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Abstract

Data augmentation is crucial in training deep models, preventing them from over-1

fitting to limited data. Recent advances in generative AI, e.g., diffusion mod-2

els, have enabled more sophisticated augmentation techniques that produce data3

resembling natural images. We introduce GeNIe a novel augmentation method4

which leverages a latent diffusion model conditioned on a text prompt to combine5

two contrasting data points (an image from the source category and a text prompt6

from the target category) to generate challenging augmentations. To achieve this,7

we adjust the noise level (equivalently, number of diffusion iterations) to ensure8

the generated image retains low-level and background features from the source9

image while representing the target category, resulting in a hard negative sample10

for the source category. We further automate and enhance GeNIe by adaptively11

adjusting the noise level selection on a per image basis (coined as GeNIe-Ada),12

leading to further performance improvements. Our extensive experiments, in both13

few-shot and long-tail distribution settings, demonstrate the effectiveness of our14

novel augmentation method and its superior performance over the prior art.15

1 Introduction16

Augmentation has become an integral part of training deep learning models, particularly when faced17

with limited training data. For instance, when it comes to image classification with limited number18

of samples per class, model generalization ability can be significantly hindered. Simple transfor-19

mations like rotation, cropping, and adjustments in brightness artificially diversify the training set,20

offering the model a more comprehensive grasp of potential data variations. Hence, augmentation21

can serve as a practical strategy to boost the model’s learning capacity, minimizing the risk of overfit-22

ting and facilitating effective knowledge transfer from limited labelled data to real-world scenarios.23

Various image augmentation methods, encompassing standard transformations, and learning-based24

approaches have been proposed [16, 15, 110, 111, 100]. Some augmentation strategies combine two25

images possibly from two different categories to generate a new sample image. The simplest ones26

in this category are MixUp [111] and CutMix [110] where two images are combined in the pixel27

space. However, the resulting augmentations often do not lie within the manifold of natural images28

and act as out-of-distribution samples that will not be encountered during testing.29

Recently, leveraging generative models for data augmentation has gained an upsurge of attention30

[100, 83, 63, 35]. These interesting studies, either based on fine-tuning or prompt engineering of31

diffusion models, are mostly focused on generating generic augmentations without considering the32

impact of other classes and incorporating that information into the generative process for a classifi-33

cation context. We take a different approach to generate challenging augmentations near the decision34

boundaries of a downstream classifier. Inspired by diffusion-based image editing methods [67, 63]35

some of which are previously used for data augmentation, we propose to use conditional latent dif-36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Figure 1: Generative Hard Negative Images Through Diffusion (GeNIe): generates hard negative images
that belong to the target category but are similar to the source image from low-level feature and contextual
perspectives. GeNIe starts from a source image passing it through a partial noise addition process, and condi-
tioning it on a different target category. By controlling the amount of noise, the reverse latent diffusion process
generates images that serve as hard negatives for the source category.

fusion models [81] for generating hard negative images. Our core idea (coined as GeNIe) is to37

sample source images from various categories and prompt the diffusion model with a contradictory38

text corresponding to a different target category. We demonstrate that the choice of noise level (or39

equivalently number of iterations) for the diffusion process plays a pivotal role in generating images40

that semantically belong to the target category while retaining low-level features from the source41

image. We argue that these generated samples serve as hard negatives [108, 65] for the source cat-42

egory (or from a dual perspective hard positives for the target category). To further enhance GeNIe,43

we propose an adaptive noise level selection strategy (dubbed as GeNIe-Ada) enabling it to adjust44

noise levels automatically per sample.45

To establish the impact of GeNIe, we focus on two challenging scenarios: long-tail and few-shot46

settings. In real-world applications, data often follows a long-tail distribution, where common sce-47

narios dominate and rare occurrences are underrepresented. For instance, a person jaywalking a48

highway causes models to struggle with such unusual scenarios. Combating such a bias or lack of49

sufficient data samples during model training is essential in building robust models for self-driving50

cars or surveillance systems, to name a few. Same challenge arises in few-shot learning settings51

where the model has to learn from only a handful of samples. Our extensive quantitative and qual-52

itative experimentation, on a suite of few-shot and long-tail distribution settings, corroborate the53

effectiveness of the proposed novel augmentation method (GeNIe, GeNIe-Ada) in generating hard54

negatives, corroborating its significant impact on categories with a limited number of samples. A55

high-level sketch of GeNIe is illustrated in Fig. 1. Our main contributions are summarized below:56

- We introduce GeNIe, a novel yet elegantly simple diffusion-based augmentation method to cre-57

ate challenging augmentations in the manifold of natural images. For the first time, to our best58

knowledge, GeNIe achieves this by combining two sources of information (a source image, and a59

contradictory target prompt) through a noise-level adjustment mechanism.60

- We further extend GeNIe by automating the noise-level adjustment strategy on a per-sample basis61

(called GeNIe-Ada), to enable generating hard negative samples in the context of image classifica-62

tion, leading also to further performance enhancement.63

- To substantiate the impact of GeNIe, we present a suit of quantitative and qualitative results in-64

cluding extensive experimentation on two challenging tasks: few-shot and long tail distribution65

settings corroborating that GeNIe (and its extension GeNIe-Ada) significantly improve the down-66

stream classification performance.67

2 Related Work68

Data Augmentations. Simple flipping, cropping, colour jittering, and blurring are some forms of69

image augmentations [91]. These augmentations are commonly adopted in training deep learning70

models. However, using these data augmentations is not trivial in some domains. For example,71

using blurring might remove important low-level information from medical images. More advanced72
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approaches, such as MixUp [111] and CutMix [110], mix images and their labels accordingly [37,73

59, 47, 17]. However, the resulting augmentations are not natural images anymore, and thus, act74

as out-of-distribution samples that will not be seen at test time. Another strand of research tailors75

the augmentation strategy through a learning process to fit the training data [23, 16, 15]. Unlike the76

above methods, we propose to utilize pre-trained latent diffusion models to generate hard negatives77

(in contrast to generic augmentations) through a noise adaptation strategy discussed in Section 3.78

Data Augmentation with Generative Models. Using synthesized images from generative models79

to augment training data has been studied before in many domains [30, 86], including domain adap-80

tation [41], visual alignment [71], and mitigation of dataset bias [88, 36, 73]. For example, [73]81

introduces a methodology aimed at enhancing test set evaluation through augmentation. While pre-82

vious methods predominantly relied on GANs [114, 51, 101] as the generative model, more recent83

studies promote using diffusion models to augment the data [81, 35, 89, 100, 4, 62, 83, 42, 28, 26, 8].84

More specifically, [100, 83, 35, 4] study the effectiveness of text-to-image diffusion models in data85

augmentation by diversification of each class with synthetic images. [100] leverages a text-to-image86

diffusion model and fine-tunes it on the downstream dataset using textual-inversion [31] to increase87

the diversity of existing samples. [83] also utilizes a text-to-image diffusion model, but with a BLIP88

[53] model to generate meaningful captions from the existing images. [42] utilizes diffusion models89

for augmentation to correct model mistakes. [28] uses CLIP [76] to filter generated images. [26]90

utilizes text-based diffusion and a large language model (LLM) to diversify the training data. [8]91

uses an LLM to generate text descriptions of failure modes associated with spurious correlations,92

which are then used to generate synthetic data through generative models. The challenge here is that93

the LLM has little understanding of such failure scenarios and contexts.94

We take a completely different approach here, without replying on any extra source of information95

(e.g., through an LLM). Inspired by image editing approaches such as Boomerang [63] and SDEdit96

[67], we propose to adaptively guide a latent diffusion model to generate hard negatives images97

[65, 108] on a per-sample basis per category. In a nutshell, the aforementioned studies focus on im-98

proving the diversity of each class with effective prompts and diffusion models, however, we focus99

on generating effective hard negative samples for each class by combining two sources of contra-100

dicting information (images from the source category and text prompt from the target category).101

Language Guided Recognition Models. Vision-Language foundation models (VLMs) [2, 76, 81,102

84, 77, 78] utilize human language to guide the generation of images or to extract features from103

images that are aligned with human language. For example, CLIP [76] shows decent zero-shot104

performance on many downstream tasks by matching images to their text descriptions. Some recent105

works improve the utilization of human language in the prompt [25, 72], and others use a diffusion106

model directly as a classifier [49]. Similar to the above, we use a foundation model (Stable Diffusion107

1.5 [81]) to improve the downstream task. Concretely, we utilize category names of the downstream108

tasks to augment their associate training data with hard negative samples.109

Few-Shot Learning. In Few-shot Learning (FSL), we pre-train a model with abundant data to learn110

a rich representation, then fine-tune it on new tasks with only a few available samples. In supervised111

FSL [10, 1, 74, 109, 27, 54, 95, 116, 92], pretraining is done on a labeled dataset, whereas in112

unsupervised FSL [43, 103, 61, 75, 3, 46, 39, 66, 90] the pre-training has to be conducted on an113

unlabeled dataset. We assess the impact of GeNIe on a number of few-shot scenarios and state-of-114

the-art baselines by accentuating on its impact on the few-shot inference stage.115

3 Proposed Method: GeNIe116

Given a source image XS from category S = <source category>, we are interested in generating a117

target image Xr from category T = <target category>. In doing so, we intend to ensure the low-118

level visual features or background context of the source image are preserved, so that we generate119

samples that would serve as hard negatives for the source image. To this aim, we adopt a conditional120

latent diffusion model (such as Stable Diffusion, [81]) conditioned on a text prompt of the following121

format “A photo of a T = <target category>”.122

Key Idea. GeNIe in its basic form is a simple yet effective augmentation sample generator for123

improving a classifier fθ(.) with the following two key aspects: (i) inspired by [63, 67] instead of124

adding the full amount of noise σmax and going through all Nmax (being typically 50) steps of125

denoising, we use less amount of noise (rσmax, with r ∈ (0, 1)) and consequently fewer number126

of denoising iterations (⌊rNmax⌋); (ii) we prompt the diffusion model with a P mandating a target127
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Figure 2: Effect of noise ratio, r, in GeNIe: we employ GeNIe to generate augmentations for the target classes
(motorcycle and cat) with varying r. Smaller r yields images closely resembling the source semantics, creating
an inconsistency with the intended target label. By tracing r from 0 to 1, augmentations gradually transition
from source image characteristics to the target category. However, a distinct shift from the source to the target
occurs at a specific r that may vary for different source images or target categories. For more examples, please
refer to Fig. A4.

category T different than the source S. Hence, we denote the conditional diffusion process as128

Xr = STDiff(XS , P, r). In such a construct, the proximity of the final decoded image Xr to the129

source image XS or the target category defined through the text prompt P depends on r. Hence, by130

controlling the amount of noise, we can generate images that blend characteristics of both the text131

prompt P and the source image XS . If we do not provide much of visual details in the text prompt132

(e.g., desired background, etc.), we expect the decoded image Xr to follow the details of XS while133

reflecting the semantics of the text prompt P . We argue, and demonstrate later, that the newly134

generated samples can serve as hard negative examples for the source category S since they share135

the low-level features of XS while representing the semantics of the target category, T . Notably, the136

source category S can be randomly sampled or be carefully extracted from the confusion matrix of137

fθ(.) based on real training data. The latter might result in even harder negative samples being now138

cognizant of model confusions. Finally, we will append our initial dataset with the newly generated139

hard negative samples through GeNIe and (re)train the classifier model.140

Enhancing GeNIe: GeNIe-Ada. One of the remarkable aspects of GeNIe lies in its simple applica-141

tion, requiring only XS , P , and r. However, selecting the appropriate value for r poses a challenge142

as it profoundly influences the outcome. When r is small, the resulting Xr tends to closely resemble143

XS , and conversely, when r is large (closer to 1), it tends to resemble the semantics of the target144

category. This phenomenon arises because a smaller noise level restricts the capacity of the diffusion145

model to deviate from the semantics of the input XS . Thus, a critical question emerges: how can we146

select r for a particular source image to generate samples that preserve the low-level semantics of147

the source category S in XS while effectively representing the semantics of the target category T ?148

We propose a method to determine an ideal value for r.149

Our intuition suggests that by varying the noise ratio r from 0 to 1, Xr will progressively resemble150

category S in the beginning and category T towards the end. However, somewhere between 0151

and 1, Xr will undergo a rapid transition from category S to T . This phenomenon is empirically152

observed in our experiments with varying r, as depicted in Fig. 2. Although the exact reason for this153

rapid change remains uncertain, one possible explanation is that the intermediate points between154

two categories reside far from the natural image manifold, thus, challenging the diffusion model’s155

capability to generate them. Ideally, we should select r corresponding to just after this rapid semantic156

transition, as at this point, Xr exhibits the highest similarity to the source image while belonging to157

the target category.158

We propose to trace the semantic trajectory between XS and XT through the lens of the classifier159

fθ(.). As shown in Algorithm 1, assuming access to the classifier backbone fθ(.) and at least one160

example XT from the target category, we convert both XS and XT into their respective latent vectors161

ZS and ZT by passing them through fθ(.). Then, we sample M values for r uniformly distributed162

∈ (0, 1), generating their corresponding Xr and their latent vectors Zr for all those r. Subsequently,163

we calculate dr = (Zr−ZS)T (ZT−ZS)
||ZT−ZS ||2 as the distance between Zr and ZS projected onto the vector164

connecting ZS and ZT . Our hypothesis posits that the rapid semantic transition corresponds to a165

sharp change in this projected distance. Therefore, we sample n values for r uniformly distributed166
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Algorithm 1: GeNIe-Ada
Require: XS , XT , fθ(.), STDiff(.), M
Extract ZS ← fθ(Xs), ZT ← fθ(XT )
for m ∈ [1,M ] do

r ← m
M , Zr ← fθ( STDiff(X,P, r) )

dm ← (Zr−ZS)T (ZT−ZS)
||ZT−ZS ||2

m∗ ← argmaxm |dm − dm−1|, ∀m ∈ [2,M ]

r∗ ← m∗

n
Return: Xr∗ = STDiff(XS , P, r

∗)

Figure 3: GeNIe-Ada: To choose r adaptively for each (source image, target category) pair, we propose tracing
the semantic trajectory from ZS (source image embeddings) to ZT (target embeddings) through the lens of the
classifier fθ(·) (Algorithm 1). We adaptively select the sample right after the largest semantic shift.

between 0 and 1, and analyze the variations in dr. We identify the largest gap in dr and select the r167

value just after the gap when increasing r, as detailed in Algorithm 1 and illustrated in Fig. 3.168

4 Experiments169

Since the impact of augmentation is more pronounced when the training data is limited, we evaluate170

the impact of GeNIe on Few-Shot classification in Section 4.1, Long-Tailed classification in Sec-171

tion 4.2, and fine-grained classification in Section A.2. For GeNIe-Ada in all scenarios, we utilize172

GeNIe to generate augmentations from the noise level set {0.5, 0.6, 0.7, 0.8, 0.9}. The selection of173

the appropriate noise level per source image and target is adaptive, achieved through Algorithm 1.174

Baselines. We use Stable Diffusion 1.5 [81] as our base diffusion model. In all settings,175

we use the same prompt format to generate images for the target class: i.e., “A photo of a176

<target category>”, where we replace the target category with the target category label.177

We generate 512 × 512 images for all methods. For fairness in comparison, we generate the same178

number of new images for each class. We use a single NVIDIA RTX 3090 for image generation.179

We consider 4 diffusion-based baselines and a suite of traditional data augmentation baselines:180

Img2Img [63, 67]: We sample an image from a target class, add noise to its latent representation and181

then pass it along with a prompt for the target category through reverse diffusion. The focus here is182

on a target class for which we generate extra positive samples. Adding large amount of noise leads183

to generating an image less similar to the original image. We use two different noise magnitudes for184

this baseline: r = 0.3 and r = 0.7 and denote them by Img2ImgL and Img2ImgH , respectively.185

Txt2Img [4, 35]: For this baseline, we omit the forward diffusion process and only use the reverse186

process starting from a text prompt for the target class of interest. This is similar to the base text-187

to-image generation strategy adopted in [81, 35, 89, 4, 62]. Fig. 4 illustrates a set of generated188

augmentation examples for Txt2Img, Img2Img, and GeNIe.189

DAFusion [100]: In this method, an embedding is optimized with a set of images for each class to190

correspond to the classes in the dataset. This approach is introduced in Textual Inversion [32]. We191

optimize an embedding for 5000 iterations for each class in the dataset, followed by augmentation192

similar as the DAFusion method.193

Cap2Aug[83]: It is a recent diffusion-based data augmentation strategy that uses image captions as194

text prompts for an image-to-image diffusion model.195

Traditional Data Augmentation: We consider both weak and strong traditional augmentations.196

More specifically, for weak augmentation we use random resize crop with scaling ∈ [0.2, 1.0] and197

horizontal flipping. For strong augmentation, we consider random color jitter, random grayscale,198

and Gaussian blur. For the sake of completeness, we also compare against data augmentations such199

as CutMix [110] and MixUp [111] that combine two images together.200

4.1 Few-shot Classification201

We assess the impact of GeNIe compared to other augmentations in a number of few-shot classifica-202

tion (FSL) scenarios, where the model has to learn only from the samples contained in the (N -way,203

K-shot) support set and infer on the query set. Note that this corresponds to an inference-only FSL204
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Figure 4: Visualization of Generative Samples: We compare GeNIe with two baselines: Img2ImgL aug-
mentation: both image and text prompt are from the same category. Adding noise does not change the image
much, so they are not hard examples. Txt2Img augmentation: We simply use the text prompt only to generate
an image for the desired category (e.g., using a text2image method). Such images may be far from the domain
of our task since the generation is not informed by any visual data from our task. GeNIe augmentation: We
use the target category name in the text prompt only along with the source image.

setting where a pretraining stage on an abundant dataset is discarded. The goal is to assess how well205

the model can benefit from the augmentations while keeping the original N ×K samples intact.206

Datasets. We conduct our few-shot experiments on two most commonly adopted few-shot classi-207

fication datasets: mini-Imagenet [79] and tiered-Imagenet [80]. mini-Imagenet is a subset of Ima-208

geNet [22] for few-shot classification. It contains 100 classes with 600 samples each. We follow209

the predominantly adopted settings of [79, 10] where we split the entire dataset into 64 classes for210

training, 16 for validation and 20 for testing. tiered-Imagenet is a larger subset of ImageNet with211

608 classes and a total of 779, 165 images, which are grouped into 34 higher-level nodes in the Im-212

ageNet human-curated hierarchy. This set of nodes is partitioned into 20, 6, and 8 disjoint sets of213

training, validation, and testing nodes, and the corresponding classes form the respective meta-sets.214

Evaluation. To quantify the impact of different augmentation methods, we evaluate the test-set ac-215

curacies of a state-of-the-art unsupervised few-shot learning method with GeNIe and compare them216

against the accuracies obtained using other augmentation methods. Specifically, we use UniSiam217

[61] pre-trained with ResNet-18, ResNet-34 and ResNet-50 backbones and follow its evaluation218

strategy of fine-tuning a logistic regressor to perform (N -way, K-shot) classification on the test sets219

of mini- and tiered-Imagenet. Following [79], an episode consists of a labeled support-set and an un-220

labelled query-set. The support-set contains N randomly sampled classes where each class contains221

K samples, whereas the query-set contains Q randomly sampled unlabeled images per class. We222

conduct our experiments on the two most commonly adopted settings: (5-way, 1-shot) and (5-way,223

5-shot) classification settings. Following the literature, we sample 16-shots per class for the query224

set in both settings. We report the test accuracies along with the 95% confidence interval over 600225

and 1000 episodes for mini-ImageNet and tiered-ImageNet, respectively.226

Implementation Details: GeNIe generates augmented images for each class using images from all227

other classes as the source image. We use r = 0.8 in our experiments. We generate 4 samples per228

class as augmentations in the 5-way, 1-shot setting and 20 samples per class as augmentations in the229

5-way, 5-shot setting. For the sake of a fair comparison, we ensure that the total number of labelled230

samples in the support set after augmentation remains the same across all different traditional and231

generative augmentation methodologies. Due to the expensive training of embeddings for each class232

in each episode, we only evaluated the DA-Fusion baseline on the first 100 episodes.233

Results: The results on mini-Imagenet and tiered-Imagenet for both (5-way, 1 and 5-shot) set-234

tings are summarized in Table 1 and Table 2, respectively. Regardless of the choice of back-235

bone, we observe that GeNIe helps consistently improve UniSiam’s performance and outperform236

other supervised and unsupervised few-shot classification methods as well as other diffusion-based237

[100, 63, 82, 35] and classical [110, 111] data augmentation techniques on both datasets, across both238

(5-way, 1 and 5-shot) settings. Our noise adaptive method of selecting optimal augmentations per239

source image (GeNIe-Ada) further improves GeNIe’s performance across all three backbones, both240
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Table 1: mini-ImageNet: We use our augmentations on (5-way, 1-shot) and (5-way, 5-shot) few-shot settings of
mini-Imagenet dataset with 3 different backbones (ResNet-18, 34, and 50). We compare with various baselines
and show that our augmentations with UniSiam outperform all the baselines including Txt2Img and DAFusion
augmentation. The number of generated images per class is 4 for 1-shot and 20 for 5-shot settings.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
- iDeMe-Net [14] sup. 59.1±0.9 74.6±0.7
- Robust + dist [27] sup. 63.7±0.6 81.2±0.4
- AFHN [54] sup. 62.4±0.7 78.2±0.6
Weak ProtoNet+SSL [94] sup.+ssl - 76.6
Weak Neg-Cosine [57] sup. 62.3±0.8 80.9±0.6
- Centroid Align[1] sup. 59.9±0.7 80.4±0.7
- Baseline [10] sup. 59.6±0.8 77.3±0.6
- Baseline++ [10] sup. 59.0±0.8 76.7±0.6
Weak PSST [13] sup.+ssl 59.5±0.5 77.4±0.5

Weak UMTRA [46] unsup. 43.1±0.4 53.4±0.3
Weak ProtoCLR [66] unsup. 50.9±0.4 71.6±0.3
Weak SimCLR [9] unsup. 62.6±0.4 79.7±0.3
Weak SimSiam [12] unsup. 62.8±0.4 79.9±0.3
Weak UniSiam+dist [61] unsup. 64.1±0.4 82.3±0.3
Weak UniSiam [61] unsup. 63.1±0.8 81.4±0.5
Strong UniSiam [61] unsup. 62.8±0.8 81.2±0.6
CutMix [110] UniSiam [61] unsup. 62.7±0.8 80.6±0.6
MixUp [111] UniSiam [61] unsup. 62.1±0.8 80.7±0.6
Img2ImgL[63] UniSiam [61] unsup. 63.9±0.8 82.1±0.5
Img2ImgH [63] UniSiam [61] unsup. 69.1±0.7 84.0±0.5
Txt2Img[4, 35] UniSiam [61] unsup. 74.1±0.6 84.6±0.5
DAFusion [100] UniSiam [61] unsup. 64.3±1.8 82.0±1.4
GeNIe (Ours) UniSiam [61] unsup. 75.5±0.6 85.4±0.4
GeNIe-Ada (Ours) UniSiam [61] unsup. 76.8±0.6 85.9±0.4

ResNet-34
Augmentation Method Pre-training 1-shot 5-shot
Weak Baseline [10] sup. 49.8±0.7 73.5±0.7
Weak Baseline++ [10] sup. 52.7±0.8 76.2±0.6

Weak SimCLR [9] unsup. 64.0±0.4 79.8±0.3
Weak SimSiam [12] unsup. 63.8±0.4 80.4±0.3
Weak UniSiam+dist [61] unsup. 65.6±0.4 83.4±0.2
Weak UniSiam [61] unsup. 64.3±0.8 82.3±0.5
Strong UniSiam [61] unsup. 64.5±0.8 82.1±0.6
CutMix [110] UniSiam [61] unsup. 64.0±0.8 81.7±0.6
MixUp [111] UniSiam [61] unsup. 63.7±0.8 80.1±0.8
Img2ImgL[63] UniSiam [61] unsup. 65.5±0.8 82.9±0.5
Img2ImgH [63] UniSiam [61] unsup. 70.5±0.8 84.8±0.5
Txt2Img[4, 35] UniSiam [61] unsup. 75.4±0.6 85.5±0.5
DAFusion [100] UniSiam [61] unsup. 64.7±1.9 83.2±1.4
GeNIe (Ours) UniSiam [61] unsup. 77.1±0.6 86.3±0.4
GeNIe-Ada (Ours) UniSiam [61] unsup. 78.5±0.6 86.6±0.4

ResNet-50
Weak PDA+Net [11] unsup. 63.8±0.9 83.1±0.6
Weak Meta-DM [40] unsup. 66.7±0.4 85.3±0.2

Weak UniSiam [61] unsup. 64.6±0.8 83.4±0.5
Strong UniSiam [61] unsup. 64.8±0.8 83.2±0.5
CutMix [110] UniSiam [61] unsup. 64.3±0.8 83.2±0.5
MixUp [111] UniSiam [61] unsup. 63.8±0.8 84.6±0.5
Img2ImgL[63] UniSiam [61] unsup. 66.0±0.8 84.0±0.5
Img2ImgH [63] UniSiam [61] unsup. 71.1±0.7 85.7±0.5
Txt2Img[4, 35] UniSiam [61] unsup. 76.4±0.6 86.5±0.4
DAFusion [100] UniSiam [61] unsup. 65.7±1.8 83.9±1.2
GeNIe (Ours) UniSiam [61] unsup. 77.3±0.6 87.2±0.4
GeNIe-Ada (Ours) UniSiam [61] unsup. 78.6±0.6 87.9±0.4

few-shot settings, and both datasets (mini and tiered-Imagenet). Few-shot accuracies for ResNet-241

34 computed on tieredImagenet are reported in Section A.3 of the appendix. Note that employing242

CutMix and MixUp seems to lead to performance degradation compared to weak augmentations,243

probably due to overfitting since these methods can only choose from 4 other classes to mix.244

4.2 Long-Tailed Classification245

We evaluate our method on long-tailed data, where the number of instances per class is unbalanced,246

with most categories having limited samples (tail). Our goal is to mitigate this bias by augmenting247

the tail of the distribution with generated samples. We evaluate GeNIe using two different backbones248

and methods: the ViT architecture with LViT [107], and ResNet50 with VL-LTR [97].249

Following LViT [107], we first train an MAE [34] and ViT on the unbalanced dataset without any250

augmentation. Next, we train the Balanced Fine-Tuning stage of LViT by incorporating the aug-251

mentation data generated using GeNIe or other baselines. For ResNet50, we use VL-LTR code to252

fine-tune the CLIP [76] ResNet50 pretrained backbone with generated augmentations by GeNIe.253

Dataset: We perform experiments on ImageNet-LT [60]. It contains 115.8K images from 1, 000254

categories. The number of images per class varies from 1280 to 5. Imagenet-LT classes can be255

divided into 3 groups: “Few” with less than 20 images, “Med” with 20 − 100 images, and “Many”256

with more than 100 images. Imagenet-LT uses the same validation set as ImageNet. We augment257

“Few” categories only and limit the number of generated images to 50 samples per class. For GeNIe,258

instead of randomly sampling the source images from other classes, we use a confusion matrix on259

the training data to find the top-4 most confused classes and only consider those classes for random260

sampling of the source image. The source category may be from “Many”, “Med”, or “Few sets”.261

Results: Augmenting training data with GeNIe-Ada improves accuracy on the “Few” set by 11.7%262

and 4.4% compared with LViT only and LViT with Txt2Img augmentation baselines respectively.263

In ResNet50, GeNIe-Ada outperforms Cap2Aug baseline in “Few” categories by 7.6%. The results264

are summarized in Table 3. Please refer to Section A.4 for implementation details.265

4.3 Ablation and Analysis266

Semantic Shift from Source to Target Class. The core motivation behind GeNIe-Ada is that by267

varying the noise ratio r from 0 to 1, augmented sample Xr will progressively shift its semantic cat-268

egory from source (S) in the beginning to target category (T ) towards the end. However, somewhere269

between 0 and 1, Xr will undergo a rapid transition from S to T . To demonstrate this hypothesis270

empirically, in Figs. 5 and A5, we visualize pairs of source images and target categories with their re-271

spective GeNIe generated augmentations for different noise ratios r, along with their corresponding272
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Table 2: tiered-ImageNet: Accuracies (% ± std) for
5-way, 1-shot and 5-way, 5-shot classification settings
on the test-set. We compare against various SOTA su-
pervised and unsupervised few-shot classification base-
lines as well as other augmentation methods, with
UniSiam [61] pre-trained ResNet-18,50 backbones.

ResNet-18
Augmentation Method Pre-training 1-shot 5-shot
Weak SimCLR[9] unsup. 63.4±0.4 79.2±0.3
Weak SimSiam [12] unsup. 64.1±0.4 81.4±0.3

Weak UniSiam [61] unsup. 63.1±0.7 81.0±0.5
Strong UniSiam [61] unsup. 62.8±0.7 80.9±0.5
CutMix [110] UniSiam [61] unsup. 62.1±0.7 78.9±0.6
MixUp [111] UniSiam [61] unsup. 62.1±0.7 78.4±0.6
Img2ImgL[63] UniSiam [61] unsup. 63.9±0.7 81.8±0.5
Img2ImgH [63] UniSiam [61] unsup. 68.7±0.7 83.5±0.5
Txt2Img[35] UniSiam [61] unsup. 72.9±0.6 84.2±0.5
DAFusion [100] UniSiam [61] unsup. 62.6±2.1 81.0±1.5
GeNIe(Ours) UniSiam [61] unsup. 73.6±0.6 85.0±0.4
GeNIe-Ada(Ours) UniSiam [61] unsup. 75.1±0.6 85.5±0.5

ResNet-50
Weak PDA+Net [11] unsup. 69.0±0.9 84.2±0.7
Weak Meta-DM [40] unsup. 69.6±0.4 86.5±0.3

Weak UniSiam + dist [61] unsup. 69.6±0.4 86.5±0.3
Weak UniSiam [61] unsup. 66.8±0.7 84.7±0.5
Strong UniSiam [61] unsup. 66.5±0.7 84.5±0.5
CutMix [110] UniSiam [61] unsup. 66.0±0.7 83.3±0.5
MixUp [111] UniSiam [61] unsup. 66.1±0.5 84.1±0.8
Img2ImgL[63] UniSiam [61] unsup. 67.8±0.7 85.3±0.5
Img2ImgH [63] UniSiam [61] unsup. 72.4±0.7 86.7±0.4
Txt2Img[35] UniSiam [61] unsup. 77.1±0.6 87.3±0.4
DAFusion [100] UniSiam [61] unsup. 66.5±2.2 84.8±1.4
GeNIe (Ours) UniSiam [61] unsup. 78.0±0.6 88.0±0.4
GeNIe-Ada (Ours) UniSiam [61] unsup. 78.8±0.6 88.6±0.6

Table 3: Long-Tailed ImageNet-LT: We
compare different augmentation methods on
ImageNet-LT and report Top-1 accuracy for
“Few”, “Medium”, and “Many” sets. On the
“Few” set and LiVT method, our augmentations
improve the accuracy by 11.7 points compared
to LiVT original augmentation and 4.4 points
compared to Txt2Img. GeNIe-Ada outperforms
Cap2Aug baseline in “Few” categories by 7.6%.
Refer to Table A4 for a full comparison with prior
Long-Tailed methods.

ResNet-50
Method Many Med. Few Overall Acc

ResLT [18] 63.3 53.3 40.3 55.1
PaCo [19] 68.2 58.7 41.0 60.0
LWS [44] 62.2 48.6 31.8 51.5
Zero-shot CLIP [76] 60.8 59.3 58.6 59.8
DRO-LT [85] 64.0 49.8 33.1 53.5
VL-LTR [97] 77.8 67.0 50.8 70.1
Cap2Aug [83] 78.5 67.7 51.9 70.9
GeNIe-Ada 79.2 64.6 59.5 71.5

ViT-B
Method Many Med. Few Overall Acc

ViT [24] 50.5 23.5 6.9 31.6
MAE [33] 74.7 48.2 19.4 54.5
DeiT [99] 70.4 40.9 12.8 48.4
LiVT [107] 73.6 56.4 41.0 60.9
LiVT + Img2ImgL 74.3 56.4 34.3 60.5
LiVT + Img2ImgH 73.8 56.4 45.3 61.6
LiVT + Txt2Img 74.9 55.6 48.3 62.2
LiVT + GeNIe-Ada 74.0 56.9 52.7 63.1

Figure 5: Embedding visualizations of generative augmentations: We pass all generative augmentations
through DINOv2 ViT-G (serving as an oracle) to extract their corresponding embeddings and visualize them
with PCA. As shown, the extent of semantic shifts varies based on both the source image and the target class.

PCA-projected embedding scatter plots (on the far left). We extract embeddings for all the images273

using a DINOv2 ViT-G pretrained backbone, which we assume as an oracle model in identifying274

the right category. We observe that as r increases from 0.3 to 0.8, the images transition to embody275

more of the target category’s semantics while preserving the contextual features of the source image.276

This transition of semantics can also be observed in the embedding plots (on the left) where they277

consistently shift from the proximity of the source image (blue star) to the target class’s centroid278

(red cross) as the noise ratio r increases. The sparse distribution of points within r = [0.4, 0.6] for279

the first image and r = [0.2, 0.4] for the second image aligns with our intuition of a rapid transition280

from category S to T , thus empirically affirming our motivation behind GeNIe-Ada.281

To further establish this, in Fig. 6, we demonstrate the efficacy of GeNIe in generating hard negatives282

at the decision boundaries of an SVM classifier, which is trained on the labelled support set of283

the few-shot tasks of mini-Imagenet, without any augmentations. We then plot source and target284

class probabilities (P (YS |Xr) and P (YT |Xr), respectively) of the generated augmentation samples285

Xr. For both r = 0.6 and 0.7, there is significant overlap between P (YS |Xr) and P (YT |Xr),286

making it difficult for the classifier to decide the correct class. On the right-hand-side, GeNIe-Ada287

automatically selects the best r resulting in the most overlap between the two distributions, thus288

offering the hardest negative sample among the considered r values (for more details see A.1).289

Note that a large overlap between distributions is not sufficient to call the generated samples hard290

negatives because they should also belong to the target category. This is, however, confirmed by the291

high Oracle accuracy in Table 4 (elaborated in detail in the following paragraph) which verifies that292

majority of the generated augmentation samples do belong to the target category.293
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Figure 6: Why GeNIe augmentations are challenging? While deciding which class the generated augmen-
tations (Xr) belong to is already difficult within r = [0.6, 0.7] (due to high overlap between P (YS |Xr) and
P (YT |Xr)), GeNIe-Ada selects the best noise threshold (r∗) offering the hardest negative sample.

Table 4: Effect of Noise in GeNIe: We use the same setting as in Table 1 to study the effect of the amount of
noise. As expected (also shown in Fig 5), small noise results in worse accuracy since some generated images
may be from the source category rather than the target one. For r = 0.5 only 73% of the generated data is
from the target category. This behaviour is also shown in Fig. 2. Notably, reducing the noise level below 0.7
is associated with a decline in oracle accuracy and subsequent degradation in the performance of the final few-
shot model. Note that the high oracle accuracy of GeNIe-Ada demonstrates its capability to adaptively select
the noise level per source and target, ensuring semantic consistency with the intended target.

Noise ResNet-18 ResNet-34 ResNet-50 Oracle
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot Acc

GeNIe(r=0.5) 60.42±0.8 74.11±0.6 62.02±0.8 75.80±0.6 63.65±0.9 77.61±0.6 73.4±0.5
GeNIe(r=0.6) 69.66±0.7 80.65±0.5 71.13±0.7 82.21±0.5 72.10±0.7 82.79±0.5 85.8±0.4
GeNIe(r=0.7) 74.50±0.6 83.26±0.5 76.41±0.6 84.44±0.5 77.05±0.6 84.95±0.4 94.5±0.2
GeNIe(r=0.8) 75.45±0.6 85.38±0.4 77.08±0.6 86.28±0.4 77.28±0.6 87.22±0.4 98.2±0.1
GeNIe(r=0.9) 74.96±0.6 85.29±0.4 77.63±0.6 86.17±0.4 77.73±0.6 87.00±0.4 99.3±0.1
GeNIe-Ada 76.79±0.6 85.89±0.4 78.49±0.6 86.55±0.4 78.64±0.6 87.88±0.4 98.9±0.2

Label consistency of the generated samples. The choice of noise ratio r is important in producing294

hard negative examples. In Table 4, we present the accuracy of the GeNIe model across various noise295

ratios, alongside the oracle accuracy, which is an ImageNet pre-trained DeiT-Base [98] classifier.296

We observe a decline in the label consistency of generated data (quantified by the performance of297

the oracle model) when decreasing the noise level. Reducing r also results in a degradation in the298

performance of the final few-shot model (87.2%→ 77.6%) corroborating that an appropriate choice299

of r plays a crucial role in our design strategy. We investigate this further in the following paragraph.300

Effect of Noise in GeNIe. We examine the impact of noise on the performance of the few-shot301

model in Table 4. Noise levels r ∈ [0.7, 0.8] yield the best performance. Conversely, utilizing noise302

levels below 0.7 diminishes performance due to label inconsistency, as is demonstrated in Table 4303

and Fig 5. As such, determining the appropriate noise level is pivotal for the performance of GeNIe304

to be able to generate challenging hard negatives while maintaining label consistency. An alternative305

approach to finding the optimal noise level involves using GeNIe-Ada to adaptively select the noise306

level for each source image and target class. As demonstrated in Tables 4 and A1, GeNIe-Ada307

achieves performance that is comparable to or surpasses that of GeNIe with fixed noise levels.308

5 Concluding Remarks309

GeNIe, for the first time to our knowledge, combines contradictory sources of information (a source310

image, and a different target category prompt) through a noise adjustment strategy into a conditional311

latent diffusion model to generate challenging augmentations, which can serve as hard negatives.312

Limitation. The required time to create augmentations through GeNIe is on par with any typical313

diffusion-based competitors [4, 35]; however, this is naturally slower than traditional augmentation314

techniques [110, 111]. This is not a bottleneck in offline augmentation strategies, but can be con-315

sidered a limiting factor in real-time scenarios. Recent studies are already mitigating this through316

advancements in diffusion model efficiency [87, 68, 58]. Another challenge present in any genera-317

tive AI-based augmentation technique is the domain shift between the distribution of training data318

and the downstream context they might be used for augmentation. A possible remedy is to fine-tune319

the diffusion backbone on a rather small dataset from the downstream task.320

Broader Impact. We believe ideas from GeNIe can have a significant impact when it comes to gen-321

erating hard augmentations challenging and thus enhancing downstream tasks beyond classification.322

At the same time, just like any other generative model, GeNIe can also introduce inherent biases323

stemming from the training data used to build its diffusion backbone, which can reflect and amplify324

societal prejudices or inaccuracies. Therefore, it is crucial to carefully mitigate potential biases in325

generative models such as GeNIe to ensure a fair and ethical deployment of deep learning systems.326
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A Appendix597

A.1 Analyzing GeNIe, GeNIe-Ada’s Class-Probabilities598

The core aim of GeNIe and GeNIe-Ada is to address the failure modes of a classifier599

by generating challenging samples located near the decision boundary of each class pair,600

which facilitates the learning process in effectively enhancing the decision boundary between601

classes. As summarized in Table 4 and illustrated in Fig. 5, we have empirically corrob-602

orated that GeNIe and GeNIe-Ada can respectively produce samples Xr, Xr∗ that are nega-603

tive with respect to the source image XS , while semantically belonging to the class T . To

Figure A1: P (YS |Xr) and P (YT |Xr) for r ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. On average, the classifier confidently
predicts the source class more than the target class for Xr for r = 0.5, and vice-versa for r = 0.8, 0.9.
However, for r = 0.6, 0.7, the classifier struggles to classify Xr , indicating that the augmented samples are
located closer to the decision boundary.

604
further analyze the effectiveness of GeNIe and GeNIe-Ada, we compare the source class-605

probabilities P (YS |Xr) and target-class probabilities P (YS |Xr) of augmented samples Xr.606

Figure A2: Significant over-
lap between P (YS |Xr∗) and
P (YT |Xr∗) indicates high class-
confusion for augmented sam-
ples generated by GeNIe-Ada.

To compute these class probabilities, we first fit an SVM classifier607

(as followed in UniSiam [61]) only on the labelled support set em-608

beddings of each episode in the miniImagenet test dataset. Then,609

we perform inference using each episode’s SVM classifier on its re-610

spective Xr’s and extract its class probabilities of belonging to its611

source class S and target class T . These per augmentation-sample612

source and target class probabilities are then averaged for each613

episode for each r ∈ {0.5, 0.6, 0.7, 0.8, 0.9} in the case of GeNIe614

and for the optimal r = r∗ per sample in the case of GeNIe-Ada,615

plotted as density plots in Fig. A1, Fig. A2, respectively. Fig. A1616

illustrates that P (YS |Xr) and P (YT |Xr) have significant overlap617

in the case of r ∈ {0.6, 0.7} indicating class-confusion for Xr.618

Furthermore, Fig. A2 illustrates that when using the optimal r = r∗619

found by GeNIe-Ada per sample, P (YS |Xr) and P (YT |Xr) signif-620

icantly overlap around probability scores of 0.2 − 0.45, indicating621

class confusion for GeNIe-Ada augmentations. This corroborates622

with our analysis in Section 4.3, Table 4 and additionally empiri-623

cally proves that the augmented samples generated by GeNIe for624

r ∈ {0.6, 0.7} and GeNIe-Ada for r = r∗ are actually located near625

the decision boundary of each class pair.626

A.2 Fine-grained Few-shot Classification627

To further investigate the impact of the proposed method, we compare GeNIe with other text-based628

data augmentation techniques across four distinct fine-grained datasets in a 20-way, 1-shot classifi-629

cation setting. We employ the pre-trained DINOV2 ViT-G [70] backbone as a feature extractor to630

derive features from training images. Subsequently, an SVM classifier is trained on these features,631

and we report the Top-1 accuracy of the model on the test set.632

Datasets: We assess our method on several datasets: Food101 [5] with 101 classes of various foods,633

CUB200 [102] with 200 bird species classes, Cars196 [48] with 196 car model classes, and FGVC-634

Aircraft [64] with 41 aircraft manufacturer classes. We provide detailed information around fine-635

grained datasets in Table A2. The reported metric is the average Top-1 accuracy over 100 episodes.636

16



Each episode involves sampling 20 classes and 1-shot from the training set, with the final model637

evaluated on the respective test set.638

Implementation Details: We enhance the basic prompt by incorporating the superclass name for639

the fine-grained dataset: “A photo of a <target class>, a type of <superclass>”. For instance,640

in the food dataset and the burger class, our prompt reads: “A photo of a burger, a type of food.” No641

additional augmentation is used for generative methods in this context. We generate 19 samples for642

both cases of our method and also the baseline with weak augmentation.643

Results: Table A1 summarizes the results. GeNIe helps outperform all other baselines and aug-644

mentations, including Txt2Img, by margins upto 0.5% on CUB200 [102], 6.6% on Cars196 [48],645

0.1% on Food101 [5] and 5.3% on FGVC-Aircraft [64]. Notably, GeNIe exhibits great effectiveness646

in more challenging datasets, outperforming the baseline with traditional augmentation by about647

38% for the Cars dataset and by roughly 17% for the Aircraft dataset. It can be observed here that648

GeNIe-Ada performs on-par with GeNIe with a fixed noise level, eliminating the necessity for noise649

level search in GeNIe.650

Table A1: Few-shot Learning on Fine-grained dataset: We utilize an SVM classifier trained atop the DI-
NOV2 ViT-G pretrained backbone, reporting Top-1 accuracy for the test set of each dataset. The baseline is
an SVM trained on the same backbone using weak augmentation. Across all datasets, GeNIe surpasses this
baseline.

Method Birds Cars Foods Aircraft
CUB200 [102] Cars196 [48] Food101 [5] Aircraft [64]

Baseline 90.3 49.8 82.9 29.2
Img2ImgL[63] 90.7 50.4 87.4 31.0
Img2ImgH [63] 91.3 56.4 91.7 34.7
Txt2Img[35] 92.0 81.3 93.0 41.7
GeNIe (r=0.5) 92.0 84.6 91.5 39.8
GeNIe (r=0.6) 92.2 87.1 92.5 45.0
GeNIe (r=0.7) 92.5 87.9 92.9 47.0
GeNIe (r=0.8) 92.5 87.7 93.1 46.5
GeNIe (r=0.9) 92.4 87.1 93.1 45.7
GeNIe-Ada 92.6 87.9 93.1 46.9

Table A2: Train and test split details of the fine-grained datasets. We use the provided train set for few-shot
task generation, and the provided test sets for our evaluation. For the Aircraft dataset we use manufacturer
hierarchy.

Dataset Classes Train Test
samples samples

CUB200 [102] 200 5994 5794
Food101 [5] 101 75750 25250
Cars [48] 196 8144 8041
Aircraft [64] 41 6,667 3333

A.3 Few-shot Classification with ResNet-34 on tieredImagenet651

We follow the same evaluation protocol here as mentioned in section 4.1. As summarized in Ta-652

ble A3, GeNIe and GeNIe-Ada outperform all other classical and generative data augmentation653

techniques.654

A.4 Additional details of Long-Tail experiments655

We present a comprehensive version of Table 3 to benchmark the performance with different back-656

bone architectures (e.g., ResNet50) and to compare against previous long-tail baselines; this is de-657

tailed in Table A4.658

Implementation Details of LViT: We download the pre-trained ViT-B of LViT [107] and finetune659

it with Bal-BCE loss proposed therein on the augmented dataset. Training takes 2 hours on four660

NVIDIA RTX 3090 GPUs. We use the same hyperparameters as in [107] for finetuning: 100 epochs,661

lr = 0.008, batch size of 1024, CutMix and MixUp for the data augmentation.662

Implementation Details of VL-LTR: We use the official code of VL-LTR [97] for our experiments.663

We use a pre-trained CLIP ResNet-50 backbone. We followed the hyperparameters reported in VL-664
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Table A3: tiered-ImageNet: Accuracies (% ± std) for 5-way, 1-shot and 5-way, 5-shot classification set-
tings on the test-set. We compare against various SOTA supervised and unsupervised few-shot classification
baselines as well as other augmentation methods, with UniSiam [61] pre-trained ResNet-34 backbone.

ResNet-34
Augmentation Method Pre-training 1-shot 5-shot
Weak MAML + dist [29] sup. 51.7±1.8 70.3±1.7
Weak ProtoNet [93] sup. 52.0±1.2 72.1±1.5

Weak UniSiam + dist [61] unsup. 68.7±0.4 85.7±0.3
Weak UniSiam [61] unsup. 65.0±0.7 82.5±0.5
Strong UniSiam [61] unsup. 64.8±0.7 82.4±0.5
CutMix [110] UniSiam [61] unsup. 63.8±0.7 80.3±0.6
MixUp [111] UniSiam [61] unsup. 64.1±0.7 80.0±0.6
Img2ImgL[63] UniSiam [61] unsup. 66.1±0.7 83.1±0.5
Img2ImgH [63] UniSiam [61] unsup. 70.4±0.7 84.7±0.5
Txt2Img[35] UniSiam [61] unsup. 75.0±0.6 85.4±0.4
DAFusion [100] UniSiam [61] unsup. 64.1±2.1 82.8±1.4
GeNIe (Ours) UniSiam [61] unsup. 75.7±0.6 86.0±0.4
GeNIe-Ada (Ours) UniSiam [61] unsup. 76.9±0.6 86.3±0.2

LTR [97]. We augment only “Few” category and train the backbone with the VL-LTR [97] method.665

Training takes 4 hours on 8 NVIDIA RTX 3090 GPUs.666

A.5 More Visualizations667

Additional qualitative results resembling the style presented in Fig. 4 are presented in Fig. A3, and668

more visuals akin to Fig. 2 can be found in Fig. A4. Moreover, we also present more visualization669

similar to the style in Fig. 5 in Fig. A5.670
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Table A4: Long-Tailed ImageNet-LT: We compare different augmentation methods on ImageNet-LT and
report Top-1 accuracy for “Few”, “Medium”, and “Many” sets. † indicates results with ResNeXt50. ∗: indicates
training with 384 resolution so is not directly comparable with other methods with 224 resolution. On the “Few”
set and LiVT method, our augmentations improve the accuracy by 11.7 points compared to LiVT original
augmentation and 4.4 points compared to Txt2Img.

ResNet-50
Method Many Med. Few Overall Acc

CE [21] 64.0 33.8 5.8 41.6
LDAM [7] 60.4 46.9 30.7 49.8
c-RT [45] 61.8 46.2 27.3 49.6
τ -Norm [45] 59.1 46.9 30.7 49.4
Causal [96] 62.7 48.8 31.6 51.8
Logit Adj. [69] 61.1 47.5 27.6 50.1
RIDE(4E)† [105] 68.3 53.5 35.9 56.8
MiSLAS [115] 62.9 50.7 34.3 52.7
DisAlign [112] 61.3 52.2 31.4 52.9
ACE† [6] 71.7 54.6 23.5 56.6
PaCo† [20] 68.0 56.4 37.2 58.2
TADE† [113] 66.5 57.0 43.5 58.8
TSC [56] 63.5 49.7 30.4 52.4
GCL [55] 63.0 52.7 37.1 54.5
TLC [50] 68.9 55.7 40.8 55.1
BCL† [117] 67.6 54.6 36.6 57.2
NCL [52] 67.3 55.4 39.0 57.7
SAFA [38] 63.8 49.9 33.4 53.1
DOC [104] 65.1 52.8 34.2 55.0
DLSA [106] 67.8 54.5 38.8 57.5
ResLT [18] 63.3 53.3 40.3 55.1
PaCo [19] 68.2 58.7 41.0 60.0
LWS [44] 62.2 48.6 31.8 51.5
Zero-shot CLIP [76] 60.8 59.3 58.6 59.8
DRO-LT [85] 64.0 49.8 33.1 53.5
VL-LTR [97] 77.8 67.0 50.8 70.1
Cap2Aug [83] 78.5 67.7 51.9 70.9
GeNIe-Ada 79.2 64.6 59.5 71.5

ViT-B
LiVT* [107] 76.4 59.7 42.7 63.8

ViT [24] 50.5 23.5 6.9 31.6
MAE [33] 74.7 48.2 19.4 54.5
DeiT [99] 70.4 40.9 12.8 48.4
LiVT [107] 73.6 56.4 41.0 60.9
LiVT + Img2ImgL 74.3 56.4 34.3 60.5
LiVT + Img2ImgH 73.8 56.4 45.3 61.6
LiVT + Txt2Img 74.9 55.6 48.3 62.2
LiVT + GeNIe (r=0.8) 74.5 56.7 50.9 62.8
LiVT + GeNIe-Ada 74.0 56.9 52.7 63.1

19



Figure A3: Visualization of Generative Samples: More visualization akin to Fig. 4. We compare GeNIe with
two baselines: Img2ImgL augmentation uses both image and text prompt from the same category, resulting in
less challenging examples. Txt2Img augmentation generates images based solely on a text prompt, potentially
deviating from the task’s visual domain. GeNIe augmentation incorporates the target category name in the text
prompt along with the source image, producing desired images with an optimal amount of noise, and balancing
the impact of the source image and text prompt.
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Figure A4: Effect of noise in GeNIe: Akin to Fig. 2, we use GeNIe to create augmentations with varying noise
levels. As is illustrated in the examples above, a reduced amount of noise leads to images closely mirroring the
semantics of the source images, causing a misalignment with the intended target label.
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Figure A5: Effect of noise in GeNIe: Similar to Fig. 5, we pass all the generated augmentations through the
DinoV2 ViT-G model, which acts as our oracle model, to obtain their associated embeddings. Subsequently,
we employ PCA for visualization purposes. The visualization reveals that the magnitude of semantic transfor-
mations is contingent upon both the source image and the specified target category.
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NeurIPS Paper Checklist671

1. Claims672

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s673

contributions and scope?674

Answer: [Yes]675

Justification: We demonstrate the effectiveness of our augmentation method through empirical676

comparison with four different generative augmentation baselines across two scenarios: few-shot677

and long-tail classification. Additionally, we perform analytical experiments on our augmented678

samples to illustrate their nature as hard negatives.679

Guidelines:680

• The answer NA means that the abstract and introduction do not include the claims made in the681

paper.682

• The abstract and/or introduction should clearly state the claims made, including the contributions683

made in the paper and important assumptions and limitations. A No or NA answer to this question684

will not be perceived well by the reviewers.685

• The claims made should match theoretical and experimental results, and reflect how much the686

results can be expected to generalize to other settings.687

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not688

attained by the paper.689

2. Limitations690

Question: Does the paper discuss the limitations of the work performed by the authors?691

Answer: [Yes]692

Justification: We discuss about the limitations of our method in Sec 5693

Guidelines:694

• The answer NA means that the paper has no limitation while the answer No means that the paper695

has limitations, but those are not discussed in the paper.696

• The authors are encouraged to create a separate ”Limitations” section in their paper.697

• The paper should point out any strong assumptions and how robust the results are to violations of698

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,699

asymptotic approximations only holding locally). The authors should reflect on how these as-700

sumptions might be violated in practice and what the implications would be.701

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested702

on a few datasets or with a few runs. In general, empirical results often depend on implicit703

assumptions, which should be articulated.704

• The authors should reflect on the factors that influence the performance of the approach. For705

example, a facial recognition algorithm may perform poorly when image resolution is low or706

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide707

closed captions for online lectures because it fails to handle technical jargon.708

• The authors should discuss the computational efficiency of the proposed algorithms and how they709

scale with dataset size.710

• If applicable, the authors should discuss possible limitations of their approach to address prob-711

lems of privacy and fairness.712

• While the authors might fear that complete honesty about limitations might be used by reviewers713

as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren’t714

acknowledged in the paper. The authors should use their best judgment and recognize that indi-715

vidual actions in favor of transparency play an important role in developing norms that preserve716

the integrity of the community. Reviewers will be specifically instructed to not penalize honesty717

concerning limitations.718

3. Theory Assumptions and Proofs719

Question: For each theoretical result, does the paper provide the full set of assumptions and a720

complete (and correct) proof?721

Answer: [NA]722
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Justification: We do not have theoretical results.723

Guidelines:724

• The answer NA means that the paper does not include theoretical results.725

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.726

• All assumptions should be clearly stated or referenced in the statement of any theorems.727

• The proofs can either appear in the main paper or the supplemental material, but if they appear in728

the supplemental material, the authors are encouraged to provide a short proof sketch to provide729

intuition.730

• Inversely, any informal proof provided in the core of the paper should be complemented by formal731

proofs provided in appendix or supplemental material.732

• Theorems and Lemmas that the proof relies upon should be properly referenced.733

4. Experimental Result Reproducibility734

Question: Does the paper fully disclose all the information needed to reproduce the main exper-735

imental results of the paper to the extent that it affects the main claims and/or conclusions of the736

paper (regardless of whether the code and data are provided or not)?737

Answer: [Yes]738

Justification: We provide implementation details in each experimental section. Additionally, we739

include the code as supplementary material and plan to release it publicly.740

Guidelines:741

• The answer NA means that the paper does not include experiments.742

• If the paper includes experiments, a No answer to this question will not be perceived well by the743

reviewers: Making the paper reproducible is important, regardless of whether the code and data744

are provided or not.745

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make746

their results reproducible or verifiable.747

• Depending on the contribution, reproducibility can be accomplished in various ways. For exam-748

ple, if the contribution is a novel architecture, describing the architecture fully might suffice, or if749

the contribution is a specific model and empirical evaluation, it may be necessary to either make750

it possible for others to replicate the model with the same dataset, or provide access to the model.751

In general. releasing code and data is often one good way to accomplish this, but reproducibility752

can also be provided via detailed instructions for how to replicate the results, access to a hosted753

model (e.g., in the case of a large language model), releasing of a model checkpoint, or other754

means that are appropriate to the research performed.755

• While NeurIPS does not require releasing code, the conference does require all submissions to756

provide some reasonable avenue for reproducibility, which may depend on the nature of the con-757

tribution. For example758

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce759

that algorithm.760

(b) If the contribution is primarily a new model architecture, the paper should describe the architec-761

ture clearly and fully.762

(c) If the contribution is a new model (e.g., a large language model), then there should either be a763

way to access this model for reproducing the results or a way to reproduce the model (e.g., with764

an open-source dataset or instructions for how to construct the dataset).765

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are wel-766

come to describe the particular way they provide for reproducibility. In the case of closed-source767

models, it may be that access to the model is limited in some way (e.g., to registered users), but768

it should be possible for other researchers to have some path to reproducing or verifying the769

results.770

5. Open access to data and code771

Question: Does the paper provide open access to the data and code, with sufficient instructions to772

faithfully reproduce the main experimental results, as described in supplemental material?773

Answer: [Yes]774

Justification: We provide implementation details in each experimental section. Additionally, we775

include the code as supplementary material and plan to release it publicly.776
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Guidelines:777

• The answer NA means that paper does not include experiments requiring code.778

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/779

guides/CodeSubmissionPolicy) for more details.780

• While we encourage the release of code and data, we understand that this might not be possible,781

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless782

this is central to the contribution (e.g., for a new open-source benchmark).783

• The instructions should contain the exact command and environment needed to run to reproduce784

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/785

guides/CodeSubmissionPolicy) for more details.786

• The authors should provide instructions on data access and preparation, including how to access787

the raw data, preprocessed data, intermediate data, and generated data, etc.788

• The authors should provide scripts to reproduce all experimental results for the new proposed789

method and baselines. If only a subset of experiments are reproducible, they should state which790

ones are omitted from the script and why.791

• At submission time, to preserve anonymity, the authors should release anonymized versions (if792

applicable).793

• Providing as much information as possible in supplemental material (appended to the paper) is794

recommended, but including URLs to data and code is permitted.795

6. Experimental Setting/Details796

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,797

how they were chosen, type of optimizer, etc.) necessary to understand the results?798

Answer: [Yes]799

Justification: We provide implementation details and dataset details in each experimental section.800

Guidelines:801

• The answer NA means that the paper does not include experiments.802

• The experimental setting should be presented in the core of the paper to a level of detail that is803

necessary to appreciate the results and make sense of them.804

• The full details can be provided either with the code, in appendix, or as supplemental material.805

7. Experiment Statistical Significance806

Question: Does the paper report error bars suitably and correctly defined or other appropriate807

information about the statistical significance of the experiments?808

Answer: [Yes]809

Justification: We repeat few-shot training for 600 episodes on mini-ImageNet and 1000 episodes810

on tiered-ImageNet, reporting the mean and variance for each method.811

Guidelines:812

• The answer NA means that the paper does not include experiments.813

• The authors should answer ”Yes” if the results are accompanied by error bars, confidence inter-814

vals, or statistical significance tests, at least for the experiments that support the main claims of815

the paper.816

• The factors of variability that the error bars are capturing should be clearly stated (for exam-817

ple, train/test split, initialization, random drawing of some parameter, or overall run with given818

experimental conditions).819

• The method for calculating the error bars should be explained (closed form formula, call to a820

library function, bootstrap, etc.)821

• The assumptions made should be given (e.g., Normally distributed errors).822

• It should be clear whether the error bar is the standard deviation or the standard error of the mean.823

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report824

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is825

not verified.826

• For asymmetric distributions, the authors should be careful not to show in tables or figures sym-827

metric error bars that would yield results that are out of range (e.g. negative error rates).828
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• If error bars are reported in tables or plots, The authors should explain in the text how they were829

calculated and reference the corresponding figures or tables in the text.830

8. Experiments Compute Resources831

Question: For each experiment, does the paper provide sufficient information on the computer832

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-833

ments?834

Answer: [Yes]835

Justification: We provide implementation and dataset details in each experimental section. Ad-836

ditionally, we elaborate on the required resources, including GPUs and training hours, for each837

experiment.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud841

provider, including relevant memory and storage.842

• The paper should provide the amount of compute required for each of the individual experimental843

runs as well as estimate the total compute.844

• The paper should disclose whether the full research project required more compute than the ex-845

periments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into846

the paper).847

9. Code Of Ethics848

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS849

Code of Ethics https://neurips.cc/public/EthicsGuidelines?850

Answer: [Yes]851

Justification: We reviewed the NeurIPS Code of Ethics.852

Guidelines:853

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.854

• If the authors answer No, they should explain the special circumstances that require a deviation855

from the Code of Ethics.856

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due857

to laws or regulations in their jurisdiction).858

10. Broader Impacts859

Question: Does the paper discuss both potential positive societal impacts and negative societal860

impacts of the work performed?861

Answer: [Yes]862

Justification: We discuss about broader impact in Conclusion.863

Guidelines:864

• The answer NA means that there is no societal impact of the work performed.865

• If the authors answer NA or No, they should explain why their work has no societal impact or866

why the paper does not address societal impact.867

• Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-868

information, generating fake profiles, surveillance), fairness considerations (e.g., deployment of869

technologies that could make decisions that unfairly impact specific groups), privacy considera-870

tions, and security considerations.871

• The conference expects that many papers will be foundational research and not tied to particular872

applications, let alone deployments. However, if there is a direct path to any negative applications,873

the authors should point it out. For example, it is legitimate to point out that an improvement in874

the quality of generative models could be used to generate deepfakes for disinformation. On the875

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks876

could enable people to train models that generate Deepfakes faster.877
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• The authors should consider possible harms that could arise when the technology is being used878

as intended and functioning correctly, harms that could arise when the technology is being used879

as intended but gives incorrect results, and harms following from (intentional or unintentional)880

misuse of the technology.881

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies882

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-883

toring misuse, mechanisms to monitor how a system learns from feedback over time, improving884

the efficiency and accessibility of ML).885

11. Safeguards886

Question: Does the paper describe safeguards that have been put in place for responsible release of887

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,888

or scraped datasets)?889

Answer: [NA]890

Justification: We believe our work does not have such risks.891

Guidelines:892

• The answer NA means that the paper poses no such risks.893

• Released models that have a high risk for misuse or dual-use should be released with necessary894

safeguards to allow for controlled use of the model, for example by requiring that users adhere to895

usage guidelines or restrictions to access the model or implementing safety filters.896

• Datasets that have been scraped from the Internet could pose safety risks. The authors should897

describe how they avoided releasing unsafe images.898

• We recognize that providing effective safeguards is challenging, and many papers do not require899

this, but we encourage authors to take this into account and make a best faith effort.900

12. Licenses for existing assets901

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,902

properly credited and are the license and terms of use explicitly mentioned and properly respected?903

Answer: [Yes]904

Justification: We cited all datasets and code used in our paper.905

Guidelines:906

• The answer NA means that the paper does not use existing assets.907

• The authors should cite the original paper that produced the code package or dataset.908

• The authors should state which version of the asset is used and, if possible, include a URL.909

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.910

• For scraped data from a particular source (e.g., website), the copyright and terms of service of911

that source should be provided.912

• If assets are released, the license, copyright information, and terms of use in the package should913

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for914

some datasets. Their licensing guide can help determine the license of a dataset.915

• For existing datasets that are re-packaged, both the original license and the license of the derived916

asset (if it has changed) should be provided.917

• If this information is not available online, the authors are encouraged to reach out to the asset’s918

creators.919

13. New Assets920

Question: Are new assets introduced in the paper well documented and is the documentation pro-921

vided alongside the assets?922

Answer: [NA]923

Justification: We do not release new assets.924

Guidelines:925

• The answer NA means that the paper does not release new assets.926

• Researchers should communicate the details of the dataset/code/model as part of their submis-927

sions via structured templates. This includes details about training, license, limitations, etc.928
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• The paper should discuss whether and how consent was obtained from people whose asset is929

used.930

• At submission time, remember to anonymize your assets (if applicable). You can either create an931

anonymized URL or include an anonymized zip file.932

14. Crowdsourcing and Research with Human Subjects933

Question: For crowdsourcing experiments and research with human subjects, does the paper in-934

clude the full text of instructions given to participants and screenshots, if applicable, as well as935

details about compensation (if any)?936

Answer: [NA]937

Justification: Our paper does not involve crowdsourcing nor research with human subjects.938

Guidelines:939

• The answer NA means that the paper does not involve crowdsourcing nor research with human940

subjects.941

• Including this information in the supplemental material is fine, but if the main contribution of the942

paper involves human subjects, then as much detail as possible should be included in the main943

paper.944

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other945

labor should be paid at least the minimum wage in the country of the data collector.946

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-947

jects948

Question: Does the paper describe potential risks incurred by study participants, whether such949

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or950

an equivalent approval/review based on the requirements of your country or institution) were ob-951

tained?952

Answer: [NA]953

Justification: Our paper does not involve crowdsourcing nor research with human subjects.954

Guidelines:955

• The answer NA means that the paper does not involve crowdsourcing nor research with human956

subjects.957

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be958

required for any human subjects research. If you obtained IRB approval, you should clearly state959

this in the paper.960

• We recognize that the procedures for this may vary significantly between institutions and loca-961

tions, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their962

institution.963

• For initial submissions, do not include any information that would break anonymity (if applica-964

ble), such as the institution conducting the review.965
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