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Abstract

We propose NAS-X, a method for sequential latent variable model learning and inference
that uses smoothing sequential Monte Carlo (SMC) in a reweighted wake sleep (RWS)
framework. Our method works with both discrete and continuous latent variables, and
successfully fits a wider range of models than filtering SMC-based methods. We evaluate
NAS-X on several tasks and find that it substantially outperforms existing methods in both
inference and parameter recovery.

1. Introduction and Background

This work considers model learning and inference in sequential latent variable models with
Markovian structure, i.e. models that factor as

T
po(x1.7,y1.1) = po(X1)pe(y1 | x1) Hpe(xt | xt—1)po(ye | xt), (1)
t=2

with latent variables x;.7 € X7, observations y,.7 € Y7, and global parameters 8 € O.
We are specifically interested in nonlinear latent variable models where the conditional
distributions pg(x; | x;—1) and pg(y: | x¢) depend nonlinearly on x;_1 and x; respectively.
This is an important class of models that encompass sequential versions of variational au-
toencoders (Rezende et al., 2014; Kingma and Welling, 2014; Krishnan et al., 2015; Lawson
et al., 2019), financial volatility models (Chib et al., 2009), and biophysical models of neural
activity (Hodgkin and Huxley, 1952).

Estimating the marginal likelihood py(y1.7) and posterior pg(x1.7 | y1.7) for this model
class is difficult because it requires computing an intractable integral over the latents,

po(y1.r) = /TPG(YLT,XLT) dxi.7,
X

To tackle this problem, we extend Reweighted Wake Sleep (RWS) proposed in (Bornschein
and Bengio, 2014; Hinton et al., 1995) to the sequential latent variable setting using recent
advances in smoothing sequential Monte Carlo (Lawson et al., 2022).
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1.1. Reweighted Wake Sleep

Our goals is to fit a model py by maximizing the marginal likelihood. RWS uses a two-step
coordinate ascent method to accomplish this. First, RWS estimates the gradients of the
log marginal likelihood using self-normalized importance sampling (SNIS) with a proposal
distribution g4. Second, to improve the quality of those gradient estimates, RWS optimizes
the proposal ¢4 by minimizing the inclusive Kullback-Leibler (KL) divergence from the
posterior to the proposal which RWS also estimates with SNIS. Importantly, the gradients
for both steps are posterior expectations, which RWS estimates using an SNIS particle
approximation to the true posterior.

Let gg(x1.7 | y1:7) be a proposal distribution. RWS approximates the posterior distri-
bution py(x1.7 | y1:7) with N weighted particles sampled from gg,

| 0
w(z) _ p@(xl;TaYI:T) (2)

N
p(xrr | yir) = Z@(i)(Sx(i) (x1.7), xg’)T ~ Q¢(X1:T | yi.1)s 0
i—1 v a6 (X171 | y11)

where w() are unnormalized weights formed from a ratio of likelihoods and wW® are their
3 i i N w0 =
self-normalized counterparts, i.e. > ;" w'" = 1.
RWS fits the proposal distribution ¢4 by descending the gradients of the inclusive KL
divergence, estimated as

N
VoKL(po || 46) = ~Epy(xralyrir) [Volog g (xar | yir)l = = > 0V log 4o (X1 | y1:1).

=1
(3)

The equality on the right hand side is approximate in the sense that the sum of weighted
gradients is a biased but consistent (N — oo) Monte Carlo estimate of the expectation, as
per the consistency of self-normalized importance sampling (Owen, 2013).

The model py is fit using the posterior approximation (2) to estimate of the gradients
of the marginal likelihood, i.e.

N

Vologpy(y1:1) = Epy(xy.rlyrr) [Velogpa(x1.r, y1.17)] ~ Z@(i)vem(xg)pyhﬂ- (4)
i1

For a derivation of these identities, see Appendix A.

1.2. Estimating Posterior Expectations with Sequential Monte Carlo

As we saw in Equations 3 and 4, key quantities in RWS can be expressed as expectations
w.r.t the posterior. Standard RWS uses SNIS to approximate these expectations, but in
sequence models the variance of SNIS can scale exponentially in the sequence length. In this
section, we review sequential Monte Carlo (SMC) (Doucet and Johansen, 2011; Naesseth
et al., 2019), an inference algorithm that can produce estimators of posterior expectations
with linear or even sub-linear variance scaling.

SMC approximates the posterior pg(x1.7 | y1.7) with a set of N weighted particles x}:¥
constructed iteratively by sampling from a sequence of target distributions {m(x1.¢)}L;.



Intuitively, sampling from these intermediate distributions may be “easier” than directly
sampling from the posterior. Since these intermediate targets are often only available up
to an unknown normalizing constant Z;, SMC uses the unnormalized targets {%(Xlzt)}thl,
where m(x1.¢) = V¢(x1.¢)/Z¢. Provided the target distributions satisfy mild technical condi-
tions and vy (x1.7) x pg(X1.7,y1.7), SMC returns a set of weighted particles that approx-
imate the posterior pg(x1.7 | y1.7) (Doucet and Johansen, 2011; Naesseth et al., 2019).
These weighted particles can then be used to compute biased but consistent estimates of
expectations of test functions with respect to the posterior distribution, similar to SNIS.

SMC repeats three steps: first, a set of latents XHV are sampled from a proposal dis-
tribution gy (x1:¢ | y1:7). Then, each particle is weighted using the unnormalized target
to form an empirical approximation of the normalized target distribution m;. Finally, new
particles x1'V are drawn from this approximation to the normalized target. This last step is
known as resampling and is crucial for SMC’s success. For a thorough description of SMC,

see Doucet and Johansen (2011); Naesseth et al. (2019); Del Moral (2004).

1.3. Smoothing SMC via Twisting Functions learned through Density Ratio
Estimation

The most common choice of targets are the filtering distributions my(x1.¢) = pe(X1:¢ | ¥1:¢),
and when SMC is run with these distributions as targets the resulting algorithm is known as
filtering SMC. Filtering SMC has been used to estimate posterior expectations within the
RWS framework in Neural Adaptive Sequential Monte Carlo (NASMC) (Gu et al., 2015),
but a major disadvantage of filtering SMC is that it ignores future observations y;y1.7.
Ignoring future observations can lead to particle degeneracy and high-variance estimates
of test function integrals, frustrating approaches that use filtering SMC for model learning
and inference (Maddison et al., 2017; Whiteley and Lee, 2014; Briers et al., 2010).

We could avoid these issues by using the smoothing distributions as targets,
7t (X1:¢) = pe(X1:¢ | y1.7), but unfortunately the smoothing distributions are not available
from the model. We can approximate the smoothing distributions by observing that pg(x1.¢, y1.7)
is proportional to the filtering distributions, pg(x1.t,y1:t), times the lookahead distribu-
tions, pe(yi+1.7 | X¢). If the lookahead distributions are well-approximated by a sequence of
twists {r(y+1.7, %)}, then running SMC with targets v¢(x1.4) = po(X1.t, y1:4) 7(¥er1.75 Xt)
approximates smoothing SMC (Whiteley and Lee, 2014).

Learning the twists can be extremely challenging (Maddison et al., 2017; Lawson et al.,
2018; Guarniero et al., 2017). To tackle these challenges, SIXO (Lawson et al., 2022)
leverages a denstity-ratio estimation approach Sugiyama et al. (2012). This method is
motivated by the observation that the lookahead distribution is proportional to a ratio of
densities,

pe(Xt ! Yt+1;T)pe(Yt+1:T) x pe(Xt ! Yt—l—l:T)‘ (5)

po(Yir1r | Xt) = Do (x1) po(xt)
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Therefore, the logits of a classifier trained to distinguish between samples from these den-
sities will approximate the twists. We summarize the process for training twists below.
X1 ~ po(X1T), X1, Y1.T ~ Po(X1.7, Y1.T)

1 T-1 ) (6)

Lore(P) = 71 Z log o(log 74 (yit1:7, %)) + log(1 — o(log 7y (ye+1:7, X¢)))
t=1

Importantly, SIXO returns a sequence of particle approximations that approximate the
smoothing distributions, a crucial fact we will leverage in NAS-X.

2. NAS-X: Neural Adaptive Smoothing via Twisting

NAS-X uses SIXO’s sequence of particle approximations of the smoothing distributions,

N
ﬁ(xlzt ‘ y1:T) = ngl)éx(i) (Xl:t)> t= 17 v 7T (7)
4_ 1:t

to estimate the posterior expectations required by the RWS framework. Specifically, NAS-X
computes the gradients of the inclusive KL divergence for learning the proposal g4 as

(1)

P(Xl Tly1.T) [V¢ log 4y (Xl T ‘ Yi: T Z Z wt V¢ log q¢>( ‘ X1 Yt T) (8)

t=1 i=1

and computes the gradients of the model as

By (xvrlynr) [Vologpo(xir, yir) & > > w0 Vo logpe(xi” e | x7,). 9)
t=1 i=1

The particle weights @gi) are directly available from running SMC with the twists. The

twists are learned using density ratio estimation as described in the previous section. The
full procedure is summarized in Algorithm 1.

3. Experiments

3.1. Linear Gaussian State Space Model

We first consider a one-dimensional linear Gaussian state space model with joint distribution

T T
p(xir yir) = N(x1;0,05) [ [N (xe13x0,00) [ [N (v xi. 0 (10)
=2 =1

We compare NAS-X and NASMC by evaluating log marginal likelihood estimates and
parameter recovery. For both methods we use a mean-field Gaussian proposal factored
over time, ¢(xy1.7) = Hg‘rzl a(xy) = Hg‘rzl N (x¢; g, 02), with parameters pp. and O‘%T
corresponding to the means and variances at each timestep. We parameterize the twist as a
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Figure 1: Comparison of NAS-X vs NASMC on Inference in LG-SSM. (left) Com-
parison of learned proposal means. (middle) Comparison of learned proposal variances.
(right) Comparison of log-marginal likelihood bounds (lower is better). NAS-X’s learned
proposal captures the true posterior mean and variance and achieves tighter estimates of
the log marginal likelihood.

quadratic function in x; whose coefficients are functions of the observations and time step.
We chose this form to match the functional form of the analytic log density ratio.

In the left and middle panels of Figure 1, we compare the posteriors learned by NAS-X
and NASMC against the true posterior whose parameters can be obtained in closed form.
NASMC exhibits a persistent bias in its parameter estimates and fails to capture the true
posterior distribution because it employs filtering approximations, but NAS-X recovers the
true posterior. In the right panel of Figure 1, we compare NAS-X and NASMC’s bound
gap, the difference between the true log marginal likelihood and the estimated log marginal
likelihood. NAS-X’s bound gap is lower, indicating it performs more accurate inference
than NASMC. For details, see Appendix B.

3.2. Switching Linear Dynamical Systems

To explore NAS-X’s ability to handle discrete latent variables, we consider a switching linear
dynamical system (SLDS) model (Fox et al., 2008; Linderman et al., 2017). Specifically,
we adapt the SLDS example from Linderman et al. (2017) in which the latent dynamics
trace ovals in a manner that resembles cars racing on a NASCAR track. There are two
coupled sets of latent variables: a discrete state z;, with K = 4 possible values, and a two-
dimensional continuous state x; that follows linear dynamics that depend on the discrete
state. The observations are a noisy projection of x; into a ten-dimensional observation
space. For model details see Appendix C and Linderman et al. (2017).

For the proposal we factorize ¢ over both time and the continuous/discrete states. The
continuous distributions are parameterized by Gaussians while Categorical distributions are
used for the discrete latent variables. For details on the proposal and twist, see Appendix C.

In the top of Figure 2, we compare NAS-X and NASMC on inference in the SLDS
model. We report (average) posterior parameter recovery for the continuous and discrete
latent states across 5 random samples from the generative model. NAS-X systematically
recovers better estimates of both the discrete and continuous latent states.

We also present results from joint model learning and inference in the bottom of Figure 2.
We compare the learned dynamics for NAS-X, NASCAR, and a Laplace-EM algorithm
tailored for recurrent state space models (Zoltowski et al., 2020). In each panel, we plot
the vector field of the learned dynamics and the posterior means, with different colors
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Figure 2: Inference and model learning in switching linear dynamical systems
(SLDS). (top) Posterior parameter recovery in the inference setting. (bottom) Compari-
son of learned dynamics and inferred latent states in model learning. Laplace EM sometimes
learns incorrect segmentations, as seen here.

Table 1: Train L1} for NAS-X and NASMC on the SLDS.

Method o3 = 0.001 o3 = 0.01 0 =0.1
NAS-X 19.837 £0.0234 8.63+0.0015 —2.79 + 0.0009
NASMC 19.834 £0.0018  8.53+0.001  —2.874 = 0.0007

Laplace EM  19.154 £0.057 8.54 £0.0039 —2.765 £ 0.0012

corresponding to the four discrete states. In Table 1, we quantitatively compare the model
learning performances across these three approaches by running a bootstrap proposal with
the learned models and the true dynamics and observation variances. We normalize the
bounds by the sequence length. NAS-X outperforms or performs on par with both NASMC
and Laplace EM across the different observation noises 020. For details, see Appendix C.

3.3. Hodgkin Huxley model

In Appendix D we evaluate NAS-X on inference in the Hodgkin-Huxley model, a nonlinear
dynamical system model of neural activity. In summary, NAS-X far outperforms FIVO,
SIXO, and NASMC in terms of particle efficiency and inference quality.

4. Conclusion

In this work, we proposed NAS-X, a new method for approximate inference and model learn-
ing in sequential latent variable models. Our method extends the reweighted wake sleep
framework to sequential settings by using Smoothing SMC to estimate posterior expecta-
tions. We evaluated our framework on a number of tasks, including inference in discrete
latent variable models, where we outperformed prior methods. In future work, we will apply
NAS-X to nonlinear dynamical systems models of neural data.
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Appendix A. Derivations

Gradient of Inclusive KL Divergence Below, we derive the gradient of the inclusive
KL divergence for a generic Markovian model. In this derivation, we assume there are no
shared parameters between the proposal and model.

~VKL(psllgg) = qu/pe(Xl:T\YLT)log%(XLT!}’l:T)dXLT (11)

= /pe(X1:T|Y1:T)V¢ log q¢(x1.7|y1:7)dX1.7 (12)

= /pe(X1:T|Y1:T)V¢ (Z log Q¢(Xt|xtlaYt:T)) dxq.T (13)
7

= Z/pQ(XI:Tb’l:T)qu log g (x¢|x¢—1, yer)dx1.m (14)
t
= ZEPQ(XI:T|y1:T) [V¢ log Q¢(Xt|Xt,1, yer)] (15)
7
Gradient of the Marginal Likelihood
Volog p(y1.1) = Vg IOg/pG(Xl:TaYLT)dYLT (16)
= —— /Vepe X1.7, Y1.17)dX1.7 (17)
Po Y1T
1
= /pG(XI:T>YI:T)v0 log pg(x1.7, y1.:7)dX1.7 (18)
pe(YLT)
= /pe(X1:T|Y1;T)V6 log po(x1.7, y1.7)dX1.7 (19)
= /Pe(X1:T|Y1:T)V9Zlogpe(YuXtXt—l)dXLT (20)
¢
= Z/Pe(XLﬂyLT)Ve log po(yt, Xe|xe—1)dx1.1 (21)
¢
= Epyxrrlynr) [Volog po(ye, xe[xi1)] (22)
¢

Appendix B. LGSSM

Model Details We consider a one-dimensional linear Gaussian state space model with
joint distribution

T T
p(Xl:T7Y1:T) X17 HN Xt4+1;X¢, O T HN yt7xt7 y (23)
t=2 t=1
In our experiments we set the dynamics variance o2 = 1.0 and the observation variance

ay =1.0.
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Algorithm 1: NAS-X
Procedure NAS-X(6y, oo, Yo, Y1.7)

while not converged do
1 + tilt-training(f, ¢)

XHY?W%;? — SMC({pG(XltaY1t) Tz/;(xt,}’t—i-l )

A = Zt 121 1wt VG IOgPG(Xt ,Yt | Xt 1)
Ap=— Zt:l Zi:l Wy )V¢> log q¢>(Xt | Xt—lv Yer)
0 = grad-step (6, Af)

¢ = grad-step (o, Ag)

end

return 0, ¢

Proposal Parameterization For both NAS-X and NASMC, we use a mean-field Gaus-
sian proposal factored over time

T T

q(z1.7) = HQt(JJt) = HN(%; Mt70752)7 (24)

t=1 t=1

with parameters p1.7 and U%:T corresponding to the means and variances at each timestep.
In total, we learn 27T proposal parameters.

Twist Parametrization We parameterize the twist as a quadratic function in x; whose
coefficients are functions of the observations and time step and are learned via the density
ratio estimation procedure described in (Lawson et al., 2022). We chose this form to match
the analytic log density ratio for the model defined in Eq 23. Given that p(z1.7,y1.7) is a
multivariate Gaussian, we know that p(z; | yi4+1.7) and p(z;) are both marginally Gaussian.
Let

p({Et | yt+1:T) £ N(vag%)
p(z) £ N(0,07)

Then,

g (L)) o N s o) ~ log (a1 0, o)
p(xt)

1 p1 i L o

=log Z(o1) — Ext + p Ty — 207 log Z(02) + 55

where Z(0) = U\}%, so log Z(0) = —log(ov/2m).

10



Collecting terms gives:

—log(o1V/2) + log(o2V/21)

1/1 1Y\ 5
2\o? o2 o

M1
"‘J% Tt
i
20%
So we’ll define
A 1/1 1
a2 (= =
2\o? o3
M1
E—
o
2
c= —% —log(o1V2m) + log(oeV/2m)
1

We'll explicitly model log o2, log o3 and y;. Both logo? and log o3 are only functions of ¢,
not of yy41.7, so those can be vectors of shape T initialized at 0. p; is a linear function of
yi+1.7 and t, so that can be parameterized by a set of T' x T" weights, initialized to 1/7 and
T biases initialized to 0.

Training Details We use a batch size of 32 for the density ratio estimation step. Since
we do not perform model learning, we do not repeatedly alternate between tilt training and
proposal training for NAS-X. Instead, we first train the tilt for 3,000,000 iterations with
a batch size of 32 using samples from the model. We then train the proposal for 750,000
iterations. For the tilt, we used Adam with a learning rate schedule that starts with a
constant learning rate of le — 3, decays the learning by 0.3 and 0.33 at 100, 000 and 300, 000
iterations. For the proposal, we used Adam with a constant learning rate of le — 3. For
NASMC, we only train the proposal.

Evaluation In the right panel of Figure 1, we compare the bound gaps of NAS-X and
NASMC averaged across 20 different samples from the generative model. To obtain the
bound gap for NAS-X, we run SMC 16 times with 128 particles and with the learned
proposal and twists. We then record the average log marginal likelihood. For NASMC, we
run SMC with the current learned proposal (without any twists).

Appendix C. rSLDS

Model details The generative model is as follows. At each time ¢, there is a discrete
latent state z; € {1,...,4} as well as a two-dimensional continuous latent state x; € R
The discrete state transition probabilities are given by

p(ze41 =1 | 2t = J,x¢) X exp (T‘Z‘ + RiTxt_l) (25)

11
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Here R; and r; are weights for the discrete state z;.
These discrete latent states dictates two-dimensional latent state z; € R? which evolves
according to linear Gaussian dynamics.

Tt41 = Azt+1xt + bzt+1 + Vt, (%3 Niid N(O’ Q2t+1) (26)

Here Aj, Qi € R**2 and b, € R%. Importantly, from Equations 26 and 25 we see that the
dynamics of the continuous latent states and discrete latents are coupled. The discrete
latent states index into specific linear dynamics and the discrete transition probabilities
depend on the continuous latent state.

The observations y; € R0 are linear projections of the continuous latent state x; with
some additive Gaussian noise.

ye = Cap +d+wy, v~ N(0,9) (27)
Here C, S € R19#10 and d € R10.

Proposal Parameterization We use a mean-field proposal distribution factorized over
the discrete and continuous latent variables (i.e. ¢(z1.7,%x1.7) = q(z1.7)q(x1.7)). For the
continuous states, ¢(x1.7) is a Gaussian factorized over time with parameters 1.7 and U%:T.
For the discrete states, q(z1.7) is a Categorical distribution over K categories factorized
over time with parameters p%% . In total, we learn 271" + T'K proposal parameters.

Twist Parameterization We parameterize the twists using a recurrent neural network
(RNN) that is trained using density ratio estimation. To produce the twist values at each
timestep, we first run a RNN backwards over the observations y1.p to produce a sequence of
encodings e.7—1. We then concatenate the encodings of x; and z; into a single vector and
pass that vector into an MLP which outputs the twist values at each timestep. The RNN
has one layer with 128 hidden units. The MLP has 131 hidden units and ReLLU activations.

Model Parameter Evaluation We closely follow the parameter initialization strategy
employed by Linderman et al. (2017). First, we use PCA to obtain a set of continuous
latent states and initialize the matrices C' and d. We then fit an autoregressive HMM to
the estimated continuous latent states in order to initialize the dynamics matrices { Ay, by }.
Importantly, we do not initialize the proposal with the continuous latent states described
above.

Training Details We use a batch size of 32 for the density ratio estimation step. We
alternate between 100 steps of tilt training and 100 steps of proposal training for a total
of 50,000 training steps in total. We used Adam and considered a grid search over the
model, proposal, and tilt learning rates. In particular, we considered learning rates of
le — 4,1e — 3,1e — 2 for the model, proposal, and tilt.

Bootstrap Bound Evaluation To obtain the log marginal likelihood bounds and stan-
dard deviations in Table 1, we ran a bootstrapped particle filter (BPF) with the learned
model parameters for all three methods (NAS-X, NASMC, Laplace EM) using 1024 parti-
cles. We repeat this across 30 random seeds. Initialization of the latent states was important
for a fair comparison. To initialize the latent states, for NAS-X and NASMC, we simply
sampled from the learned proposal at time ¢ = 0. To initialize the latent state for Laplace
EM, we sampled from a Gaussian distribution with the learned dynamics variance at ¢ = 0.
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Appendix D. Hodgkin-Huxley Model

D.1. Model

We also evaluated NAS-X on the Hodgkin-Huxley (HH) biophysical model of neural action
potentials (Hodgkin and Huxley, 1952; Dayan and Abbott, 2005). Our experimental setup
was constructed to broadly match Lawson et al. (2022), and used a single-compartment
model with voltage dynamics defined by

dVv
Cm% = Iext - INa - IK - IL
Ing = gNamsh(V — ENa) (28)

I = gKn4(V — EK)
I, =g.(V —EpL)

where C),, is the membrane capacitance, V is the membrane potential, I.y is the injected

current, In,, Ix, and I} are the sodium, potassium, and leak currents respectively, gy,

Ji, and gy, are the maximum conductances for sodium, potassium, and leak channels, and

Eng, Ex, and E, are the reversal potentials for sodium, potassium, and leak channels.
The gating variables m, h, and n obey the following first-order kinetics:

= an (V)= m) = BV
= an(V)(1 = ) = (V) (29)
T = (V)1 =) = Bu(V)n

where oy, Bm, an, Br, an, and B, are the voltage-dependent rate constants for the gating
variables. The specific forms for the o and S functions are available in Dayan and Abbott
(2005).

This system of ordinary differential equations defines a nonlinear dynamical system with
a four-dimensional state space: the instantaneous membrane potential and the activation
states of the ion gates.

As in Lawson et al. (2022), we use a probabilistic version of the original HH model that
adds zero-mean Gaussian noise to the unconstrained gates n, m, and h. The observations are
produced by adding Gaussian noise with variance 0'5 to the instantaneous membrane poten-
tial. Specifically, let x; be the state vector of the system at time ¢ containing (V;, my, he, ny),
and let pg(x) be a function that integrates the system of ODEs defined above for a step of
length dt. Then the probabilistic HH model can be written as

T T
p(xrr, yir) = p(xa) [ [ p(xe | @ar(xe-1)) [[ N (yei %1, 07) (30)
=2 i=1

where the 4-D state distributions p(x1) and p(x; | @a4t(x¢—1)) are defined as

4

p(xe | par(xe-1)) = N (x¢.1; ar(x¢—1)1,02.1) HLOgitNormal(Xt,i§ Qat(x¢-1)i,05 ;). (31)
i—2
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In words, we add Gaussian noise to the voltage (x¢1) and logit-normal noise to the gate
states n,m, and h. The logit-normal is defined as the distribution of a random variable
whose logit has a Gaussian distribution, or equivalently it is a Gaussian transformed by
the sigmoid function and renormalized. We chose the logit-normal because its values are
bounded between 0 and 1, which is necessary for the gate states. We implemented (g; using
a Strang splitting approach as described in Chen et al. (2020).

D.2. Problem Setting

We evaluated NAS-X, NASMC, SIXO, and its predecessor FIVO on inference in the proba-
bilistic HH model. For this task we sampled 10,000 noisy voltage traces from a fixed model
and used each method to train proposals (and possibly twists) to compute the marginal
likelihood assigned to the data under the true model.

As in Lawson et al. (2022), we sampled trajectories of length 50 milliseconds, with a sin-
gle noisy voltage observation every millisecond. The stability of our ODE integrator allowed
us to integrate at dt = 0.1ms, meaning that there were 10 latent states per observation.

Proposal and Twist Details FEach proposal was parameterized using the combination
of a bidirectional recurrent neural network (RNN) that conditioned on all observed noisy
voltages as well as a dense network that conditioned on the RNN hidden state and the
previous latent state x;_1 (Hochreiter and Schmidhuber, 1997; Jordan, 1997). The twists
for SIXO and NAS-X were parameterized using an RNN run in reverse over the observations
combined with a dense network that conditioned on the reverse RNN hidden state and the
latent being ‘twisted’, x;. Both the proposal and twists were learned in an amortized
manner, i.e. they were shared across all trajectories. All RNNs had a single hidden layer of
size 64, as did the dense networks. All models were fit with ADAM (Kingma et al., 2015)
with proposal learning rate of 10~ and tilt learning rate of 1073,

A crucial aspect of fitting the proposals was defining them in terms of a ‘residual’ from
the prior, a technique known as Res, (Fraccaro et al., 2016). In our setting, we defined the
true proposal density as proportional to the product of a unit-variance Gaussian centered
at ¢o(x;) and a Gaussian with parameters output from the RNN proposal.

D.3. Experimental Results

In Figure 3 we plot the performance of proposals and twists trained with 4 particles and
evaluated across a range of particle numbers. All methods except FIVO perform roughly
the same when evaluated with 256 particles, but with lower numbers of evaluation particles
the smoothing methods emerge as more particle-efficient than the filtering methods. To
achieve NAS-X'’s inference performance with 4 particles, NASMC would need 256 particles,
a 64-times increase. NAS-X is also more particle-efficient than SIXO, achieving on average
a 2x particle efficiency improvement.

The FIVO method with a parametric proposal drastically underperformed all smoothing
methods as well as NASMC, indicating that the combination of filtering SMC and the exclu-
sive KL divergence leads to problems optimizing the proposal parameters. To compensate,
we also evaluated the performance of “FIVO-BS”, a filtering method that uses a bootstrap
proposal. This method is identical to a bootstrap particle filter, i.e. it proposes from the
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Figure 3: HH inference performance across different numbers of particles.

(left) Log-likelihood lower bounds for proposals trained with 4 particles and evaluated
across a range of particle numbers. NAS-X’s inference performance decays only minimally
as the number of particles is decreased, while all other methods experience significant per-
formance degradation. (right) A comparison of SIXO and NAS-X containing the same
values as the left panel, but zoomed in. NAS-X is roughly twice as particle efficient as
SIXO, and outperforms SIXO by roughly 34 nats at 4 particles.

model and has no trainable parameters. FIVO-BS far outperforms standard FIVO, and is
only marginally worse than NASMC in this setting.

In Figure 4 we investigate these results qualitatively by examining the inferred voltage
traces of each method. We see that NASMC struggles to produce accurate spike timings
and generates many spurious spikes, likely because it is unable to incorporate future in-
formation into its proposal or resampling method. SIXO performs better than NASMC,
accurately inferring the timing of most spikes but resampling at a high rate. High numbers
of resampling events can lead to particle degeneracy and poor inferences. NAS-X is able
to correctly infer the voltage across the whole trace with no suprious or mistimed spikes.
Furthermore NAS-X rarely resamples, indicating it has learned a high-quality proposal that
does not generate low-quality particles that must be resampled away. These qualitative re-
sults seem to support the quantitative results in Figure 3 — SIXQO’s high resampling rate
and NASMC’s filtering approach lead to lower bound values.
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Figure 4: Inferred voltage traces for NASMC, SIXO, and NAS-X.

(top) NASMC exhibits poor performance, incorrectly inferring the timing of most spikes.
(middle) SIXO'’s inferred voltage traces are more accurate than NASMC’s with only a
single mistimed spike, but SIXO generates a high number of resampling events leading to
particle degeneracy. (bottom) NAS-X perfectly infers the latent voltage with no mistimed

spikes, and resamples very infrequently.
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