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Abstract

Public competitions and datasets have yielded in-
creasingly accurate chest x-ray prediction models.
The best such models now match even human
radiologists on benchmarks. These models go be-
yond “standard” image classification techniques,
and instead employ design choices specialized for
the chest x-ray domain. However, as a result, each
model ends up using a different, non-standardized
training setup, making it unclear how individual
design choices—be it the choice of model archi-
tecture, data augmentation type, or loss function—
actually affect performance. So, which design
choices should we use in practice? Examining
a wide range of model design choices on three
canonical chest x-ray benchmarks, we find that
by simply leveraging a (properly tuned) model
composed of up standard image classification
design choices, one can often match the perfor-
mance of even the best domain-specific models.
Moreover, starting from a “barebones,” generic
ResNet-50 with cross-entropy loss and no data
augmentation, we discover that none of the pro-
posed design choices—including broadly used
choices like the DenseNet-121 architecture or ba-
sic data augmentation—consistently improve per-
formance over that generic learning setup.

1. Introduction

Public competitions and datasets have led to increasingly
better chest x-ray prediction models (Yuan et al., 2020;
Pham et al., 2021; Rajpurkar et al., 2017). This leap in
performance has been largely fueled by going beyond “stan-
dard” choices in computer vision, and instead developing
specialized learning methods designed for clinical domains.

This approach has been fruitful: methods using such
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“domain-specific” design choices—ranging from pooling
layers designed to help localize medical abnormalities dur-
ing training (Ye et al., 2020) to losses that handle class
imbalances (Rajpurkar et al., 2017)—are now the state-of-
the-art on chest x-ray classification benchmarks. In fact,
the best machine learning models can even match radiolo-
gist performances on chest x-ray classification (Pham et al.,
2021; Yuan et al., 2020; Ye et al., 2020).

However, it is unclear exactly which of these design choices
actually drive these levels of performance. Indeed, the de-
sign choices used by the highest performing models vary
widely, making the effect of each individual design choice
hard to discern. How, then, should we design chest x-ray
models in practice?

Contributions. We examine models over a wide range of
common chest x-ray prediction design choices, spanning
data augmentation, training loss, pooling mechanism, and
architecture. Specifically, we consider design choices falling
in two different categories: “domain-specific” (methods de-
signed for clinical tasks—e.g., a loss that exploits medically
known relationships between labels (Pham et al., 2021)) and
“standard” (methods used throughout image classification,
e.g., cross-entropy loss).

Evaluating on three canonical benchmarks
(CHEXPERT (Irvin et al., 2019), MIMIC (Johnson
et al., 2019), and CHEST X-RAY 14 (Wang et al., 2017)),
we find that domain-specific methods do not generally drive
performance (compared to standard design choices). In
particular, on two of the three benchmarks—CHEXPERT
and MIMIC—models using domain-specific design
choices never improve over the best models employing
only standard computer vision methods. On the remaining
benchmark—CHEST X-RAY 14—the improvement is
uniformly less than 2%.

Digging deeper, we try to understand which design choices
actually do drive chest x-ray model performance. We find
that starting from the “barebones” generic ResNet-50 with
cross-entropy loss and no data augmentation, we cannot
consistently improve performance by swapping in any other
singular design choice. We add data augmentation, swap
in a DenseNet-121, and even switch to a domain-specific
loss or pooling method: none of these individual choices
commonly thought to improve performance actually yield
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improvements across all three benchmarks.

Our findings underscore the need to contextualize improve-
ments with uncertainty measures and rigorously compare
with strong baselines when presenting new methods. The
results also suggest one of two possible scenarios. Either we
have not yet developed any design choices that broadly drive
performance in the chest x-ray domain (and thus further al-
gorithmic work is needed). Or, we have already discovered
such design choices, but existing chest x-ray benchmarks
are not sufficiently representative of the spectrum of tasks
which occur in the chest x-ray domain—for example, the
label quality may be too low for improvements to emerge (in
which case further dataset construction work is required).

2. Design Choices and Methodology

We focus on three canonical chest x-ray classification
datasets (CHEXPERT (Irvin et al., 2019), MIMIC (Johnson
et al., 2019), and CHEST X-RAY 14 (Wang et al., 2017))
and the best performing methods on these datasets. Our
study considers both design choices made specifically for
the chest x-ray domain (i.e. domain-specific choices) and de-
sign choices that originated in general image classification
but have worked well on chest x-ray tasks too (i.e. standard
choices). As a performance baseline, we use a generic im-
age classification model whose design choices we describe
below. (Note that within this framework, generic design
choices are a subset of standard design choices.)

To ensure we examine the effect of every design choice,
we construct our methods combinatorially. Each method
consists of a choice for each of the following axes of a
machine learning model, where T indicates a part of the
generic model and  indicates chest x-ray domain-specific
choices:

1. Loss Function: We consider five different loss func-
tions. (1) BCE: Standard Binary Cross Entropy loss.
(2) Focal (Lin et al., 2017): A loss function designed
to handle class imbalance, a common occurrence in
chest x-ray benchmarks. (x3) CheXNet (Rajpurkar
et al., 2017): BCE loss with weights designed to bal-
ance the binary labels for each class. (x4) DAM (Yuan
et al., 2020): A novel loss function designed to di-
rectly maximize AUROC, the standard metric for chest
x-ray classification. (x5) Hierarchical' (Pham et al.,
2021): A loss function designed to leverage a medical
hierarchy over labels.

2. Backbone: We consider five different backbones for

'We follow Pham et al. (2021) for a hierarchy for the CHEX-
PERT and MIMIC datasets and construct our own medically valid
hierarchy for the CHEST X-RAY 14 dataset. All three are included
in Appendix A.1.

our methods. (1) ResNet-18, (72) ResNet-50, (3)
DenseNet-121, (4) VGG16, and (5) VGG19 with Batch
Norm. All of these backbones have been used in chest
x-ray classification (Moses, 2021).

3. Pooling Function: We consider two different pooling
functions for our methods. (1) Standard: The standard
pooling function for the backbone of the method as im-
plemented in torchvision (Paszke et al., 2019).
(x2) PCAM (Ye et al., 2020): A probabilistic form
of class activation maps designed to produce higher
performance and interpretability for chest x-ray classi-
fication models.

4. Data Augmentation: We consider three different data
augmentation schemes for our methods. (1) No Aug:
No data augmentation is used. (2) CIFAR: We ran-
domly translate and cutout a portion of the image. This
augmentation is representative of a standard augmen-
tation scheme for the CIFAR-10 dataset (Krizhevsky,
2009). (3) ImageNet: We use color jitter, random crop
and mixup (Zhang et al., 2017) as a representative
of a standard augmentation scheme for the ImageNet
dataset (Deng et al., 2009).

We select hyperparameters for each method through grid
search. We evaluate methods using average AUROC over
classes which is the standard performance metric for chest x-
ray classification and report test set scores in our results. We
evaluate uncertainty in all values we report by bootstrapping
over the test set 1000 times and derive confidence intervals
by taking the 2.5% and 97.5% quantiles of the bootstrap
distribution. Additional training details can be found in
Appendix A.2.

3. Evaluation of Design Choices

We begin by examining the performance of domain-specific
design choices as compared to standard image-classification
choices. We then evaluate the effect of each design choice
(both standard and domain-specific) by comparing to the
design choices of a generic image classification model. Fi-
nally, we examine the effect of each design choice on the
core metrics for decision-making: TPR and FPR.

3.1. Domain-Specific vs. Standard Design Choices

Many of the design choices made by state-of-the-art meth-
ods in chest x-ray classification are domain-specific. How-
ever, it is not clear whether domain-specific choices are nec-
essary to achieve strong performance. To evaluate this, we
compare the performance of the best methods constructed
using domain-specific design choices with the performance
of the best methods constructed using only standard design
choices. For each domain-specific design choice, we find
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Figure 1. Comparing domain-specific design choices with standard ones. For each domain-specific design choice we compare the best
method we can construct using that design choice with the best method we can construct using only standard choices. Error bars for
test AUROC are computed by bootstrapping the test set 1000 times and recomputing average AUROC for each one. We find that on
CHEXPERT and MIMIC the standard method is just as strong as the best methods constructed using domain-specific design choices. On
CHEST X-RAY 14, the standard method is not quite as strong, however it is still comparable to Hierarchical Loss, and it is within 1.5%

AUROC of other methods.

the choices for other axes of the method which maximize the
validation AUROC among methods which use that design
choice. We also find the method that maximizes validation
AUROC while using only standard design choices. We show
our results in Figure 1.

On CHEXPERT and MIMIC, we find that surprisingly even
the best methods we can construct using domain-specific
design choices are not significantly better than the best meth-
ods we can construct using only standard choices from im-
age classification. Furthermore, although on CHEST X-RAY
14 the standard method is not quite as strong, its perfor-
mance is still within 1.5% AUROC of the best domain-
specific methods. We also note that several prior works
have found performance on CheXpert and MIMIC to be
more representative than performance on NIH (Pooch et al.,
2020; Irvin et al., 2019). These results demonstrate the need
to compare to strong baselines and also suggest that we
have yet to determine how best to leverage domain-specific
knowledge in chest x-ray classification.

3.2. Effects of Design Choices

Our results in the previous section show that domain-specific
methods are likely not what drive performance in chest x-
ray classification as their performance can be matched by
methods using only standard image classification design
choices. In an attempt to understand what design choices
do drive performance, we consider a comparison of design
choices that allows us to compute the effect of each design
choice on average AUROC.

Improving each axis of a generic ImageNet baseline.
We begin by considering a simple task: improving a generic
ImageNet model. A ResNet-50 trained via BCE loss with no
data augmentation is a common baseline in general image
classification (Developers, 2016). Given the development of
both domain-specific design choices and standard practices
in chest x-ray classification, we might expect that we can
improve the performance of this baseline on chest x-ray
classification benchmarks substantially through changes in
each axis of the model. Figure 2 shows how performance
changes when we consider changing the loss function, back-
bone, pooling method, and data augmentation for this simple
baseline model. We find there is no change we can make
for any single axis which significantly improves perfor-
mance across all three chest x-ray datasets. Moreover, one
domain-specific choice—hierarchical training—consistently
performs worse than this simple baseline.

Comparing design choices. In the last section, we com-
puted the effect each design choice on a single method.
However, our data allows us to also compute the average ef-
fect of a design choice across all methods. For each axis of
a method and each design choice for that axis, we compute
the difference in performance between methods using the
design choice and methods using a generic choice for the
axis with all other design choices fixed. We get the average
effect of the design choice by averaging the paired differ-
ence over all configurations of design choices for other axes.
Figure 3 shows the average effect for each design choice on
each benchmark. It turns out almost no design choices have
a statistically significant effect on AUROC across all three
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Figure 2. Trying to improve a generic ImageNet baseline. Each panel shows the change in performance achieved by changing one axis of
a generic ImageNet baseline (No Augmentation, ResNet-50, BCE Loss, Standard Pooling) to a different design choice. All design choices
for other axes are held fixed. We compute error bars via 1000 bootstrap samples of the test set. There is no single change that results in a
statistically significant improvement in AUROC across all three benchmarks.
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Figure 3. Average effect of design choices over generic choices. We conduct a controlled comparison of design choices by evaluating the
average change in AUROC across all methods when we swap out a generic choice with another design choice for the same axis. Error bars
are computed via the bootstrap over 1000 test sets. Generic choices are: No Augmentation, Standard Pooling, ResNet-50, and BCE Loss.
Almost no design choices increase AUROC across all three datasets. Those that do (PCAM pooling, CheXNet loss type, and CIFAR data
augmentation) have a very small effect (often less than 0.5% AUROC).
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benchmarks. Among those choices which do, the effect is
very small (often less than 0.5% AUROC). We note that
the DenseNet-121 architecture—which has been observed
to be a strong choice for chest x-ray classification in many
past works (Irvin et al., 2019; Pham et al., 2021; Rajpurkar
et al., 2017)—provides essentially no effect. These results
suggest that in isolation, many design choices provide very
little improvement in benchmark performance over generic
choices.

3.3. Impact on Decision-Making

Up to this point, we have evaluated design choices using the
change in average AUROC over classes. However, AUROC
is a summary statistic that does not always reflect the im-
provement a method can offer in decision-making. To make
decisions using a binary classifier which outputs a score for
each sample, one has to set a threshold to mark the decision
boundary between positive and negative predictions. Each
threshold corresponds to a unique point on the ROC curve
and can thus be specified by a false positive rate (FPR) and
a true positive rate (TPR). In order to evaluate the effect
of each design choice on decision-making, we show how
the TPR changes at a given FPR when we swap the design
choice in for a generic design choice.

For a single class, we compute the change in TPR at a given
FPR by taking the average difference in TPR between meth-
ods using the design choice and methods using a generic
choice in the same manner as the previous analysis. Since
each dataset has multiple classes, we report the median of
the average change in TPR across classes. This statistic
allows us to report results representative of a majority of the
classes. We compute the error bars for each point by repeat-
ing this same computation over 1000 bootstrap samples of
the test set.

Figure 4 shows that for representative design choices, the
improvement in TPR is almost always less than 1% for a
majority of classes. These results show that even when
design choices might improve AUROC in a statistically
significant manner, they are unlikely to improve decision-
making in a meaningful way, no matter what threshold is
used. We include additional figures for other design choices
in Appendix A.3.

4. Discussion

Our findings shed light on both how we should evaluate new
methods in chest x-ray classification and which directions
will help us identify strong design choices going forward.

Best practices in chest x-ray classification. Our analysis,
shows design choices almost never consistently improve
performance across benchmarks. That is, while they may

improve performance on one benchmark, they generally
do not improve performance on other datasets. Also, even
when design choices do lead to improvement, the magni-
tude of improvement is often so small that it is dwarfed
by the statistical uncertainty in measurement. Our results
therefore underline the importance of contextualizing the
effect of individual improvements with both (a) uncertainty
estimates and (b) performance across multiple datasets. It
also seems that prior work has not always used the best hy-
perparameter configurations available: for example, Wang
et al. (2017)—who present the first large scale chest x-ray
dataset, CHEST X-RAY 14—train a baseline model using
a standard architecture and loss (ResNet-50 with cross en-
tropy loss). However, on average this model obtains 0.10
lower AUROC on CHEST X-RAY 14 than the ResNet-50
models that we train which use the same training setup. This
suggests that following best practices for model selection
and comparison will help us ensure that new methods repre-
sent a significant and consistent improvement over standard
image-classification methods.

Paths for improving chest x-ray models. We have not
yet identified design choices that consistently appreciably
improve model performance over a generic learning setup
(i.e., a ResNet-50 trained with cross-entropy loss and no
data augmentation) in the chest x-ray domain. This state
of affairs suggests one of two possible scenarios. The first
possibility is that we have yet to discover design choices that
improve chest x-ray domain performance far beyond what
we could achieve with generic image classification models.
The second possibility is that we have developed design
choices that consistently improve performance, but existing
chest x-ray benchmarks do not capture the spectrum of
chest x-ray domain tasks properly—for example, the labels
in these datasets might be of such a low quality that it is
impossible for improvements to emerge.

5. Related Work

Development of domain-specific methods for chest x-ray
classification has been driven by the creation of chest x-ray
benchmarks. The CHEST X-RAY 14 benchmark (Wang
et al., 2017) created by the NIH was one of the first chest
x-ray benchmarks that allowed for the development of chest
x-ray specific deep learning methods. The CHEXPERT and
MIMIC benchmarks (Irvin et al., 2019; Johnson et al., 2019)
improved upon the CHEST X-RAY 14 benchmark by pro-
viding more data and a better labeling process.

The design choices we evaluate are primarily derived from
the best performing methods on the CHEXPERT and CHEST
X-RAY 14 benchmarks. PCAM, Hierarchical training, and
DAM loss all come from the top three methods on the
CHEXPERT benchmark (Yuan et al., 2020; Pham et al.,
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Figure 4. Evaluating the effect of design choices on TPR. We take three representative design choices and show their average effect on
TPR at each FPR. For each class, we compute the average difference in TPR at each FPR between methods which use a given design
choice and methods which use a generic choice for the same axis, keeping all choices fixed along other axes. We then take the median
across classes of this average difference. The process is repeated 1000 times over bootstrap test sets to derive confidence intervals. We see

that the effect of these design choices on TPR is almost always below 1% for a majority of classes. We include additional figures for other
design choices in Appendix A.3
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2021; Ye et al., 2020), and CheXNet comes from a top
performing method on the CHEST X-RAY 14 benchmark
(Rajpurkar et al., 2017). Other design choices we evaluated
are standard choices in image classification that have also
seen success in the chest x-ray domain (Moses, 2021).

Prior works have evaluated models across multiple chest x-
ray datasets and found disparate performance (Pooch et al.,
2020). Some have also observed that simple models do
best when evaluating other aspects of chest x-ray classifi-
cation models such as their fairness (Zhang et al., 2022).
Ke et al. (2021) did an evaluation of one axis we consider—
backbones—but only on the CheXpert dataset. To the best
of our knowledge no prior work has directly evaluated the
effect of a wide range of design choices on chest x-ray
classification performance across multiple benchmarks.

6. Conclusion

By evaluating the effect of a wide range of design choices
across several canonical chest x-ray benchmarks, we aim to
shed light on what design choices drive performance in chest
x-ray classification. We find that methods designed specifi-
cally for the chest x-ray domain (domain-specific methods)
are often matched by standard methods in computer vision.
More broadly, very few design choices consistently exhibit
significantly better performance than those of a generic
image classification model. Our results demonstrate the
importance of comparing new methods to strong baselines
across multiple benchmarks with robust uncertainty evalua-
tion. Moreover, our analysis suggests that either the methods
or the benchmarks of chest x-ray classification require addi-
tional development before we can confidently identify the
best design choices for this domain.
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A. Appendix
A.1. Hierarchies for CHEXPERT, MIMIC, and CHEST X-RAY 14

Our hierarchy for CHEXPERT and MIMIC is taken from Pham et al. (2021) who in turn use the hierarchy given in Irvin
et al. (2019). For CHEST X-RAY 14 we use our own hierarchy derived from our knowledge of the dataset. We describe
each hierarchy below by giving the parent-child relationships. If A — B it means that A is a parent of B in the hierarchy.
Classes with no parents are assumed to have their parent as the root node.

A.1.1. CHEXPERT AND MIMIC

Enlarged Cardiomediastinum — Cardiomegaly

Lung Opacity — Edema

Lung Opacity — Consolidation

Lung Opacity — Pneumonia

Consolidation — Pneumonia

Lung Opacity — Atelectasis

Lung Opacity — Lesion

A.1.2. CHEST X-RAY 14
Pneumonia — Atelectasis
Pneumonia — Effusion
Nodule — Mass

Pneumonia — Consolidation
Pneumonia — Edema

Fibrosis — Pleural Thickening

A.2. Training Details

We implement all methods in PyTorch (Developers, 2016). Except where otherwise noted, we use SGD with a linear decay
from the initial learning rate to O over the duration of training and grid search over a training duration of 1, 3, or 5 epochs.
We also grid search over learning rate and weight decay using a 6x6 grid (10~% to 10~2 for learning rate and 106 to 10~*
for weight decay). We use a batch size of 256 for all methods.

Below we describe any details specific to each of the design choices we consider.

1. Loss Function

(a) BCE: No special considerations.

(b) Focal Loss: We also grid search over  in [0.5, 2.0, 5.0].

(c) CheXNet: We compute class weights from the train set and use the same setup as described above.

(d) Hierarchical Loss: We use the training setup described above for the pre-training step. Taking the best hyperpa-
rameters for each method (computed via validation AUROC) we then fine tune the pre-trained model using the
loss function of (Chen et al., 2019) and replace the final layer before fine-tuning. We do not freeze the pre-trained
backbone as we found results were significantly worse when we did. We use the same grid search described above
for the fine-tuning step.

(e) DAM Loss: Following the authors’ example 2, we first take the best BCE model for each combination of Data
Augmentation, Pooling, and Backbone as a pretrained model. We then create one fine-tuned model per class

2https ://github.com/Optimization-AI/LibAUC/blob/main/examples/05_Optimizing_AUROC_Loss_
with_DenseNetl121_on_CheXpert.ipynb
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using their open-source loss function with the DAM-specific hyperparmeters given in their example. Due to
computational burden we fine-tune all models for 2 epochs rather than grid searching over training duration. We
use a constant learning rate for all epochs. Prediction is done using the fine-tuned model for each class.

2. Backbone: No special considerations.
3. Pooling: No special considerations.

4. Data Augmentation

(a) No Augmentation: No special considerations.

(b) CIFAR: We randomly translate by 10% of the image size at maximum. We use the cutout implementation of the
MosaicML Composer library.

(c) ImageNet: We randomly crop with a scale between 0.5 and 1.0. We use color jitter with a brightness factor of 0.2,
a contrast factor of 0.2, a saturation factor of 0.2, and a hue factor of 0.3. We use the mixup implementation of the
MosaicML Composer library.

We train all methods on NVIDIA A100 GPUs. We train models on a cluster of 80 gpus over a period of about 3 months. To
reduce computational load we prune all runs that cannot achieve an average of 0.6 AUROC on the validation set after 2
epochs. These intensive grid searches ensure that for every method we consider we get close to the best possible performance
that the method can achieve on each dataset.

The CheXpert dataset uses different labeling processes for its training and validation splits. To avoid distributional mismatch
between the data we train on and the data we use for hyperparameter tuning we randomly re-split the CheXpert train set,
keeping 80% of the original for training and using 10% as a validation set and 10% as a test set. We ensure that splitting
is done so as to avoid overlap between patients across the partitions. For the MIMIC-CXR and Chest X-Ray 14 datasets,
we use the given validation and test sets as they do not have this distributional mismatch issue. For both CheXpert and
MIMIC-CXR we ignore uncertainty labels (the U-IGNORE strategy in Irvin et al. (2019)) for ease of implementation and
comparison with the Chest X-ray 14 dataset which does not have uncertainty labels. All data is resized to 224 x 224 pixels.
We normalize all images using the mean and standard deviation of the training dataset. For ease of implementation we copy
each image to have 3 repeated channels of the same image.

On all datasets we evaluate performance using AUROC as is standard in chest x-ray classification. On CheXpert and
MIMIC-CXR, we use the average performance of the 5 classes used in the test set for the CheXpert competition as our score
for a method. On Chest X-ray 14, we use the average AUROC across all 14 labels. To evaluate uncertainty in our scores we
recompute the test AUROC of each method using 1000 bootstrap samples over the test partition for each dataset.

A.3. Plots of Effect on TPR at a given FPR

Each plot shows the median effect of a design choice on TPR at a given FPR where the median is computed over classes.
Confidence intervals are given by the 2.5th and 97.5th percentiles of the distribution of the median effect computed over
1000 bootstrap samples. The effect of TPR at a given FPR for a single class is given by the average difference in TPR across
all methods that have the design choice and all methods that have a generic choice for the same axis. For example if the
design choice is DAM Loss we would compute—for every combination of data augmentation, pooling, and backbone—the
difference in TPR between the method when it uses DAM loss and the method when it uses BCE Loss. We would then
average this difference over all combinations of data augmentation, pooling, and backbone. The caption for each figure
gives the design choice in question. Loss functions are compared to the generic BCE loss. Backbones are compared to the
generic ResNet-50 backbone. PCAM is compared to standard pooling, and data augmentations are compared to the generic
No Augmentation.
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Figure 5. Loss Function: Hierarchical Loss Function
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Figure 6. Loss Function: Focal Loss Function
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Figure 7. Loss Function: DAM Loss Function
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Figure 8. Loss Function: CheXNext Loss Function
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Figure 9. Backbone: ResNet-18
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Figure 10. Backbone: DenseNet-121
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Figure 11. Backbone: VGG-19 With Batch Norm
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Figure 12. Backbone: VGG-16
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Figure 13. Pooling: PCAM
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Figure 14. Data Augmentation: ImageNet Data Aug.
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Figure 15. Data Augmentation: CIFAR-10 Data Aug.
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