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Abstract—SQL Injection attack is one of the oldest yet effective
attacks for web applications. Even in 2020, applications are
vulnerable to SQL Injection attacks. The developers are sup-
posed to take precautions such as parameterizing SQL queries,
escaping special characters, etc. However, developers, especially
inexperienced ones, often fail to comply with such guidelines.
There are quite a few SQL Injection detection tools to expose any
unattended SQL Injection vulnerability in source code. However,
to the best of our knowledge, very few works have been done to
suggest a fix of these vulnerabilities in the source code. We have
developed a learning-based approach that prepares abstraction
of SQL Injection vulnerable codes from training dataset and
clusters them using hierarchical clustering. The test samples are
matched with a cluster of similar samples and a fix suggestion
is generated. We have developed a manually validated training
and test dataset from real-world projects of Java and PHP to
evaluate our language-agnostic approach. The results establish
the superiority of our technique over comparable techniques. The
code and dataset are released publicly to encourage reproduction.

Index Terms—SQL Injection, Prepared Statement, Automatic
Fix

I. INTRODUCTION

Structured query language (SQL) is the language to interact

with relational databases. The interaction is performed using

different SQL statements. The SQL injection (SQLI) attack

exploits inputs of SQL statements. The attacks are usually

accomplished by contaminating SQL queries with special char-

acters or keywords. The attacker tries to alter the logic of the

statement to read confidential data, to modify database records,

and to corrupt/delete data. They sometimes take control of

administrative operations or issue malicious commands to the

operating system.

SQLI attacks are among the oldest and most deadly threats

to web applications since the dawn of web databases. Even

some reputed applications of large organizations fall victim

to this. In August 2014, computer security company Hold

Security found that SQL injections can be successfully used

to disclose confidential information from almost 420,000

websites [1]. Seals [2] shows that SQLI was behind stealing

the personal details of 156,959 customers from a British

Telecommunications company in 2015. Even in 2020, an SQLI

attack was used to access information from the server of Link,

§These authors contributed equally to this work.

a start-up founded on Stanford campus [3]. In the first decade

of this century, quite a few incidents of credit card information

theft and millions of dollars of fraudulent purchases caused by

SQLI were reported.

Automatic Program Repair (APR) is an increasingly popular

research area to provide automatic fix suggestions for different

types of errors/bugs. These techniques suggest some candidate

changes which may repair a given fault. These techniques are

expected to reduce significant tedious effort and time for bug

fixing by the developers in the future. Recent improvements

in advanced machine learning, especially deep learning, and

the availability of large numbers of patches enable learning-

based repair in addition to previous rule based approaches. In

this work, our objective is to develop an APR tool to mitigate

SQLI vulnerabilities with high quality.

The common suggestions to prevent SQLI include param-

eterizing queries instead of directly embedding user input in

them, escaping the characters that have a special meaning in

SQL, and checking the pattern of the parameters. However,

developers often fail to comply with such guidelines, espe-

cially when there is a tight deadline. For new/inexperienced

developers, this is not unexpected. To expose any unattended

vulnerability, there are quite a few SQL injection detection

tools. On the other hand, to the best of our knowledge, very

few works have been done to help the developers fix these

vulnerabilities quickly.

The early approaches [4]–[7] have proposed solutions for

mitigating SQLI attacks. However, none of these solutions

address the actual SQLI vulnerabilities that exist in the source

code. Only a few existing works [8], [9] attempted to generate

fix suggestions for SQLI by removing vulnerabilities from

source code. These approaches propose changes in source code

to remove SQLI vulnerabilities, whereas previous mitigating

approaches would try to fortify against the SQLI attacks. [9]

proposed to remove SQLI vulnerabilities from SQL statements

by replacing them with secure prepared statements. However,

their rule based approach is language-specific and not adaptive

to future changes in the language. Their work on Java fails

to cover advanced programming constructs such as Lambda

expression, inline methods, etc. Also, they cannot fix multi-

line queries (concatenated together). In this paper, we propose

a learning based approach that overcomes these limitations.

We have developed a solution for Java and PHP using this
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language-agnostic approach. An essential requirement from

APR techniques is a natural change that sustains the readability

of changed code [10]. Our solution provides good results in

this consideration as well.

Our approach, which is highly inspired by Bader et al. [10],

is based on a hierarchical clustering where the higher nodes in

the hierarchy are more abstract than the lower ones. It creates

a dendrogram of edit patterns (the pattern we need to apply to

the tainted model to fix vulnerability) where only the leaves

contain concrete edits. When we get a new vulnerable code,

we start matching the AST (Abstract Syntax Tree) of the given

code with the “before tree” (elaborated in Section III) of an

edit pattern starting from the root of the cluster tree. We go

down the dendrogram until we find a match for our AST and

suggest the fix pattern if we find a match. We use 21 Java

projects mined from GitHub, where 14 projects are used for

training, and 7 projects are used for testing our model. In

addition, we use 6 PHP projects mined from GitHub to train

and 4 projects to test our model.

Specifically, the contributions in this paper are as follows:

• Designing an automated SQL injection fixing tool (SQLI-

FIX) that significantly outperforms the other available

similar techniques.

• Adopting a learning based approach (unlike previous rule

based ones) that is language agnostic, covers a wider

range of injections and does not degrade readability of

the source code.

• Generating training dataset (1200 for Java and 350

for PHP) and test dataset (300 for Java and 150 for

PHP) manually from real-world projects. We release data

and code to encourage reproduction: https://github.com/

RRJahin/SQLIFIX.

Our approach generates solutions for 67.52% cases for

Java, tested with 7 real-world Java projects. We compare our

approach with the comparable approach [9], which generates

correct solutions for 23.67% cases on the same test set. We

extend our approach for PHP, which generates 41.33% correct

solutions on an independent test set.

II. MOTIVATING EXAMPLES

In this section, we present some examples that depict the

objective of SQLIFIX. In Table I and II, we illustrate an

example demonstrating the utility of our approach. There is an

SQL query with multiple conditions and another select query

is embedded in a condition. This query is vulnerable to SQL

Injection in several ways. For example, if the input for NAME
is ‘John’ OR 1=1, this query will provide IDs of all students

from the STUDENTS table instead of the information for the

row with NAME = ‘John’ assuming that all other conditions

are satisfied.

This vulnerability can be removed by using PreparedState-
ment class instead of using Statement class from JDBC.

Because for PreparedStatement class, the database engine

doesn’t combine the bound variables into the SQL statement

and then parse the whole thing; the bound variables are kept

separate and never parsed as a generic SQL statement. In the

TABLE I
SOURCE CODE

String sql = "SELECT ID FROM STUDENTS WHERE"
+ " NAME = "+ name + " AND PATRONYMIC ="
+ patro + "AND DATE_OF_BIRTH = "
+ dob + " AND GROUP_ID = "
+ "(SELECT ID FROM GROUPS WHERE NUMBER = "
+ groupNum+ ")";

Statement ps = con.createStatement();
rs = ps.executeQuery(sql);

corresponding changed code presented in Table II, i.e., code

snippet after applying the fix suggestion, the vulnerability is

removed without reducing naturalness or readability.

TABLE II
CHANGED CODE

String sql = "SELECT ID FROM STUDENTS WHERE "
+ "NAME = ? AND PATRONYMIC = ? "
+ "AND DATE_OF_BIRTH = ? "
+ "AND GROUP_ID = (SELECT ID FROM GROUPS "
+ "WHERE NUMBER = ?")";

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,name);
ps.setObject(2,patro);
ps.setObject(3,dob);
ps.setObject(4,groupNum);
rs = ps.executeQuery();

The target of SQLIFIX is to generate fix suggestions from

this type of vulnerable code, keeping readability unchanged.

We present some more examples generated for real-world Java

and PHP projects in Table III and IV. These cover different

types of injections that we can successfully address.

• Source Code 1: In this example, there is a single payload,

response. By varying payload for this variable, we can

simulate different types of SQLI. For example: if the

payload is 105’, it causes an error but hackers can gather

information by this Error-Based SQLI before launching

the actual attack.

• Source Code 2: In this example, there are multiple scopes

for launching SQLI. If the payload for the variable initial
is Mr. --, then the SQLI is occurred for UPDATE Query.

If the payload for countryname is X) OR 1=1; --, then

this is an example of SQLI by Tautologies.

• Source Code 3: In this example, there are multiple ways

to launch SQLI. If the payload of the variable loc is X));
DROP Users; -- , hackers can launch SQL Injection

with Piggybacked Query.

• Source Code 4: In this example, it is an SQLI by LIKE
query and column number mismatch. For example, if

the payload for productName is UNION ALL SELECT
9,9, 9,’ Text’, 9 FROM SysObjects WHERE ‘’ = ‘’,
then result set of this query will show all the rows in the

SysObjects table and will also show constant row values

for each row in the SysObjects table defined in the query

[11].
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• Source Code 5: In this example, there is a Second Order
SQLI. If the payload for the variable uname is X; DROP
Users; --, then the first query safely stores the input in

the database. But the second query causes an SQLI. By

using payload X UNION select * from CreditDetails,

it can also cause Union-Based SQLI.

• PHP Source Code 1 and 2: In those example source

codes for PHP, various types of SQLI such as, Error-
Based SQLI, SQLI by Piggybacked Queries etc. can

occur.

III. METHODOLOGY

Our approach for SQLIFIX can be divided into three main

components.

1) The data collection and preparation phase,

2) Model building and learning phase,

3) Prediction phase.

Here, we will present an overview of the above three phases

and elaborate on each component in subsequent subsections.

The conceptual flow of the whole approach is shown in

Figure 1. In the data collection phase, we mined various Java

projects from GitHub and extracted the functions that have

SQL injection vulnerability to generate our training dataset.

We also created corresponding hand-crafted fixes for the SQLI

vulnerable code snippets. Then, we feed the training data to

a hierarchical clustering based model in the learning phase. It

would cluster the similar type of changes together and help

to match the structure of a given code to previously seen

structures and do accurate predictions later in the prediction

phase. We relied on static analysis warnings to prepare the

training data and evaluate our predicted fixes.

A. Data Collection and Preparation

We mined 40 random Java projects from GitHub using their

API1. Then, we used SpotBugs2 to identify the codes that have

SQL injection vulnerability. From the 40 projects mined from

GitHub, we found 21 projects that were vulnerable to SQL

injections using SpotBugs. We used these vulnerable projects

to create our initial corpus. Then, we separated them into two
groups, i.e., training set and testing set. A detailed description

of the two groups is given below.

1) Training Set: The training set consists of 14 projects (Ta-

ble - V) out of the 21 projects which we found to be vulnerable

to SQL injections. To prepare these projects for our model,

we created a java file for each vulnerable method that exist

in training data and paired them with their “Prepared State-

ment” solution by following the OWASP guidelines [12]. The

vulnerable code and the fix code are dubbed as “before code”

and “after code”, respectively throughout the whole paper. In

total,we got 1200 training data (tainted methods) from the 14
vulnerable real world projects. This number is sufficient for

training a hierarchical clustering based model as we made sure

that we covered all possible patterns of SQL injection.

1https://developer.github.com/v3/
2https://spotbugs.github.io/

2) Test Set: The test set is entirely made from the remaining

7 vulnerable projects (Table VII). As test data, we have about

300 files having about 430 infected methods detected by

SpotBugs. After the training is done, we evaluated our model

using this data. As the test data came from projects which were

not in the training set, there is no scope for data leakage.

B. Data Preprocessing

We used a tree-differencer, GumTree (Falleri et. al. 2014

[13]), to determine lines that are different in the vulnerable

code and its fix code. These lines were parsed using Java-

Parser3 to make an AST (Abstract Syntax Tree). We saved

both the AST of vulnerable code snippet and that of the

patch into JSON files which became the input for our training

mechanism. We also used the SQL parser, GSP4, to parse the

SQL query. Next, we replaced the Java representation of the

SQL query with the AST received from GSP into the input

JSON files.

These prepared input files contain the following informa-

tion.

• before code: The vulnerable code snippet that gets mod-

ified to be fixed.

• after code: The code snippets that have been modified

to fix the vulnerability.

• before tree: The AST representation of the before code.

• after tree: The AST representation of the after code.

We created a similar dataset for PHP to show that our

learning model is language agnostic. There are 350 training

data and 150 test data for PHP. The evaluation results for both

datasets are elaborated in Section IV.

C. Training Model

SQLIFIX uses complete-linkage clustering, an agglomera-

tive hierarchical clustering algorithm that creates a hierarchy

of edit patterns. The higher we go in the hierarchy, the more

generalized the edit patterns become. We achieve this gener-

alization by merging the edit patterns through anti-unification

(Kutsia et. al. [14]) which is an approach of generalization

among different symbolic expressions. Our work is inspired

by GetaFix (Bader et. al. [10]).

We adopted nearest neighbor chaining algorithm to speed

up the clustering process. As mentioned before, we used anti-

unification to merge two nodes to achieve abstraction for the

higher order nodes. First, we anti-unify two before tree nodes

and after tree nodes to obtain a new edit pattern containing

a more abstract before tree and after tree. We introduced

“holes” (pattern variables) in place of “variables” and other

expressions in the merged pattern. These holes represent the

parts of the tree where concrete edits differ in the original

trees.

We used these holes to determine the distance between

two nodes in the hierarchical structure. As the complete-

linkage hierarchical clustering algorithm warrants the merging

3https://javaparser.org/
4http://www.sqlparser.com/
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TABLE III
SOME EXAMPLES OF FIXATIONS GENERATED FOR JAVA

Possible Types of SQLI: Error-Based SQLI
Source Code 1 Changed Code 1
String sql = "select accounts.* ,fName, lName "

+ "from users inner join "
+ "account_holders as ah on ah.user_id = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a where account.id = "
+ response +";";

Statement ps = con.createStatement();
rs = ps.executeQuery(sql);

String sql = "select accounts.* ,fName, lName "
+ "from users inner join "
+ "account_holders as ah on ah.user_id = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a where account.id = ?;"

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,response);
rs = ps.executeQuery();

Possible Types of SQLI: SQLI by Tautologies
Source Code 2 Changed Code 2
Statement ps = con.createStatement();
rs = ps.executeUpdate("Update Users set firstname
= "+ initial+"+ firstname where countryid =
(select countryid from Country where countryname =
"+ countryname+");");

PreparedStatement ps = con.prepareStatement("Update
Users set firstname = ? firstname where countryid
= (select countryid from Country countryname =
?);");
ps.setObject(1,initial);
ps.setObject(2,countryname);
rs = ps.executeUpdate();

Possible Types of SQLI: SQLI with Piggybacked Query
Source Code 3 Changed Code 3
String sql = "Insert into User(uname,upass,ulocid)"

+ "values("+name+","+pass+",(select locid "
+ "from location where loc="+loc+"));";

Statement ps = con.createStatement();
rs = ps.executeUpdate(sql);

String sql = "Insert into User(uname,upass,ulocid)"
+ "values(?,?,(select locid "
+ "from location where loc=?));";

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,name);
ps.setObject(2,pass);
ps.setObject(3,loc);
rs = ps.executeUpdate();

Possible Types of SQLI: SQLI with LIKE query and column number mismatch
Source Code 4 Changed Code 4
String sql = "SELECT productName FROM allProduct "

+ "WHERE productName LIKE "+productName+";";
Statement ps = con.createStatement();
rs = ps.executeUpdate(sql);

String sql = "SELECT productName FROM allProduct "
+ "WHERE productName LIKE ?;"

PreparedStatement ps = con.prepareStatement(sql);
ps.setObject(1,productName);
rs = ps.executeUpdate();

Possible Types of SQLI: Second Order SQLI and Union-Based SQLI
Source Code 5 Changed Code 5
String sql = "Insert into Users (username,email)
values(?,?");";
PreparedStatement ps = con.prepareStatement(sql);
// No problem to store in DB
ps.setObject(1,uname);
ps.setObject(2,uemail);
ps.executeUpdate();
Statement sta = con.createStatement();
// Possible Scope for SQLI
ResultSet rs = sta.executeQuery("Select * from
Users Where username = "+uname+";");

String sql = "Insert into Users (username,email)
values(?,?");";
PreparedStatement ps = con.prepareStatement(sql);
// No problem to store in DB
ps.setObject(1,uname);
ps.setObject(2,uemail);
ps.executeUpdate();
PreparedStatement sta = con.prepareStatement("Select
* from Users Where username = ?;");
// Protected against SQLI
sta.setObject(1,uname);
ResultSet rs = sta.executeQuery();
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TABLE IV
SOME EXAMPLES OF FIXATIONS GENERATED FOR PHP

PHP Source Code 1 PHP Changed Code 1
$name = $_POST[’name’];
$conn->query("SELECT * FROM myTable WHERE
name=’$name’");
$conn->close();

$name = $_POST[’name’];
$stmt = $conn->prepare("SELECT * FROM myTable
WHERE name= ?");
$stmt->bind_param("s", $name);
$stmt->execute();
$stmt->close();

PHP Source Code 2 PHP Changed Code 2
$conn->query("INSERT INTO userTable
(name, email) VALUES (’{$_POST[’name’]}’,
’{$_POST[’email’]}’)");
$conn->query("UPDATE guestTable SET
name = ’{$_POST[’name’]}’ WHERE email =
’{$_POST[’email’]}’");

$stmt1 = $conn->prepare("INSERT INTO userTable
(name, email) VALUES (?, ?)");
$stmt2 = $conn->prepare("UPDATE guestTable SET
name = ? WHERE email = ?");
$stmt1->bind_param("ss", $_POST[’name’],
$_POST[’email’]);
$stmt2->bind_param("ss", $_POST[’name’],
$_POST[’email’]);
$stmt1->execute();
$stmt2->execute();
$stmt1->close();
$stmt2->close();

Fig. 1. Conceptual model of our methodology

TABLE V
PROJECTS USED FOR JAVA TRAINING SET

https://github.com/MahnuelO/InventarioWeb
https://github.com/hencjo/summer-migration
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/Minal11/UserVerificationSystem
https://github.com/zxybazh/Online-Book-Store-System
https://github.com/zj386018/zjjava
https://github.com/zooncool/crawledemo
https://github.com/xingkuan/vSync
https://github.com/victormartor/TFG PC
https://github.com/VeePeeK/JavaGit
https://github.com/tmwsiy2012/fiftyfiftystockscreener
https://github.com/texas-mule/banking-app-devkala48
https://github.com/sashanksridhar/Ecomerce-
https://github.com/princekm/GUI-DBMS

of two nodes with the smallest distance. We achieved this

by calculating the maximum information gain and coverage

TABLE VI
PROJECTS USED FOR PHP TRAINING SET

https://github.com/mmockelyn/GC2i
https://github.com/yashkrsingh/Pool-Your-Cab
https://github.com/Shivanithakur94/newfilesj
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/cumbach/ParadataChrisUmbach
https://github.com/flowerszhong/hfx

between two nodes. We considered two nodes to have more

information if they have similar sub-tree structure, but higher

hole count after merging. The result of this clustering process

is a dendrogram containing the abstract edit patterns as the

middle nodes and the concrete edits as leaves.

To optimize further, if the new edit pattern is similar to any

of the two before tree nodes from which the new edit patter

is generalized, that before tree node is considered the parent
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TABLE VII
PROJECTS USED FOR JAVA TESTING SET

https://github.com/Ronak6892/iTrust-v23
https://github.com/gschmidt1/Momow1
https://github.com/IraDaniel/java-homework-10
https://github.com/danielmmy/Naegling-GUI
https://github.com/rmariscal13/Java BBDD
https://github.com/vicarmocanu/Hotel-Management---Java
https://github.com/npafitis/EPL441Clinic

TABLE VIII
PROJECTS USED FOR PHP TESTING SET

https://github.com/NukeVietCMS/module-shops
https://github.com/Ricky7/butik online
https://github.com/urki/urki-test-project
https://github.com/jbennett122/JBENNETT CS418

of the other one which is dissimilar. This helps to reduce the

tree height as all the nodes producing similar pattern after

anti-unification are children of a single node.

Since hierarchical clustering algorithms cluster the different

patterns in a hierarchical structure, it does not need more data

like the usual learning algorithms. Instead, it relies heavily on

the variation of patterns in data.

D. Fixer

After the training is done, the model is saved as a large

tree with a common root. In the dendrogram, every node

represents an edit pattern which were the abstract edit result

of the merging of its children. The leaves represent concrete

edits. When we get a test code (vulnerable Java method), we

use Static Analyzer to spot all the vulnerable queries present

in the method and then use JavaParser to track all the lines

associated with each query. After that, we generate separate

AST for each of them and start matching those one at a time

with every node of the dendrogram, starting from the root. We

make our way down the tree and match the given AST with the

“before tree” of the abstract edit patterns. We stop checking

the children of a node if that node’s “before tree” does not

match with the given AST. For the matching mechanism, we

followed the matching criteria from GetaFix. When we reach

to a leaf node in this way, that leaf’s “after tree” gives us the

pattern that will fix our vulnerable test code. Here we have

used a slightly modified anti-unification method to identify

the variables that serve the same purpose with a different

name as these variables need to be replaced to generate the

actual suggestion. The anti-unification used in this case goes

on recursive call if only type and number of children are same,

whereas, for the general version the variable name also needs

to be same along with the other two to do the same.

IV. RESULTS

In this section, we discuss the experimental results and

relevant findings of our work.

A. SQLIFIX for Java

As discussed earlier, we developed SQLIFIX by training

with the dataset from Java projects and then from PHP projects

following the same approach. We took 300 Java files from 7

projects as the testing dataset that were not included in the

training dataset. The list of projects can be found in Table

V and Table VII. From there, 430 code segments containing

vulnerable queries were separated. Our model generated solu-

tions for 291 of these 430 code segments (67.52%). Then we

replaced the buggy codes with fix suggestions and again tested

them with SpotBugs. This time 78.69% of the vulnerabilities

previously detected were considered benign by SpotBugs. We

manually inspected the remaining suggestions. Out of these,

19.93% of the suggestions needed a little tweak in variable

names and then got accepted. Only 1.37% of the suggestions

were found irrelevant. Here is an example of a suggestion that

required little modification:

Statement stmt = connector.createStatement();
String snewer = "select userid from usersr

where username='" + s + "'";
ResultSet rs = stmt.executeQuery(snewer);

Input Code Segment

String snewer = "select userid from ?

where username='?'";

PreparedStatement stmt =

connector.prepareStatement(snewer);

stmt.setObject(1,usersr);

stmt.setObject(2,s);

ResultSet rs = stmt.executeQuery();

Generated Suggestion

In the query of the generated suggestion, ‘usersr’ should

not be replaced with a place holder. Hence, it requires some

attention from the developer.

Number Percentage
Vulnerable Code Segment 430

Solution Found 291 67.52%

Accurate (Among the Solutions) 229 78.69%

Close (Among the Solutions) 58 19.93%

Unrelated (Among the Solutions) 4 1.37%

B. SQLIFIX for PHP

To show that our model is language agnostic, we created a

dataset of 350 training data from 6 projects and 150 test data

from 4 PHP projects. The list of projects can be found in Table

VI and Table VIII. Our model generated suggestions for 130

test samples (86.67%). We analyzed our result and it provided

62 accepted fixations (41.33% of total test data). Our tool has

some difficulties in providing solutions for PHP as the string

structure can be different in PHP than in Java. For example,

PHP supports the single-quoted string where Java does not.

C. Comparison with the PSR algorithm

Prepared statement replacement algorithm (PSR) [9], a rule

based SQLIV fixer, gathers information from source code
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containing SQLIVs and generates secure prepared statement

code that maintains functional integrity. We have collected

the source code of the PSR algorithm from the authors. Our

SQLIFIX generates solutions for 67.52% cases for Java, tested

with 7 real-world Java projects. PSR generates solutions for

23.67% cases on the same test set. So, our SQLIFIX performs

significantly better than PSR. We also extend SQLIFIX for

PHP, which generates 41.33% correct solutions on an inde-

pendent test set.

D. Limitations of the PSR algorithm

We found the following limitations in the PSR algorithm

that were overcome by SQLIFIX.

• Style Dependencies: The PSR algorithm has some style

dependency issues. For example:

public ResultSet getUser(String id)
{

Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user where ID ="+id;
ResultSet rs = st.executeQuery(q);
ResultSet rs;

}

If the vulnerability is encapsulated as the previous code

format, the PSR algorithm can not provide a solution.

The correct style format should be:

public ResultSet getUser(String id) {
Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user where ID ="+id;
ResultSet rs = st.executeQuery(q);
return rs;

}

• Missing Access Modifier: The vulnerability container

function and class should have an access modifier, i.e.,

public, private, and protected. Otherwise, the PSR algo-

rithm can not provide any solution. For example:

class UserDB {
void updateUser(String init, String id) {

Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "Update userTable "+

"Set userName = "+init+" userName "+
"where userID = "+id;

st.executeUpdate(q);
}

}

The PSR algorithm could not provide a solution for the

previous code because there is no access modifier before

class (or function).

• Annotation Before Function: To refactor the vulnerable

code, there should be nothing between the class name

and function name, which contains the vulnerabilities.

Otherwise, the PSR algorithm can not fix them. For

example, if there is an annotation before the function

name, it can not provide a solution.

class UserDB {
@override

public ResultSet getUsersInfo(String response) {
Connection conn = DB.getConnection();
String sql = "select fName, lName "

+ "from users inner join "
+ "acc_holders as ah on ah.userID = "
+ "users.id inner join accounts on "
+ "accounts.id = ah.a "
+ "where account.id = "
+ response +";";

Statement ps = conn.createStatement();
return ps.executeQuery(sql);

}
}

In the previous code snippet, no solution was available

because there is an annotation between class and function

name.

• Multi-line String: The PSR algorithm fails to provide a

solution if the SQL query string is a multi-line string. For

example:

void removeUser(Connection conn, String id) {
Statement st = conn.createStatement();
String sql = "Delete from userTable "

+ "where userID = "+id;
st.executeUpdate(sql);

}

In the previous example, String variable q is declared

with multiple lines of code, which caused the failure.

• Elimination of Comments: The PSR algorithm can not

keep single line comments in solution and can not find a

solution if there are multi-line comments. For example:

public void getUser(String id) {
// This comment will not be in the solution
/*

For this comment, PSR algorithm
can not find a solution.

*/
Connection conn = DB.getConnection();
Statement st = conn.createStatement();
String q = "select * from user "

+ "where id = "+id;
st.executeQuery(q);

}

E. Limitations of SQLIFIX

We could not find solutions for 139 code segments. Here

are the major reasons behind our failure to generate a solution:

• Presence of query modifiers like
SQL CALC FOUND ROWS, LIMIT, etc.: General

SQL Parser (GSP), the tool used for parsing SQL

queries, can not parse if these modifiers are present.

• Erroneous Code or Query: JavaParser or GSP cannot

parse.

• Batch Query: there is no real equivalent implementation

of the batch query in PreparedStatement.

These hindrances are either due to the limitation of the

tools we used for parsing (GSP, JavaParser) or because of

the structure of PreparedStatement (batch query). Correspond-

ingly, JavaParser cannot parse if there is a presence of any

error in the Java code. If these obstacles could be overcome,

the performance would have improved.
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Conversely, there are some limitations of the current version

of SQLIFIX. SQLIFIX will not generate a solution for the

following cases:

• If any query generation requires project-level knowledge,

i.e., knowledge from other files or classes.

• Query prepared using string concatenation from multiple

string variables containing a portion of the query.

• Lack of coverage of all kinds of patterns in our training

data.

String query = table_name.getText();
String s1 = "select * from ";
query = s1.concat(query);

• Use of ternary operator for query selection.

String query = x < y ?
"select * from X" : "select * from Y";

In the future release of SQLIFIX, we have plans to introduce

project-level knowledge to our model. Thus, we will be able

to suggest solutions even if related code segments from other

functions or classes other than the one containing the query

are needed. The training data set is also being enriched

consistently.

V. RELATED WORK

In this work, we have developed a technique to provide an

automated fix suggestion for removing SQLI vulnerabilities.

It would use an existing approach for the detection of SQLI

vulnerability in the code. Hence, we consider SQLI detection

approaches, APR techniques, and the few automatic SQLI

repair techniques relevant to our study.

A. Automated Program Repairing Approaches

APR is an emerging area of research with a high prospect

of benefiting software developers. Researchers have been

trying to automatically repair software codes by generating

an actual fix for more than two decades [15]. Among the

well-studied works, Genprog [16]–[18] is a Genetic Algorithm

based technique using test suites. SemFix [19] and Angelix

[20] used symbolic execution to repair programs. Samimi et

al. [21] worked specifically for PHP programs. Reference [22]

parameterized a manually written bug report and extracted

necessary values from the report to repair the programs.

Application of the learning-based approaches to detect and

fix bugs have shown promising result in recent years. Among

the state-of-the-art techniques, [23], [24] presented by Tufano

et al. successfully applied Neural Machine Translation (NMT)

for program repair. Although the accuracy achieved (9%) [23]

is not acceptable, it divulges a new research avenue. They

also applied the seq2seq model with attention mechanism

[25] for repairing Java functions within a specified length

[24]. SequenceR [26] used a sequence-to-sequence model to

replace a buggy code segment with a correct one performing

similar work. They used Copy mechanism [27] to solve infinite

variable problem [28] for program repair. Another recent

research CODIT [29] applied seq2seq model with attention

[25] and copy mechanism for program repair. ENCORE [30]

used an ensemble of multiple CNN based Neural Machine

Translation models on improving the performance. Getafix

[10] uses static analysis warnings to detect possible bugs and

suggests fixes of the same bug category. It splits a given set

of example fixes into AST-level edits and learns recurring fix

patterns from these using a hierarchical clustering technique.

It finds the cluster with a close match, ranks candidate fixes

of that cluster, and selects the best match as a fix suggestion.

Facebook’s Getafix (Bader et al. [10]) is a tool that learns

from developers’ past code fixes to suggest new concrete fixes

for current bugs in the code. Our work is highly inspired

by this tool. Getafix proposes a new hierarchical clustering

algorithm for pattern mining, combining with anti-unification

(an well-known method for the generalization of different

symbolic expressions). It creates a dendrogram of possibly

related tree differences and uses the fix patterns representing

the most common code transformation. These patterns can

be abstract, containing “holes” (abstract symbols to represent

concrete patterns) where program transformations differ. In

the final step, it takes buggy source code and the dendrogram

created in the pattern mining step to produce concrete fix

patterns. It also employs a ranking technique to select the most

relevant fixes for a particular bug.

B. SQL Injection Detection Approaches

The SQLI vulnerability detection approaches can be

grouped into static and dynamic testing approaches. In this

work, we have adopted static approaches for the detection

and localization of vulnerable code snippets. Hence, while

discussing related works, our major focus would be on such

techniques.

SOFIA [31] has been proposed as a programming-language

and source-code independent tool which parses SQL state-

ments and creates parse trees that are then fed to a clustering

algorithm. Then the tree edit distance is used to measure the

distance among the parse trees. Shar and Tan [32] proposed to

detect SQLI vulnerable code by characterizing input function

into a pattern of code attributes. It used a vulnerability pre-

diction model to predict vulnerable code. This approach was

implemented for PHP applications. Shahriar and Zulkernine

[33] computed the entropy of SQL statements in source code.

When an SQL statement is invoked, they will compute the

entropy again to identify any change in the entropy measure

for that query. Then they consider that dynamic queries with

attack inputs result in an increased or decreased level of

entropy, whereas a dynamic query with benign inputs does

not result in any change of entropy value. Zhang and Wang

[34] proposed another static analysis based technique to detect

XSS and SQL vulnerabilities by using morphological analysis.

However, these works cannot detect unknown patterns of SQL

injection attacks.

AMNESIA [4] proposed a method based on program analy-

sis to implement non-deterministic finite automata-based mod-

els for all the benign queries. The scheme validates each SQL

query by finding an accepting path in the automaton. Failure

to do so would identify the query as an attack. Another notable
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work CANDID [35] dynamically mined the programmer-

intended query structure on any input and detected attacks by

comparing it against the structure of the actual query issued.

Another notable work by Islam et el. [36] performed the

automatic detection of database injections for NoSQL utilizing

several supervised learning techniques and showed that these

algorithms detect injections better than the traditional rule

based systems.

C. Automatic Fix for SQL injection

SQLCHECK, proposed by Su and Wassermann [7], per-

forms a static analysis of an SQL statement parse tree and

wraps the generated input validation code statement. It stopped

all 18424 SQLIAs without generating any false positives on

five open-source web application projects. This parse tree

approach effectively identifies SQL statements structure and

detects potential SQLIAs by comparing these structures. The

parse tree approach focuses on the structure of the attacks

instead of the removal of the SQLIVs.

WebSSARI, proposed by Huang et al. [37], performs a

statical analysis of source code to find potential vulnerabilities,

including SQLIVs. This tool inserts runtime guards into the

source code that sanitizes input. It is effective to prevent

general input manipulation attacks by sanitizing input on

230 open source web applications. This solution focuses on

white and blacklisting on input rather than removal of the

vulnerability.

SQLGuard, proposed by Buehrer et al. [38], secure vul-

nerable SQL statements by comparing the statement at the

runtime with the parse tree of the original statement and

allowing execution if they match. It stopped the four SQLIA

types mentioned by their papers without any false positives

in one student created web application. SQLGuard does add a

computational overhead of dynamic SQL statement validation.

AMNESIA, proposed by Halfond and Orso [4], secure

vulnerable SQL statements through static analysis, statement

generation, and runtime monitoring. AMNESIA generates a

generalized statement structure model for a vulnerable SQL

statement by analyzing it and then allows/denies the statement

based on comparing the model at runtime. Their solution

stopped all of the SQLIAs in their attack set without generating

any false positives on five open-source web applications.

AMNESIA adds a computational overhead due to an additional

process that has to be integrated into the runtime environment.

TAPS, proposed by Prithvi et al. [39], is a symbolic

execution technique for query parameterization to make it

safe for SQL injection. The main assumption behind the

tool is it requires the web application to be transformed,

to not perform content processing or inspection of partial

query string variables. It analyzes the parsed structure of

the SQL statements and identifies data arguments for the

parameterized query. Then it traverses the program backwards

to the program statements to generate these arguments, and

substitutes the arguments with placeholders (i.e., the symbol

“?”). For the three largest applications(WarpCMS, Utopia

NewsPro, and AlmondSoft), TAPS transformed 93%, 99%,

and 81% of the analyzed control flows. However, it requires

developer intervention if either one of the following conditions

hold: (i) the main assumption of the tool is violated, (ii)

a well-formed SQL query cannot be constructed statically

(e.g., use of reflection, library callbacks, etc.), (iii) the SQL

query is malformed because of infeasible paths that cannot be

determined statically, (iv) conflicts are detected along various

paths, and (v) query is constructed in a loop that cannot be

summarized.

Aharon et al. [40] presents Code-Motion for API Migra-

tion, an algorithm that performs API migration (statement is

replaced by PreparedStatement), moving code as necessary to

preserve functionality while changing the structure as little

as possible. The proposed algorithm is language specific

(designed for Java only) and it is confined to special scenarios

such as having similar type and same number of variables

for conditional queries, no inter-procedural building of query,

etc. In the paper they have grouped SQLI vulnerabilities into

six categories, and the proposed algorithm is claimed to be

applicable for half of them. However, only one of the six is

implemented and evaluated.

Prepared statement replacement algorithm (PSR), proposed

by Thomas et al. [9], remove SQLI vulnerabilities by replacing

SQL statements with prepared statements. The static structure

of prepares statements prevents SQLIA from changing the

logical structure of a prepared statement. The generator gener-

ates automated fixes using the PSR algorithm. It can correctly

replace 94% of the SQLIAs of 4 open source projects. They

focused on removing SQLIVs instead of just mitigation and

chose automated generation to prepared statements, whereas

the manual conversion to prepared statements is tedious,

complex, and error-prone.

VI. CONCLUSION

In this paper, we have presented a learning-based SQL

injection fix tool, SQLIFIX. It prepares abstraction of SQL

Injection vulnerable codes from the training dataset and clus-

ters them using hierarchical clustering. The test samples are

matched with a cluster of similar samples and a fix suggestion

is generated. We have prepared a manually validated training

and test dataset from real-world projects of Java and PHP to

evaluate our language-agnostic approach. The results establish

the superiority of our technique over comparable techniques

by 3 times. In the future, we plan to generate a large set of

synthetic training data and try to improve the performance

of the model further. Also, since NoSQLInjection can also

be detected by machine learning based approaches [36], we

would like to explore if our approach works for fixing them

as well.
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