
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Q-GALORE: QUANTIZED GALORE WITH INT4 PROJEC-
TION AND LAYER-ADAPTIVE LOW-RANK GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Large Language Models (LLMs) is memory-intensive due to the large
number of parameters and associated optimization states. GaLore Zhao et al.
(2024), a recent method, reduces memory usage by projecting weight gradients into
a low-rank subspace without compromising performance. However, GaLore relies
on time-consuming Singular Value Decomposition (SVD) operations to identify the
subspace, and the frequent subspace updates lead to significant training time over-
head. Moreover, GaLore offers minimal improvements in accuracy and efficiency
compared to LoRA in more accessible fine-tuning scenarios. To address these
limitations, we introduce Q-GaLore, a novel approach that substantially reduces
memory usage by combining quantization and low-rank projection, surpassing the
benefits of GaLore. Our method is based on two key observations: (i) the gradient
subspace exhibits diverse properties, with some layers converging early in training
while others are subject to frequent changes; (ii) the projection matrices are highly
resilient to low-bit quantization. Leveraging these insights, Q-GaLore adaptively
updates the gradient subspace based on its convergence statistics, achieving compa-
rable performance while significantly reducing the number of SVD operations. We
maintain the projection matrices in INT4 format for aggressive memory conser-
vation and preserve weights in INT8 format, incorporating stochastic rounding to
capture accumulated gradient information. This approach enables a high-precision
training trajectory using only low-precision weights. We demonstrate that Q-
GaLore achieves highly competitive pre-training and fine-tuning performance with
exceptional memory efficiency. At pre-training, Q-GaLore facilitates training a
LLaMA-7B model from scratch on a single NVIDIA RTX 4060 Ti with only 16
GB memory, showcasing its exceptional memory efficiency and practicality. At
fine-tuning, it reduces memory consumption by up to 50% compared to LoRA and
GaLore, while consistently outperforming QLoRA (by up to 5.19 on MMLU) at
the same memory cost. Codes will be released upon acceptance.

1 INTRODUCTION

Since the 2020s, Large Language Models (LLMs) have demonstrated remarkable performance in
various disciplines Brown et al. (2020); Touvron et al. (2023b); Kocoń et al. (2023); Anil et al. (2023);
Chen et al. (2022); Romera-Paredes et al. (2024). However, the immense scale of LLMs, often
comprising billions of parameters, presents a formidable challenge for most research groups in terms
of training and full fine-tuning. For example, Meta’s LLaMA models were developed with 2048
A100-80GB GPUs for approximately a period of 5 months Touvron et al. (2023a). Even without
factoring in any considerations for product efficiency, fine-tuning a LLaMA 7B model with 16-bit
precision necessitates at least 56 GB memory for maintaining the model weight, Adam optimizer
states and weight gradient, which is prohibitively expensive.

Numerous research efforts have been dedicated to alleviating the substantial costs associated with
training LLMs. These endeavors encompass a range of techniques, including small-scale LLM
designing Liu et al. (2024b); Tang et al. (2024), efficient scaling optima Hoffmann et al. (2022),
training methodologies incorporating sparsity Shazeer et al. (2017); Fedus et al. (2022); Chen et al.
(2023), sparse model training approaches Liu et al. (2022); Thangarasa et al. (2023), and low-rank
training strategies Lialin et al. (2023b); Zhao et al. (2024). Among these, GaLore Zhao et al.
(2024) has emerged as a notable contender, enabling the full-parameter training of LLMs through

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

low-rank gradient updates achieved via Singular Value Decomposition (SVD). Leveraging its low-
rank characteristics, GaLore offers a significant reduction—up to 63.3%—in total training memory
requirements, facilitating the training of a 7B model with a mere 24GB of memory.

Although GaLore offers substantial memory savings, its 24GB memory requirement still surpasses
the available resources in many customer devices. For instance, popular laptop GPUs like the RTX
4060 Ti are equipped with up to 16GB of memory. And the price of 24GB RTX 4090 is three times
than 16GB RTX 4060 Ti. This limitation raises the question of how we can further reduce the memory
footprint of low-rank LLM training to make it accessible to a wider range of hardware configurations.
Also, GaLore requires regular updates to the gradient subspace through computationally expensive
SVD operations (e.g., every 200 iterations) to approximate the training trajectory of full-rank training.
The computational complexity of SVD operations is roughly on the magnitude of O(mn2), where m
and n are the dimensions of the matrix. As a result, it takes ∼ 10 minutes for the LLaMA-7B model
to update the subspace, leading to significant training latency.

Weights

Optimizer States

Gradients

(16 bits)

(16 bits)

(8 bits)

Full Training

Weights

Gradients

(16 bits)

(16 bits)

GaLore

Projection
(16 bits)

Optimizer States
(8 bits)

Weights

Gradients

(8 bits)

(16 bits)

Q-GaLore

Projection
(4 bits)

Optimizer States
(8 bits)

Figure 1: Comparison of data types and training flows of different
methods. We by default use 8-bits Adam Dettmers et al. (2021) as the
inner optimizer. Note that the gradient in GaLore and Q-GaLore is not
persistent during training.

To address these challenges, we
delved into the training dynam-
ics of the gradient subspace of
GaLore and discovered two in-
triguing phenomena: (i) The
gradient subspace of GaLore
demonstrates different behaviors
across different layers, in which
some layers demonstrates ”early
bird” properties and converge
within the initial training stage
while some layers have a stable
subspace within a specific win-
dow during training and some
other layers consistently keeps
changing. (ii) The projection
matrices of GaLore exhibit ex-
cellent quantization-friendliness
property, which can be seam-
lessly quantized to 4-bits without
sacrificing training quality.

Inspired by these observations, we propose Q-GaLore, a novel approach that enables the training of
large language models with low-precision weights and low-rank gradients. Q-GaLore introduces two
modules to reduce memory overhead and training latency:

(i) Low precision training with low-rank gradients: We manage to quantize the entire model (not
only the optimizer state as in GaLore Zhao et al. (2024)) to 8-bits and the projection matrix to 4-bits,
as shown in Figure 1. By utilizing low-precision weights and projection matrices, our approach
achieves a reduction of approximately 28.57% in memory requirements for gradient low-rank training
where the weight represent the primary component of memory usage post low-rank projection.
Additionally, to maintain training stability and approximate the trajectory of high-precision training,
we implement Stochastic Rounding (SR) Von Neumann & Goldstine (1947) that provides an unbiased
estimation of the gradient trajectory and mitigates gradient information loss, thus enhance the training
stability and overall performance.

(ii) Lazy layer-wise subspace exploration: We monitor the convergence levels of the gradient
subspace in different layers and adaptively decrease the frequency of SVD operations for the layers
whose low-rank subspace does not change significantly over time. This approach reduces the training
time associated with SVD, saving over 32 hours for training a 7B model.

We demonstrate the efficacy of Q-GaLore in both pre-training and fine-tuning scenarios. For pre-
training, Q-GaLore’s efficiency allows us to reduce the memory requirements of full-rank training
and GaLore by 61% and 30%, respectively, across various model sizes from 60M to 7B. Notably,
Q-GaLore demonstrates the feasibility of training LLaMA-7B on a single NVIDIA RTX 4060 Ti with
only 16GB of memory while significantly reducing memory costs when using data parallism for large

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

batch training. In the context of fine-tuning, Q-GaLore matches the performance of SOTA low-rank
approaches including LoRA Hu et al. (2021), QLoRA Dettmers et al. (2024) and GaLore Zhao
et al. (2024). It reduces memory consumption by up to 50% than LoRA/GaLore, while consistently
outperforming QLoRA Dettmers et al. (2024) at the same memory cost.

2 RELATED WORK

2.1 LOW-RANK ADAPTATION AND TRAINING

Optimizing Large Language Models (LLMs) requires a substantial memory footprint to accommodate
weights, activations, gradients, and optimization states. Low-Rank Adaptation (LoRA) Hu et al.
(2021) is a notable technique that introduces low-rank weight adapters for each layer, reducing the
memory footprint by only optimizing the adapters, which can later be merged back into the original
model. Subsequent enhancements to LoRA, such as quantization Dettmers et al. (2024), multi-task
learning support Wang et al. (2023), and various architectural improvements Renduchintala et al.
(2023); Sheng et al. (2023); Xia et al. (2024); Zhang et al. (2023); Hayou et al. (2024); Hao et al.
(2024); Liu et al. (2024a); Shazeer & Stern (2018); Hao et al. (2024), have all focused on fine-tuning
scenarios. Despite the efficiency of low-rank adaptation, its suboptimal performance compared to
full parameter optimization Zhang et al. (2024) has motivated the development of other memory-
efficient optimization methods. For instance, Lv et al. (2023b;a) reduce memory overhead through
fused backward operations, eliminating the need to store all weight gradients. Sparse optimization
techniques, such as BAdam Luo et al. (2024) and LISA Pan et al. (2024), partition parameters
into blocks or sample layers based on importance to minimize memory costs while maintaining
performance comparable to full parameter fine-tuning.

Early efforts to adapt LoRA for pre-training, such as ReLoRA Lialin et al. (2023a), still require
full-rank learning in the initial stages, resulting in high memory overhead. Recently, GaLore Zhao
et al. (2024) leverages the low-rank properties of gradients Hao et al. (2024) to enable full-parameter
learning while significantly reducing memory usage during optimization. This approach allows
GaLore to achieve better performance than common low-rank adaptation methods such as LoRA,
while still being memory-efficient.

2.2 LOW PRECISION TRAINING

Low-precision training aims to improve training efficiency by storing data in low-precision formats
and leveraging low-precision General Matrix Multiplication (GEMM) operations. This is distinct
from post-training quantization, which primarily enhances the inference efficiency of pre-trained
models. A significant challenge in low-precision training is potential instability during the training
process. SWALP Yang et al. (2019) addresses this issue using stochastic weight averaging Izmailov
et al. (2018), but it requires maintaining averaged weights, leading to high memory overhead in
large foundational models. Other methods handle instability by scaling gradients Lin et al. (2022) or
second-order optimizer statistics Sun et al. (2020).

While various low-precision training methods have been explored for smaller-scale convolutional
networks Cho et al. (2021); Wang et al. (2018b); Zhu et al. (2020); Zhou et al. (2016); Chen et al.
(2017); Yang et al. (2020), they are generally not applicable to training large-scale transformers, as
large tensors are less suitable for quantization Dettmers et al.. Some approaches to low-precision
training at a larger scale still require maintaining high-precision latent weights during training,
significantly increasing memory consumption for large language models Wortsman et al. (2023); Liu
et al. (2023). This study aims to improve the end-to-end memory efficiency of training large-scale
foundational model at scale.

3 METHODOLOGY

We first introduce the data type and quantization basics in Section 3.1. Section 3.2 demonstrates
the adaptive convergence properties of the gradient subspace, which facilitates efficient training. In
Section 3.3, we demonstrate the high tolerance of the projection matrix to quantization. Section 3.4
then discusses stochastic rounding for approximating high-precision training trajectories. The overall
pipeline of Q-GaLore is depicted in Figure 4.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PRELIMINARIES ON QUANTIZATION

Generally, quantization methods are categorized into Post-Training Quantization (PTQ), where
quantization is applied to pretrained models without further training; and Quantization-Aware Training
(QAT), which incorporates quantization throughout the training process. QAT aims to either generate
more quantizable models for faster inference or expedite the training process through low-precision
operations. To preserve performance, these methods retain high-precision parameters throughout the
training process and apply quantization to transfer the parameters into low-precision data formats
during each forward and backward pass. Maintaining high precision parameters occupis massive
memory and results in even larger memory requirements than vanilla high precision training. In this
work, we focus on improving the memory efficiency of training large language models and do not
maintain the high-precision parameters.

In Q-GaLore, the model weights are retrained in INT8 while activations and gradients are computed
in BFloat16. Although FP8 Micikevicius et al. (2022) offers greater expressiveness than INT8, it is
supported on limited devices, e.g., the NVIDIA Hopper series GPUs, which are costly and not widely
available. Thus, we employ the more general INT8 formats. The pseudocode is presented in the
appendix A. To convert data format, we utilize block-wise uniform quantization Shen et al. (2020):

Wq = Quantn(W, s, z) = clamp(⌊W
s
⌉+ z,−2n−1, 2n−1 − 1)

where W and Wq represents the original and quantized tensors, respectively. s is the scaling factor
and z is the zero point. Both s and z are calculated within each block of the tensors. n is the
quantization bits. We default to use block size of 256 in all implementations.

0 5000 10000 15000 20000
Training Iterations

1.0

0.5

0.0

0.5

1.0

C
os

in
e 

Si
m

ila
rit

y

model.layers.0.self_attn.q_proj

0 5000 10000 15000 20000
Training Iterations

1.0

0.5

0.0

0.5

1.0
model.layers.6.self_attn.v_proj

0 5000 10000 15000 20000
Training Iterations

0.5

0.0

0.5

1.0
model.layers.6.mlp.down_proj

Figure 2: Cosine similarity between the adjacent projection matrices captured every 250 training iterations.

3.2 LAYERWISE CONVERGENCE BEHAVIORS OF GRADIENT SUBSPACE

GaLore relies on a fixed interval to recompute the gradient space and projection matrices blindly,
assuming that the training dynamics of all the layers in LLMs remain the same. One direct implication
remains the frequent computation of computationally expensive SVD. To this end, we ask: How
does the gradient subspace dynamics varies during the pre-training of LLMs? We investigated the
cosine similarity across the projection matrices obtained at regular interval during the pre-training
of LLaMa-130M as shown in Figure 2. Our observations are as follows: (i) certain layers exhibit
an “early bird” phenomenon, whereby their gradient subspace saturates early during pre-training
and remains stable throughout (Top Right, with cosine similarity close to 1); (ii) in some layers, the
gradient subspace saturates within a specific window during pre-training (Top Middle); (iii) in other
layers, the gradient subspace consistently keeps changing towards the end of training (Top Left).

Q-GaLoreGaLore

Quantization on Projection Matrices

Figure 3: Pre-training perfor-
mance on the LLaMA-130M
models. The projection matrices
are quantized with different bits.

This observation provides a unique opportunity to monitor the gra-
dient subspace behavior during pre-training and dynamically update
the frequency of SVD for each layer if we observe saturation. More
specifically, starting with an SVD interval of t for a layer l, we
monitor the cosine similarity of projection matrices in the previous
k intervals. If the cosine similarity across the k intervals remains
greater than a threshold (e.g., ≥ 40%), we update the interval from
(t → 2× t) to reduce the compute. This adaptive lazy update can
closely mimic the performance of the original GaLore with over 60%
reduction in computationally expensive SVD calls. Further ablation
studies about the trade-off between SVD calls and performance are presented in Section 4.4.

3.3 HIGH QUANTIZATION TOLERANCE OF PROJECTION MATRIX

The adaptive convergence properties suggest that the projection matrix has a degree of redundancy,
indicating that high accuracy is not essential. This observation inspired us to further investigate the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

functionality of the projection matrix under quantization conditions. We implemented block-wise
quantization for the projection matrices, maintaining a uniform block size of 256 across all layers.
During these experiments, we ensured that the update steps for the projection matrices remained
constant, allowing us to focus exclusively on their quantization characteristics. Figure 3 illustrates the
results for the LLaMA-130M models, demonstrating that the projection matrices are highly resilient
to quantization, with minimal impact on pre-training quality even when reduced to 4 bits. Based on
these findings, we applied quantization to the projection matrices, restricting them to 4 bits. This
approach further reduces the memory cost of the optimizer states in low-rank training by 25%.

3.4 APPROXIMATING HIGH-PRECISION TRAINING TRAJECTORIES USING STOCHASTIC
ROUNDING

When using low-rank training methods such as GaLore, the allocation of memory to maintain model
parameters constitutes the majority of the memory overhead. Consequently, we opt to maintain the
weights in low precision to enhance memory efficiency during training. The primary challenge of
training with low-precision parameters is the significant reduction of gradient information. During
each optimization step, the full precision gradient must be quantized to a low precision weight update.
However, if the gradient magnitude is not large enough, it will be mitigated via the round-to-nearest
scheme. Conventional Quantization-Aware Training (QAT) retains full precision parameters to
accumulate small gradient contributions, albeit at the cost of increased memory overhead. To address
this issue, we employ Stochastic Rounding (SR) Von Neumann & Goldstine (1947); Li et al. (2017);
Gupta et al. (2015), that is formulated as the following:

Wq = FSR(W ) =

{
⌊W ⌋ with probability p = ⌈W ⌉ −W
⌈W ⌉ with probability p = W − ⌊W ⌋

Under this formulation, the expected value of Wq is E[Wq] = ⌊W ⌋(⌈W ⌉−W )+⌈W ⌉(W−⌊W ⌋) =
W , allowing the low-precision parameters to implicitly accumulate small gradient information. This
method achieves comparable performance without the substantial memory requirements associated
with maintaining high-precision parameters.

3.5 THE Q-GALORE ALGORITHM

Training Flows
Weights 8 bits

Gradient 16 bits

Optimizer states 8 bits

Projection Matrix 4 bits

Adaptive update

Quantization

Weight update with
Stochastic Rounding

(16 bits) (16 bits)

(4 bits)(8 bits)

Updating in Gradient Subspace

Figure 4: Illustration of the training flows for Q-GaLore, where the dotted icon denotes intermediate tensors
that do not consistently occupy memory.

The pipeline of Q-GaLore is illustrated in Figure 4. The left section of the figure depicts the
computation flows, where only the gradients are maintained in high precision to preserve essential
training dynamics information. We employ an 8-bit version of the Adam optimizer Dettmers et al.
(2021) as the internal optimizer. During each training iteration, the full-rank gradient is projected into
a low-rank format and then incorporated into the optimizer states. To project the gradient into the
subspace, we obtain the projection matrix using Singular Value Decomposition (SVD), as described
in Zhao et al. (2024). The update frequency of the projection matrix is managed through our adaptive
update strategy, and the matrix is quantized to 4-bits formats to reduce memory overhead.

Furthermore, after updating the optimizer states, we project the low-rank optimizer states back to
full rank and update the parameters. As the weights are consistently maintained at low precision, an
additional quantization step is necessary to update the weights. Here, we utilize SR to capture the
minor-gradient nuances and provide an unbiased estimation of the high-precision weights. And we
employ a fused backward operation as described in Lv et al. (2023a); Zhao et al. (2024); Lv et al.
(2023b) when gradient accumulation is disabled. Upon calculating the gradients for a single layer, we

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

promptly update the corresponding optimizer state and weights, subsequently releasing the memory
allocated to the gradients. If gradient accumulation is required, we then accumulate the gradient in the
low-rank format, resulting around one quarter memory consumption of full gradient accumulation.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of Q-GaLore on both pre-training and fine-tuning
tasks. In Section 4.1, we detail the implementation of models, tasks, hyperparameters, and baseline
approaches. We then demonstrate that Q-GaLore achieves comparable performance on both pre-
training and fine-tuning tasks (Section 4.2). Additionally, Sections 4.3 and 4.4 provide end-to-end
memory analysis and extensive ablation studies, respectively.

4.1 IMPLEMENTATION DETAILS

Network Architecture. For the pretraining task, we adopt the LLaMA-based architecture with
sizes ranging from 60 million to 1 billion, following the setups from Zhao et al. (2024); Lialin et al.
(2023a). During downstream experiments, we select various pre-trained models to evaluate the general
effectiveness of Q-GaLore, including RoBERTa Liu et al. (2019) base, LLaMA-3-8B AI@Meta
(2024), Gemma-7B Team et al. (2024), and Mistral-7B Jiang et al. (2023).

Pre-Training. We pre-train the LLaMA models on C4 dataset Raffel et al. (2020). The C4 dataset
is a massive collection of Common Crawl’s web crawl corpus, meticulously filtered and cleaned to
ensure high-quality language modeling and training. It is widely used for pre-training large language
models due to its diverse and extensive textual content. We train the models on this sufficiently large
dataset without data repetition.

Fine-Tuning. The downstream tasks cover two categories: (i) GLUE benchmarks Wang et al.
(2018a), a series of widely used tasks for evaluating the downstream performance of natural language
understanding; (ii) MMLU Hendrycks et al. (2020) that evaluates the natural language understanding
ability of LLMs, covering various domains, including STEM, social sciences, humanities and others.

Baselines. We consider five baseline methods for comparison: (i) Full: Models are trained
with the original Adam Kingma & Ba (2014) optimizer. Both weights, gradients, and optimization
states are maintained with full rank and full precision (BF16 format). (ii) Low-Rank: The original
weights are factorized into low-rank components: W = UV , and U and V are optimized via
Adam Kamalakara et al. (2022). (iii) LoRA: LoRA Hu et al. (2021) introduces low-rank adaptors for
training the models, W = W0 + UV , where W0 is the pretrained weights, which are frozen during
training. We use the initialized weight as W0 during pretraining and only optimize U and V . And
we default to 32 for LoRA alpha and 0.05 for LoRA dropout. (iv) ReLoRA: ReLoRA Lialin et al.
(2023a) enhances the original LoRA methods for better pre-training. ReLoRA is a stage-wise LoRA
that periodically merges UV into the original W and initializes a new UV for continued training.
(v) QLoRA Dettmers et al. (2024): we use the same hyperparameters: 32 for QLoRA alpha and 0.05
for QLoRA dropout. We keep the base models in 8bits for fair comparison. (vi) GaLore Zhao
et al. (2024): We project the gradient into low-rank format and update the optimizer states. When
updating the weight, we project back the low-rank weight update to full-rank. We follow the original
hyperparameters, setting the subspace frequency in GaLore to 200 and the scale factor α = 0.25.
The low-rank dimension is chosen as a quarter of the original dimension. Note that all baseline
methods, except QLoRA, are maintained in 16-bit precision, while the base models in QLoRA are
kept in 8-bit precision for a fair comparison.

4.2 END-TO-END RESULTS

4.2.1 MEMORY-EFFICIENT PRE-TRAINING WITH Q-GALORE

We pre-trained the LLaMA-based models from scratch on the C4 dataset using various memory-
efficient methods. The experiments encompassed different model sizes ranging from 60 million to
1 billion parameters, with results reported in Table 1. In each experiment, we report the perplexity
values obtained on the validation set. As the primary memory savings are derived from compressing
the weight and optimizer states, we provide estimates of the memory overhead associated with
storing these components. Detailed discussions on end-to-end memory measurements and throughput
comparisons are provided in Section 4.3. For fair comparison, we used the same low-rank dimensions
for all the memory-efficient approaches, specifically {128, 256, 256, and 512} for {60M, 130M,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

350M, and 1B} models, respectively. And we use 16-bits Adam as the inner optimizer inside GaLore
while Q-GaLore implements 8-bit Adam optimizer.

Incorporating adaptive subspace updating, projection and weight quantization, and stochastic round-
ing, our Q-GaLore method maintains comparable pre-training performance (with less than a 0.84
perplexity increase, compared with the original GaLore approach) while significantly reducing mem-
ory overhead. For example, in the experiment of 1 billion model size, training with INT8 weights
halved the original memory cost for weights and achieved a 29.68% memory saving against the
original GaLore method and a 60.51% memory saving compared to the Full baseline. Compared
to GaLore, the additional memory savings primarily come from two sources: (i) INT8 weights
require only half the memory overhead of BF16 weights, and (ii) INT4 projection matrices reduce
approximately 25% of the memory overhead for optimization states.

Table 1: Comparison results of various memory-efficient algorithms on pre-training tasks. Experiments are
conducted on C4 dataset with LLaMA models. For each experiment, we report both the perplexity and estimated
memory. The estimated memory only count for the weights and optimizer states which cost the majority memory
overhead. We follow the same settings and collect the results of all baseline methods from Zhao et al. (2024),
where the training tokens are {1.1B, 2.2B, 6.4B, 13.1B} for {60M, 130M, 350M, 1B} models, respectively.

Methods 60M 130M 350M 1B
Perplexity Memory Perplexity Memory Perplexity Memory Perplexity Memory

Full 34.06 0.36G 25.08 0.76G 18.80 2.06G 15.56 7.80G

Low-Rank 78.18 0.26G 45.51 0.54G 37.41 1.08G 142.53 3.57G
LoRA 34.99 0.36G 33.92 0.80G 25.58 1.76G 19.21 6.17G

ReLoRA 37.04 0.36G 29.37 0.80G 29.08 1.76G 18.33 6.17G
GaLore 34.88 0.24G 25.36 0.52G 18.95 1.22G 15.64 4.38G

Q-GaLore 34.88 0.18G 25.53 0.39G 19.79 0.88G 16.25 3.08G

4.2.2 MEMORY-EFFICIENT FINE-TUNING WITH Q-GALORE

Pre-training LLMs is a resource-intensive task that is typically only feasible for large companies or
computing centers. In most practical scenarios, memory-efficient fine-tuning of LLMs on specific
downstream tasks is more common. To evaluate the effectiveness of Q-GaLore, we selected a
diverse set of downstream tasks, including eight tasks from the GLUE benchmark and four subtasks
from MMLU, which assess the ability of LLMs to understand natural language. We compared
the performance of Q-GaLore with the baseline Full method and three state-of-the-art low-rank
optimization approaches: LoRA, GaLore and QLoRA. It is important to note that while GaLore
utilizes a 16-bit Adam optimizer, Q-GaLore employs an 8-bit Adam optimizer, further reducing
memory requirements without compromising performance.

Tables 2 and 3 lead to consistent observations: (i) Q-GaLore achieves performance comparable to
the full fine-tuning baseline across different models (LLaMA-3-8B, Gemma-7B, Mistral-7B, and
RoBERTa-base), with a minimal performance gap of less than 0.65 compared to Full; (ii) Q-GaLore
demonstrates comparable or even superior performance compared to LoRA, with a improvement of
1.02 performance gain on the MMLU benchmark of Gemma-7B while also requiring less memory;
(iii) Compared with QLoRA, Q-GaLore demonstrates consistent (up to 5.19) gains of performance
across architectures and tasks, at the same memory costs.

4.3 END-TO-END MEMORY MEASUREMENT

BF16 Adam

8-bits Adam

8-bits GaLore

+ INT8 weights

+ Projection
Quantization

16 GB Memory constraint

Figure 5: Results of the memory allocation of training a LLaMA-7B model with a single batch size of 256.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison results of various memory-efficient fine-tuning algorithms on MMLU tasks. Note that
the reported memory stands for the estimated memory overhead for weights and optimizer states. End-to-end
memory measurements are discussed at Section 4.3.

Model Methods Memory STEM Social Sciences Humanities Other Average

LLaMA-3-8B

Full 48 GB 54.27 75.66 59.08 72.80 64.85
LoRA 16 GB 53.00 74.85 58.97 72.34 64.25

GaLore 16 GB 54.40 75.56 58.35 71.19 64.24
QLoRA 8 GB 53.63 73.44 58.59 71.62 63.79

Q-GaLore 8 GB 53.27 75.37 58.57 71.96 64.20

Gemma-7B

Full 51 GB 30.03 37.16 34.08 35.47 34.21
LoRA 17 GB 26.23 34.94 30.88 36.96 32.18

GaLore 17 GB 27.33 36.74 30.82 37.90 33.20
QLoRA 9 GB 24.83 27.54 28.09 33.40 28.49

Q-GaLore 9 GB 27.73 36.80 32.54 37.89 33.68

Mistral-7B

Full 43 GB 52.40 72.95 55.16 69.05 61.67
LoRA 14 GB 52.13 72.46 55.05 68.77 61.41

GaLore 14 GB 51.50 73.02 55.03 69.49 61.55
QLoRA 7 GB 50.00 71.29 55.84 67.66 60.70

Q-GaLore 7 GB 52.23 72.82 55.01 69.30 61.62

Table 3: Comparison results of various memory-efficient fine-tuning algorithms on GLUE tasks, with the
pretrained RoBERTa model (baseline results are obtained from Zhao et al. (2024)). We report the Matthew’s
correlation for the CoLA task, Pearson correlation for STS-B, average (matched and mismatched) accuracy for
MNLI, F1 score for MRPC, and accuracy for all other tasks. The reported memory stands for the estimated
memory overhead for weights and optimizer states. End-to-end memory cost are discussed at Section 4.3.

Methods CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Average Memory

Full 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28 747 MB

LoRA 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94 264 MB
GaLore 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93 257 MB
QLoRA 60.16 89.93 91.87 71.84 93.92 86.57 92.29 91.17 84.72 183 MB

Q-GaLore 61.60 90.23 91.96 79.06 94.38 86.73 92.44 90.91 85.91 176 MB

We present an end-to-end memory measurement for training a LLaMA-7B model in Figure 5. Starting
from the baseline full parameter training with BF16 Adam optimizer, 8-bits Adam optimizer halves
the memory overhead of the optimizer states by quantizing them to a lower precision format. Then,
8-bits GaLore further compresses the memory cost by converting the optimizer states into a low-rank
format. Moreover, 8-bits GaLore employs a fused backward operation that sequentially releases
the gradient memory, rendering the gradient memory cost negligible. Building on this, Q-GaLore
incorporates INT8 weights, which halve the memory requirement for weights. Projection quantization
then further reduces the memory allocated to optimizer states. Notably, only Q-GaLore can train a
LLaMA-7B model within the 16 GB memory constraint, demonstrating the potential for optimizing
models on edge devices. Additionally, due to the varying data formats of gradients and weights,
the requisite quantization and dequantization operations incur a throughput overhead of 14.64%, as
compared to the original GaLore. We will improve the implementation for further work. Furthermore,
Q-GaLore can enable large batch training when combined with FSDP, significantly reducing the
memory consumption of weights and optimizer states on each GPU. This allows for training with
fewer GPUs, thereby reducing communication overhead.

4.4 FURTHER INVESTIGATION AND ABLATION STUDY

In this section, we focus on the ablation studies of Q-GaLore, centering on two key questions: Q1:
How does Stochastic Rounding (SR) benefit the training process? Q2: What is the trade-off between
training performance and SVD counts in Q-GaLore?

A1: Enhanced low-precision training with stochastic rounding. Stochastic rounding provides an
unbiased estimation of accumulated gradient information, which is crucial for low-precision training.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We conducted controlled experiments to pre-train LLMs with and without stochastic rounding. To
ensure a fair comparison, we maintained consistency in other hyperparameters across the experiments:
weights were stored in the INT8 data format, projection matrices were subjected to 4-bit quantization,
and the adaptive convergence ratio for the gradient subspace was set at 0.4.

Figure 6: Ablation study of pre-training with Q-GaLore w/ or w/o Stochastic Rounding (SR). Full curve
stands for the perplexity of the final checkpoint that optimized by original Adam optimizer. Each subfigure
includes a smaller inset that represents the zoomed-in results.

Q-GaLore
GaLore

Performance v.s. SVD counts

Figure 7: Trade-off between perfor-
mance and SVD counts for updating
gradient subspace. Results are normal-
ized by SVD counts of original GaLore.

Figure 6 illustrates the perplexity on the validation set through-
out the training process. At each training step, gradient infor-
mation is quantized back to the low-precision format (INT8),
resulting in considerable information loss and suboptimal per-
formance. The perplexity increased by 7.86, 1.98, and 2.27
for models with sizes of 60, 160, and 350 million parameters,
respectively. Additionally, we implemented an initial warm-up
stage for pre-training for training stability, where the weight
updates are generally smaller. During this stage, significant
loss of gradient information occurs due to the vanilla round-
to-nearest scheme, resulting in a perplexity gap ranging from
18.67 to 47.02, compared with models using stochastic round-
ing. Meanwhile, Q-GaLore can effectively capture the gradient
information without additional memory costs, achieving performance comparable to the Full
baseline, with a perplexity gap of less than 1.

A2: Over 60% SVD operations costs can be saved for free. We explore the trade-off between the
number of SVD operations used for updating the gradient subspace and pre-training performance on
the LLaMA-130M model. In this study, we perform a grid search for the cosine similarity threshold
within the range [0, 1] and report the corresponding SVD counts along with the perplexity. Figure 7
demonstrates that there is an efficient reduction in SVD counts; with only 36.20% of SVD operations,
Q-GaLore (where the cosine similarity threshold equals 0.4) can achieve comparable performance to
the GaLore baseline, resulting in significant time savings. Specifically, to update the gradient subspace
of a LLaMA-7B model, the SVD operation requires approximately 10 minutes when measured on a
single NVIDIA RTX A6000 GPU; and this gradient subspace is updated 300 times across 150,000
training iterations. By achieving more than 60% savings in SVD operations, our method significantly
reduces the time cost by over 32 hours.

5 CONCLUSION

To overcome these challenges and further enhance memory-efficient training, we propose Q-GaLore,
a method that reduces memory usage through quantization and low-rank projection. Our approach
is motivated by two key observations during gradient low-rank training: (1) the gradient subspace
exhibits diverse properties, with some layers converging at the very early training stages while others
are subject to frequent changes; (2) the projection matrices demonstrate high quantization-friendliness
and function effectively under 4-bit quantization. Building on these, Q-GaLore enables low-precision
training (INT8 for the entire model and INT4 for the projection matrix) with low-rank gradients and
significantly fewer SVD operations. Our experiment results demonstrate that Q-GaLore achieves
competitive performance on both pre-training and fine-tuning tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Fuxiang Chen, Fatemeh H Fard, David Lo, and Timofey Bryksin. On the transferability of pre-trained
language models for low-resource programming languages. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension, pp. 401–412, 2022.

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the
new dropout: Scaling dense and self-slimmable transformers. arXiv preprint arXiv:2303.01610,
2023.

Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. Fxpnet: Training a deep convolutional neural
network in fixed-point representation. In 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2494–2501. IEEE, 2017.

Minsik Cho, Keivan A Vahid, Saurabh Adya, and Mohammad Rastegari. Dkm: Differentiable
k-means clustering layer for neural network compression. arXiv preprint arXiv:2108.12659, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale, 2022. CoRR abs/2208.07339.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. Exploring low rank training of deep neural networks. arXiv preprint arXiv:2209.13569,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydło, Joanna Baran,
Julita Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, et al. Chatgpt: Jack of all
trades, master of none. Information Fusion, 99:101861, 2023.

Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. Advances in Neural Information Processing Systems, 30,
2017.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023), 2023a.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Stack more layers
differently: High-rank training through low-rank updates. arXiv preprint arXiv:2307.05695, 2023b.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–
22954, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Tommi Kärkkäinen,
Mykola Pechenizkiy, Decebal Mocanu, and Zhangyang Wang. More convnets in the 2020s: Scaling
up kernels beyond 51x51 using sparsity. arXiv preprint arXiv:2207.03620, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. arXiv preprint arXiv:2402.14905,
2024b.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. arXiv preprint arXiv:2310.10195, 2023a.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for deep
learning. arXiv preprint arXiv:2209.05433, 2022.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter
efficiency of lora with weight tying. arXiv preprint arXiv:2311.09578, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8815–8821, 2020.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285, 2023.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath
Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Kailash Gopalakrishnan.
Ultra-low precision 4-bit training of deep neural networks. Advances in Neural Information
Processing Systems, 33:1796–1807, 2020.

Yehui Tang, Fangcheng Liu, Yunsheng Ni, Yuchuan Tian, Zheyuan Bai, Yi-Qi Hu, Sichao Liu,
Shangling Jui, Kai Han, and Yunhe Wang. Rethinking optimization and architecture for tiny
language models. arXiv preprint arXiv:2402.02791, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis DeCoste,
Sean Lie, and Shreyas Saxena. Spdf: Sparse pre-training and dense fine-tuning for large language
models. In Uncertainty in Artificial Intelligence, pp. 2134–2146. PMLR, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

John Von Neumann and Herman Heine Goldstine. Numerical inverting of matrices of high order.
1947.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018a.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. Advances in neural information processing
systems, 31, 2018b.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
Stable and low-precision training for large-scale vision-language models. Advances in Neural
Information Processing Systems, 36:10271–10298, 2023.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language models
via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and Chris
De Sa. Swalp: Stochastic weight averaging in low precision training. In International Conference
on Machine Learning, pp. 7015–7024. PMLR, 2019.

Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-performance
and large-scale deep neural networks with full 8-bit integers. Neural Networks, 125:70–82, 2020.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and
Junjie Yan. Towards unified int8 training for convolutional neural network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969–1979, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE IMPLEMENTATION DETAILS

The pseudo-code of the forward and backward process in PyTorch style are illustrated in the following:

class INT8Linear(torch.autograd.Function):
@staticmethod
def forward(ctx, x, INT8_W):

ctx.save_for_backward(x, INT8_W)
W = (INT8_W.to(x.dtype) - INT8_W.zeros) * INT8_W.scales
return x @ W.t() + bias

@staticmethod
def backward(ctx, grad_output):

x, INT8_W = ctx.saved_tensors
W = (INT8_W.to(x.dtype) - INT8_W.zeros) * INT8_W.scales
grad_input = grad_output @ W
grad_W = grad_output.t() @ x
return grad_input, grad_W

B MORE EXPERIMENT RESULTS

Stochastic rounding is an effective strategy to mitigate ineffective weight updates caused by quan-
tization. However, the low-rank gradient projection introduces additional noise into the gradient,
potentially leading to greater bias in the rounded gradient compared to full-precision training. To
investigate this, we conducted simulation experiments where the full-rank gradient is retained through-
out the training process, serving as a calibration for the rounding direction, while the actual weight
updates are performed using the low-rank gradient. Experiments were conducted on the LLaMA-
130M model with a pre-training task on the C4 dataset, achieving a perplexity of 25.28 on the
validation set, with no significant improvement over the original Q-GaLore method, which achieved
a perplexity of 25.53. These results suggest that low-rank gradient projection does not diminish the
effectiveness of stochastic rounding.

C EXPERIMENT HYPERPARAMETERS

Details of pre-training on C4 We follow the same setups in GaLore and training the LLaMA
with a total batch-size of 512. And the whole training steps are {10000, 20000, 60000, 100000} for
{60M, 130M, 350M, 1B} models, respectively. For each experiment, we use a warm-up learning
rate strategy in the initial one-tenth training phase and cosine annealing decay in the following. The
default base update interval is set to 200 iterations, using the lazy subspace update approach with a
cosine similarity threshold of 0.4. The rank of gradient is set as {128, 256, 256, 1024} for {60M,
130M, 350M, 1B} models, respectively.

Details of fine-tuning on GLUE We fine-tune the pre-trained RoBERTa-based model for 30 epochs
on each task from the GLUE benchmark. The learning rate is set to 1× 10−5 for all tasks, except for
MRPC and CoLA, where a learning rate of 3× 10−5 is used. The batch size is set to 32 for CoLA
and 16 for all other tasks. And the rank of gradient is fixed at 8.

Details of fine-tuning on MMLU For each experiment, we fine-tune the model for 3 epochs with
a batch size of 8. And the learning rate is set to {1× 10−5, 5× 10−5, 3× 10−5} for {Mistral-7B,
LLaMA-3-8B, Gemma-7B}, respectively. We use the cosine annealing scheduler for learning rate
decay where the initial one-tenth training steps is used as warm-up. The rank of gradient is kept as 8.

D GRADIENT SUBSPACE OF DIFFERENT LAYERS

We evaluate the gradient subspace across different layers in Figure 8. We observe that, generally,
the q and k projections exhibit more diverse gradient subspaces. This is because q and k are
responsible for generating attention patterns, which heavily depend on different tokens, thereby

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Layer Index

attn.q.proj

attn.k.proj

attn.v.proj

attn.o.proj

mlp.gate.proj

mlp.down.proj

mlp.up.proj 0.1

0.2

0.3

0.4

0.5

Figure 8: The average cosine similarity of gradient subspace projection on LLaMA-130M, the cosine similarity
is calculated across two adjacent projection matrix, and being averaged across the training process.

demonstrating significant diversity. In contrast, the down projection shows the most consistent
subspace. Additionally, middle layers tend to have more consistent gradient subspaces compared to the
initial and final layers. This behavior might related to the oversmoothing issue in Transformers, where
middle layers are not well-optimized are casuing the token representations become oversmoothing.

15


	Introduction
	Related Work
	Low-Rank Adaptation and Training
	Low Precision Training

	Methodology
	Preliminaries on Quantization
	Layerwise Convergence Behaviors of Gradient Subspace
	High Quantization Tolerance of Projection Matrix
	Approximating High-Precision Training Trajectories Using Stochastic Rounding
	The Q-GaLore Algorithm

	Experiments
	Implementation Details
	End-to-End Results
	Memory-Efficient Pre-training with Q-GaLore
	Memory-Efficient Fine-Tuning with Q-GaLore

	End-to-End Memory Measurement
	Further Investigation and Ablation Study

	Conclusion
	More Implementation Details
	More Experiment Results
	Experiment Hyperparameters
	Gradient Subspace of Different Layers

