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ABSTRACT

Many studies have been conducted to improve the efficiency of Transformer from
quadric to linear over long sequence conditions. Among them, the low-rank-based
methods aim to learn the projection matrices to compress sequence length, thus
achieving efficiency gain. However, the projection matrices are fixed once they
have been learned, which compress sequence length with dedicated coefficients
for tokens in the same position regardless of different sequences. Adopting such
input-invariant low-rank projections ignores the fact that the most informative part
of a sequence varies from sequence to sequence, thus failing to preserve the most
useful information that lies in varied positions of different sequences. In addition,
previous efficient Transformers only focus on the influence of sequence length
while neglecting the effect of hidden state dimension to achieve further efficiency
gain. To address the aforementioned problems, we present an efficient yet ef-
fective attention mechanism, namely Dynamic Bilinear Low-Rank Attention
(DBA), which compresses sequence length by input-sensitive dynamic projection
matrices and achieves linear time and space complexity by jointly optimizing se-
quence length and hidden state dimension while maintaining state-of-the-art per-
formance. Specifically, we first theoretically demonstrate that the sequence length
can be compressed losslessly from a novel perspective of information theory, with
the compression matrices dynamically determined by the input sequence. Further-
more, we show that the hidden state dimension can be approximated by extending
the Johnson–Lindenstrauss lemma and achieves high-order small amount error,
optimizing the attention in bilinear form. In addition, theoretical analysis shows
that DBA is proficient in capturing high-order relations in cross-attention prob-
lems. Experiments over tasks with diverse sequence length conditions show that
DBA achieves state-of-the-art performance compared with various strong base-
lines while maintaining less memory consumption with higher speed, demonstrat-
ing the effectiveness and efficiency of DBA.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) has shown immense capabilities in a wide range of areas,
including natural language processing (Dai et al., 2019), computer vision (Dosovitskiy et al., 2021;
Liu et al., 2021), time series analysis (Zerveas et al., 2021), and multi-modal tasks (Qin et al., 2022a;
Yu et al., 2019). However, the Vanilla Transformer suffers quadratic time and memory complexity,
raising concerns about its further application scenarios. Therefore, several efficient Transformers
have been introduced (Tay et al., 2022). Among them, kernel-based methods have drawn much
attention due to their optimization-friendly characteristic, which improves the efficiency by using
the approximation in the attention mechanism (Katharopoulos et al., 2020; Wang et al., 2020; Ma
et al., 2021; Xiong et al., 2021; Qin et al., 2022b; Choromanski et al., 2021). One popular kernel-
based technique is low-rank approximation, which compresses sequence length dimension using the
same coefficients for all sequences. For instance, Wang et al. (Wang et al., 2020) approximated
the stochastic matrix in sequence length dimension by using sets of fixed coefficients learned in
the training process to calculate the weighted sum of tokens in different positions. Xiong et al.
(Xiong et al., 2021) adopted the Nyström method to approximate the attention mechanism to linear
complexity, decreasing the sequence length with mean pooling.
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Figure 1: Performance (y-axis, higher is better), speed (x-axis, higher is better), and memory foot-
print (circle sizes, smaller is better) of efficient Transformers on the Long-Range Arena benchmark
(Tay et al., 2021b) compared with Vanilla Transformer (Vaswani et al., 2017) in different sequence
length conditions (512 and 4k). DBA could achieve state-of-the-art performance with the high-
est speed and lowest memory consumption over various sequence length conditions.

However, the flexibility of low-rank projection in previous methods is limited. The projection ma-
trices are pre-determined or fixed after the training process, which compress different sequences by
using the same coefficients for tokens in the same position. Such input-invariant low-rank com-
pressions ignore the fact that the informative part of a sequence varies from sequence to sequence.
Hence, the compression might fail to preserve the most informative parts lying in different positions
and limit the performance over tasks where the most informative parts of inputs change significantly,
such as image-related tasks. In addition, previous efficient Transformers only focused on optimiz-
ing the sequence length while ignoring the influence of hidden state dimension. The hidden state
dimension also contributes to the computation cost and becomes more critical to efficiency when
processing moderate or short sequences. Previous efficient Transformers that achieve significant
memory compression and speed-up rate in long sequence conditions could end up with similar ef-
ficiency when processing moderate or short sequences compared with the Vanilla Transformer, as
shown in Figure 1.

To address the aforementioned problems, we proposed an efficient yet effective attention mecha-
nism, namely Dynamic Bilinear Low-Rank Attention (DBA), which compresses sequence length
with input-sensitive dynamic projection matrices and achieves linear computation and memory ef-
ficiency with bilinear optimization from both sequence length and hidden state dimension. Specif-
ically, we first theoretically show that sequence length can be compressed losslessly from a novel
perspective of the information theory, where the projection matrices are dynamically determined by
the input sequence to best preserve the most informative parts. Furthermore, we demonstrate that
the hidden state dimension can be approximated by extending the Johnson–Lindenstrauss lemma
(Arriaga & Vempala, 2006; Lindenstrauss & Johnson, 1984) with high-order small amount error.
In addition, theoretical analysis shows that DBA is able to capture high-order relations in cross-
attention problems, which is crucial to the performance in multi-modality tasks.

Extensive experiments over tasks with various sequence length conditions are conducted on three
different datasets, including Long-Range Arena (LRA) (Tay et al., 2021b) as the long sequence
benchmark, UEA multivariate time series classification archive (Bagnall et al., 2018) to evaluate the
performance of various sequence lengths, VQA-v2 (Goyal et al., 2017) as the illustrations of DBA
in capturing high-order relations. The DBA achieves state-of-the-art performance with impressing
speed-up and memory compression rate compared with other competitors over various sequence
length conditions, demonstrating the effectiveness and efficiency of DBA in a wide range of appli-
cations.

Our main contributions can be summarized as follows:
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1) We introduce an efficient and effective attention mechanism, namely Dynamic Bilinear Low-
Rank Attention (DBA), which compresses sequence length by input-sensitive dynamic projection
matrices. The DBA achieves efficiency gain over various sequence length conditions with linear
time and space complexity by jointly optimizing sequence length and hidden state dimension.

2) Theoretical guarantee from information theory and matrix low-rank approximation demonstrates
that DBA has a similar capability to the Vanilla Attention with low expected error. In addition,
theoretical analysis shows that DBA is able to capture high-order inter-relations in cross-attention
problems.

3) Extensive experiments on tasks with various sequence length conditions show that DBA could
achieve state-of-the-art performance in a wide range of applications with impressing efficiency gain.
In addition, DBA is superior in capturing high-order relations in the cross-attention task, which
outperforms the Vanilla Transformer based MCAN (Yu et al., 2019) with only 12% of parameters in
the attention layer.

2 BACKGROUND AND RELATED WORK

2.1 VANILLA TRANSFORMER

The Vanilla Transformer (Vaswani et al., 2017) uses Vanilla Attention as its main algorithm, which
is calculated via the softmax weighted sum of all values V concerning weights obtained by the
multiplication of Q and K:

Pϕ(K,Q) = softmax

(
QKT

√
d

)
(1)

Attention (Pϕ(K,Q),V ) = Pϕ(K,Q)V (2)

Here we define Pϕ(K,Q) as attention map, and later, we will abbreviate Pϕ(K,Q) as Pϕ for
simplicity. The Q ∈ Rn×d, K ∈ Rn×d, V ∈ Rn×d, and Pϕ ∈ Rn×n, where n is sequence length
and d indicates hidden state dimension. Notice that the time and memory complexity for the Vanilla
Attention is proportional to O

(
n2d
)
. For long sequence applications, the impact of n becomes

dominant, and the influence of d becomes greater when facing moderate or short sequences.

2.2 EFFICIENT TRANSFORMERS

One kind of Efficient Transformers is by using sparsity, where each token could only access limited
perspective fields with fixed or learned patterns, including the local attention (Parmar et al., 2018),
Reformer (Kitaev et al., 2020), Sinkhorn (Tay et al., 2020), Routing Transformer (Roy et al., 2021),
ALiBi (Press et al., 2022), Learning-to-Hash Attention (LHA) (Sun et al., 2022), YOSO (Zeng et al.,
2021), ClusterFormer (Wang et al.), Poolingformer (Zhang et al., 2021), and Big Bird (Zaheer et al.,
2020). To make the attention have wider perspective fields, some works concentrate on the inter-
actions between near field and far field, such as Focal Attention (Yang et al., 2021), FMMformers
(Nguyen et al., 2021), Long-Short Transformer (Zhu et al., 2021), and Crossformer (Wang et al.,
2022).

Another popular approach is kernel-based method, which improves the efficiency of Transformer by
rewriting the multiplication in equations 1 and 2, such as Linear Transformer (Parmar et al., 2018),
PoNet (Tan et al., 2022), Random Feature Attention (Peng et al., 2021), and LARA (Zheng et al.,
2022). In (Choromanski et al., 2021; Qin et al., 2022b; Chen et al., 2021b), the authors optimize
the softmax kernel with faster reweighting functions. Since the kernels are the approximation in
attention matrices, they can also be optimized by low-rank methods, such as Linformer (Wang et al.,
2020), Luna (Ma et al., 2021), and Nyströmformer (Xiong et al., 2021). In (Zhuang et al., 2022; Luo
et al., 2021; Kreuzer et al., 2021; Zhou et al., 2022), the authors improve the efficiency of attention
kernel by exploring the frequency domain. Some works also focus on the multi-head characteristic
in attention mechanism and optimize via reducing the parallel computations, such as FLASH (Hua
et al., 2022) and Transformer-MGK (Nguyen et al., 2022).

The proposed DBA is most similar to Linformer, which both approximate features in Vanilla At-
tention to the low-rank matrices and achieve linear complexity. The main differences are in four
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folds. First, the low-rank projection matrices in DBA are more flexible than in Linformer, which are
dynamically determined by the input sequence rather than fixed after training to best preserve the
most informative parts of a sequence. Secondly, DBA could process sequences in various lengths as
the dimensions of sequence length compression matrices are also determined by the input. Thirdly,
DBA could achieve state-of-the-art performance with high efficiency over various sequence length
conditions due to jointly considering the sequence length and hidden state dimension. Furthermore,
DBA is proficient in capturing high-order relations with multi-stage interactions, whereas Linformer
could only perform one-stage interaction.

3 METHOD

Our goal is to design an efficient attention mechanism with linear complexity, where the analysis
starts with the Vanilla Attention defined in equations 1 and 2. In Section 3.1, we will theoretically
demonstrate that the input sequence length n can be compressed losslessly from the perspective of
information theory, leading to linear complexity in both time and space. In Section 3.2, we will
extend the Johnson–Lindenstrauss lemma to prove that the multiplication between Q and K can
be reduced by low-rank approximation with high-order small amount error in the results, mitigating
the impact of hidden state dimension d on efficiency. In Section 3.3, we will present the source
of matrices newly introduced to DBA and show that the sequence length compression matrices are
dynamically determined by the input features, leading to adaptive coefficients for tokens in the same
position. In Section 3.4, we will show that DBA could capture high-order inter-relations in cross-
attention problems and perform multi-stage interactions within a single attention layer.

3.1 OPTIMIZE THE SEQUENCE LENGTH WITH INFORMATION THEORY

In this section, we will optimize the quadric complexity of sequence length to Transformer by ana-
lyzing the attention mechanism from the information theory perspective, leading to linear complex-
ity in both time and space. Specifically, we will show that the attention matrix Pϕ ∈ Rn×n could be
replaced by a set of smaller matrices without information loss.

Note that in the Vanilla Attention, Pϕ is deterministic for dedicated QKT . Hence, we could derive
that the conditional entropy between QKT and Pϕ is 0.

H(Pϕ|QKT ) = H(softmax

(
QKT

√
d

)
|QKT ) = 0 (3)

Therefore, QKT contains all the information Pϕ has. Notice that QKT could be reconstructed
losslessly with the based of QKT and the reconstruction coefficients. Hence, the conditional en-
tropy between the bases of QKT with reconstruction coefficients to the Pϕ is 0.

H(Pϕ| basisr(basisc(QKT )),W ′
r, W

′
c) = 0 (4)

where basisr and basisc calculate the basis of QKT in the row and column spaces, respectively.
W ′

r and W ′
c are the reconstruction coefficients for row and column, which values and dimensions

are determined by QKT .

From the properties of matrix rank in multiplication, we could get the following inequality.

Rank
(
QKT

)
≤ max (Rank (Q) ,Rank (K)) ≤ min (n, d) (5)

where Rank() calculates the rank of a matrix.

Hence, the dimension of basisr(basisc(QKT )) are no larger than Rmin(n,d)×min(n,d). Therefore,
with the help of equation 4, a given Pϕ can be represented losslessly with a matrix Pϕ

′∈ Rdp×dp

(dp ≤ min (n, d)) and reconstruction coefficient W ′
r ∈ Rn×dp and W ′

c ∈ Rn×dp . In practice, we
could form:

Pϕ = W ′
rPϕ

′W ′
c
T (6)

where Pϕ
′, W ′

r, and W ′
c are determined by the input and learned through the training process.
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Figure 2: Illustration of the algorithm of Vanilla Attention versus DBA. Compared with Vanilla
Transformer (Vaswani et al., 2017), the Q, K in DBA are compressed to low-rank alternatives with
bilinear form in both sequence length and the hidden state dimension. The DBA has the same input
and output as Vanilla Transformer by using reconstruction matrix W ′

r, which easily makes DBA
plug and play with existing Transformers. The labels on the row and column of squares represent
the dimension of features.

Here, we could project Q ∈ Rn×d,K ∈ Rn×d to Ql ∈ Rdp×d, Kl ∈ Rdp×d to generate the Pϕ
′,

with Ql with Kl as the input for equation 1. Therefore, we could derive the following equation:

Pϕ = W ′
rPϕ

′W ′
c
T
= W ′

r

(
softmax

(
QlK

T
l√

d

))
W ′

c
T

= W ′
r

(
softmax

(
(WrQ)(KTWc

T )√
d

))
W ′

c
T

(7)

where Wr ∈ Rdp×n, Wc ∈ Rdp×n, W ′
r ∈ Rn×dp , and W ′

c ∈ Rn×dp .

By proposing Pϕ
′ as the new attention map instead of Pϕ, we avoid quadric complexity in time

and space in attention map generation. However, notice that the reconstruction process using W ′
r

and W ′
c
T still brings high complexity. Here, we first merge the W ′

c and V first as VDBA, then the
VDBA is multiplied by Pϕ

′. The reconstruction process by W ′
r is set in the last. By optimizing the

calculation order, the DBA achieves linear complexity.

DBA(K,Q,V ) = W ′
r(Pϕ

′
(W ′

c
T
V )) = W ′

r

(
Pϕ

′VDBA

)
(8)

where VDBA = W ′
c
T
V ∈ Rdp×d.

3.2 OPTIMIZE HIDDEN STATE DIMENSION WITH MATRIX APPROXIMATION

In Section 3.1, we optimize sequence length by analyzing from the information theory perspective,
leading to linear complexity. In this section, we will further increase the efficiency of DBA by
mitigating the impact of hidden state dimension d on efficiency. Specifically, we extend the John-
son–Lindenstrauss lemma (Arriaga & Vempala, 2006; Lindenstrauss & Johnson, 1984) to show the
multiplication between Q and K can be approximated with high-order small amount error. Based
on the Johnson–Lindenstrauss lemma, we could derive that when din ≥ 10log (dp) /

(
ϵ2 − ϵ3

)
, the

following equation holds.

Pr
(∣∣∣∣(WrQ)RRT

(
KTW T

c

)
− (WrQ)

(
KTW T

c

)∣∣∣∣ ≤ ϵ
∣∣∣∣(WrQ)

(
KTW T

c

)∣∣∣∣)
> 1− o (1)

(9)

The proof details are in Appendix A.1.

The equation 9 shows that the multiplication between Q and K could be replaced by alternatives
with lower hidden state dimension (d vs. din) and achieves errors in high-order small quantities
compared to full-rank multiplication. Therefore, we could further project Ql ∈ Rdp×d, Kl ∈ Rdp×d

mentioned in Section 3.1 to QDBA ∈ Rdp×din , KDBA ∈ Rdp×din , and finally, the DBA could be
written as follows:

DBA(K,Q,V ) = W ′
r

((
softmax

(
((WrQ)R)(RT (KTWc

T ))√
din

))(
W ′

c
T
V
))

= W ′
r

(
softmax

(
QDBAKDBA√

din

)
VDBA

) (10)
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The attention mechanism is now compressed with bilinear form in both sequence length and the
hidden state dimension, increasing the efficiency for sequences with various lengths. The graphical
comparison between Vanilla Attention and DBA is illustrated in Figure 2.

3.3 THE SOURCE OF MATRICES

In this section, we will define the source of matrices that are newly introduced to DBA in self-
attention situation, including the hidden state compression matrix R, the sequence compression
matrices Wr, Wc, and the reconstruction matrices W ′

r, W ′
c . We will show that the weights in se-

quence compression matrices are determined by the input sequence, leading to dynamic coefficients
for tokens in the same position between different sequences.

The R compress hidden state with a fixed dimension. Therefore, it is set as a fully connected layer
and learned through training. The W ′

r, W ′
c are set as the input sequences propagate thought fully

connected layers to obtain the expected hidden state dimension. The Wr and Wc are generated by
combining the input sequence and an extra input Z ∈ Rdp×d in a shorter length.

Wr = φ
(
ZQT

)
(11)

Wc = φ(ZKT ) (12)
where φ is a normalization function to stabilize the training process. In practice, we set φ as softmax
function.

Therefore, the compression matrices Wr and Wc are dynamically determined by the input sequence,
where every coefficient in Wr and Wc is the linear transformations of token features in the corre-
sponding position. Each row in Wr and Wc is a set of compression coefficients for all tokens in
the input sequence, and the results of each position in the final compressed sequences WrQ and
KTWc

T are the different weighted sum of tokens in the original sequence. The weights in the
reconstruction matrices W ′

r, W ′
c are also determined by the input, where the rows also represent

different sets of coefficients dynamically determined by the input sequence. Note that the dimen-
sions for both Wr, Wc and W ′

r, W ′
c are dynamically determined by the input, making them able

to process sequences in various lengths without fixed padding. In practice, we set Z as learnable
parameters propagating through different attention layers.

3.4 CAPTURE HIGH-ORDER RELATIONS IN CROSS-ATTENTION

In this section, we will show that DBA is able to capture high-order relations with multi-stage
interactions within an attention layer in the cross-attention situation. We will first introduce the
cross-attention algorithm in Vanilla Transformer and then compare it with the proposed DBA.

The cross-attention in Vanilla Transformer shares the same expression as self-attention in equations
1 and 2. The only difference is input. In cross-attention, one input X1 from H1 is processed as
Q1, and the other input X2 from H2 is processed as K2, V2, where the subscript 1, 2 indicate the
variables in different hierarchies, and H1, H2 denote different hierarchies. By leveraging the Vanilla
Attention algorithm, Q1 is fused with K2, leading to one-stage interaction within an attention layer.

Cross-Attention (K2,Q1,V2) = softmax

(
Q1K

T
2√

d

)
V2 (13)

The DBA takes different inputs compared with Vanilla Attention in cross-attention. Instead of taking
the full-length features X2 as K2, V2, DBA takes the compressed sequence Wr2X2 as Z1, K2,
and V2. Both models take X1 as Q1.

Firstly, we compress sequence length following Section 3.1. As Wr2X2 formed K2, V2 are already
been compressed, we only need to compress sequence length in Q1 using Wr1, which is obtained
from Z1.

Wr1 = φ(Z1Q
T
1 ) = φ(Linear(Wr2X2)Q

T
1 ) (14)

where Linear() denotes fully connected layer.

The advantages of using Wr2X2 as Z1 are in two folds. First, the features from two different
hierarchies interact when generating Wr1. Second, it compresses the sequence length of Q1, where
the compression coefficients are guided by features in H2.
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Table 1: Speed and peak memory consumption of different models on byte-level text classification
with various sequence lengths (256, 512, 1k, 2k, 3k, and 4k). The average performances on the LRA
task are listed on the right. The best model is made bold.

Model Speed ↑ Peak Memory Usage ↓ Avg. ↑256 512 1k 2k 3k 4k 256 512 1k 2k 3k 4k

Vanilla Transformer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58.57
Local Attention 1.0 1.1 1.1 1.7 3.2 5.3 0.94 0.75 0.49 0.29 0.19 0.14 49.51

Linformer 1.0 1.2 1.2 1.9 3.7 5.5 0.90 0.70 0.44 0.21 0.18 0.10 56.47
Reformer 1.0 0.6 0.5 0.4 0.7 0.8 1.21 1.06 0.70 0.37 0.28 0.24 54.59

Sinkhorn Trans. 0.9 1.0 1.1 1.6 2.9 3.8 0.92 0.76 0.55 0.31 0.21 0.16 53.89
Synthesizer 1.2 1.2 1.1 1.2 2.9 1.4 1.06 0.91 0.76 0.75 0.74 0.74 57.95
Cosformer 0.9 1.0 1.0 1.5 2.8 3.7 1.24 0.88 0.58 0.28 0.25 0.19 55.23

Linear Transformer 1.0 1.1 1.1 1.9 3.7 5.6 1.16 0.95 0.44 0.22 0.15 0.11 54.35
Performer 1.1 1.2 1.2 1.9 3.8 5.7 0.89 0.74 0.44 0.22 0.15 0.11 55.73

Luna 1.0 1.2 1.2 1.8 3.7 5.5 0.88 0.70 0.44 0.23 0.17 0.10 61.46

DBA 1.1 1.4 1.4 2.0 4.1 6.1 0.84 0.66 0.38 0.19 0.15 0.09 62.21±0.21

Table 2: Performance on the LRA benchmark. The DBA is trained with 5 random seeds, and the
average scores with accuracy variances are reported. The best model is made bold.

Model ListOps ↑ Text ↑ Retrieval ↑ Image ↑ Pathfinder ↑ Avg. ↑
Vanilla Transformer (Vaswani et al., 2017) 36.37 64.27 78.38 42.44 71.40 58.57

Local Attention (Parmar et al., 2018) 15.82 52.98 70.65 41.46 66.63 49.51
Sparse Transformer (Child et al., 2019) 17.07 63.58 72.53 44.24 71.71 53.83

Sinkhorn (Tay et al., 2020) 33.67 61.20 65.88 41.23 67.45 53.89
Linear Transformer (Katharopoulos et al., 2020) 16.13 65.90 72.09 42.34 75.30 54.35

Reformer (Kitaev et al., 2020) 37.27 56.10 73.03 38.07 68.50 54.59
cosformer (Qin et al., 2022b) 37.90 63.41 61.36 43.17 70.33 55.23
Fnet (Lee-Thorp et al., 2022) 35.33 65.11 59.61 38.67 77.80 55.30

Performer (Choromanski et al., 2021) 18.01 65.40 75.43 42.77 77.05 55.73
Longformer (Beltagy et al., 2020) 35.63 62.85 68.32 42.22 69.71 55.75

Linformer (Wang et al., 2020) 35.70 53.94 77.83 38.56 76.34 56.47
Synthesizer (Tay et al., 2021a) 36.99 61.68 80.04 41.61 69.45 57.95
Big Bird (Zaheer et al., 2020) 36.05 64.02 76.41 40.83 74.87 58.44

Nyströmformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 58.95
YOSO (Zeng et al., 2021) 37.40 64.28 77.61 44.67 71.86 59.16

Scatterbrain (Chen et al., 2021a) 38.60 64.55 80.22 43.65 69.91 59.39
Pixelfly (Chen et al., 2022) 37.65 66.78 80.55 42.35 72.01 59.87

Luna (Ma et al., 2021) 37.43 65.74 79.38 46.39 78.36 61.46

DBA 38.10±0.40 66.25±0.04 80.64±0.01 46.51±0.50 79.56±0.10 62.21±0.21

After sequence length compression, we optimize the impact of d on efficiency following Section
3.2, and finally, we could get (QDBA)1, (KDBA)2, and (VDBA)2 to perform second interaction be-
tween two features as in equation 10. Therefore, DBA could capture inter-relations in the sequence
compression matrices generation procedure and attention mechanism within a single attention layer,
where the compressed feature in H2 interacts with original and compressed features in H1, making
DBA able to capture high-order relations and perform multi-stage interactions.

4 EXPERIMENTS

We evaluate the performance of DBA on three datasets, covering long and diverse sequence condi-
tions with self- and cross-attention tasks, including Long-Range Arena (LRA) (Tay et al., 2021b) as
the benchmark on long sequence, UEA multivariate time series classification archive (Bagnall et al.,
2018) to evaluate performance on various sequence lengths, VQA-v2 (Goyal et al., 2017) to test the
performance of cross-attention. The detailed descriptions of datasets are in Appendix A.2, and the
experiment settings are listed in Appendix A.3.
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Table 3: Performance on the UEA multivariate time series classification archive. The best model is
made bold.

Task / Model Transformer Linformer Performer Linear Cosformer Flowformer DBA
Ethanolconcentration ↑ 32.7 32.6 31.2 33.5 31.9 33.8 35.4±1.1

Facedetection ↑ 67.3 67.0 67.0 67.1 67.0 67.6 68.7±0.3
Handwriting ↑ 32.0 28.9 32.1 34.7 34.7 33.8 35.1±0.1

Heartbeat ↑ 76.1 76.1 78.0 75.6 76.6 77.6 78.0±1.0
Japanese vowels ↑ 98.7 98.6 98.1 99.2 99.2 98.9 99.6±0.1

Pems-Sf ↑ 82.1 82.3 80.9 80.9 82.1 83.8 84.1±0.3
Selfregulationscp1 ↑ 92.2 91.8 91.5 91.8 92.5 92.5 92.8±0.3
Selfregulationscp2 ↑ 53.9 57.2 56.7 55.6 56.7 56.1 58.1±0.3
Spokenarabicdigits ↑ 98.4 98.8 98.4 98.8 98.0 98.8 99.5±0.1

Uwavegesturelibrary ↑ 85.6 84.7 85.3 85.0 85.0 86.6 87.4±0.1
Average Accuracy ↑ 71.9 71.8 71.9 72.2 72.4 73.0 73.9±0.4

4.1 EFFICIENCY

The efficiency of DBA compared with Vanilla Transformer and other efficient Transformers are
illustrated in Figure 1 and Table 1. We report the speed and peak memory usage of different atten-
tions in 256-4k sequence lengths. The DBA achieves state-of-the-art efficiency in terms of speed
and peak memory usage, which is faster than the Vanilla Transformer and consumes fewer memo-
ries over various sequence conditions. In the long sequence conditions, DBA is 6.1 times faster than
Vanilla Transformer and only uses 9% of memory in 4k sequence length. As for shorter sequence
length, DBA could also achieve the highest efficiency among others, with 1.4 times faster and only
uses 66% of memories compared to the Vanilla Attention in 512 sequence length. The DBA only
falls behind the Synthesizer when facing 256-sequence length in terms of speed. However, DBA
uses much less memory with much-suppressed efficiency on the long sequence condition. In ad-
dition, DBA achieves the best among others in terms of average performance on the LRA task,
demonstrating the effectiveness and efficiency of DBA.

4.2 PERFORMANCE ON LONG SEQUENCE MODELING

We evaluate long sequence modeling performance of DBA and the previous methods on the LRA
benchmark, as listed in Table 2. The DBA achieves state-of-the-art performance in terms of average
score. By closer observation of each individual task, DBA achieves the best results on three out
of five individual tasks. Notably, DBA suppresses the Vanilla Transformer and previous low-rank-
based methods in all five tasks and is exceptionally proficient in image-related tasks where the most
informative parts change significantly for different inputs. Note that DBA has the fastest speed and
lowest memory consumption in all tasks, demonstrating the effectiveness and efficiency of DBA.

4.3 PERFORMANCE ON TIME SERIES SIGNAL IN VARIOUS LENGTH

We use UEA multivariate time series classification archive to evaluate the performance of models
in various sequence lengths. The results are illustrated in Table 3. The DBA achieves the best
performance compared with previous methods in all 10 tasks, with 2.3% improvement on the av-
erage accuracy compared with the Vanilla Transformer, highlighting the capability of processing
sequences in various lengths.

4.4 PERFORMANCE ON CAPTURE CROSS-ATTENTION RELATIONS

We use the VQA-v2 dataset to evaluate the performance of DBA in cross-attention tasks. The results
are shown in Table 4. Compared with the previous methods, where the image and question interact
once per layer, DBA could capture high-order relations between hierarchies and perform multi-stage
interactions within an attention layer, making DBA achieve the best results on the VQA-v2 tasks in
all four evaluation aspects with only 12% of parameters compared with Vanilla Transformer based
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Table 4: Performance on the val split of VQA-v2 dataset. nPara denotes the number of parameters
in attention layers. The best model is made bold.

Model nPara ↓ All ↑ Y.N. ↑ Num. ↑ Other ↑
MCAN (Yu et al., 2019) 44M 67.17 84.82 49.37 58.48
BAN (Kim et al., 2018) 60M 66.00 83.61 47.04 57.62

Linformer (Wang et al., 2020) 39M 66.19 83.77 48.15 57.61
Performer (Choromanski et al., 2021) 38M 65.64 83.27 46.83 57.21

MCAoAN (Rahman et al., 2021) 58M 67.24 84.95 49.51 58.45

DBA 5.2M 68.53±0.01 85.60±0.07 50.60±0.17 60.30±0.02

Table 5: Efficiency and performance of DBA with state space model on LRA dataset.

Task S4 (Gu et al., 2022) S4+DBA
Accuracy ↑ Speed ↑ Memory↓ Accuracy ↑ Speed ↑ Memory↓

ListOps ↑ 59.60 1.0 1.0 59.70 1.3 0.8
Text ↑ 86.20 1.0 1.0 85.40 1.2 0.9

Retrieval ↑ 90.90 1.0 1.0 91.39 1.4 0.9
Image ↑ 87.28 1.0 1.0 86.90 1.5 0.8

Pathfinder ↑ 94.20 1.0 1.0 93.98 1.4 0.8

Avg. ↑ 83.64 1.0 1.0 83.47 1.4 0.8

MCAN (Yu et al., 2019) in attention layer, highlighting the effectiveness of DBA in capturing cross-
attention relations.

4.5 PERFORMANCE WITH STATE SPACE MODEL BACKBONE

As a different approach from Transformer, the state space model has achieved promising results in
long sequence modeling. The state space model takes the similar input X ∈ Rn×d as the Trans-
former when processing the sequence, with its speed and memory consumption much influenced by
the sequence length n.

The DBA can also be directly plug-and-play to the state space model by compressing the sequence
length the state space models need to process from Rn×d to Rdp×d to improve the efficiency while
maintaining the final performance. We use the S4 (Gu et al., 2022) as backbone. The results are il-
lustrated in Table 5. The S4 with DBA optimization could achieve 1.4x average speed boost and 0.8x
average memory consumption with competitive performance compared to the baseline, highlighting
the universality of DBA.

5 CONCLUSION

In this paper, we propose Dynamic Bilinear Low-Rank Attention (DBA), an efficient attention mech-
anism that compresses sequence length by input-sensitive dynamic projection matrices and achieves
linear time and space complexity by jointly optimizing sequence length and hidden state dimension.
Theoretical analysis from the information theory and matrix low-rank approximation perspectives
shows that DBA could achieve a similar function to Vanilla Attention with high-order small amount
error. In addition, DBA is capable of capturing high-order relations in cross-attention problems. Ex-
periments show that DBA is able to achieve state-of-the-art performance with faster speed and lower
memory consumption compared with previous models, highlighting its efficiency and effectiveness.
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E. Taub, and H. Flor. A spelling device for the paralysed. Nature, 398(6725):297–298, 1999.
ISSN 1476-4687. doi: 10.1038/18581.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
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A APPENDIX

A.1 PROOF IN OPTIMIZING HIDDEN STATE DIMENSION

Johnson–Lindenstrauss lemma. Let R ∈ Rd×din , 1 ≤ din ≤ d, with i.i.d. entries from N (0, 1/d).
For any x,y ∈ Rd, we have

Pr
(∣∣∣∣xRRTyT − xyT

∣∣∣∣ ≤ ϵ
∣∣∣∣xyT

∣∣∣∣) > 1− 2e−(ϵ
2−ϵ3)din/4 (15)

Based on the Johnson–Lindenstrauss lemma, we could obtain:

Pr
(∣∣∣∣∣∣QRRTki

T −Qki
T
∣∣∣∣∣∣ ≤ ϵ

∣∣∣∣∣∣Qki
T
∣∣∣∣∣∣)

≥ 1−
∑

qi ∈ Q

Pr
(∣∣∣∣∣∣qiRRTki

T − qiki
T
∣∣∣∣∣∣ > ϵ

∣∣∣∣∣∣qiki
T
∣∣∣∣∣∣) > 1− 2ne−(ϵ

2−ϵ3)din/4 (16)

The K contain n rows. Here we could get:

Pr
(∣∣∣∣QRRTKT −QKT

∣∣∣∣ ≤ ϵ
∣∣∣∣QKT

∣∣∣∣)
≥ 1−

∑
ki ∈ K

Pr
(∣∣∣∣∣∣QRRTki

T −Qki
T
∣∣∣∣∣∣ > ϵ

∣∣∣∣∣∣Qki
T
∣∣∣∣∣∣) >1 − 2n2e−(ϵ

2−ϵ3)din/4 (17)

Hence,

Pr
(∣∣∣∣(WrQ)RRT

(
KTW T

c

)
− (WrQ)

(
KTW T

c

)∣∣∣∣ ≤ ϵ
∣∣∣∣(WrQ)

(
KTW T

c

)∣∣∣∣)
> 1 − 2dp

2e−(ϵ
2−ϵ3)din/4

(18)

Let din ≥ 10log (dp) /
(
ϵ2 − ϵ3

)
, we could derive the equation 9, then theorem follows.

A.2 DATASETS

LRA (Tay et al., 2021b) is a popular benchmark to test the efficiency of Transformers in long se-
quence conditions, containing a suite of tasks (ListOps (Nangia & Bowman, 2018), byte-level text
classification (Maas et al., 2011), document retrieval (Radev et al., 2013), pixel-level image classi-
fication (Krizhevsky & Hinton, 2009), and Pathfinder (Linsley et al., 2018)) with sequence length
ranging from 1k to 4k.

UEA multivariate time series classification archive (Bagnall et al., 2018) is a collection of datasets
to evaluate the time series classification algorithms, which contains a wide range of problems in
various sequence length conditions.

VQA-v2 (Goyal et al., 2017) is a popular benchmark for multi-modal models, containing 1.1 million
human-labeled image-question pairs with around 13 million associated answers on 200k images
from the Microsoft COCO dataset (Lin et al., 2014), and it is split into the train, val, and test set.

Table 6: Summary of experiment benchmarks.

Dataset Task Sequence Length

LRA (Tay et al., 2021b) Long Sequence Modeling 1k-4k
UEA (Bagnall et al., 2018) Time Series 29-1751

VQA-v2 (Goyal et al., 2017) Visual Question Answering 5-625

A.3 EXPERIMENT SETTINGS

All the experiments are conducted using PyTorch (Paszke et al., 2019) and Numpy (Harris et al.,
2020) with Nvidia GPU.
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For the experiment on the LRA dataset, DBA follows the configurations as (Ma et al., 2021), where
all models use the same data processing strategy and model architecture for fair comparisons.

For the experiment on the UEA multivariate time series classification archive, we select 10 multi-
variate datasets similar to (Wu et al., 2022) and use the same configurations following (Zerveas et al.,
2021). As some of the tasks contain sequences of various lengths, we padded the batched input to
the maximum length of the task during training process. During implementation, DBA takes the
input without padding as DBA is able to process sequences in various lengths.

For the experiments on the VQA-v2 dataset, we use the ALBERT (Lan et al., 2020) to extract
question features, resulting R768 embedding for every token in a sentence. We use the gird image
features (Jiang et al., 2020) obtained from a ResNet-152 model (He et al., 2016) in the vision part.
For the ith grid, it is represented as a feature as xi ∈ R2048, with maximum 608 grid features. After
cross-attention interactions, both language and vision parts perform intra-modality fusion following
(Yu et al., 2019), and the final answer is predicted via addition.

For the performance on the state space model, we use the S4 (Gu et al., 2022) as backbone. Our
goal is to improve efficiency of the state space model while maintaining its performance. Note that
DBA first compresses the input sequence from Rn×d to Rdp×d, then processes compressed feature
and finally restores the sequence to its original dimension Rn×d. Therefore, we could extract the
compressed feature in DBA as the input of state space model to improve efficiency. We use one
layer of DBA to compress sequence length of the input, and DBA is plugged after the first layer of
the S4 model.

The detailed settings with hyper-parameters are listed in Tables 7, 8, 9, and 10.

Table 7: Experiment settings on the LRA.

Task Depth Heads d dffn dp din

ListOps 6 8 512 2048 16 24
Text 4 4 256 1024 16 24

Retrieval 4 4 128 512 16 24
Image 1 8 64 128 16 24

Pathfinder 1 4 128 128 16 24

Table 8: Experiment settings on the UEA multivariate time series classification archive.

Task Depth Heads d dffn dp din

Ethanolconcentration 1 8 64 256 16 24
Facedetection 3 8 128 256 16 24
Handwriting 1 8 128 256 16 24

Heartbeat 1 8 64 256 16 24
Japanesevowels 3 8 128 256 16 24

Pems-Sf 1 8 128 512 16 24
Selfregulationscp1 3 8 128 256 16 24
Selfregulationscp2 3 8 128 256 16 24
Spokenarabicdigits 3 8 128 256 16 24

Uwavegesturelibrary 3 16 256 256 16 24

Table 9: Experiment settings on the VQA-v2.

Task Depth Heads d dffn dp din

VQA-v2 3 8 256 1024 24 64

16

brightqin
高亮



Under review as a conference paper at ICLR 2023

Table 10: Experiment settings for the S4 with DBA optimization.

Task S4 Configuration DBA Configuration
Depth d Depth Heads d dp din

ListOps 8 128 1 4 128 1024 64
Text 6 256 1 4 256 2048 128

Retrieval 6 256 1 4 256 2048 128
Image 6 512 1 4 512 512 256

Pathfinder 6 256 1 4 256 512 128
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Figure 3: Visualization of sequence length compression matrices. The first column is the input
sequence. The second column compares the dynamic sequence length projection matrix in DBA
and the learned input invariant projection matrix in Linformer. The third column illustrates the
compressed input by DBA and Linformer, respectively. Different rows represent different input
samples.

A.4 VISUALIZATION OF DYNAMIC SEQUENCE LENGTH PROJECTION MATRICES

We visualized the dynamic sequence lengths compression matrices in DBA and compared them
with the input invariant compression matrices in Linformer on the Selfregulationscp1 task (Bir-
baumer et al., 1999), as shown in Figure 3. The Selfregulationscp1 record the EEG data and is one
of the UEA multivariate time series classification archives. Results show that the sequence length
projection matrix is determined by the input, which highlights values in different positions for dif-
ferent inputs, while Linformer concentrates on the same position for different samples. In addition,
the sequence compression matrices in DBA are “smoother” between adjacent positions and have
a more noticeable trend than the compression matrices in Linformer. From the characteristics of
Selfregulationscp1 task and how people diagnose such diseases (Birbaumer et al., 1999), the con-
centrated position shall be different for different inputs and share more coherent trends between
adjacent points like in DBA rather than oscillate. The DBA process the signals more human-like
and could achieve higher performance, demonstrating the superiority of dynamic sequence length
projection matrices.
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Figure 4: Comparison of training loss and validation accuracy of DBA with ablation variants, in-
cluding DBA without hidden state dimension compression and DBA without sequence length com-
pression.

A.5 ABLATION EXPERIMENTS

We conduct ablation studies on the LRA dataset to investigate the influence of dp and din on ef-
ficiency and final performance, as shown in Tables 11 and 12. Results show that both sequence
length and hidden state dimension compression contribute to the efficiency, where the sequence
length compression contributes a higher speed-up ratio with the increase of sequence length (from
1.0x to 5.9x speed-up with 256-4k sequence length), and the compression in hidden state dimension
contributes to dedicate speed-up rate (around 1.1x) for all inputs with different length. We also in-
vestigate the different settings of dp and din to the efficiency, and DBA has faster speed with less
memory consumption with the decrease of dp and din.

Table 12 illustrates dp and din to the final performance. Results show that DBA could achieve a sim-
ilar performance compared with the counterparts without sequence length or hidden state dimension
compression on three out of five tasks on the LRA dataset, which is consistent with our theory that
the optimization in DBA is either lossless or with high-order small amount error. The DBA achieves
higher performance on the image and pathfinder tasks, which we believe the optimization in DBA
contributes to the generation capability and ease of optimization. The DBA achieves higher valida-
tion accuracy under the same training loss and has faster coverage speed, as detailed shown in Figure
4. Note that DBA is faster and uses less memory than the ablation counterparts without sequence
length or hidden state dimension compression, demonstrating the efficiency and effectiveness of
DBA.

Different settings of dp and din to the final performance are also illustrated in Table 12. We set
din = 24 for the experiment of dp and dp = 16 for the experiments of din. Increasing the dp
from 8 to 128, DBA achieves higher performances, especially on the retrieval, image, and pathfinder
tasks, while keeping similar performances on the other two tasks. However, the performance on the
pathfinder task drops when increasing the dp to 256. Increasing the din from 12 to 64, DBA also
achieves higher performances on the same three tasks. For the balance between performance and
efficiency, we set dp = 16 and din = 24 for all tasks on the LRA dataset, as shown in Table 7.
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Table 11: Inference speed and peak memory consumption of DBA with different dp and din on
byte-level text classification with various sequence lengths (1K, 2K, 3K, and 4K). The average
performances are listed on the right. DBA coverage faster than the controlled groups with higher
validation accuracy in the same training loss.

Model Speed ↑ Peak Memory Usage ↓ Avg. ↑256 512 1k 2k 3k 4k 256 512 1k 2k 3k 4k

Vanilla Transformer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58.57

dp

w/o optimize n 1.1 1.1 1.1 1.1 1.1 1.1 0.96 0.96 0.96 0.96 0.98 0.99 59.75±0.24
256 1.0 1.0 1.1 1.2 2.6 3.8 1.00 0.97 0.58 0.31 0.25 0.16 62.17±0.20
64 1.0 1.3 1.3 1.8 3.9 5.6 0.87 0.72 0.42 0.21 0.17 0.10 62.26±0.10
16 1.1 1.4 1.4 2.0 4.1 6.1 0.84 0.66 0.38 0.19 0.15 0.09 62.21±0.21
8 1.2 1.4 1.5 2.1 4.2 6.4 0.83 0.65 0.37 0.19 0.15 0.09 61.73±0.28

din

w/o optimize d 1.0 1.1 1.4 1.9 4.0 5.9 0.85 0.68 0.39 0.20 0.16 0.09 60.95±0.32
64 1.1 1.4 1.4 1.9 4.1 5.9 0.84 0.67 0.38 0.20 0.16 0.09 62.26±0.16
24 1.1 1.4 1.4 2.0 4.1 6.1 0.84 0.66 0.38 0.19 0.15 0.09 62.21±0.21
12 1.2 1.4 1.4 2.0 4.2 6.3 0.84 0.66 0.38 0.19 0.15 0.09 61.37±0.18

Table 12: Performance of DBA on the LRA benchmark with different dp and din.

Model ListOps ↑ Text ↑ Retrieval ↑ Image ↑ Pathfinder ↑ Avg. ↑
Vanilla Transformer 36.37 64.27 78.38 42.44 71.40 58.57

dp

w/o optimize n 38.08±0.23 66.00±0.10 78.53±0.04 41.76±0.54 74.37±0.28 59.75±0.24
256 37.53±0.08 66.20±0.14 80.81±0.14 48.03±0.17 78.30±0.46 62.17±0.20
64 37.40±0.05 66.17±0.12 80.69±0.09 46.98±0.09 80.05±0.17 62.26±0.10
16 38.10±0.40 66.25±0.04 80.64±0.01 46.51±0.50 79.56±0.10 62.21±0.21
8 37.88±0.33 66.06±0.13 80.37±0.19 45.70±0.30 78.65±0.46 61.73±0.28

din

w/o optimize d 37.55±0.25 65.92±0.10 79.98±0.19 45.39±0.34 75.90±0.73 60.95±0.32
64 37.50±0.05 66.19±0.09 80.22±0.13 47.64±0.16 79.76±0.35 62.26±0.16
24 38.10±0.40 66.25±0.04 80.64±0.01 46.51±0.50 79.56±0.10 62.21±0.21
12 37.65±0.15 66.18±0.10 78.14±0.13 46.24±0.36 78.65±0.18 61.37±0.18
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