
Efficient Surrogate Gradients for Training Spiking Neural Networks

Hao Lin 1 * Shikuang Deng 1 2 * Shi Gu 1 2

Abstract
To guide the shape optimization in applying sur-
rogate gradients for training SNN, we propose
an indicator k, which represents the proportion
of membrane potential with non-zero gradients
in backpropagation. Further we present a novel
k-based training pipeline that adaptively makes
trade-offs between the surrogate gradients’ shapes
and its effective domain, followed by a series
of ablation experiments for verification. Our al-
gorithm achieves 68.93% accuracy on the Ima-
geNet dataset using SEW-ResNet34. Moreover,
our method only requires extremely low external
cost and can be simply integrated into the existing
training procedure.

1. Introduction
Spiking Neural Networks (SNN) have gained increasing
attention in recent years due to their biological rationale
and potential energy efficiency as compared to the com-
mon real-value based Artificial Neural Networks (ANN).
SNN communicates across layers by spiking signals. On
the one hand, this spiking mechanism turns multiplicative
operations to additive operations, increasing the inference
procedure’s efficiency. On the other hand, it introduces an in-
trinsic issue of differentiability, which makes training SNNs
more challenging. At present, the method for obtaining
practical SNNs can be roughly divided into three categories:
converting a pretrained ANN to SNN (Sengupta et al., 2019;
Deng & Gu, 2020; Li et al., 2021a; Bu et al., 2021), train-
ing with biological heuristics methods (Hao et al., 2020;
Shrestha et al., 2017; Lee et al., 2018), and training with
BP-like methods (Wu et al., 2018; Zheng et al., 2020; Li
et al., 2021b; Yang et al., 2021).

The purpose of this work is to optimize the SNN train-
ing pipeline by adaptively altering the shape of surrogate

*Equal contribution 1University of Electronic Science and Tech-
nology of China 2 Shenzhen Institute for Advanced Study, UESTC.
Correspondence to: Shi Gu <gus@uestc.edu.cn>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

gradient in order to control the effective domain for the
surrogate gradients. We introduce an index k to denote the
proportion of membrane potential with non-zero gradients
in backpropagation and present a technique to control the
proportion of non-zero gradients (CPNG) in the network.
The CPNG technique modifies the shape of surrogate gra-
dients during network training, progressively approaching
the δ-function while maintaining the index k steady within
an effective range to ensure training stability. Finally, each
layer succeeds in finding a surrogate gradient shape that
makes a better balance between the approximation error to
the δ-function with the size of effective domain than the
fixed-shape surrogate gradients. It’s worth mentioning that
our strategy only incurs minor additional costs during the
training phase and has no effect on the inference phase. We
verify the compatibility of CPNG to the existing mainstream
SNN infrastructures such as VGG (Simonyan & Zisserman,
2014), ResNet (He et al., 2016), and Sew-ResNet (Fang
et al., 2021). In all reported comparative experiments, train-
ing with CPNG gives more accurate models than training
with vanilla surrogate gradients. Our main contributions can
be summarized as follows:

• We identify and investigate the impact of the shape
of surrogate gradients on SNN training. Our finding
characterizes a special representative power for SNN
that can be utilized to improve its performance.

• We propose a statistical indicator k for the domain
efficiency of surrogate gradients and a k-based train-
ing method CPNG that adjusts the shape of surrogate
gradients through the training process, driving the sur-
rogate gradients close to the theoretical δ-function with
ensured trainability on sufficiently large domains.

• Our CPNG method improves classification accuracy
on both static image datasets including CIFAR10, CI-
FAR100 and ImageNet, as well as event-based image
datasets such as CIFAR10-DVS. We achieve an accu-
racy of 68.93% in the experiment that trains ImageNet
on Sew-ResNet34.

2. Preliminary
Through out the paper, we use bold letters to denote ma-
trices and vectors, superscripts to identify specific layers,

1

Efficient Surrogate Gradients for Training Spiking Neural Networks

subscripts to denote specific neurons, and indexes to identify
specific moments.

2.1. Leaky Integrate-and-Fire Model

We use the Leaky Integrate-and-Fire (LIF) module for spik-
ing neurons. Formally, given the pre-synaptic input (denoted
by c

(l)
i [t+ 1]) of the ith neuron in the lth layer at time step

t+ 1, we can model the iterative process in LIF as

c
(l)
i [t+ 1] =

N(l−1)∑
j

w
(l)
ij s

(l−1)
j [t+ 1], (1)

u
(l)
i [t+ 1] = τu

(l)
i [t](1− s

(l)
i [t]) + c

(l)
i [t+ 1], (2)

s
(l)
i [t+ 1] = H(u

(l)
i [t+ 1]− Vth). (3)

Here, N (l−1) is the number of neurons in the (l−1)th layer,
s
(l−1)
j [t + 1] is the output spike of the jth neuron in the

(l − 1)th layer at time t+ 1, w(l)
ij is the weight between jth

neuron in (l − 1)th layer and ith neuron in lth layer, u(l)
i [t]

is the membrane potential of the ith neuron in the lth layer
at time t, τ is the membrane potential attenuation factor,
H(·) is the step function, and Vth is the activation thresh-
old. When the membrane potential of a neuron exceeds the
activation threshold, a spike is released and the membrane
potential of the current neuron is set to zero.

2.2. Surrogate Gradient Function

There are various surrogate gradient shapes adopted by pre-
vious work (Wu et al., 2018; Neftci et al., 2019). In this
work, we used triangle-like function, rectangular-like func-
tion and arctan-like function to verify the effectiveness of
CPNG. These functions are described below:

ϕtriangle(x) =

{
β(1− β|x|) if |x| < 1/β

0 otherwise , (4)

ϕrectangular(x) =

{
β if |x| < 1/(2β)
0 otherwise , (5)

ϕarctan(x) =
β

1 + (πβx)2
, (6)

where β represents the maximum gradient value of current
surrogate gradient function. Notably, the surrogate gradient
satisfy

∫ +∞
−∞ f(x) = 1, which is also the property of the

δ-function.

3. Method
3.1. Shape Parameters and Effective Domain Indicator

Shape Parameters. Intuitively, increasing the shape pa-
rameter β of surrogate gradients would drive it closer to
the δ-function. One might expect to adopt a very high β

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

=0.25
=0.5
=1.0
=1.5
=2.0

Figure 1. Test accuracy of different β when threshold is 1.0.

Figure 2. Membrane distribution of each layer in experiment train-
ing ResNet19 on CIFAR10.

-3 -2 -1 0 1 2 3

0.00

0.08

0.16

0.24

0.32

0.40

β
1

β
1

Figure 3. The proportion of neurons with non-zero gradient under
a surrogate gradient with a certain β.

to obtain SNN for a good performance. We first exam-
ine whether this intuitive approach is possible. We trained
VGG16-structured SNN (replace ReLU with LIF, and use
average pooling) on CIFAR100 using triangle-like surrogate
gradient with β set from 0.25 to 2 respectively. As shown
in Fig. 1, the test accuracy increases when β varies from
0.25 to 1.0 but remains at 1.0% when β is set to 1.5 and
2.0, indicating that properly increasing β may benefit the
training but arbitrarily increasing β will drive the training
collapse.

In fact, these results unveil that efficient training of SNNs
requires not only the approximation to the δ-function but
also the insurance for the surrogate gradients to work. Thus

2

Efficient Surrogate Gradients for Training Spiking Neural Networks

it is necessary to employ a dynamic shape-changing strategy
rather than using a fixed-shape surrogate gradient. This
issue is also covered by (Li et al., 2021b) as well and was
owed to the lack of adaption to the dataset variation.

Effective Domain Indicator.

To quantitatively guide the choice of β, we propose a sta-
tistical indicator to denote the percentage of membrane po-
tentials that fall into the domain of surrogate gradients. As
illustrated in Fig. 2, the distribution of membrane poten-
tials on each layer takes the normal shape. Thus, for the
simplicity of calculation, we regard the membrane poten-
tial distribution of all neurons within the same layer as a
Gaussian one. By calculating the mean µ and the standard
deviation σ of the membrane potential before this layer re-
leases spikes, we can obtain the proportion of the neuron
with a non-zero gradient during a certain iteration (the area
between the red lines in Fig. 3). For a given β, the effec-
tive gradient domain of triangle-like surrogate gradient is
[Vth − 1/β, Vth + 1/β], we can obtain the definite integral
of the current normal distribution in this effective gradient
domain, which is the Effective Domain Indicator k:

k =

∫ Vth+1/β

Vth−1/β

1√
2πσ

e−
(x−µ)2

2σ2 dx. (7)

For each layer, we record the membrane potential of all neu-
rons in every time step (a tensor shaped like batchsize-by-
timestep-by-channels-by-H-by-W) and calculate the mean
and variance. Based on this indicator k, we can then ef-
fectively determine to what extent we can tune the β while
ensuring that there are enough membrane potentials located
within the effective range of surrogate gradients to make the
training progress.

3.2. CPNG Method

In this section, we will cover how to combiningly optimize
β and k to maximize the effectiveness of surrogate gradients.
To train the network successfully, there must be sufficient
membrane potential values in the effective domain of the
surrogate gradient, i.e., k must be large enough. The most
extreme case is β → 0, which gives k → 1. Obviously,
this is not an optimal solution as it introduces substantial
error for the gradients. If we reasonably restrict the effective
interval of the surrogate gradients, it is possible to drive the
SNN to select those more essential membrane potentials for
backpropagation.

We also need to ensure that the new k does not make the
network difficult to train, for this, CPNG sets the target k of
each layer to the smallest k that has occurred in the current
layer during the training iteration, rather than an artificial
goal. If the network can be trained when the smallest k
appears, then the network should still be trained after we
adjust the k and maintain the smallest k. When using CPNG,

Algorithm 1 Control the Proportion of Non-Zero Gradient
Input: SNN model with L layer, current iterator epoch e,
klimit, and vector krecorder: store each layer’s smallest k
Output: Each layer’s surrogate gradient parameter β
if e == 0 then

for l = 1, 2, · · ·L do
calculate current k by Eqn.7 for layer-l and store at
krecorder[l]

end for
else

for l = 1, 2, · · ·L do
calculate current kcur by Eqn.7 for layer-l
if krecorder[l] <klimit then

krecorder[l] = klimit
else if kcur <krecorder[l] then

krecorder[l] = kcur
end if
kmin = krecorder[l]
if kmin ̸= kcur then

use kmin to update β using binary search method.
end if

end for
end if
return β for each layer

we expect the network parameters to have been reasonably
updated, that is, the network has traversed the whole dataset
and has minimal training loss at the current moment. This
can reduce the misleading of data randomness to CPNG.
For example, if we use CPNG once per batch, the network
parameters are mostly affected by the first few batches in the
early stages of network training, and the statistical indicator
k obtained by using such network parameters will have a
lot of randomnesses.

CPNG computes the smallest k of each layer during the
iteration process as kmin and records it. If the k value of a
certain layer rises after an epoch, CPNG adjusts the k value
of the current layer to kmin by increasing the β, otherwise,
keep the current β fixed and update kmin. Since the kmin of
each layer of neurons may be different, different layers may
have different surrogate gradient shapes. In addition, we
set a safe lower bound klimit. When k falls below the lower
bound, CPNG will pause adjusting the current neuron until
the k of the current neuron exceeds the lower bound. The
CPNG algorithm is detailed in Algo.1.

3.3. The Cost of CPNG Method

The extra cost of CPNG occurs in two steps: (1) collecting
the mean and variance of the membrane potential before
releasing the spikes of each layer; (2) altering the β using
the indicator k. In our experiment, we only use the mean
and variance of one batch to calculate the indicator k, which

3

Efficient Surrogate Gradients for Training Spiking Neural Networks

makes the cost of the first step in the same order of mag-
nitude as the batch normalization (Ioffe & Szegedy, 2015)
operation. For the latter step, we provide a binary search
method that solves the problem very fast, and further opti-
mization algorithms can further improve the solution speed.
Quantitatively, in the VGG16+CIFAR100 experiment, it
takes an average of 1.7GFLOPs to obtain the output corre-
sponding to an input without CPNG, and the first step of
CPNG will only add 5.59× 10−3 additional GFLOPs. Us-
ing CPNG once per epoch takes an average of 3.3 seconds
of overhead (1.57% of total training time).

4. Experiment
To verify the effectiveness of the CPNG method, we provide
groups of comparative experiments (Sec. 4.2) and compare
CPNG with existing works in Sec. 4.3. More experimental
results are presented in the appendix.

4.1. Implementation Details

All the SNN architectures include the tdBN layer (Zheng
et al., 2020) with the average-pooling layer, and compared
to their ANN versions, we replace the activation function
ReLU with LIF. Our experiment settings, such as optimizer,
learning rate, are detailed in Appendix. A. Except for ap-
plying the CPNG method at the end of each epoch, all other
conditions, such as learning rate, batch size, etc., are consis-
tent. We used TIT (Deng et al., 2022) when training CIFAR,
which reduces the training time by initializing the SNN with
a smaller simulation length.

Table 1. klimit Experiments on ResNet19+CIFAR100.
klimit — 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Accuracy 74.05% 74.66% 74.66% 74.66% 73.96% 74.24% 74.02% 73.89%

4.2. Performance improvement with CPNG

First we explored the effect of different klimit on CPNG, Tab.
1 shows that we may don’t need to focus too much on klimit.
When klimit is 0.1-0.3, it can bring about a 0.61% improve-
ment. In our experiments, we set klimit to 0.2 uniformly.

Additionally, we tested the applicability of CPNG to various
surrogate gradient functions. For surrogate gradients with
non-zero gradient everywhere, such as arctan, we directly
use [Vth − 1/β, Vth + 1/β] as the integration interval to
calculate the indicator k, then use Algo. 1 to solve new β.

Finally, we verify the compatibility of CPNG with existing
direct training methods TET (Deng et al., 2022)(Tab. 2). In
all experiments, CPNG can achieve better results. It is worth
mentioning that the improvement brought by CPNG is not
due to bad counterpart. For example, in the experiment
of using TET to train CIFAR100, we can achieve 75.36%
accuracy without using CPNG in our experimental setting.

Table 2. Examine CPNG under various conditions.
Dataset Method Architecture Time Step Accuracy

CIFAR100

Triangular ResNet19 2 73.71±0.005%
Triangular+CPNG ResNet19 2 74.38±0.005%

Rectangular ResNet19 2 72.35±0.002%
Rectangular+CPNG ResNet19 2 73.63±0.026%

ArcTan ResNet19 2 71.46±0.080%
ArcTan+CPNG ResNet19 2 72.43±0.035%
Triangular+TET ResNet19 2 75.36±0.049%

Triangular+TET+CPNG ResNet19 2 75.90±0.001%

Table 3. Result of training spiking neural network.
Dataset Method Architecture Time Step Accuracy

CIFAR10

STBP-tdBN (Zheng et al., 2020) ResNet19 6 93.16%
ANN-to-SNN (Li et al., 2021a) ResNet20 32 64 128 94.78% 95.30% 95.42%
ANN-to-SNN (Bu et al., 2021) ResNet20 8 16 32 89.55% 91.62% 92.24%

Dspike (Li et al., 2021b) ResNet18 2 4 6 93.13% 93.66% 94.25%
TET (Deng et al., 2022) ResNet19 2 4 6 94.16% 94.44% 94.50%

CPNG ResNet19 2 93.79±0.002%
CPNG ResNet19 4 94.14±0.009%
CPNG ResNet19 6 94.10±0.005%

CIFAR100

Diet-SNN (Rathi & Roy, 2020) VGG16 5 69.67%
ANN-to-SNN (Li et al., 2021a) VGG16 32 64 128 73.55% 76.64% 77.40%
ANN-to-SNN (Bu et al., 2021) VGG16 8 16 32 73.96% 76.24% 77.01%

Dspike (Li et al., 2021b) ResNet18 2 4 6 71.68% 73.35% 74.24%
TET (Deng et al., 2022) ResNet19 2 4 6 72.87% 74.47% 74.72%

CPNG VGG16 5 71.32±0.20%
CPNG ResNet19 2 74.40±0.005%
CPNG ResNet19 4 75.29±0.001%
CPNG ResNet19 6 75.37±0.056%

CIFAR10-DVS

Dspike (Li et al., 2021b) ResNet18 10 75.40%
TET(Deng et al., 2022) VGGSNN 10 83.17%

CPNG ResNet18 10 76.5±0.007%
CPNG + TET VGGSNN 10 83.27±0.162%

ImageNet

ANN-to-SNN (Li et al., 2021a) ResNet34 32 64 128 64.54% 71.12% 73.45%
ANN-to-SNN (Bu et al., 2021) ResNet34 16 32 64 59.35% 69.37% 72.35%
Sew-ResNet (Fang et al., 2021) Sew-ResNet34 4 67.04%

TET (Deng et al., 2022) Spiking-ResNet34 6 64.79%
TET (Deng et al., 2022) Sew-ResNet34 4 68.00%

CPNG Sew-ResNet34 4 68.93%

4.3. Comparison to Existing Works

In this section, the experimental results we report all use
triangle-like surrogate gradient. On some datasets, the cur-
rent SOTA conversion method performs better than direct
training, but they need lengthy simulation time steps, espe-
cially on the ImageNet dataset. Our main purpose is not to
chase SOTA, but to demonstrate the effectiveness of CPNG
itself and the compatibility of CPNG with other methods.
The results of the experiment are shown in Tab. 3.

5. Conclusion
This work proposes a new perspective for directing the shape
change of the surrogate gradient, we propose a statistical
indicator k that guides the shape change of the surrogate
gradient, and propose the CPNG method for modifying
the shape of the surrogate gradient during training while
guaranteeing the proportion of membrane potential with
non-zero gradients. It’s possible that the failure to produce
satisfactory results when pulling surrogate gradient directly
to δ-function is due to a failure to meet the premise that
the network can be trained normally. In other words, there
may exists a trade-off between the approximation to the
δ-function and the effective domain of gradients under the
given dataset, and CPNG helps us approach the equilibrium
point.

4

Efficient Surrogate Gradients for Training Spiking Neural Networks

References
Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T.

Optimal ann-snn conversion for high-accuracy and ultra-
low-latency spiking neural networks. In International
Conference on Learning Representations, 2021.

Deng, S. and Gu, S. Optimal conversion of conventional
artificial neural networks to spiking neural networks. In
International Conference on Learning Representations,
2020.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-
cient training of spiking neural network via gradient re-
weighting. arXiv preprint arXiv:2202.11946, 2022.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. arXiv preprint arXiv:2102.04159, 2021.

Hao, Y., Huang, X., Dong, M., and Xu, B. A biologically
plausible supervised learning method for spiking neural
networks using the symmetric stdp rule. Neural Networks,
121:387–395, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Lee, C., Panda, P., Srinivasan, G., and Roy, K. Training
deep spiking convolutional neural networks with stdp-
based unsupervised pre-training followed by supervised
fine-tuning. Frontiers in neuroscience, 12:435, 2018.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free lunch
from ann: Towards efficient, accurate spiking neural
networks calibration. arXiv preprint arXiv:2106.06984,
2021a.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S.
Differentiable spike: Rethinking gradient-descent for
training spiking neural networks. Advances in Neural
Information Processing Systems, 34, 2021b.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Rathi, N. and Roy, K. Diet-snn: Direct input encoding with
leakage and threshold optimization in deep spiking neural
networks. arXiv preprint arXiv:2008.03658, 2020.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going
deeper in spiking neural networks: Vgg and residual
architectures. Frontiers in neuroscience, 13:95, 2019.

Shrestha, A., Ahmed, K., Wang, Y., and Qiu, Q. Stable
spike-timing dependent plasticity rule for multilayer un-
supervised and supervised learning. In 2017 international
joint conference on neural networks (IJCNN), pp. 1999–
2006. IEEE, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in neuroscience, 12:
331, 2018.

Yang, Y., Zhang, W., and Li, P. Backpropagated neighbor-
hood aggregation for accurate training of spiking neural
networks. In International Conference on Machine Learn-
ing, pp. 11852–11862. PMLR, 2021.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. Going
deeper with directly-trained larger spiking neural net-
works. arXiv preprint arXiv:2011.05280, 2020.

5

Efficient Surrogate Gradients for Training Spiking Neural Networks

A. More Experiment Details
In this section, we provide more experimental details. We use cosine decay to gradually reduce the learning rate to 0 and
the initial β for all experiments is 1.0. In the last batch (a fixed batch randomly selected at the beginning), the mean and
variance of the membrane potential are additionally stored in the forward process, then the stored mean and variance are
used to obtain a new β according to Algo. 1. Hyperparameters are shown in the table 4.

Table 4. Experiment Setting
Experiment CIFAR100 CIFAR10 CIFAR-DVS (ResNet18) CIFAR-DVS (VGG11) ImageNet
learning rate 0.1 0.1 0.01 0.001 0.03
weight decay 1e-4 1e-4 4e-5 4e-5 4e-5
momentum 0.9 0.9 0.9 —- 0.9
optimizer sgd sgd sgd adam sgd
warm-up False False False False False
batch size 256 256 72 72 256

B. Results of Comparative Experiment
Only the results of CPNG on the CIFAR100 dataset are shown in Sec. 4.2, while the results on more datasets are presented
in Tab. 5. For all comparative experiments, using CPNG can yield better results than not using CPNG.

C. Surrogate Gradient Shapes of Different Layers
Fig. 4 describes the change of k during the training process. CPNG does control the rise of k during the training process and
makes it stabilize at the end. Fig. 4 also shows that we don’t need to pay too much attention to klimit. klimit only provides a
guarantee in extreme cases, but extreme cases do not necessarily appear during the network training process.

Figure 4. In the experiment of ResNet19+CIFAR100, the proportion of non-zero gradient membrane potentials of neurons in different
layers without CPNG (a) and with CPNG (b).

We show the final β of some experiments in Fig. 5. Various layers’ β are different, which demonstrates that various layers
match distinct surrogate gradient shapes as a result of their varying membrane potential distributions. CPNG eventually
increases the β of most layers. Compare to CPNG, randomly increasing the β can make the network difficult to train (Fig.
1). Even with β set to 1.5, which most of the neuron layers shown in Fig. 5a can approach or reach, the network is still
difficult to train. This demonstrates that it is safe to increase β using CPNG, while it is unsafe to increase β arbitrarily.

6

Efficient Surrogate Gradients for Training Spiking Neural Networks

Table 5. Examine CPNG on various surrogate gradients.
Dataset Method Architecture Time Step Accuracy

CIFAR10

Triangular ResNet19 2 93.73±0.015%
Triangular+CPNG ResNet19 2 93.77±0.003%
Triangular ResNet19 4 94.07±0.002%
Triangular+CPNG ResNet19 4 94.14±0.009%
Triangular ResNet19 6 93.99±0.002%
Triangular+CPNG ResNet19 6 94.10±0.005%
Rectangular ResNet19 2 92.51±0.038%
Rectangular+CPNG ResNet19 2 92.92±0.014%
ArcTan ResNet19 2 92.12±0.016%
ArcTan+CPNG ResNet19 2 92.84±0.024%
Triangular+TET ResNet19 2 93.76±0.006%
Triangular+TET+CPNG ResNet19 2 93.81±0.006%

CIFAR100

Triangular ResNet19 2 73.71±0.005%
Triangular+CPNG ResNet19 2 74.38±0.005%
Triangular ResNet19 4 75.06±0.005%
Triangular+CPNG ResNet19 4 75.37±0.010%
Triangular ResNet19 6 75.00±0.016%
Triangular+CPNG ResNet19 6 75.40±0.056%
Rectangular ResNet19 2 72.35±0.002%
Rectangular+CPNG ResNet19 2 73.63±0.026%
ArcTan ResNet19 2 71.46±0.080%
ArcTan+CPNG ResNet19 2 72.43±0.035%
Triangular+TET ResNet19 2 75.36±0.049%
Triangular+TET+CPNG ResNet19 2 75.90±0.001%
Triangular VGG16 2 69.13±0.110%
Triangular+CPNG VGG16 2 71.14±0.098%

CIFAR10-DVS

Triangular+TET VGG11 10 82.93±0.116%
Triangular+TET+CPNG VGG11 10 83.27±0.162%
Triangular ResNet18 10 75.8±1.787%
Triangular+CPNG ResNet18 10 76.5±0.007 %
Rectangular ResNet18 10 74.3±0.053%
Rectangular+CPNG ResNet18 10 75.0±0.772 %
ArcTan ResNet18 10 70.8±0.345%
ArcTan+CPNG ResNet18 10 70.87±0.002 %
Triangular+TET ResNet18 10 80.37±0.616%
Triangular+TET+CPNG ResNet18 10 80.43±0.309‘ %

Figure 5. a: Final β of each layer in VGG16 experiment, the initial β is 1.0. b: Final β of each layer in Sew-ResNet34 experiment, the
initial β is 1.0

7

