idea of learning the optimal control u∗ to our sequential setting by considering
divergences on each subinterval [tn−1, tn] separately, in consequence bringing losses of the form

L(u) =
∑N

n=1 D
(
P⃗

u,πn−1

[tn−1,tn]
, ⃗Pu,πn

[tn−1,tn]

)
, (14)

where πn := π(·, tn). We stress that with (14) optimization can in principle be conducted globally in
spite of the resampling happening sequentially. However, depending on the choice of the divergence,
this comes with additional challenges.

KL divergence. A classical choice is the Kullback-Leibler (KL) divergence D = DKL, i.e.,

DKL

(
P⃗

u,πn−1

[tn−1,tn]
| ⃗Pu,πn

[tn−1,tn]

)
= −E

Xu∼P⃗
u,πn−1
[tn−1,tn]

[
log
(
w[tn−1,tn](X

u)
)]

, (15)

where w[tn−1,tn] is defined as in Lemma 2.1 and the minus originates from the reciprocal impor-
tance weights in the logarithm. However, for computing the expectation we need Xu

tn−1
∼ πn−1. If

resampling has been employed in the previous iteration (at time tn−1; see Algorithm 1), a potential
mismatch in the expectation is automatically corrected. Alternatively, we may correct with impor-
tance sampling in path space. To this end, let tm (with tm < tn−1) be the last time resampling has
been conducted, i.e., the last time the weights have been reset; see Algorithm 5. As suggested in
Matthews et al. (2022), we can then consider the importance weight w[tm,tn−1] and compute

DKL

(
P⃗

u,πn−1

[tn−1,tn]
| ⃗Pu,πn

[tn−1,tn]

)
= −EXu∼P⃗u,πm

[tm,tn]

[
log
(
w[tn−1,tn](X

u)
)
w[tm,tn−1](X

u)
]
, (16)

for which Xu
tn−1

does not need to be distributed according to πn−1 anymore. However, the im-
portance weights potentially introduce additional variance into the loss, particularly in high dimen-
sions. This observation is stated rigorously in the following proposition, cf. Nüsken & Richter (2021,
Proposition 5.7), and proved in App. A.2.

Proposition 2.2 (Relative error of KL divergence). Denote by Dχ2 the χ2-divergence and by
r(K) := Var(D̂

(K)
KL)1/2/DKL the relative error of the Monte Carlo estimator D̂(K)

KL of the KL diver-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 SCLD-Training ▷ See Algorithm 4 for training with buffers.

Require: Number of iterations I , initial parameters θ(0), optimizer update update, inputs for Algorithm 3
1: for i = 0 to I − 1 do
2: Run Algorithm 3: (w(1:K)

[tn−1,tn])
N
n=1, (w(1:K)

n)Nn=0 = SCLD-ForwardPass (θ(i))

3: if LV then ▷ Trajectories X̂(1:K) are detached during forward pass

4: Compute loss: L =
∑N

n=1
1
K

∑K
k=1

(
logw

(k)

[tn−1,tn] −
1
K

∑K
i=1 logw

(i)

[tn−1,tn]

)2

5: else if KL then
6: Compute loss: L = −

∑N
n=1

1
K

∑K
k=1 detach(w

(k)
n−1) logw

(k)

[tn−1,tn]

7: Compute gradient w.r.t. parameters: G(i) = ∇θ(i)L
8: Optimizer step: θ(i+1) = update(θ(i), (G(j))ij=0) ▷ We use Adam

9: return Optimized parameters θ(I)

gence in (16) with sample size K. Moreover, let tm be the last resampling time and let P⃗⊗I
[tn−1,tn]

and ⃗P⊗I
[tn−1,tn]

be the I-fold product measures of identical copies of P⃗[tn−1,tn] and ⃗P[tn−1,tn], re-
spectively. Then there exists a constant c > 0, such that for any I ≥ 2 it holds that

r(K)
(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)
≥ c

(
Dχ2

(
⃗P[tm,tn−1]|P⃗[tm,tn−1]

)
+ 1
)I/2

. (17)

Given a path measure P⃗ of a D-dimensional process, we note that P⃗⊗I is a measure on the product
space

⊗I
i=1 C([0, T],RD) ≃ C([0, T],RID). In particular, for D = 1 (corresponding to inde-

pendent components), we can clearly identify d = I as the dimension of the considered problem.
This means that the relative error of the estimator of the KL divergence (16) is expected to scale
exponentially in the dimension, which is illustrated in Fig. 11 in App. A.6.10. As shown in Nüsken
& Richter (2021), the log-variance (LV) divergence does not exhibit this unfavorable property.

LV divergence and off-policy training. An alternative divergence can be defined by

DQLV

(
P⃗

u,πn−1

[tn−1,tn]
| ⃗Pu,πn

[tn−1,tn]

)
= VarX∼Q

[
log
(
w[tn−1,tn](X)

)]
(18)

which, in fact, is a family of divergences parametrized by a reference measure Q = P⃗
ũ,π̃n−1

[tn−1,tn]
that

can be chosen with arbitrary controls ũ and initial distributions π̃n−1 (also called off-policy training,
see Remark A.3 for details and connections to reinforcement learning). In particular, we do not
need Xtn−1 ∼ πn−1 anymore, and thus reweighting such as in (16) is not necessary, irrespective
of the fact that resampling at time tn might not have been conducted. We summarize the training
procedure for both divergences in Algorithm 2 and present details in App. A.3.

2.4 ALGORITHMIC REFINEMENTS AND IMPLEMENTATIONAL DETAILS

In this section, we turn our theoretical considerations from Sections 2.1 to 2.3 into implementable
algorithms. We collate these changes in Algorithm 3 in App. A.3, representing a practical version
of Algorithm 1.

Loss Function. We focus on the log-variance divergence in the sequel and refer to App. A.6.10 for
a comparison to the KL divergence. We choose ũ = u (or previous versions when using a buffer,
see “replay buffers” below) and simulate X in (18) starting from the prior, so π̃n corresponds to
the SDE marginal. However, since we do not take gradients w.r.t. the control ũ of the reference
measures, we detach the trajectory X , in line with Richter & Berner (2024). In particular, we do not
need to differentiate through the SDE integrator.

Time discretization. In practice, we choose N equidistant resampling times, i.e. tn − tn−1 = τ ,
for every n ∈ {1, . . . , N}, where the number of subtrajectories N may change across applications.
We discretize the SDE (7) via the Euler-Maruyama scheme, containing L evenly spaced steps per
subtrajectory, i.e.,

X̂u
i = X̂u

i−1 + u(X̂u
i−1, (i− 1)h)h+ σ((i− 1)h)

√
hξi, ξi ∼ N (0, Id), (19)

for i ∈ {1, . . . , NL} with h = τ/L. We refer to (31) in App. A.3 for the resulting discretization of
the Radon-Nikodym derivative from Lemma 2.1 for computing the importance weights w[tn−1,tn].

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of different methods in terms of ELBOs, i.e., lower bounds on the log-normalization
constant logZ. We use this metric for all tasks where we do not have access to groundtruth metrics. We report
NA if all considered hyperparameter choices diverged.

ELBO (↑) Seeds (26d) Sonar (61d) Credit (25d) Brownian (32d) LGCP (1600d)

SMC −74.63±0.14 −111.50±0.96 −589.82±5.72 −2.21±0.53 385.75±7.65

SMC-ESS −74.07±0.60 −109.10±0.17 −505.57±0.18 0.49±0.19 497.85±0.11497.85±0.11497.85±0.11

SMC-FC −74.07±0.02 −108.93±0.02 −505.30±0.02 −1.91±0.04 −878.10±2.20

CRAFT −73.75±0.02 −108.97±0.16 −518.25±0.52 0.90±0.10 485.87±0.37

DDS −75.21±0.21 −121.22±5.99 −514.74±1.22 0.56±0.23 NA
PIS −88.92±2.05 −142.87±3.29 −846.57±2.42 NA 479.54±0.40

CMCD-KL −73.51±0.01 −109.09±0.01 −507.23±6.40 0.86±0.01 478.75±0.34

CMCD-LV −73.67±0.01 −109.50±0.03 −504.90±0.02 0.54±0.03 472.79±0.44

SCLD (ours) −73.45±0.01−73.45±0.01−73.45±0.01 −108.17±0.25−108.17±0.25−108.17±0.25 −504.46±0.09−504.46±0.09−504.46±0.09 1.00±0.181.00±0.181.00±0.18 486.77±0.70

Annealing path. For the prescribed density curve π we consider

π(x, t) ∝ pprior(x)
1−β(t)ρtarget(x)

β(t), (20)

where β : [0, T] → [0, 1] is a monotonically increasing function fulfilling β(0) = 0 and β(T) = 1.
We choose to learn the function β to attain a smoother transition; see (35) and App. A.6.5.

Resampling. There is a wealth of literature (Webber, 2019; Doucet et al., 2001; Douc & Cappé,
2005) regarding designing SMC resampling schemes. However, for a fair comparison to CRAFT
(Matthews et al., 2022), we utilize the common multinomial resampling scheme. Resampling can,
however, reduce particle diversity by introducing identical particles in its output. As such, it is
common to trigger resampling at a time tn only when the Effective Sample Size (ESS), a measure

of particle quality defined by ESS =
(
∑K

k=1 w(k)
n)

2∑K
k=1(w

(k)
n)2

, is below a certain threshold, where wn are the

importance weights at time tn (as in Algorithm 3). In line with prior works (Matthews et al., 2022;
Phillips et al., 2024), we pick the threshold to be 0.3K where K is the number of particles.

MCMC refinements. In order to cope with sub-optimal controls u during the course of optimiza-
tion, we add some MCMC refinement steps after each subtrajectory at time tn, using a Markov
kernel with invariant measure π(·, tn). In line with Matthews et al. (2022), after every subtrajectory,
we use one Hamiltonian Monte Carlo (HMC) step with 10 leapfrog steps.

Replay buffers. Replay buffers are known to prevent mode collapse and improve sample efficiency
for sampling tasks (Vemgal et al., 2023; Midgley et al., 2022; Sendera et al., 2024). As such, we
utilize a prioritized replay buffer during training time. At a high level, we maintain a fixed-size
rolling cache of paths generated by previous versions of the policy, i.e., learned control u. For the
gradient updates, we then take half of the samples from the current policy and the other from the
buffer using Radon-Nikodym derivatives as weights for prioritization, see Algorithm 4 in App. A.3
for details. We note that this procedure is easily feasible with the log-variance divergence since this
divergence does not rely on an evaluation along the current policy (see §2.3).

3 EXPERIMENTS

We empirically demonstrate the performance of the proposed SCLD sampler on a wide variety
of sampling benchmarks. We consider a combination of practical and synthetic examples taken
from Blessing et al. (2024), the full descriptions of which are contained in App. A.4:

• Examples from Bayesian statistics: The Seeds, Sonar, Credit, Brownian, and LGCP tasks.

• Synthetic targets: A 40-mode Gaussian mixture model in 50d (GMM40), a 32-mode Many-Well
task (MW54) in 5d, the popular 10d Funnel benchmark, and a 50d Student mixture model (MoS).
Many of these are in relatively high dimensions and with many well-separated modes.

• The Robot1 and Robot4 tasks: Inspired by robotics control problems, these synthetic 10-
dimensional targets model the distribution over the configurations of a 10-joint robotic arm in
the plane. They have multiple well-separated and sharp modes.

As baselines, we consider a representative selection of related sampling methods and refer
to App. A.1 for descriptions. We study two metrics used frequently by previous works, such as
in Blessing et al. (2024); Vargas et al. (2023). When groundtruth samples are available, we report

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of different methods in terms of Sinkhorn distances. We present all tasks where we have
access to samples for the evaluation. We report NA if all considered hyperparameter choices diverged.

Sinkhorn (↓) Funnel (10d) MW54 (5d) Robot1 (10d) Robot4 (10d) GMM40 (50d) MoS (50d)

SMC 149.35±4.73 20.71±5.33 24.02±1.06 24.08±0.26 46370.34±137.79 3297.28±2184.54

SMC-ESS 117.48±9.70117.48±9.70117.48±9.70 1.11±0.15 1.82±0.50 2.11±0.31 24240.68±50.52 1477.04±133.80

SMC-FC 211.43±30.08 2.03±0.17 0.37±0.08 1.23±0.02 39018.27±159.32 3200.10±95.35

CRAFT 133.42±1.04 11.47±0.90 2.92±0.01 4.14±0.50 28960.70±354.89 1918.14±108.22

DDS 142.89±9.55 0.63±0.24 11.44±12.50 5.38±2.44 5435.18±172.20 2154.88±3.86

PIS NA 0.42±0.010.42±0.010.42±0.01 1.54±0.72 2.02±0.36 10405.75±69.41 2113.17±31.17

CMCD-KL 124.89±8.95 0.57±0.05 3.71±1.00 2.62±0.41 22132.28±595.18 1848.89±532.56

CMCD-LV 139.07±9.35 0.51±0.08 28.49±0.07 27.00±0.07 4258.57±737.15 1945.71±48.79

SCLD (ours) 134.23±8.39 0.44±0.06 0.31±0.040.31±0.040.31±0.04 0.40±0.010.40±0.010.40±0.01 3787.73±249.753787.73±249.753787.73±249.75 656.10±88.97656.10±88.97656.10±88.97

CMCD-KL CMCD-LV CRAFT SCLD (ours) Groundtruth

Figure 2: Samples from our considered methods and the groundtruth for the GMM40 (50d) (top) and Robot4
(10d) (bottom) tasks. Our SCLD method accurately finds all modes and avoids low probablity regions.

the Sinkhorn distance (an optimal transport distance) to a set of generated samples (Cuturi, 2013),
and otherwise consider the ELBO metric (i.e., a lower bound on logZ).

We took great care to ensure the fairness of our experiments and refer the reader to App. A.5 for
full experimental and reproducibility details and to Blessing et al. (2024) for a discussion on bench-
marking samplers. We also include numerous additional experiments and metrics in the appendices,
such as ablation studies in Apps. A.6.1 and A.6.2, runtime information in App. A.6.3, a study on
logZ estimation in App. A.6.4, the effect of learning priors by variational inference in App. A.6.6,
a comparison to PDDS in App. A.6.7, and a comparison of KL and LV training in App. A.6.10.

3.1 RESULTS

Our SCLD method exhibits strong performance on both ELBO and Sinkhorn benchmarks (Tabs. 2
and 3). Indeed, among all tasks except Funnel, we are able to achieve the top performance or come a
close second when measuring performance by Sinkhorn distances (when it is available). For ELBO
estimation, SCLD can utilize a large number of resampling steps to attain the strongest performances
in all but one task. In particular, SCLD can surpass the outcomes of CMCD-KL and CMCD-LV with
40000 gradient steps using only 3000 steps. In the following, we comment on different aspects.

Avoiding mode collapse. We visualize the samples for GMM40 and the Robot4 task in Fig. 2.
For GMM40, we plot the first two dimensions of samples against the true marginal distribution.
In all attempted hyperparameter settings, we found that CRAFT suffers from mode collapse (see
also App. A.6.4) and that CMCD-KL gradually collapses to a few modes, covering low probabil-
ity regions. CMCD-LV and SCLD perform much better, and indeed the samples from SCLD are
virtually indistinguishable from the groundtruth. For Robot4, we visualize the sampled robot arm
positions. Observe that for the Robot4 task, CMCD-KL and CRAFT both collapse onto 1 mode.
CMCD-LV does not experience mode collapse but nevertheless does not sample accurately for any
mode. Only our SCLD Method is able to identify and sample relatively precisely from all 8 modes.

Improved convergence properties of SCLD. We found that the SCLD algorithm demonstrates
superior convergence properties. As SCLD is effectively initialized as an SMC sampler and is
trained to improve upon it, we expect a good initial performance even before training and, thus,
an improved starting point for optimization. As visualized in Figure 3, SCLD consistently attains
better ELBOs for any given training time budget on all tasks when compared to CMCD-KL and
CMCD-LV. While in some cases SCLD is initially worse than CRAFT, it always manages to catch
up quickly and surpasses it. SCLD and CMCD steps require similar amounts of time for these tasks

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400
Time Elapsed (s)

550

540

530

520

510

EL
BO

Credit

0 100 200 300
Time Elapsed (s)

1.0

0.5

0.0

0.5

1.0
Brownian

0 100 200
Time Elapsed (s)

75.0

74.5

74.0

73.5

Seeds

0 100 200
Time Elapsed (s)

114

112

110

108 Sonar

SCLD
CMCD-KL
CMCD-LV
CRAFT
Long Run
CMCD (Best)

Figure 3: ELBOs during training for several tasks. We visualize the ELBO estimates attained by 4 methods
as a function of the training time elapsed (until SCLD finished after 3000 iterations), running 3 seeds for each
task. We mark the long run CMCD ELBOs (best out of KL and LV loss), corresponding to running for 40000
gradient steps as for the main table. Methods leveraging Sequential Monte Carlo (SCLD and CRAFT) generally
exhibit improved convergence speed, but whereas CRAFT plateaus quickly, our SCLD method often achieves
state-of-the-art performance in about 5 minutes.

0 1 2 4 8 16 32 64128
SMC Steps (Train)

0
1

2
4

8
16

32
64

12
8#
SM

C
 S

te
ps

 (E
va

lu
at

io
n)

Seeds

0 1 2 4 8 16 32 64128
SMC Steps (Train)

Sonar

0 1 2 4 8 16 32 64128
SMC Steps (Train)

MoS (50d)

0 1 2 4 8 16 32 64128
SMC Steps (Train)

Robot4

75.0

74.5

74.0

73.5

EL
BO

118

116

114

112

110

EL
BO

1000

1500

2000

2500

Si
nk

ho
rn

 D
is

ta
nc

e

5

10

15

Si
nk

ho
rn

 D
is

ta
nc

e

Figure 4: Performance of SCLD for different numbers of SMC steps at training and evaluation time for several
tasks. Better results are shaded darker. We note that taking “zero” SMC steps corresponds to the CMCD
method. Using more SMC steps has generally a beneficial effect during training. Our method allows us to
select a different number at training and during inference.

(see App. A.6.3), and thus SCLD offers a 10-fold decrease in training time as well as iteration count
compared to CMCD. See App. A.6.9 for an alternative visualization.

Choice of number of SMC steps. Here, we study the effect of varying the number N of subtrajec-
tories used in the SCLD sampler, i.e., SMC steps where we apply resampling (if ESS is lower than
the threshold) and MCMC steps, and offer practical advice on choosing this value. For this study,
we fix the number of gradient steps for training to 8000 but otherwise retain the same experimental
design. The results are illustrated in Fig. 4, where we visualize the relevant metric for four tasks
and demonstrate the effect of varying the number of SMC steps used at training and evaluation. For
most tasks, we found it advantageous to use as many SMC steps as possible at both training and
evaluation time. Particularly for the Seeds and Sonar targets, the outcomes look strikingly similar.
For these tasks, it is also shown that using a smaller number of SMC steps at training or even only
adding SMC steps at evaluation already improves upon stand-alone diffusion-based samplers.

While it is well known that resampling can potentially lead to mode collapse and loss of sample
diversity on highly multimodal tasks (Doucet et al., 2001), we found that even for such tasks, re-
sampling, when used sparingly, was still beneficial during training. This is clearly reflected in the
multimodal Robot4 task, where using SMC steps at training significantly improves sample quality.
In line with the previous paragraph, this suggests that our SCLD training setup can help improve
training convergence. Informed by our observations, we opt to use 4 subtrajectories only at training
for all synthetic tasks except Funnel and MoS, and, for all other tasks, we utilize 128 subtrajectories
at both training and evaluation time for the main experiments. These choices, while not necessarily
optimal, are robust and work well across our diverse set of benchmarks.

4 CONCLUSION

We have developed a framework for combining diffusion-based samplers with Sequential Monte
Carlo algorithms and propose simple yet effective methods for training. Our framework culminates
in a novel sampler, termed Sequential Controlled Langevin Diffusion (SCLD), in principle offering
a great amount of design freedom. In particular, SCLD allows for accelerated training, flexible pa-
rameterizations, end-to-end training with prioritized replay buffers, and injection of resampling and
MCMC steps at arbitrary times in the generative process. We provide careful ablation studies of our
design choices and empirically show state-of-the-art performance on a diverse range of benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Arbel, Alex Matthews, and Arnaud Doucet. Annealed flow transport Monte Carlo. In
International Conference on Machine Learning, pp. 318–330, 2021.

Oleg Arenz, Mingjun Zhong, and Gerhard Neumann. Trust-region variational inference with gaus-
sian mixture models. Journal of Machine Learning Research, 21(163):1–60, 2020.

Paolo Baldi. Stochastic calculus. Springer, 2017.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. Transactions on Machine Learning Research, 2024.

Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E Jacob. Schrödinger bridge samplers.
arXiv preprint arXiv:1912.13170, 2019.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006.

Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann. Be-
yond ELBOs: A large-scale evaluation of variational methods for sampling. In Forty-first Inter-
national Conference on Machine Learning, 2024.

Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and O Deniz
Akyildiz. Tweedie moment projected diffusions for inverse problems. arXiv preprint
arXiv:2310.06721, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Alexander Buchholz, Nicolas Chopin, and Pierre E. Jacob. Adaptive tuning of hamiltonian monte
carlo within sequential monte carlo, 2020. URL https://arxiv.org/abs/1808.07730.

Alberto Cabezas, Adrien Corenflos, Junpeng Lao, and Rémi Louf. Blackjax: Composable Bayesian
inference in JAX, 2024.

Sourav Chatterjee and Persi Diaconis. The sample size required in importance sampling. The Annals
of Applied Probability, 28(2):1099–1135, 2018.

Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of Schrödinger
bridge using forward-backward SDEs theory. In International Conference on Learning Represen-
tations, 2022.

Eungchun Cho, Moon Jung Cho, and John Eltinge. The variance of sample variance from a finite
population. International Journal of Pure and Applied Mathematics, 21(3):389, 2005.

Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539–552,
2002.

Nicolas Chopin, Omiros Papaspiliopoulos, et al. An introduction to sequential Monte Carlo, vol-
ume 4. Springer, 2020.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022b.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Infor-
mation Processing Systems, volume 26, 2013.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://arxiv.org/abs/1808.07730

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (OTT): A JAX toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Chenguang Dai, Jeremy Heng, Pierre E Jacob, and Nick Whiteley. An invitation to sequential Monte
Carlo samplers. Journal of the American Statistical Association, 117(539):1587–1600, 2022.

Paolo Dai Pra. A stochastic control approach to reciprocal diffusion processes. Applied mathematics
and Optimization, 23(1):313–329, 1991.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Pierre del Moral. Mean field simulation for Monte Carlo integration. Monographs on Statistics &
Applied Probability. Chapman&Hall, 2013.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(3):411–436, 2006.

Kieran Didi, Francisco Vargas, Simon V Mathis, Vincent Dutordoir, Emile Mathieu, Urszula J Ko-
morowska, and Pietro Lio. A framework for conditional diffusion modelling with applications in
motif scaffolding for protein design. arXiv preprint arXiv:2312.09236, 2023.

Carles Domingo-Enrich. A taxonomy of loss functions for stochastic optimal control. arXiv preprint
arXiv:2410.00345, 2024.

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky TQ Chen. Stochastic
optimal control matching. arXiv preprint arXiv:2312.02027, 2023.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering. In Pro-
ceedings of the 4th International Symposium on Image and Signal Processing and Analysis, pp.
64–69, 2005.

Arnaud Doucet, Nando de Freitas, and Neil J. Gordon (eds.). Sequential Monte Carlo Methods in
Practice. Statistics for Engineering and Information Science. Springer, 2001.

Arnaud Doucet, Will Grathwohl, Alexander G de G Matthews, and Heiko Strathmann. Score-based
diffusion meets annealed importance sampling. In Advances in Neural Information Processing
Systems, 2022.

Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. Efficient Bayesian sampling
using normalizing flows to assist Markov Chain Monte Carlo methods. arXiv preprint
arXiv:2107.08001, 2021.

Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. Adaptive Monte Carlo augmented
with normalizing flows. Proceedings of the National Academy of Sciences, 119(10):e2109420119,
2022.

Tomas Geffner and Justin Domke. MCMC variational inference via uncorrected Hamiltonian an-
nealing. In Advances in Neural Information Processing Systems, 2021.

Tomas Geffner and Justin Domke. Langevin diffusion variational inference. arXiv preprint
arXiv:2208.07743, 2022.

A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data
Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis,
2013.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In IEE Proc. F Radar Signal Proc., volume 140, pp. 107–113, 1993.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Paul Lyonel Hagemann, Johannes Hertrich, and Gabriele Steidl. Generalized normalizing flows via
Markov chains. Cambridge University Press, 2023.

Carsten Hartmann and Lorenz Richter. Nonasymptotic bounds for suboptimal importance sampling.
SIAM/ASA Journal on Uncertainty Quantification, 12(2):309–346, 2024.

Jeremy Heng, Adrian N. Bishop, George Deligiannidis, and Arnaud Doucet. Controlled sequential
Monte Carlo. The Annals of Statistics, 48(5), 2017.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communication in Statistics- Simulation and Computation, 18:1059–1076, 1989.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
fusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

Takeshi Koshizuka and Issei Sato. Neural lagrangian Schrödinger bridge: Diffusion modeling for
population dynamics. In The Eleventh International Conference on Learning Representations,
2023.

Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou. Deep generalized
Schrödinger bridge. Advances in Neural Information Processing Systems, 35:9374–9388, 2022.

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos A Theodorou, and
Ricky TQ Chen. Generalized Schrödinger bridge matching. arXiv preprint arXiv:2310.02233,
2023.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483, 2023.

Alex Matthews, Michael Arbel, Danilo Jimenez Rezende, and Arnaud Doucet. Continual repeated
annealed flow transport Monte Carlo. In International Conference on Machine Learning, pp.
15196–15219, 2022.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

Volodymyr Mnih. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log Gaussian Cox
processes. Scandinavian Journal of Statistics, 25(3):451–482, 1998.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learn-
ing stochastic dynamics from samples. In International conference on machine learning, pp.
25858–25889. PMLR, 2023.

E Nelson. Dynamical theories of Brownian motion. Press, Princeton, NJ, 1967.

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman PDEs
using neural networks: perspectives from the theory of controlled diffusions and measures on
path space. Partial differential equations and applications, 2(4):48, 2021.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligianni-
dis, and Arnaud Doucet. Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. On diffusion models for amortized
inference: Benchmarking and improving stochastic control and sampling. arXiv preprint
arXiv:2402.05098, 2024.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. Advances in Neural Information Processing Systems, 36, 2024.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2022.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Jingtong Sun, Julius Berner, Lorenz Richter, Marius Zeinhofer, Johannes Müller, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Dynamical measure transport and neural PDE solvers for
sampling. arXiv preprint arXiv:2407.07873, 2024.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In
International Conference on Learning Representations, 2023.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets variational
inference: Controlled Monte Carlo diffusions. In The Twelfth International Conference on Learn-
ing Representations, 2024.

Nikhil Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of using a
replay buffer on mode discovery in GFlowNets. arXiv preprint arXiv:2307.07674, 2023.

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, et al. Amortizing intractable in-
ference in diffusion models for vision, language, and control. arXiv preprint arXiv:2405.20971,
2024.

Robert J Webber. Unifying sequential Monte Carlo with resampling matrices. arXiv preprint
arXiv:1903.12583, 2019.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, pp. 681–688, Madison, WI, USA, 2011.

Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Advances in Neural Informa-
tion Processing Systems, 33:5933–5944, 2020.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang Song.
Improving diffusion inverse problem solving with decoupled noise annealing. arXiv preprint
arXiv:2407.01521, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio. Diffu-
sion generative flow samplers: Improving learning signals through partial trajectory optimization.
arXiv preprint arXiv:2310.02679, 2023a.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
pling. In International Conference on Learning Representations, 2022.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

CONTENTS

A.1 Related works . 16

A.2 Proofs and theoretical remarks . 19

A.3 Algorithmic details and pseudocode . 21

A.3.1 Computation of the Radon-Nikodym derivative 21

A.3.2 A practical algorithm . 22

A.4 Benchmark target distributions . 23

A.4.1 Bayesian statistics tasks . 23

A.4.2 Synthetic targets . 24

A.5 Experimental details . 25

A.5.1 Metrics and evaluation . 25

A.5.2 Design choices . 26

A.5.3 Hyperparameter selection . 27

A.6 Additional experiments . 29

A.6.1 Ablation studies of SCLD . 29

A.6.2 Removing MCMC components . 29

A.6.3 Timings . 30

A.6.4 Estimations of the normalizing constant 30

A.6.5 The learned annealing schedule . 31

A.6.6 Mean field prior for SCLD . 32

A.6.7 Comparison to PDDS . 32

A.6.8 Comparison with advanced SMC schemes 33

A.6.9 Convergence of different methods by iteration count 34

A.6.10 KL-based training of SCLD . 34

A.1 RELATED WORKS

Adding to §1.1, this section provides additional related works.

SMC. SMC methods (Chopin, 2002; Del Moral et al., 2006) describe a general methodology to
sample sequentially from a sequence of (annealed) distributions. They rely on forward and backward
kernels in order to move from one distribution to another and leverage resampling steps in between.
Popular choices for the kernels include MCMC. However, while enjoying theoretical guarantees,
they suffer from drawbacks such as long mixing times and tedious tuning (Dai et al., 2022).

SMC with learned kernels. To make the transition kernels more flexible and reduce the amount
of manual tuning, previous approaches have been proposed to learn them (Wu et al., 2020; Geffner
& Domke, 2021). Combinations with SMC include the works by Bernton et al. (2019); Heng et al.
(2017). While they propose learned SMC transitions, they do not utilize neural networks (partially
due to tractability issues). Bernton et al. (2019) build on the prior work of Heng et al. (2017),
which uses ideas from optimal control to iteratively modify the prior distribution and transition
kernels through an approximate dynamic programming approach. However, this requires the prior
distribution to be conjugate with respect to the policy of the underlying optimal control problem,
among other drawbacks discussed in Bernton et al. (2019). The latter work, in turn, proposes the
Sequential Schrödinger Bridge Sampler (SSB), which produces a trained SMC sampler by applying
sequential approximate iterative proportional fitting (IPF) to learn the forward and backward kernels.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Whereas the paper works in discrete time, we take a continuous time perspective and, in doing so,
obtain a family of simpler, unbiased training procedures, as well as reveal additional design choices
like the ability to choose the integrator. We also note that our objective is fundamentally different
from IPF and, in particular, yields a different solution for a finite numbers of steps (see Vargas et al.
(2024, Proposition 3.4)).

Methods combining SMC with neural networks include Annealed Flow Transport Monte Carlo
(AFT) (Arbel et al., 2021), as well as its improved version Continual Repeated Annealed Flow
Transport Monte Carlo (CRAFT) (Matthews et al., 2022). Those works use normalizing flows to
transition between adjacent annealing steps. While achieving improved performance, the determin-
istic nature of the transitions requires MCMC steps after the resampling steps to avoid particles
collapsing to the same location. Moreover, the log-determinant of the Jacobian (or divergence of the
drift for continuous time) is required. To avoid costly computations in high dimensions, one either
needs to place architectural restrictions on the architecture or require the use of noisy estimators
(such as Hutchinson’s trace estimator (Hutchinson, 1989) for the divergence). We remark that there
is also a series of works that combines normalizing flows with MCMC methods (Midgley et al.,
2022; Gabrié et al., 2021; 2022; Hagemann et al., 2023).

Diffusion-based samplers. Works on diffusion-based samplers such as Path Integral Samplers
(PIS), Denoising Diffusion Samplers (DDS), Time-reversed Diffusion Samplers (DIS), and others
introduced by Zhang & Chen (2022); Berner et al. (2024); Vargas et al. (2023; 2024); Sendera et al.
(2024); Sun et al. (2024) have focused on transporting a prior to the target distribution using con-
trolled stochastic differential equations (SDEs), where the control is learned by minimizing suitable
divergences between induced measures on the SDE trajectories; see the framework described in
Section 2.2. In this work, we aim to harness their flexibility together with the power of SMC. Or-
thogonal to our work, techniques from diffusion models have been employed to approximate the
extended target distribution needed in AIS methods (Doucet et al., 2022; Geffner & Domke, 2022).

Subtrajectories. In our work, we utilize the idea of dividing a path measure into sequential sec-
tions. This bears resemblance to the concept of subtrajectories as introduced in a discrete-time
setting in the context of GFlownets (Zhang et al., 2023a; Madan et al., 2023), and thus we will also
use this term. While conceptually similar, the latter work only proposed subtrajectories as an alter-
native training loss, whereas we use them to facilitate integration with SMC methods. Additionally,
their formulation requires learning the evolution of the SDE marginals, whereas we adapt recent
Controlled Monte Carlo Diffusions (CMCD) (Vargas et al., 2024) to get rid of this requirement.

SMC with diffusion-based samplers. To the best of our knowledge, the only existing diffusion-
based method leveraging an SMC framework is the Particle Denoising Diffusion Sampler
(PDDS) (Phillips et al., 2024), where the backward kernel is chosen to be the noising diffusion and
the forward kernel the approximate (learned) time-reversal. While also inspired by diffusion-based
samplers, PDDS significantly differs from our approach. First, we take a more general continuous-
time perspective, allowing us more freedom in design choices while still recovering the (discrete-
time) setup of PDDS as a special case (i.e., where we use one Euler-Marumaya step per subtrajec-
tory). Next, their setup requires learning potential functions and relies on automatic differentiation
to compute the control, which can be unstable and challenging to optimize. Indeed, PDDS was em-
pirically found to require variational approximations for the prior distribution to train stably, which
has certain drawbacks (see Apps. A.6.6 and A.6.7). Moreover, it uses an alternating training setup
that uses (approximate) samples from the partially trained model, whereas we train our model end-
to-end, i.e., our setup is the same during training and inference. We empirically compare methods
and discuss the impact of this difference in training methodology in App. A.6.7. We additionally
compare different SMC-based methods in Table 1.

Diffusion-based generative modeling. As outlined in our introduction, sampling problems are sub-
stantially different from problems in generative modeling, where samples from the target distribu-
tion are provided. However, many successful techniques from diffusion-based generative modeling,
such as SDE integrators, noise schedules, and probability flow ODEs, can be translated to diffusion-
based samplers. Loosely related to CMCD, and thus SCLD, are (entropic) action-matching ap-
proaches (Neklyudov et al., 2023), where the intermediate distributions are prescribed via samples
as compared to (unnormalized) densities in our setting. In both settings, there exist unique gradi-
ent fields representing the optimal controls, which can be characterized as solutions to infinitesimal
Schrödinger bridge problems at the intermediate distributions, i.e., minimizers of the kinetic energy

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(see Vargas et al. (2024, Proposition 3.4) and Neklyudov et al. (2023, Appendix B.3)). As described
in Remark A.2, we could replace the CMCD framework with more general bridges, i.e., arbitrary,
learnable density evolutions as considered in Richter & Berner (2024), at the cost of learning the (un-
normalized) marginals with a separate model. A corresponding objective in generative modeling has
been considered by Chen et al. (2022). While such approaches do not exhibit unique solutions, one
can additionally minimize the KL divergence of the learned path measure to a reference measure,
typically given by a Brownian motion, which leads to dynamic Schrödinger bridge problems (i.e.,
entropy-regularized optimal transport). This has been explored by, e.g., Vargas et al. (2021); De Bor-
toli et al. (2021); Shi et al. (2024) in the context of generative modeling, and we refer to Koshizuka
& Sato (2023); Liu et al. (2022; 2023) for extensions beyond kinetic energy minimization (related
to mean-field games).

Finally, we mention that generative modeling frameworks that allow likelihood computations can
also be used for sampling problems. Specifically, one can optimize objectives from generative mod-
eling (e.g., score-matching objectives) using approximate samples from the target distribution ob-
tained from the partially trained model together with importance sampling based on the likelihoods
of the samples. This can be viewed as a version of the cross-entropy method and is used, e.g.,
in Jing et al. (2022, Section 3.6) for diffusion models4 and in Tong et al. (2024, Appendix C.2)
for flow matching. However, a mismatch of the high-probability regions of the proposal (given by
the partially trained model) and target distributions often leads to high variance in high-dimensional
settings. We note that PDDS can be viewed as a very elaborate version of such an approach, counter-
acting the aforementioned problems by incorporating SMC steps into the proposal as well as train-
ing with a combination of target-matching and score-matching objectives. We compare to PDDS
in App. A.6.7.

Diffusion-based posterior sampling and stochastic optimal control. For our considered sam-
pling problems, we only assume minimal to no prior knowledge of the properties of the target
distribution. However, for sampling from posterior distributions arising from Bayesian inference
problems, one can decompose the target as ptarget = pX|Y (·, y) =

pXpY |X(y|·)
Z , where y is a given

measurement and pX and pY |X are the prior and likelihood, respectively. In our Bayesian statis-
tics tasks (see App. A.4), the prior pX is given by a simple, tractable distribution, and we do not
incorporate knowledge about the prior into our framework.

However, for certain problems, the prior can also be more complex, e.g., in inverse problems on
image, audio, or video distributions. Assuming – different from our setting – that samples from the
prior pX are given, recent methods leverage diffusion priors, i.e., diffusion models pre-trained on
pX , to simplify sampling from ptarget; see, e.g., Chung et al. (2022a;b); Song et al. (2022; 2023);
Boys et al. (2023); Zhang et al. (2024). Using the decomposition of ptarget, they draw approximate
samples from ptarget based on approximations of the likelihood score (i.e., the difference of the
score for the noised posterior and prior distributions) during inference. For instance, the common
reconstruction guidance approximates this score by the (scaled) gradient of the log-likelihood eval-
uated at the denoised sample obtained via Tweedie’s formula and the pre-trained model. While such
plug-and-play approaches can yield impressive results for high-dimensional distributions without
additional training, they typically lack theoretical guarantees and typically suffer from instabilities
and mode collapse.

At the cost of simulating multiple particles during the generative process, the bias originating from
approximating the likelihood score can be eliminated (in the limit of infinitely many particles) by
leveraging ideas from SMC, i.e., by computing importance weights and interleaving the generative
process with resampling steps (Wu et al., 2024). Taking into account an additional training phase,
one can also obtain theoretical guarantees by writing the likelihood score as a solution to an stochas-
tic optimal control (SOC) problem (as in DDS, however, with the pre-trained diffusion model as a
reference process; see Didi et al. (2023, Section 2.4) and also Venkatraman et al. (2024). The SOC
problem can then be solved using, e.g., the log-variance divergence. While such posterior sampling
approaches assume more structure than our considered sampling problem and rely on pre-trained
diffusion prior, one could also adopt the idea of SCLD to such settings (see also Remark A.2),
which we leave to future work. This would basically correspond to a combination of the approaches

4While Jing et al. (2022) use the probability flow ODE to obtain likelihoods, one could alternatively obtain
importance weights in path space; see the references on diffusion-based samplers above.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

pprior p1 p2 ptarget

p⃗T |0

p⃗t1|0 p⃗t2|t1 p⃗T |t2

Figure 5: Illustration of annealed importance sampling along a geometric path, where we consider either one
(top arrow) or three (bottom arrows) transition steps from the prior to the target.

by Wu et al. (2024) and Didi et al. (2023), where the likelihood score is learned but training is
facilitated by leveraging SMC steps.

We note that ideas similar to Didi et al. (2023) have recently also been used for fine-tuning diffusion
models (where pY |X(y|·) corresponds to a reward function), using adjoint matching to minimize
the KL divergence instead of, e.g., the log-variance divergence, to solve the SOC (Domingo-Enrich
et al., 2024). While we propose to use the log-variance divergence to allow off-policy training and
reduce variance (see §2.3), we note that adjoint matching and related approaches (Domingo-Enrich
et al., 2023; Domingo-Enrich, 2024) could also be used for SCLD to solve the SOC problems in
each subtrajectory.

A.2 PROOFS AND THEORETICAL REMARKS

In this section, we provide additional remarks on our theory and the proof of Prop. 2.2.
Remark A.1 (SMC formulation in continuous vs. discrete time). We stress that, even though we
evaluate our process X on N + 1 discrete time instances, the formalism above includes time-
continuous processes (Xt)t∈[0,T]. While some transition kernels used in SMC, e.g., uncorrected
Langevin kernels, can be interpreted in continuous time, SMC is typically stated for a fixed number
of discrete steps. We will see in the sequel how the continuous-time formulation offers an ele-
gant framework with certain advantages, in particular, allowing us to integrate learned SDE-based
transition kernels and interleave them with resampling and MCMC steps at arbitrary times.
Remark A.2 (Generalizations). We note that, in principle, prescribing an annealing, i.e. pXu = π,
is not strictly necessary, and one could instead consider general bridges allowing for arbitrary density
evolutions between the prior to the target. This, however, would come with the additional challenge
of learning the (unnormalized) log-density log pXu of the controlled process, see, e.g., Richter &
Berner (2024, Appendix A.7), which could make optimization potentially more difficult. Moreover,
we can only use the approximate densities for the MCMC refinements as compared to using the
target density π in case of a prescribed annealing. While the general bridges do not exhibit unique
solutions, one can consider the case studied in diffusion models, where the control v of the reverse-
time process in (7) is fixed such that Y v

0 is approximately distributed as pprior. Nelson’s identity
in (8) shows that it is sufficient to learn the log-density log pY v and the optimal control can be
computed using automatic differentiation, as leveraged in Phillips et al. (2024); Richter & Berner
(2024). However, this can potentially be unstable and computationally more expensive.

Remark A.3 (Connections to reinforcement learning). The objectives of diffusion-based samplers
can be viewed as stochastic optimal control problems; see, e.g., Dai Pra (1991); Zhang & Chen
(2022); Berner et al. (2024). More generally, stochastic optimal control problems can be under-
stood as versions of maximum entropy reinforcement learning in continuous time and space; see,
e.g., Domingo-Enrich et al. (2024, Appendix C). Specifically, the prior distribution pprior together
with the control u define policies and transitions via the SDE (6) (or, in discrete time, via the tran-
sition kernels in (32) given by the Euler-Maruyama scheme). This allows the transfer of successful
ideas from reinforcement learning to diffusion-based samplers. Motivated by previous work (Zhang
et al., 2023a; Richter & Berner, 2024; Sendera et al., 2024), we propose to use off-policy training
with prioritized replay buffers for SCLD, which is enabled by the log-variance loss (see §2.3).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof of Prop. 2.2. We follow the proof ideas from Nüsken & Richter (2021, Proposition 5.7), how-
ever, need to be careful since the reweighting of the measure P⃗[tn−1,tn] = P⃗

u,πn−1

[tn−1,tn]
is done w.r.t. a

measure on the previous time interval [tm, tn−1]. Let us recall the KL divergence (16), namely

D := DKL

(
P⃗[tn−1,tn]| ⃗P[tn−1,tn]

)
= −EX∼P⃗[tn−1,tn]

[
log
(
w[tn−1,tn](X)

)]
= −EX∼P⃗[tm,tn]

[
log
(
w[tn−1,tn](X)

)
w[tm,tn−1](X)

]
,

where we abbreviate w[s,t] :=
d ⃗P

u,π(·,s)
[s,t]

dP⃗
u,π(·,t)
[s,t]

. Using the analogous abbreviation w⊗I
[s,t] for the product

measures, we note that

Var
[
D̂

(K)
KL (P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]
)
]
=

1

K
VarX∼P⃗⊗I

[tm,tn]

[
log
(
w⊗I

[tn−1,tn]
(X)

)
w⊗I

[tm,tn−1]
(X)

]
=

MI −D2
I

K
,

(21)

where

MI := EX∼P⃗⊗I
[tm,tn]

[
log2

(
w⊗I

[tn−1,tn]
(X)

)(
w⊗I

[tm,tn−1]
(X)

)2]
and

DI := −EX∼P⃗⊗I
[tm,tn]

[
log
(
w⊗I

[tn−1,tn]
(X)

)
w⊗I

[tm,tn−1]
(X)

]
= −EX∼P⃗⊗I

[tn−1,tn]

[
log
(
w⊗I

[tn−1,tn]
(X)

)]
= DKL

(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)
= ID.

(22)

Moreover, we can compute

MI = EX∼P⃗⊗I
[tm,tn]

(I∑
i=1

logw
(i)
[tn−1,tn]

(X)

)2 (
w⊗I

[tm,tn−1]
(X)

)2
=

I∑
i=1

EX∼P⃗⊗I
[tm,tn]

[
log2

(
w

(i)
[tn−1,tn]

(X)
)(

w⊗I
[tm,tn−1]

(X)
)2]

+

I∑
i,j=1
i ̸=j

EX∼P⃗⊗I
[tm,tn]

[
log
(
w

(i)
[tn−1,tn]

(X)
)
log
(
w

(j)
[tn−1,tn]

(X)
)(

w⊗I
[tm,tn−1]

(X)
)2]

= IMCI−1 + I(I − 1)D2CI−2,

(23)

where w
(i)
[s,t] denotes the weight for the i-th factor of the product measure and we abbreviate

M := EX∼P⃗[tm,tn]

[
log2

(
w[tn−1,tn](X)

) (
w[tm,tn−1](X)

)2] ≥ D2 (24)

and

C := EX∼P⃗[tm,tn]

[(
w[tm,tn−1](X)

)2]
= EX∼P⃗[tm,tn−1]

[(
w[tm,tn−1](X)

)2]
= Dχ2

(
⃗P[tm,tn−1]|P⃗[tm,tn−1]

)
+ 1 ≥ 1.

(25)

Combining the definition of the relative error with (21), (22), and (23), we obtain that

r(K)
(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)
=

√
MI −D2

I

KD2
I

=
CI/2

√
K

√
MC +D2(I − 1)

C2ID2
− 1

CI
,

which, in view of (24) and (25), proves the claim.

As already stated in the main text, we note that the log-variance divergence, defined in (18), does
not scale exponentially in the dimension, as already proved in (Nüsken & Richter, 2021, Proposition
5.7). For convenience of the reader, let us explicitly verify that this statement also holds in our

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

setting. To this end, first note that

DQ
⊗I

LV

(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)
= VarX∼Q⊗I

[
log
(
w⊗I

[tn−1,tn]
(X)

)]
= (26a)

I∑
i=1

VarX∼Q

[
log
(
w

(i)
[tn−1,tn]

(X)
)]

= IDQLV

(
P⃗[tn−1,tn]| ⃗P[tn−1,tn]

)
, (26b)

where we recall that Q is an arbitrary reference measure. Following Cho et al. (2005), the sample
variance satisfies

Var
[
D̂
Q⊗I ,(K)
LV

(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)]
=

1

K

(
µ4 −

K − 3

K − 1
DQ

⊗I

LV

(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)2)
,

(27)
where

µ4 = EX∼Q⊗I

[(
log
(
w⊗I

[tn−1,tn]
(X)

)
− EX∼Q⊗I

[
log
(
w⊗I

[tn−1,tn]
(X)

)])4]
. (28)

We can calculate

µ4 = EX∼Q⊗I

(I∑
i=1

(
log
(
w

(i)
[tn−1,tn]

(X)
)
− EX∼Q

[
log
(
w

(i)
[tn−1,tn]

(X)
)]))4

 (29a)

= I EX∼Q

[(
log
(
w[tn−1,tn](X)

)
− EX∼Q

[
log
(
w[tn−1,tn](X)

)])4]
(29b)

+ 6

(
I
2

)
EX∼Q

[(
log
(
w[tn−1,tn](X)

)
− EX∼Q

[
log
(
w[tn−1,tn](X)

)])2]2
, (29c)

where we have used the fact that, for instance,

EX∼Q⊗I

[(
log
(
w

(i)
[tn−1,tn]

(X)
)
− EX∼Q

[
log
(
w

(i)
[tn−1,tn]

(X)
)])

(
log
(
w

(j)
[tn−1,tn]

(X)
)
− EX∼Q

[
log
(
w

(j)
[tn−1,tn]

(X)
)])3]

= 0,

(30)

for i ̸= j. Combining this with (26), it follows that Var
[
D̂

(K)
LV

(
P⃗⊗I

[tn−1,tn]
| ⃗P⊗I

[tn−1,tn]

)]
= O(I2).

Recalling the definition of the relative error, r(K) := Var(D̂
(K)
LV)1/2/DLV, we see that it does not

scale exponentially in I .

A.3 ALGORITHMIC DETAILS AND PSEUDOCODE

We first provide formulas to compute the Radon-Nikodym derivative (RND) and the forward and
backward kernels in discrete time. Then, we give an implementable method in Algorithm 3 and
provide details on the resampling step and training with a buffer. Note that we can also use non-
uniform discretizations within subtrajectories by adapting the times hi, i = 0, . . . , N , accordingly.

A.3.1 COMPUTATION OF THE RADON-NIKODYM DERIVATIVE

As in Vargas et al. (2024), we obtain an approximate, computable formula for the Radon-Nikodym
derivative in Lemma 2.1 between the (n− 1)-th and n-th time step, given by

w[tn−1,tn](X) =
d ⃗P[tn−1,tn]

dP⃗[tn−1,tn]

(
X
)
≈ π(Xtn , tn)

π(Xtn−1 , tn−1)

nL∏
i=(n−1)L+1

⃗p(i−1)h|ih(X(i−1)h|Xih)

p⃗ih|(i−1)h(Xih|X(i−1)h)
, (31)

where the transition densities for the forward and reverse-time SDEs, coming from the Euler-
Maruyama discretization as in (19), are given as

p⃗t|s
(
Xt|Xs

)
= N

(
Xt;Xs + u(Xs, s)(t− s), σ2(s)(t− s)

)
⃗ps|t
(
Xs|Xt

)
= N

(
Xs;Xt + (σ2∇ log π − u)(Xt, t)(t− s), σ2(t)(t− s)

)
.

(32)

In practice, in line with Vargas et al. (2024), we parameterize the control as

u = σ2ũθ +
σ2

2 ∇ log π, (33)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where ũθ is parametrized by a neural network. When ũθ is initialized as the zero function, we
recover an annealed form of Langevin dynamics (Welling & Teh, 2011), providing an improved
starting point for optimization.

A.3.2 A PRACTICAL ALGORITHM

In Algorithm 3, we give a practical and detailed version of Algorithm 1.

Algorithm 3 SCLD-ForwardPass
Require: Target ρtarget, (learnable) prior pprior = N (µθ,diag(exp(2ℓθ)), number of subtrajectories N , steps

per subtrajectory L and step size h, annealing schedule βθ as in (35), noise schedule σ, control u given by

neural network ũθ as in (33), number of particles K

1: Sample from prior (by reparametrization): X̂(1:K)
0 ∼ pprior ▷ Independent for each particle

2: Initialize (unnormalized) importance weights: w(1:K)
0 = 1

3: Evaluate control and prior: u(X̂(1:K)
0 , 0) and pprior(X̂

(1:K)
0)

4: for n = 1 to N do ▷ Note that tn = nLh

5: for i = (n− 1)L+ 1 to nL do ▷ Consider the time interval [(i− 1)h, ih]

6: Euler-Maruyama simulation: X̂(1:K)
i ∼ p⃗ih|(i−1)h(·|X̂(1:K)

i−1) as in (32) ▷ See (19)

7: Evaluate control: u(X̂
(1:K)
i , ih)

8: Evaluate (unnormalized) annealing: π(X̂(1:K)
nL , tn) = (p

1−βθ(tn)
prior ρ

βθ(tn)
target)(X̂

(1:K)
nL) ▷ See (20)

9: Compute RNDs: w(1:K)

[tn−1,tn] as in (31) ▷ For every k, we use Xih = X̂
(k)
i

10: Update weights: w(1:K)
n = w

(1:K)
n−1 w

(1:K)

[tn−1,tn]

11: Resample: X̂(1:K)
nL , w

(1:K)
n = resample(X̂(1:K)

nL , w
(1:K)
n) ▷ See Algorithm 5

12: MCMC step: Update X̂
(1:K)
nL with π(·, tn)-invariant kernel

13: return RNDs (w(1:K)

[tn−1,tn])
N
n=1, weights (w(1:K)

n)Nn=0, trajectories X̂(1:K),

logZ estimate
∑N

n=1 log
(∑K

k=1 w
(k)
n−1w

(k)

[tn−1,tn]

)
, ELBO

∑N
n=1

∑K
k=1 w

(k)
n−1 log

(
w

(k)

[tn−1,tn]

)

Prioritized replay buffer. We give the exact algorithm of our replay buffer in Algorithm 4. We note
that there are many alternative possibilities for choosing the buffer priority (including by importance
weight), which we leave to future exploration. Moreover, as in traditional replay buffers (Mnih,
2013), there is an option to perform multiple gradient steps per simulation to reduce computation
costs.

Algorithm 4 SCLD-Buffer-Training

Require: Buffer (Bn)
N
n=1 for every sutrajectory, inputs for Algorithm 2

1: for i = 0 to I − 1 do
2: Run Algorithm 3: (w(1:K)

[tn−1,tn])
N
n=1, X̂(1:K) = SCLD-ForwardPass (θ(i)) with K particles

3: for n = 1 to N do
4: Store subtrajectories: (X̂(1:K)

i)nL
i=(n−1)L into Bn with weights w(1:K)

[tn−1,tn], replacing oldest entries

5: Sample from buffer: X̃(1:K/2) ∼ Bn with probability proportional to buffer weights
6: Recompute RNDs: w̃(1:K/2)

[tn−1,tn] for detached X̃(1:K/2) using (31) and current parameters θ(i)

7: Update buffer: Set w̃(1:K/2)

[tn−1,tn] as weights for X̃(1:K/2) ▷ Updating all B particles is too slow

8: Sample other half from simulation: w̃(K/2+1:K)

[tn−1,tn] from w
(1:K)

[tn−1,tn] uniformly without replacement

9: Compute log-variance loss: L =
∑N

n=1
1
K

∑K
k=1

(
log w̃

(k)

[tn−1,tn] −
1
K

∑K
i=1 log w̃

(i)

[tn−1,tn]

)2

10: Compute gradient w.r.t. parameters: G(i) = ∇θ(i)L
11: Optimizer step: θ(i+1) = update(θ(i), (G(j))ij=0) ▷ We use Adam

12: return Optimized parameters θ(I)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Resampling. The work of Webber (2019) shows that there is great scope to design resampling meth-
ods. However, in line with prior work, we opt to use the simple adaptive multinomial resampling for
which pseudocode is provided in Algorithm 5.

Algorithm 5 Adaptive Multinomial Resampling

Require: particles X(1:K), unnormalized weights w(1:K)

1: Normalize: W (k) = w(k)/
∑K

i=1 w
(i), k = 1, . . . ,K

2: Compute ESS: ESS = 1/
∑K

k=1(W
(k))2

3: if ESS < αK then ▷ We take α = 0.3

4: for k = 1 to K do
5: Sample index from categorical distribution: i ∈ {1, . . . ,K} with probabilities W (1:K)

6: Define resampled particle: X̃(k) = X(i)

7: Reset weights: W (1:K) = 1/K

8: else
9: Keep particles: X̃(1:K) = X(1:K)

10: return resampled particles X̃(1:K), updated and normalized weights W (1:K)

A.4 BENCHMARK TARGET DISTRIBUTIONS

Here, we introduce the target densities considered in our experiments more formally. Most of these
are standard benchmarks taken from, e.g., Heng et al. (2017); Arbel et al. (2021); Geffner & Domke
(2022); Richter & Berner (2024); Blessing et al. (2024).

A.4.1 BAYESIAN STATISTICS TASKS

For these tasks, no groundtruth samples are available.

Bayesian Logistic Regression (Sonar and Credit). We used two binary classification problems
in our benchmark, which have also been used in various other works to compare different state-of-
the-art methods in variational inference and MCMC. Specifically, we assess the performance of a
Bayesian logistic model with

ρtarget(x) = p(x)

n∏
i=1

Bernoulli (yi; sigmoid(x · ui))

on two standardized datasets ((ui, yi))
n
i=1, namely Sonar (d = 61) and German Credit (d = 25)

with n = 208 and n = 1000 data points, respectively. We choose p = N (0, I) for Sonar and p ≡ 1
for Credit (in line with the code of Blessing et al. (2024) which omitted the prior).

Random Effect Regression (Seeds). The Seeds (d = 26) target uses a random effect regression
model given by:

τ ∼ Gamma(0.01, 0.01)

a0, a1, a2, a12 ∼ N (0, 10)

bi ∼ N
(
0,

1√
τ

)
, i = 1, . . . , 21,

logitsi = a0 + a1xi + a2yi + a12xiyi + b1, i = 1, . . . , 21,

ri ∼ Binomial (logitsi, Ni) , i = 1, . . . , 21.

The goal is to do inference over the variables τ, a0, a1, a2, a12 and bi for i = 1, . . . , 21, given
observed values for xi, yi, and Ni from a dataset modeling the germination proportion of seeds;
see Geffner & Domke (2022) for details.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Time Series Models (Brownian). The Brownian (d = 32) model corresponds to the time dis-
cretization of a Brownian motion with Gaussian observation noise:

αinn ∼ LogNormal(0, 2),

αobs ∼ LogNormal(0, 2),

x1 ∼ N (0, αinn),

xi ∼ N (xi−1, αinn), i = 2, . . . , 30,

yi ∼ N (xi, αobs), i = 1, . . . , 30.

Inference is performed over the variables αinn, αobs, and {xi}30i=1 given the observations {yi}10i=1
and {yi}30i=20 (i.e., the middle observations are missing); see Geffner & Domke (2022).

Spatial Statistics (LGCP). The Log Gaussian Cox process (LGCP) is a popular high-dimensional
task in spatial statistics (Møller et al., 1998), which models the position of pine saplings. Using a
d = 40× 40 = 1600 grid, we obtain the unnormalized target density by

ρtarget = N (x;µ,Σ)

d∏
i=1

exp

(
xiyi −

exp (xi)

d

)
,

where y is a given dataset and µ and Σ are the mean and covariance matrix of the given prior. We
use the more challenging unwhitened version; see Heng et al. (2017); Arbel et al. (2021) for details.

A.4.2 SYNTHETIC TARGETS

For these tasks, groundtruth samples are available.

Robot. The Robot targets (Arenz et al., 2020) (Robot1, Robot4) aim at learning joint configurations
of a 10 degrees-of-freedom planar robot, parameterized by

α = (α1, . . . , α10),

such that it reaches a desired goal position while enforcing smooth configurations. The target density
is given by

ρtarget(α) = pconf(α)pcart(α),

where pconf enforces smooth configurations and pcart penalizes deviations from the goal position.
pconf is modeled as zero-mean Gaussian distribution with a diagonal covariance matrix, where the
angle α1 of the first joint has a variance of 1 and the remaining joint angles α2, . . . , α10 have a
variance of 4× 10−2.

Formally, we define the locations of the robot joints by

xi(α) =

i∑
j=1

cos(αj), i = 0, . . . , 10,

yi(α) =

i∑
j=1

sin(αj), i = 0, . . . , 10.

In the Robot1 task there is one goal at (7, 0), and we specify

pcart(α) = N
((

x10(α)
y10(α)

)
;

(
7
0

)
, 10−4I

)
, (34)

i.e., a Gaussian distribution centered at the Cartesian coordinates of the goal position, with a variance
of 10−4 in both directions.

In the Robot4 task there are 4 goals at (±7, 0) and (0,±7), and so pcart is given by the maxi-
mum over the four respective Gaussian distributions as in (34) (up to a constant of proportionality).
Groundtruth samples are generated by long slice sampling runs (Neal, 2003) and taken from the
repository of Arenz et al. (2020).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Mixture distributions (GMM and MoS). For the GMM and MoS tasks, we define a mixture dis-
tribution with m components as

ptarget =
1

m

m∑
i=1

pi.

The Gaussian Mixture Model (GMM), taken from Blessing et al. (2024), consists of m = 40 mixture
components with

pi = N (µi, I),

µi ∼ Ud(−40, 40),

where Ud(l, u) refers to a uniform distribution on [l, u]d. We take d = 50 for the main experiments.

The Mixture of Student’s t-distributions (MoS), taken from Blessing et al. (2024), comprises m = 10
Student’s t-distributions t2, where the 2 refers to the degree of freedom. Specifically, we use

pi = t2 + µi,

µi ∼ Ud(−10, 10),

where µi refers to the translation of the individual components, and take d = 50. For both the GMM
and MoS tasks, the µi’s are fixed throughout experiments, i.e., selected with the same random seed.

Funnel. The Funnel target introduced in Neal (2003) is a challenging funnel-shaped distribution
given by

ptarget(x) = N (x1; 0, σ
2)N (x2, . . . , x10; 0, exp(x1)I),

with σ2 = 9 for any number of dimensions d ≥ 2. We take d = 10 in our main experiments.

Many-Well (MW). A typical problem in molecular dynamics considers sampling from the station-
ary distribution of Langevin dynamics. In our example we shall consider a d-dimensional many-well
potential, corresponding to the (unnormalized) density

ρtarget(x) = exp

(
−

m∑
i=1

(x2
i − δ)2 − 1

2

d∑
i=m+1

x2
i

)
.

In line with Berner et al. (2024); Sun et al. (2024), we take d = 5, m = 5, and δ = 4, leading to
2m = 32 well-separated modes. Groundtruth logZ and samples can be obtained by noting that the
distribution factors over dimensions.

A.5 EXPERIMENTAL DETAILS

In this section, we describe the experimental setup and evaluation protocol. We also discuss design
choices for our main experiments as well as how our hyperparameters are selected.

A.5.1 METRICS AND EVALUATION

• Maximization of the ELBO. The ELBO refers to a lower bound on logZ. This is a classic
benchmark for samplers, and higher ELBOs are usually associated with precise sampling from
discovered modes. However, the ELBO is not necessarily indicative of mode collapse; see Bless-
ing et al. (2024) and App. A.6.4 for details.

• Minimization of the Sinkhorn distance. The Sinkhorn distance W2 is an optimal transport (OT)
distance. When computed between a set of generated samples and a groundtruth set of samples
from the target (when the latter is available), this gives an estimate of the OT distance from the
distribution generated by the sampler to ptarget. As discussed further in Blessing et al. (2024), low
OT distances are associated with good mode coverage (i.e., avoiding mode collapse).

For both ELBO and optimal transport evaluation, we follow the protocol of Blessing et al. (2024).
In particular, we use the Sinkhorn distance as implemented in Cuturi et al. (2022) and use standard
formulas for the ELBO computations of our baselines. For SCLD, the ELBO computation is stated
in Algorithm 3. We compute all performance criteria 100 times during training using 2000 samples,
applying a running average with a length of 5 over these evaluations to obtain robust results within
a single run. To ensure robustness across runs, we use four different random seeds and average the
best results from each run. As we use the same evaluation protocol as Blessing et al. (2024), we
re-use their results for DDS and PIS whenever available.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

As discussed in Blessing et al. (2024), ELBO metrics are insensitive to mode collapse and, as such,
may not accurately reflect the quality of samples on multimodal tasks. As groundtruth samples are
available for the synthetic tasks considered and due to their generally multimodal nature, we report
Sinkhorn distances for these tasks.

A.5.2 DESIGN CHOICES

We follow the following principles:

• SCLD follows design choices of other methods when these are shared.

• SCLD reuses the hyperparameter choices of baseline methods when shared such that it is not tuned
excessively.

• Baseline methods should be given as much or more computational budget compared to SCLD.

General remarks. For SCLD, CMCD, DDS, and PIS we take the convention that T = 1 as rescal-
ing time is equivalent to rescaling the noise level. Since the objectives of DDS and the Time-Reversed
Diffusion Sampler (DIS) (Berner et al., 2024) only differ by choice of the reference process (see
also Berner et al. (2024, Appendix A.10.1), Richter & Berner (2024, Section 3), and Vargas et al.
(2024, Appendix C.3)), we do not explicitly compare against DIS in this work.

CMCD and SCLD. As SCLD and CMCD share numerous design choices, we mostly follow the
choices of CMCD as in Vargas et al. (2024). In particular, we opt to learn the prior as well as the
annealing schedule. For the former, we define pprior := N (µθ,diag(exp(2ℓθ)). In other words,
we parameterize the Gaussian prior through its mean µθ ∈ Rd and logarithmic standard deviations
ℓθ ∈ Rd, initialized to N (0, σ2I), i.e., µθ = 0 and (ℓθ)i = log(σ), for some σ > 0 (referred to as
initial scale) to be tuned. We update µθ and ℓθ via the parameterization trick as training progresses.
For learning the annealing, we parameterize the schedule in (20) for every j ∈ {1, . . . , NL} by

βθ(jh) :=

j∑
i=1

softplus(θi)∑NL
i=1 softplus(θi)

, (35)

where θi ∈ R are learnable parameters. We choose the buffer size to be 20 times the training batch
size, i.e., B = 20K. Moreover, we parametrize the control u as in (33). For SCLD, we use the
subtrajectory settings from §3.

CRAFT. We use the implementation by Blessing et al. (2024), following the standard settings
of Matthews et al. (2022). Specifically, we employ diagonal affine flows as the transport maps.

SMC operations. We use the same resampling strategy and MCMC kernel for CRAFT, SMC,
and SCLD. In particular, every SMC step consists of adaptive resampling with a threshold of 0.3K,
followed by one Hamiltonian Monte Carlo (HMC) step with 10 leapfrog steps. For details on the ad-
vanced SMC schemes (SMC-ESS and SMC-FC), we refer to Buchholz et al. (2020) and App. A.6.8.

Optimization and batch size. We utilize the Adam optimizer for all methods that require learning.
We also found that clipping gradients to 1 was important for stable training on all diffusion-based
methods. We use batch size 2000 for training except for LGCP, where batch size 300 is used. We
always evaluate with K = 2000 particles.

Number of annealing / diffusion steps. For SMC, DDS, PIS, CMCD, and SCLD in the main
experiments, we fix 128 steps. In particular, we have L = 128/N for SCLD. For CRAFT, we sweep
over [4, 8, 128] annealing steps (which also define the number of SMC operations).

Number of training iterations. We select the number of training iterations such that all methods
are given roughly the same number of target function evaluations (NFEs) for a given number of
SMC operations or subtrajectories N , evaluations per SMC operation M , and annealing or diffusion
steps per subtrajectory L. In our setup, M = 10 due to the 10 leapfrog steps in HMC, (N,L) =
(1, 128) for DDS, PIS, and CMCD, and N ∈ {4, 8, 128} for CRAFT (with L = 1) and SCLD (with
L = 128/N). As a reference value, we use 40000 iterations for DDS and PIS as in Blessing et al.
(2024). We report the chosen number of iterations for each method in Tab. 4.

We note that all baselines converged satisfactorily within the given iteration budget. Moreover, the
generous budget of 40000 iterations for DDS, PIS, and CMCD required running for 4− 20 times as
long as SCLD’s training process on equivalent architecture for our considered tasks (see also Tab. 9).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 4: Number of training iterations for our considered method depending on the number of SMC operations
or subtrajectories N . The last rows show the approximate number of target function evaluations (NFEs) per
particle in each iteration w.r.t. the number of evaluations per SMC operation M and annealing or diffusion steps
per subtrajectory L.

CRAFT SCLD DDS, PIS, CMCD-KL, CMCD-LV

N = 1 – – 4× 104

N = 4 105 2.5× 104 –
N = 8 5× 104 – –
N = 128 3× 103 3× 103 –

Approx. NFEs per particle MN MN + L L
Our setup L = 1, M = 10 LN = 128, M = 10 N = 1, L = 128

A.5.3 HYPERPARAMETER SELECTION

General remarks. We follow the spirit of experimental design in Blessing et al. (2024) to fairly
compare SCLD with our diverse range of baselines. We describe the search space and selection
procedure below. We select the best configuration based on the target metric and a single seed. We
note that alternative experimental setups such as done in Vargas et al. (2024) are possible, leveraging
the ability of CMCD and SCLD to learn further hyperparameters end-to-end or use variational mean
field approximations (see App. A.6.6) instead of a grid-search.

Prior scale. For all methods that require a N (0, σ2I) prior, we sweep over σ in [0.1, 1, 10] for
tasks where we have no information about the target. For GMM40 and MoS tasks, we know that the
initial scale should be around 40 and 15, respectively, by construction of the problem, so we fix these
values for all methods. Similarly, for the Robot tasks, we know that the coordinates correspond to
radial angles, so we set the initial scale to 2 to cover the [−π, π] range.

Diffusion noise schedule. For diffusion-based samplers a noise schedule σ as in (6) needs be spec-
ified. For PIS, we use a linear noise schedule as in Zhang & Chen (2022), and for DDS, CMCD, and
SCLD we use a cosine schedule as in Vargas et al. (2023). Both noise schedules are parameterized
by a “minimum diffusion” and a “maximum diffusion” coefficient. We set the minimum diffusion
noise level to 0.01 for all tasks and methods except the Robot tasks, where we set it to 0.001. For
all methods and tasks we perform grid searches over the maximum diffusion parameter. For all
tasks except the Robot and GMM40 tasks we search in [0.1, 1, 10]. Due to the large initial scale of
GMM40, we search the maximum diffusion parameter over [5, 10, 20]. For Robot, we search it in
[0.003, 0.03, 0, 3] instead of the usual grid due to the constructed sharpness of the modes.

Architecture. For hyperparameter selection on CMCD-KL, CMCD-LV and SCLD, we use the PIS-
GradNet architecture (with detached score and 2 hidden layers of 64 units) for all diffusion-based
methods as in Vargas et al. (2023). However, for CMCD-KL, we found that using the simpler MLP
architecture described in Vargas et al. (2024) (which we term PISNet) gave significantly better per-
formance than PISGradNet on most tasks. As such, to ensure strong baselines for CMCD-KL and
CMCD-LV, we also select the best architecture among PISGradNet and PISNet (with 2 hidden layers
of 90 units to ensure similar parameter counts), re-sweeping learning rates as necessary. For SCLD
we use PISGradNet on all tasks.

CMCD-KL, CMCD-LV, DDS, and PIS. We jointly grid search the initial scale and maximum
diffusion along with the learning rates. We use one learning rate for the model ũθ and prior
pprior, and another for the annealing schedule β. We sweep over the learning rate of the model
in [10−3, 10−4, 10−5] and learning rate of the annealing schedule in [10−2, 10−3]. We perform
model selection using 8000 gradient steps instead of 40000 due to the large grid.

SMC. For all tasks not present in Blessing et al. (2024) (namely the Robot tasks and MW54), we
search the same parameter grid used for other methods for the scale of the prior, jointly with HMC
step sizes. For all tasks present in the benchmark, we re-use their results and SMC configuration
for SCLD and CRAFT. We tuned the step size of HMC, using different step sizes for t < T/2 and
t > T/2 (where time corresponds to annealing steps in CRAFT) in the same fashion as Blessing
et al. (2024). We search step sizes in the set [0.001, 0.01, 0.5, 0.1, 0.2]

CRAFT. We sweep over [4, 8, 128] for the number of annealing steps, jointly with the prior scale
and the learning rate (also in [10−3, 10−4, 10−5]), and choose the best value. As in Blessing et al.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(2024), we re-use the HMC step sizes that were tuned for SMC. Our results uniformly reproduce or
improve upon those presented in the aforementioned paper due to the extended search space.

SCLD. To ensure a fair comparison with baseline methods, we reuse the chosen scale and diffusion
parameters of CMCD-LV as well as the HMC step sizes tuned for SMC. The only grid search we
perform for SCLD is over the learning rate of the model in [10−3, 10−4] and the learning rate of
the annealing schedule in [10−2, 10−3]. However, as reflected in Tab. 5, setting all learning rates to
10−3 typically turned out to be a robust choice.

Table of hyperparameter choices. In Tabs. 5 and 6 we present the tuned hyperparameters we
obtained. Please note that “PGN” refers to the PISGradNet architecture, whereas “PN” refers to the
PISNet architecture. We refer to Blessing et al. (2024) for further details and design choices for PIS
and DDS. In Tab. 6, we specify the hyperparameters for DDS, PIS, and SMC on tasks not present
in Blessing et al. (2024).

Table 5: Hyperparameter choices of our considered methods for the tasks in Blessing et al. (2024).

Fu
nn

el
(1

0d
)

M
W

54
(5

d)

R
ob

ot
1

(1
0d

)

R
ob

ot
4

(1
0d

)

G
M

M
40

(5
0d

)

M
oS

(5
0d

)

Se
ed

s
(2

6d
)

So
na

r(
61

d)

C
re

di
t(

25
d)

B
ro

w
ni

an
(3

2d
)

L
G

C
P

(1
60

0d
)

CMCD-KL
Initial Scale 1.0 1.0 2.0 2.0 40.0 15.0 1.0 0.1 10.0 0.1 1.0
Max Diffusion 10.0 1.0 0.03 0.03 10.0 10.0 1.0 1.0 1.0 1.0 10.0
Architecture PN PGN PGN PGN PN PGN PN PN PGN PN PGN
Model LR 0.001 0.0001 0.001 0.001 0.0001 0.001 0.001 0.001 0.001 0.001 0.0001
Annealing Schedule LR 0.01 0.001 0.001 0.001 0.01 0.001 0.01 0.001 0.01 0.01 0.01

CMCD-LV
Initial scale 1.0 1.0 2.0 2.0 40.0 15.0 1.0 1.0 0.1 0.1 1.0
Maximum diffusion 1.0 10.0 0.03 0.03 20.0 1.0 1.0 1.0 0.1 1.0 10.0
Architecture PN PN PGN PGN PGN PN PGN PN PN PGN PGN
Model LR 0.001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.001 0.001 0.001 0.0001
Annealing schedule LR 0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.001 0.01 0.01 0.001

SCLD
Model LR 0.001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Annealing schedule LR 0.01 0.01 0.01 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001

CRAFT
Number of steps 128 128 8 4 4 128 128 128 8 128 128
LR 0.001 0.00001 0.001 0.001 0.00001 0.001 0.0001 0.0001 0.0001 0.001 0.001
initial scale 1.0 1.0 2.0 2.0 40.0 15.0 0.1 1.0 1.0 1.0 1.0

Table 6: Hyperparameter choices of DDS, PIS, and SMC for the tasks not present in Blessing et al. (2024).

Robot1 Robot4 MW54

SMC
Initial scale 2.0 2.0 1.0
HMC step sizes [0.001, 0.01] [0.01, 0.001] [0.01, 0.001]

DDS
Initial scale 2.0 2.0 0.1
Maximum diffusion 0.3 0.3 10.0
LR 0.001 0.001 0.00001

PIS
Maximum diffusion 0.3 0.3 10.0
LR 0.00001 0.00001 0.00001

Experimental details. Here, we provide additional details on the experiments in the main part of
the paper.

• Improved convergence (Fig. 3). All experiments were performed on a single Nvidia RTX4090
GPU using the same settings as the main experiments.

• Varying the number of SMC steps (Fig. 4). For this study, we train for 8000 gradient steps in
all instances and vary the number of subtrajectories at training and evaluation time. Apart from

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

that, we use the same hyperparameters and procedures as in the main experiments. In particular,
the total number of annealing steps is fixed to 128.

A.6 ADDITIONAL EXPERIMENTS

In this section, we present additional experiments.

A.6.1 ABLATION STUDIES OF SCLD

In Fig. 6, we study the effect of removing various parts of SCLD on several tasks. We investigate
the use of the buffer, resampling, and MCMC steps. For this experiment, all other design choices
are kept the same as in the main experiments. In particular, the reported results for the full SCLD
algorithm here coincide with those in the main experiments up to variation due to seeds. On the
other hand, the “No (Buffer,Resampling,MCMC)” Algorithm corresponds to CMCD-LV with sub-
trajectories.

10
0

10
1

Si
nk

ho
rn

 D
is

ta
nc

e

600

800

1000

1200

Si
nk

ho
rn

 D
is

ta
nc

e

73.450

73.445

73.440

73.435

EL
BO

SCLD
108.6

108.4

108.2

108.0

EL
BO

SCLD

SCLD

SCLD

No Buffer

No Buffer

No Buffer

No Buffer

Sonar

Seeds

Robot4

 MoS

No (Buffer,Resampling)

No (Buffer,Resampling)

No (Buffer,Resampling)

No (Buffer,Resampling)

 No (Buffer,Resampling,MCMC)

 No (Buffer,Resampling,MCMC)

 No (Buffer,Resampling,MCMC)

 No (Buffer,Resampling,MCMC)

Figure 6: Ablation study of the different components of SCLD on four tasks. We sequentially add MCMC
steps, resampling, and a prioritized relay buffer to LV-CMCD with subtrajectories (corresponding to the “No
(Buffer,Resampling,MCMC)” method) to arrive at our proposed SCLD method. We observe that on most tasks,
each of these components improves performance.

In all studied cases except the Seeds task, the addition of each component (MCMC, resampling, and
buffer) improves performance (we use a logarithmic scale for clarity on the Robot task). In the case
of the Seeds task, the performances of all choices are effectively the same (note the small range of
the y-axis). In summary, this study shows that none of our components are redundant.

A.6.2 REMOVING MCMC COMPONENTS

Here, we investigate the effect of not using MCMC steps during training. This is an interesting
question because, unlike SMC methods with deterministic transitions like CRAFT, where MCMC
steps are needed to remove the particle degeneracy caused by resampling steps, our stochastic tran-

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

sitions do this automatically. As such, it is possible to remove MCMC steps from the SCLD training
procedure, and we investigate the effect of doing so here, as it offers potentially accelerated training.

Table 7: ELBOs attained by SCLD when removing MCMC steps during training and evaluation.

ELBO (↑) Seeds (26d) Sonar (61d) Credit (25d) Brownian (32d) LGCP (1600d)

SCLD −73.45±0.01−73.45±0.01−73.45±0.01 −108.17±0.25−108.17±0.25−108.17±0.25 −504.46±0.09−504.46±0.09−504.46±0.09 1.00±0.181.00±0.181.00±0.18 486.77±0.70486.77±0.70486.77±0.70

SCLD-NoMCMC −73.48±0.03 −109.39±1.10 −504.72±0.34 0.82±0.09 415.83±19.53

Table 8: Sinkhorn distances attained by SCLD when removing MCMC steps during training and evaluation.

Sinkhorn (↓) Funnel (10d) MW54 (5d) Robot1 (10d) Robot4 (10d) GMM40 (50d) MoS (50d)

SCLD 134.23±8.39134.23±8.39134.23±8.39 0.44±0.060.44±0.060.44±0.06 0.31±0.040.31±0.040.31±0.04 0.40±0.010.40±0.010.40±0.01 3787.73±249.753787.73±249.753787.73±249.75 656.10±88.97656.10±88.97656.10±88.97

SCLD-NoMCMC 147.38±7.84 0.44±0.050.44±0.050.44±0.05 0.31±0.040.31±0.040.31±0.04 0.41±0.010.41±0.010.41±0.01 3929.52±753.27 1252.87±183.95

Using the same experimental setting as the main experiments, we compare the effect of omitting
SMC steps during training and evaluation in Tabs. 7 and 8. Unsurprisingly, removing MCMC steps
has an adverse effect on performance. However, in many cases, the difference is not too big. In
particular, on tasks where a smaller number of 4 subtrajectories have been used (Robot1, Robot4,
GMM40, MW54), the effect was negligible, as MCMC steps did not feature prominently in the
training process in the first place. On the other tasks, where 128 SMC steps have been employed,
the impact on performance was larger. However, the performance was still competitive with other
approaches, noting that we did not increase the number of gradient steps. In all, using SCLD without
MCMC steps is shown to be a viable possibility. It is also plausible that increased noise levels could
help compensate for the lack of additional randomness.

A.6.3 TIMINGS

In Tab. 9, we report the timings on each task for each of the methods in the main table with
regards to time taken per gradient step (except SMC, which does not require training), using
the same hyperparameters as for the main experiments. We worked in the JAX framework
and used jitting, discarding the first iteration (Bradbury et al., 2018). We average across 3
seeds on a single Nvidia RTX4090 GPU for 500 iterations. Dynamical memory allocation via
XLA PYTHON CLIENT ALLOCATOR=platform was required for CMCD-KL on GMM40 to fit
within the memory limit, resulting in slower runtimes.

Table 9: Average time per gradient step for all considered methods and tasks.

Time (s) Brownian Credit LGCP Seeds Sonar Funnel GMM40 MW54 Robot1 Robot4 MoS

CMCD-KL 0.21 0.14 0.39 0.12 0.13 0.14 0.58 0.10 0.24 0.24 0.20
CMCD-LV 0.34 1.41 0.42 0.13 0.18 0.10 0.14 0.09 0.11 0.12 0.11
SCLD 0.13 0.15 1.48 0.07 0.11 0.07 0.12 0.07 0.08 0.08 0.09
CRAFT 0.06 0.004 0.89 0.03 0.04 0.02 0.01 0.02 0.01 0.05 0.04
DDS 0.04 0.03 0.11 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.03
PIS 0.04 0.03 0.10 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.03

The dimension of the target, the number of SMC operations, as well as the difficulty of evaluating
the target all significantly influence the computation time. It may seem strange that SCLD, with the
added complexity of SMC steps, was generally faster than the CMCD variants. This can be attributed
to two points. First, SCLD detaches the trajectory due to the use of the off-policy log-variance loss,
unlike CMCD-KL, which results in a simplified computation graph, saving both time and memory.
We refer to Richter & Berner (2024) for a full discussion on using detaching in the log-variance
loss. Due to our use of the subtrajectory-based LV loss, the gradients for each subtrajectory can be
computed independently and in parallel, improving speed over CMCD-LV. Please note, however,
that timings are highly dependent on implementational details.

A.6.4 ESTIMATIONS OF THE NORMALIZING CONSTANT

When the true normalizing constant Z for a density is known, another benchmark often used to
evaluate a sampler is to study how accurately it can estimate Z or logZ. It is, however, known
that for multimodal tasks, methods that achieve good logZ estimates often do so at the expense
of mode collapse. Conversely, methods that avoid mode collapse sometimes yield poor logZ esti-
mates (Blessing et al., 2024). Indeed, applying (tuned) CRAFT to the GMM40 (50d) task achieves

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

an logZ estimate of −3.63 (the true value is log 1 = 0) and is one of the better-performing methods
for the task. While this may sound impressive, it is realized that −3.63 ≈ − log 40 corresponds to
sampling perfectly from exactly 1 of the 40 modes (as evidenced by Fig. 7). Thus while CRAFT
achieves relatively good estimates of the true logZ, it performs poorly as a sampler. Likewise,
when SCLD is optimized for Sinkhorn distances, it often has worse estimation errors but achieves
significantly better sample quality.

Figure 7: CRAFT only samples from one mode of GMM40 (50d).

Acknowledging this trade-off between logZ estimation and mode collapse, we present two sets
of results for CRAFT, CMCD-KL, CMCD-LV, and SCLD corresponding to the logZ estimation
error when methods are optimized for Sinkhorn distances (named CRAFT-SD, SCLD-SD, CMCD-
KL-SD, CMCD-LV-SD) and when methods are optimized for logZ estimation (named correspond-
ingly). In Tab. 10, we present errors of normalizing constant estimations on a selection of tasks
where true logZ values are available, averaged over 4 seeds and using the same evaluation protocol
as the main experiments. For this experiment, results for DDS and PIS are also taken from Blessing
et al. (2024) when available.

Table 10: logZ estimations for different tasks.

∆ logZ (↓) Funnel (10d) MW54 (5d) GMM40 (2d) GMM40 (50d) MoS (50d)

SMC 0.19±0.09 1.45±1.53 0.08±0.03 761.93±21.55 3.88±1.76

PIS 0.92±0.60 0.36±0.07 0.27±0.01 7.12±0.63 12.25±0.33

DDS 0.19±0.08 3.34±0.08 0.01±0.01 1.74±0.44 7.95±0.30

CRAFT-SD 0.10±0.02 0.16±0.05 0.02±0.02 6295.25±144.71 0.75±0.19

CRAFT-logZ 0.10±0.02 0.16±0.05 0.02±0.01 3.63±0.05 0.75±0.19

CMCD-KL-SD 0.04±0.010.04±0.010.04±0.01 1.65±0.10 0.01±0.00 3.53±0.12 2.72±0.45

CMCD-KL-logZ 0.04±0.010.04±0.010.04±0.01 1.65±0.10 0.01±0.00 3.53±0.12 2.19±0.36

CMCD-LV-SD 0.24±0.10 0.01±0.010.01±0.010.01±0.01 0.01±0.00 1.45±0.35 3.04±0.41

CMCD-LV-logZ 0.18±0.05 0.01±0.010.01±0.010.01±0.01 0.00±0.000.00±0.000.00±0.00 1.45±0.35 3.04±0.41

SCLD-SD 0.09±0.01 0.14±0.03 0.02±0.01 7.10±4.05 0.05±0.030.05±0.030.05±0.03

SCLD-logZ 0.09±0.01 0.01±0.000.01±0.000.01±0.00 0.02±0.01 0.77±0.660.77±0.660.77±0.66 0.05±0.030.05±0.030.05±0.03

We found that using SMC at evaluation time (with the same configuration as during training) consis-
tently improved logZ estimate quality for SCLD and consequently used it for all tasks. We maintain
the same subtrajectory settings as we did for the main experiments. SCLD significantly outperforms
all other methods on the GMM40 (50d) and MoS tasks and is best or a close second on the other
tasks. This illustrates that our method can also be adjusted to target better logZ estimates.

A.6.5 THE LEARNED ANNEALING SCHEDULE

For CMCD-KL, CMCD-LV, and SCLD, we found that using a learned annealing schedule as in (35)
is crucial to obtaining good results. We illustrate this in Fig. 8 with a case study on SCLD, visualizing
the linearly interpolated annealing schedule, i.e., (20) with β(t) = t/T , and the learned annealing
schedule in (35) for the 2-dimensional GMM40 task.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 8: We compare the uniform annealing schedule with the annealing schedule learned by SCLD for
0 ≤ t ≤ T/2. SCLD is able to learn a more gradual annealing schedule, which potentially allows transitions
between adjacent densities to be learned more easily.

A.6.6 MEAN FIELD PRIOR FOR SCLD

While we opt for a prior of the form N (0, σ2I) for SCLD in our main experiments, an alternative
approach is to initialize it using a diagonal Gaussian trained using Mean Field Variational Inference
(MFVI) (Bishop, 2006). We study this design choice experimentally here.

We use 50000 iterations of MFVI with batch size 2000 and constant learning rate 10−3, initializing
with N (0, I). We retain the same experimental setup and hyperparameter settings as for the main
experiments, except for the max diffusion coefficient, where we divide the values from the main
experiments by 10. This is because MFVI is mode seeking, and so aims to cover a high probability
region of the target distribution tightly, leading to a prior with smaller support. We compare the
attained ELBOs in Tab. 11 and also report results for SCLD-MFVI at initialization (i.e., without
training the control), termed “NoTrain”.

Table 11: Performance of SCLD when fitting the diagonal of the prior covariance matrix using MFVI at initial-
ization (“NoTrain”) and after training (“SCLD-MFVI”).

ELBOs (↑) Brownian Credit LGCP Seeds Sonar

NoTrain 1.07±0.23 −513.70±0.70 500.42±0.37500.42±0.37500.42±0.37 −73.48±0.05 −114.89±1.35

SCLD 1.00±0.18 −504.46±0.09−504.46±0.09−504.46±0.09 486.77±0.70 −73.45±0.01−73.45±0.01−73.45±0.01 −108.17±0.25−108.17±0.25−108.17±0.25

SCLD-MFVI 1.14±0.051.14±0.051.14±0.05 −504.59±0.15 500.56±0.12500.56±0.12500.56±0.12 −73.44±0.01−73.44±0.01−73.44±0.01 −108.93±0.34

Impressively, SCLD often achieves near-state-of-the-art results even without training when initial-
ized with MFVI, such as on the LGCP task. We can attribute this to SCLD being initialized as
an SMC sampler with Unadjusted Langevin Annealing (ULA) transition kernels as well as MCMC
steps, which, in conjunction with the mode-seeking behavior of MFVI, leads to high ELBO values.
SCLD-MFVI attains competitive performances on all tasks. Given that we performed no re-tuning
on SCLD-MFVI, it is probable that with more careful setting and hyperparameter choices, even
higher ELBOs could be attained.

However, using MFVI-fitted priors in practice often carries serious drawbacks. In line with the
experiments of Blessing et al. (2024), we found that using MFVI priors leads to mode collapse
(due to the mode-seeking nature of MFVI training restricting the sampling to a subset of the target
modes), and thus potentially poor sample quality. We illustrate this in Fig. 9 on the GMM40 (50d)
target, where we use the same hyperparameters as in the main experiment except for the prior.

A.6.7 COMPARISON TO PDDS

In this section, we empirically compare the PDDS and SCLD methods. We employ the exact ex-
perimental methodology of Phillips et al. (2024). In particular, we train for 20000 gradient steps,
refreshing the model every 500 steps. We employed 50000 gradient steps to train the mean field
prior. We note that this corresponds to a significantly higher iteration budget than was allocated to
SCLD. In line with the findings of Phillips et al. (2024), we found that sweeping over the prior scale
as opposed to using a variational approximation significantly degraded performance on all tasks
(and indeed on several tasks, such as Robot and GMM40 could not train at all). One reason for the

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 9: The samples drawn by SCLD when an MFVI-fitted prior is used. MFVI obtains a prior density
that covers exactly one mode of the GMM40 distribution. As such, SCLD is unable to discover the other
modes and experiences complete mode collapse. This is in contrast to Fig. 2 where SCLD samples are visually
indistinguishable from the target density.

degraded performance might be that PPDS is unable to further optimize the prior during training
(as is done in SCLD). We thus opt to use variational approximations (by mean field Gaussians) to
initialize the prior for all tasks. Benchmarking was done exactly as in the main experiments, and we
analyzed the performance of PDDS with and without MCMC steps.

For all tasks present in the benchmark of Phillips et al. (2024) (including the Gaussian mixture tasks),
we used the pre-tuned MCMC step sizes. For the other tasks, we chose a linearly interpolated step
size schedule from t = 0 to t = T where step sizes at times 0 and T are taken from the grid
[0.1, 0.3, 1, 3, 10] since the method for tuning MCMC step sizes was not specified. We select the
best parameters directly based on the target metric and present the results in Tabs. 12 and 13.

Table 12: Comparison of SCLD against PDDS (Phillips et al., 2024) in terms of ELBOs.

ELBOs (↑) Brownian Credit LGCP Seeds Sonar

PDDS 1.12±0.231.12±0.231.12±0.23 -502.80±0.72-502.80±0.72-502.80±0.72 499.35±0.65 -73.48±0.21 -108.61±0.06

PDDS-MCMC 1.04±0.04 -502.90±0.28-502.90±0.28-502.90±0.28 499.83±0.08 -73.47±0.19 -108.67±0.04

SCLD (ours) 1.00±0.18 −504.46±0.09 486.77±0.70 −73.45±0.01−73.45±0.01−73.45±0.01 −108.17±0.25−108.17±0.25−108.17±0.25

SCLD-MFVI (ours) 1.14±0.051.14±0.051.14±0.05 −504.59±0.15 500.56±0.12500.56±0.12500.56±0.12 −73.44±0.01−73.44±0.01−73.44±0.01 −108.93±0.34

Table 13: Comparison of SCLD against PDDS (Phillips et al., 2024) in terms of Sinkhorn distances.

Sinkhorn (↓) Funnel GMM40 MW54 Robot1 Robot4 MoS

PDDS 145.81±13.28 42157.92±346.21 1.28±0.18 3.36±0.08 3.09±0.16 3119.83±98.64

PDDS-MCMC 151.02±28.00 42157.92±346.21 1.07±0.25 3.35±0.08 3.08±0.14 3108.75±98.61

SCLD (ours) 134.23±8.39134.23±8.39134.23±8.39 3787.73±249.753787.73±249.753787.73±249.75 0.44±0.060.44±0.060.44±0.06 0.31±0.040.31±0.040.31±0.04 0.40±0.010.40±0.010.40±0.01 656.10±88.97656.10±88.97656.10±88.97

PDDS attains comparable ELBOs to SCLD on the Bayesian statistics tasks. This is due to both
methods being initialized as SMC samplers with a prior obtained by the same variational approxi-
mation (for SCLD-MFVI). We also observed, in line with the findings of Phillips et al. (2024) and
similar to App. A.6.6, that often relatively little training is required to achieve optimal performance,
so the gap in performance between the initial, untrained SMC scheme and the trained sampler is
small.

However, PDDS consistently presents significantly worse Sinkhorn distances (on all tasks where
this is available) than SCLD. This is due to the reliance of PDDS on using an MFVI prior, which,
as discussed in App. A.6.6, is prone to mode collapse. On the other hand, SCLD is able to operate
stably without relying on using the MFVI prior, avoiding mode collapse.

A.6.8 COMPARISON WITH ADVANCED SMC SCHEMES

In the section, we compare SCLD against two advanced SMC schemes implemented in the frame-
work by Cabezas et al. (2024). We consider adaptive tempered SMC, which utilizes the constant-ESS

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

method for choosing the annealing schedule as seen in Buchholz et al. (2020). We term this method
SMC-ESS. In line with SCLD, we utilize a single HMC step for the SMC kernel with 10 leapfrog
integration steps, and apply the same tuning procedure for HMC step size as we did for our own
SMC method. We additionally sweep over the ESS threshold α ∈ {0.3, 0.5, 0.75, 0.9, 0.95, 0.99}.
Due to the large search grid, we run 10 seeds per task to mitigate outliers. Unlike SCLD, which uses
multinomial resampling (for a fair comparison to our other baselines), we use systematic resampling
(see, e.g., Chopin et al. (2020, Chapter 9)) for SMC-ESS, which we found led to best performance.
We consider another method from Buchholz et al. (2020), utilizing the full-covariance tuning ap-
proach for Independent Rosenbluth Metropolis-Hastings (IRMH) proposals (on top of using adaptive
tempered SMC). We use 100 MCMC steps per step and term this method SMC-FC.

We report results in Tabs. 2 and 3, using the same evaluation protocol (in particular, using 2000
particles). For reference, we also compare all SMC methods with SCLD in Tabs. 14 and 15.

Table 14: Comparison of SCLD against advanced SMC methods (Buchholz et al., 2020) in terms of ELBOs.

ELBOs (↑) Brownian Credit LGCP Seeds Sonar

SMC −2.21±0.53 −589.82±5.72 385.75±7.65 −74.63±0.14 −111.50±0.96

SMC-ESS 0.49±0.19 −505.57±0.18 497.85±0.11497.85±0.11497.85±0.11 −74.07±0.60 −109.10±0.17

SMC-FC −1.91±0.04 −505.30±0.02 −878.10±2.20 −74.07±0.02 −108.93±0.02

SCLD (ours) 1.00±0.181.00±0.181.00±0.18 −504.46±0.09−504.46±0.09−504.46±0.09 486.77±0.70 −73.45±0.01−73.45±0.01−73.45±0.01 −108.17±0.25−108.17±0.25−108.17±0.25

Table 15: Comparison of SCLD against advanced SMC methods (Buchholz et al., 2020) in terms of Sinkhorn
distances.

Sinkhorn (↓) Funnel GMM40 MW54 Robot1 Robot4 MoS

SMC 149.35±4.73 46370.34±137.79 20.71±5.33 24.02±1.06 24.08±0.26 3297.28±2184.54

SMC-ESS 117.48±9.70117.48±9.70117.48±9.70 24240.68±50.52 1.11±0.15 1.82±0.50 2.11±0.31 1477.04±133.80

SMC-FC 211.43±30.08 39018.27±159.32 2.03±0.17 0.37±0.08 1.23±0.02 3200.10±95.35

SCLD (ours) 134.23±8.39 3787.73±249.753787.73±249.753787.73±249.75 0.44±0.060.44±0.060.44±0.06 0.31±0.040.31±0.040.31±0.04 0.40±0.010.40±0.010.40±0.01 656.10±88.97656.10±88.97656.10±88.97

The full-covariance tuning and the ESS-based scheme for selecting the annealing schedule sig-
nificantly outperform our baseline implementation of SMC at the expense of longer and variable
(possibly unbounded) sampling times. Nevertheless, all considered SMC methods are superseded
by SCLD in performance on all but two tasks. While SCLD uses a relatively simple version of
SMC for fair comparisons to our baselines, our framework enables the usage of more advanced
techniques, such as those used for SMC-ESS and SMC-FC. Thus, we expect that the performance
of SCLD can be even further improved.

A.6.9 CONVERGENCE OF DIFFERENT METHODS BY ITERATION COUNT

0 1000 2000
Gradient Steps

550

540

530

520

510

EL
BO

Credit

0 1000 2000
Gradient Steps

1.0

0.5

0.0

0.5

1.0
Brownian

0 1000 2000
Gradient Steps

75.0

74.5

74.0

73.5

Seeds

0 1000 2000
Gradient Steps

114

112

110

108 Sonar

SCLD
CMCD-KL
CMCD-LV
CRAFT
Long Run
CMCD (Best)

Figure 10: The same experiments as in Figure 3 plotted instead by iterations.

In Fig. 10, we visualize the same data as in §3.1 but plotting by the number of elapsed gradient steps.
In this perspective, the same conclusions hold that SCLD exhibits superior convergence properties,
attaining the best ELBOs on each task for all numbers of gradient steps. Note that CRAFT was not
competitive on the Credit task in this perspective.

A.6.10 KL-BASED TRAINING OF SCLD

We compare KL and LV-based training of the SCLD algorithm, using the family of Funnel distribu-
tions with d ∈ {10, 20, 30, 40, 50} as a case study. We train SCLD using KL and LV losses with 4

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

and 128 subtrajectories as described in §2.3 for 3000 gradient steps using the same hyperparameters
and settings (including learning the annealing schedule and prior) as in the d = 10 case for the main
experiments. In Fig. 11, we visualize the ELBOs attained (using the same settings during evaluation
as for training) alongside CMCD-KL and CMCD-LV.

10 15 20 25 30 35 40 45 50

Funnel Dimension

10

8

6

4

2

0

EL
BO

ELBOs Across Varying Funnel Dimensions for SCLD Variants

CMCD-kl
CMCD-lv
SCLD-KL-4-Subtraj
SCLD-LV-4-Subtraj
SCLD-KL-128-Subtraj
SCLD-LV-128-Subtraj

Figure 11: ELBOs across Varying Funnel Dimensions for different SCLD-variants

All methods except SCLD with LV loss and 128 subtrajectories experience some form of perfor-
mance degradation as dimensions scale. For the LV loss, adding subtrajectories reduces the amount
of performance degradation. This may be due to SMC steps counteracting increased dimensionality
by focusing computation on high-density regions. For the KL loss, however, increasing the number
of subtrajectories resulted in worse performance, especially as the dimension increased. Indeed,
SCLD-KL with 128 subtrajectories scales the most poorly of the methods tried as d increases. As
discussed in §2.3, this may be due to the use of importance sampling to estimate the loss function.
Indeed, a set of importance weights is required for each subtrajectory to estimate the loss, and thus,
using more subtrajectories demands a greater reliance on importance sampling. As the variance of
importance sampling can increase significantly with dimension, this may account for the decreased
performance of KL-based subtrajectory losses. In summary, this supports the hypothesis that losses
avoiding importance sampling, such as the log-variance loss, are more suited to the training of SCLD
on higher-dimensional tasks.

35

	Introduction
	Related Work

	Sequential controlled Langevin diffusions
	A primer on Sequential Monte Carlo in continuous time
	Controlled SDEs and importance sampling in path space
	Loss functions and off-policy training
	Algorithmic refinements and implementational details

	Experiments
	Results

	Conclusion
	Appendix
	Related works
	Proofs and theoretical remarks
	Algorithmic details and pseudocode
	Computation of the Radon-Nikodym derivative
	A practical algorithm

	Benchmark target distributions
	Bayesian statistics tasks
	Synthetic targets

	Experimental details
	Metrics and evaluation
	Design choices
	Hyperparameter selection

	Additional experiments
	Ablation studies of SCLD
	Removing MCMC components
	Timings
	Estimations of the normalizing constant
	The learned annealing schedule
	Mean field prior for SCLD
	Comparison to PDDS
	Comparison with advanced SMC schemes
	Convergence of different methods by iteration count
	KL-based training of SCLD

