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ABSTRACT

Videos contain rich information but also high redundancy, as consecutive frames
often share similar backgrounds and predictable motions. Current video-language
models (VLMs) are unable to exploit this redundancy and therefore perform a
significant amount of superfluous computation, processing thousands of patch
tokens even when little new information is present. What is missing is an on-
the-fly, model-agnostic signal of temporal predictability to decide whether tokens
carry unpredictable information that merits computation. We propose SURGE, a
training-free and backbone-agnostic method that measures surprise in token space.
Surprise scores are defined by the prediction error of each token from its recent
history; high-surprise tokens are retained, while predictable ones are pruned. Ag-
gregating scores over time produces a surprise curve that highlights key events,
which can be further refined with CLIP-based query relevance to form a com-
pact spatio-temporal mask. Experiments on multiple video understanding bench-
marks show that SURGE reduces tokens by up to 7× and prefill cost by 86–98%,
while maintaining accuracy within ±1 point of full-token baselines. By aligning
computation with novelty, SURGE enables video VLMs to handle long contexts
efficiently and without retraining.

1 INTRODUCTION

VLMs face a fundamental scalability problem in video understanding tasks. Even short clips expand
into thousands of visual tokens, and longer videos quickly overwhelm memory and computational
resources. The quadratic complexity of attention makes long-context reasoning especially expen-
sive, and practical deployments add further constraints such as streaming inputs, limited hardware,
and the inability to retrain models. Recent large-scale systems, including InternVL (Chen et al.,
2024b), Qwen series VL (Wang et al., 2024a; Bai et al., 2025), and LLaVA-Next (Li et al., 2024a),
demonstrate strong video understanding but expose the steep computational price for long inputs.

To address this bottleneck, research has explored efficiency along temporal, representational and
token-level directions. Temporal methods reduce cost by selecting a subset of frames (Hu et al.,
2025; Park et al., 2024), which can be effective for long-video QA but may miss fine-grained events
within frames. Representation-focused approaches instead compress each frame into fewer tokens,
for example by distilling features into compact query embeddings or by learning hierarchical rep-
resentations that adjust granularity to budget (Li et al., 2023; 2025). At the token level, merging
methods collapse redundant patches across space and time (Bolya et al., 2023; Lee et al., 2024;
Choudhury et al., 2024), while pruning methods remove less useful tokens during inference (Zhang
et al., 2024). These strategies are effective, yet many introduce complexity by requiring auxiliary
selectors, fine-tuning of the backbone, or access to internal attention maps that are not always avail-
able in deployed systems. What is still missing is a training-free, backbone-agnostic criterion that
can allocate computation more flexibly as a video unfolds.

A natural way to think about such a signal is to ask: which parts of a video actually surprise the
model as it evolves over time? We define surprise as the prediction error of a token given its recent
history: low error indicates predictable, redundant content, while high error signals novel events that
merit computation. In videos, where continuity is common, surprise provides a clear criterion for
allocating effort. Based on this idea, we introduce SURGE, a training-free and backbone-agnostic
surprise mask that directs computation to new content. After the vision encoder produces patch
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tokens for each frame, SURGE applies a lightweight temporal predictor to estimate each token
from its recent history. The surprise score is the difference between the estimate and the actual
embedding: high-surprise tokens are kept, while predictable ones are pruned. Aggregating token
scores over time yields a surprise curve which, after smoothing and peak picking, provides key
event windows. The surprise mask is usable as is for efficient inference, and can be further refined
with CLIP-based query relevance: we reweight event windows by query–keyframe similarity so the
final spatio-temporal mask prioritizes content that is both new and on-topic. This reduces tokens
before the language interface, adds negligible overhead, and fits naturally with other methods (e.g.
AKS (Tang et al., 2025)). Across comprehensive experimental analysis, SURGE reduces tokens by
up to 7× and prefill cost by 86–98%, while keeping accuracy within ±1 point of full-token baselines.
The pipeline of SURGE is shown in Fig. 2. Our contributions can be summarized as:

• A training-free method that measures temporal predictability in token space, yielding sur-
prise curves and token masks that work with any ViT-based backbone without retraining.

• A compact spatio-temporal masking scheme, effective on its own and further refinable with
CLIP for query-aware event selection.

• Extensive experiments across models, benchmarks and pruning budgets, demonstrating
SURGE’s robustness and its ability to combine with complementary strategies (e.g.,
keyframe selection) for additional gains.

2 RELATED WORK

Sparsity as Selection. A common strategy for VLM efficiency is to process only a sparse sub-
set of the visual stream, either across time or at the token level. Temporal sparsity assumes most
frames are redundant, so a small set of keyframes suffices. Methods such as SeViLA (Li et al.,
2023; Yu et al., 2023), ViLA (Wang et al., 2024b), and AKS (Tang et al., 2025) follow this idea,
improving long-video QA but sometimes missing fine-grained evidence when relevance estimates
are imperfect (Park et al., 2024; Hu et al., 2025). Recent work such as BOLT (Liu et al., 2025)
and ViLAMP (Cheng et al., 2025) extend this by jointly selecting relevant frames and condensing
information hierarchically. Token sparsity instead prunes less useful patches within frames. Ap-
proaches like FastV (Shu et al., 2025), IVTP (Huang et al., 2024), ATP-LLaVA (Ye et al., 2025),
and SparseVLM (Zhang et al., 2024) typically rely on attention thresholds or relevance scores. More
recent methods like DyCoke (Tao et al., 2025) and DivPrune (Alvar et al., 2025) aim to dynamically
retain diverse or cache-critical tokens, achieving strong accuracy without retraining. These methods
are effective, yet often need careful calibration of thresholds and policies, and some depend on in-
ternal attention maps often unavailable in deployed systems (Wei et al., 2023; Chen et al., 2024a).
Realistically, sparsity proxies highlight what seems important at the current step but not what has
changed, so redundant but on-topic segments may still absorb computation while unseen events can
be overlooked.

Representation Compression. Another strategy is to compress visual representations so fewer
tokens are processed per frame or interval. Some methods replace dense patches with compact
learned embeddings: LLaMA-VID encodes each frame into just two tokens via cross-attention (Li
et al., 2024b), Video-XL learns adaptive summarization tokens (Shu et al., 2025), and Matryoshka
generates nested coarse-to-fine token sets for dynamic accuracy–efficiency trade-offs (Cai et al.,
2024). These designs achieve large tokens reductions but require retraining, architectural changes,
or additional hyperparameters. Another complementary approach is token merging (ToMe) (Bolya
et al., 2023), which progressively merges similar patches during inference to reduce redundancy. Ex-
tensions to video include methods such as vid-TLDR (Choi et al., 2024) and TempMe (Shen et al.,
2024a), as well as spatio-temporal schemes like STTM (Feng et al., 2024; Lee et al., 2024; Choud-
hury et al., 2024). Recent works like VisionZip Yang et al. (2025), LongVU (Shen et al., 2024b)
and Chat-UniVi (Jin et al., 2024) further combine spatial and temporal compression to enable long-
horizon video processing. Two-stage pipelines like PruMerge (Shang et al., 2024) combine pruning
and clustering for up to 14× reductions. While effective, these approaches depend on architectural
modifications, merge schedules, or retrained summarizers that are often model- or dataset-specific.

Predictability and Surprise. Beyond sparsity and compression, a longstanding idea in cognitive
science and machine learning is to use prediction error (surprise) as a signal of information value.
Predictive coding suggests that expected inputs are suppressed while unexpected ones receive deeper
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Figure 1: Token surprise vs. pixel change. For four random patches, we compare pixel dissimilarity
(blue), raw surprise (orange; Eq. 3), and normalized surprise (purple; Eq. 5). Normalization sup-
presses drift and aligns peaks with true content changes.

processing (Itti & Baldi, 2005), and curiosity modules in reinforcement learning reward high pre-
diction error to drive exploration (Pathak et al., 2017). In video, frame-level errors have been used
for anomaly detection (Liu et al., 2018). The common principle is that novelty, defined as a ”devi-
ation from expectation”, deserves computation. By contrast, most VLM efficiency methods rely on
proxies such as attention weights, similarity scores, or trained selectors (Zhang et al., 2024; Huang
et al., 2024; Ye et al., 2025), which add complexity and often depend on model-specific thresholds
or attention maps that may not transfer across datasets or deployment settings.

We argue that a more intuitive criterion is to test predictability itself: tokens that align with prior
context contribute little new information, while those that diverge from expectation indicate gen-
uine change. Unlike attention weights or similarity scores, this signal directly measures novelty
as it unfolds, offering a lightweight and training-free mechanism that complements sparsity and
compression by aligning computation with new information.

3 FROM PREDICTABILITY TO SURPRISE IN TOKEN SPACE

3.1 PRELIMINARIES AND TOKEN DYNAMICS

Given a sequence of frames I ∈ RT×C×H×W , the vision tower partitions each frame into m spatial
cells and produces patch embeddings Zt = [z

(1)
t , . . . , z

(m)
t ] ∈ Rm×d, where z

(j)
t ∈ Rd is the token

for spatial index j. Formally, z(j)t = fj(It), where fj is the encoder map for cell j. Natural videos
evolve smoothly: consecutive frames satisfy It+1 ≈ It+∆It with bounded perturbation ∆It. Since
fj is differentiable, a first-order Taylor expansion gives

z
(j)
t+1 ≈ z

(j)
t + Jfj (It)∆It, (1)

where Jfj (It) is the Jacobian of fj at It. This implies approximately linear dynamics in token space:

z
(j)
t+1 − 2z

(j)
t + z

(j)
t−1 ≈ 0. (2)

Eq. 2 encodes a constant-velocity prior: smooth motions satisfy it, while abrupt events yield large
deviations interpreted as surprise. This connects to representation learning approaches that model
videos as smooth stochastic processes (e.g., Brownian bridges) (Zhang et al., 2023) and to frame
interpolation methods that rely on constant-velocity or higher-order motion priors (Zhong et al.,
2024). We adopt the same principle at the token level, using deviations from constant-velocity
prediction as surprise signals that highlight semantically meaningful events.

3.2 TRAINING-FREE TEMPORAL PREDICTION

Building on Sec. 3.1, we can use a causal constant-velocity predictor, common in tracking and
interpolation, to estimate tokens from recent displacements.

Constant-velocity extrapolation. For token j, let ∆z
(j)
t = z

(j)
t − z

(j)
t−1 denote its displacement

between consecutive steps. A natural causal predictor is to carry forward the most recent displace-
ment,

ẑ
(j)
t = z

(j)
t−1 + δ̃

(j)
t−1, δ̃

(j)
t−1 ≈ z

(j)
t−1 − z

(j)
t−2. (3)

For t ≤ 2, we initialize δ̃
(j)
1 = 0 and set ẑ(j)2 = z

(j)
1 . This autoregressive extrapolation is consis-

tent with the constant-velocity prior in Eq. 2. It is causal, training-free, and applies uniformly across
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Figure 2: SURGE pipeline. Tokens are predicted with a constant-velocity model, then detrended
and variance-normalized to yield surprise scores. This surprise computation is performed directly on
the raw patch embeddings output by the vision tower before projection into the language model. We
retain the top-ρ tokens, aggregate them into a surprise curve to segment key events, and optionally
rank events with CLIP (Top-K). Finally, only high-surprise tokens from key events are forwarded
to the LLM, while others are pruned. Note, the SURGE block appears after the projection layer
to reflect where the masking is applied, but the surprise scores themselves are computed earlier, on
pre-projection features.

spatial indices, ensuring compatibility with any ViT backbone. However, this naive form cannot dis-
tinguish novelty from large-scale coherent motion, arising from camera panning, scene-level shifts,
or other global transformations, which induce nearly uniform changes across tokens (Lian et al.,
2023).

Global drift correction. Such drift is spatially smooth and can dominate residuals, causing false
surprise (Lian et al., 2023; James et al., 2023). To suppress this effect, we approximate the displace-
ment field with an affine function of spatial coordinates, a standard choice in motion compensation
and stabilization (Nie et al., 2024). Let (xj , yj) denote the normalized position of token j, and define

∆z
(j)
t ≈ c0 + cx xj + cy yj ,

with coefficients c0, cx, cy ∈ Rd fit by least squares. Concretely, let X = [1, x, y] ∈ Rm×3

stack token coordinates and ∆Zt ∈ Rm×d stack displacements row-wise; the closed-form is
Ĉ = (X⊤X)−1X⊤∆Zt ∈ R3×d, with rows corresponding to c⊤0 , c

⊤
x , c

⊤
y . The detrended dis-

placement is then

δ̃
(j)
t = ∆z

(j)
t −

(
c0 + cx xj + cy yj

)
. (4)

This removes global translation (c0) and first-order planar flow (cx, cy), ensuring that residuals re-
flect true surprise rather than scene-level drift. Special tokens (e.g., [CLS] or register tokens) are
excluded from this fit and always retained. The 3× 3 least-squares solve per frame adds negligible
O(md) cost. Finally, Eq. 3 is applied using the detrended displacement δ̃(j)t−1 to produce the causal
prediction.

Surprise scoring. Given the causal prediction ẑ
(j)
t , we compute the surprise vector: e(j)t = z

(j)
t −

ẑ
(j)
t , which measures the prediction error of token j. Under smooth motion, the vector remains small

but new information makes them large. To obtain a scalar measure, we define the surprise score of
token j by normalizing the squared magnitude with a running estimate of its variance:

s
(j)
t =

∥e(j)t ∥22
σ
2,(j)
t + ε

, (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where σ
2,(j)
t is an exponential moving average of past vector variances for token j, and ε > 0 pre-

vents division by zero. This variance-normalized formulation provides a calibrated statistic: under
locally linear–Gaussian dynamics with no change, s(j)t stays near its expectation, while significant
deviations directly indicate surprise.

As a sanity check, Fig. 1 shows that token-space surprise tracks pixel change, validating predictor
residuals as a proxy. Specifically, the raw constant-velocity predictor (Eq. 3) often fires spuriously
under global shifts such as camera pans. After applying drift detrending (Eq. 4) and variance nor-
malization (Eq. 5), surprise spikes align more closely with true content changes, suppressing noise
and yielding a stable, patch-consistent signal.

4 FROM TOKEN SURPRISE TO A SPATIO-TEMPORAL MASK

Given per-token surprise scores s
(j)
t (Sec. 3), we produce a compact spatio-temporal mask in two

stages: (i) global percentile thresholding to keep the most surprising tokens across the sequence,
and (ii) construction of a surprise curve per temporal unit to segment key events. For query-focused
applications, we then rank these events using CLIP similarity (Radford et al., 2021) at peak frames
and concentrate computation on the top-K relevant ones.

4.1 ADAPTIVE TOKEN MASKING

Within each sequence, we adaptively keep the most surprising tokens according to a global per-
centile. Let B denote the current buffer of tokens (the full clip offline, or the observed prefix in
streaming), and collect all surprise scores SB = { s(j)u : (u, j) ∈ B }. The global p-percentile is
q(p) = Quantilep(SB) for p ∈ (0, 1]. The binary mask is then

Mu,j = ⊮
{
s(j)u ≥ q(p)

}
. (6)

This global selection retains the top ρ = (1 − p) fraction where content changes: dynamic frames
contribute more, redundant frames contribute less. Note that special tokens (e.g. [CLS]) are always
preserved. The mask is applied after the vision encoder and positional encodings, and before the lan-
guage model, making the procedure training-free, backbone-agnostic, and compatible with standard
ViT-based pipelines.

4.2 SURPRISE CURVE AND KEY EVENTS

After generating token-level masks, we aggregate surprise over time to detect salient events. For
each temporal unit u (a frame or a chunk), we count how many tokens exceed the global threshold:
Su =

∑m
j=1 Mu,j , equivalently the fraction Su/m. The sequence {Su} forms the surprise curve.

We smooth it with an exponential moving average, S̄u = γ S̄u−1 + (1− γ)Su, to reduce noise.

Peak-based event segmentation. Let P = {τ1 < · · · < τn} be the local maxima (peaks) of S̄u,
found with minimum separation ∆ and a small prominence threshold. Let U be the total number of
units. We define event boundaries at midpoints between adjacent peaks:

b0 = 1, bk =
⌊
τk+τk+1

2

⌋
(k = 1, . . . , n− 1), bn = U, (7)

and assign each peak τk the event interval Ik = [ bk−1, bk ), k = 1, . . . , n. Thus, durations between
peaks are taken as key events.

Query-aware event focusing. To align events with a text query q, we use CLIP similarity at the
peak frames. Let vτk be the frame-level embedding at peak τk and define rk = sim(q, vτk). We
rank events by {rk} and keep the top-K: EK = TopKk(rk). We then concentrate computation on
{Ik : k ∈ EK} by applying Mu,j within these intervals, while maintaining only a small context
floor elsewhere. Although this adds one CLIP pass over the set of peak frames, it further reduces
tokens forwarded to the language model and improves focus in very long-context retrieval. Finally,
based on the surprise mask Mu,j , event intervals {Ik}, and CLIP-selected indices EK , define the
event indicator Au = ⊮{u ∈

⋃
k∈EK

Ik }. With a small context floor Cu,j (e.g., the top-kctx tokens

by s
(j)
u when Au = 0), the final mask is (see Appendix A.4 and A.5 for additional visualizations):

M⋆
u,j = Au ·Mu,j + (1−Au) · Cu,j . (8)
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Figure 3: Qualitative examples. SURGE and
SURGE⋆ can even provide more accurate and
detailed answers than the base model.

5 EXPERIMENTS

Benchmarks & Baselines. We evaluate SURGE on five representative video–language bench-
marks: (1) Video-MME (Fu et al., 2025): overall QA on short–long clips; (2) MLVU (Zhou
et al., 2025): long-video multi-task evaluation (M-Avg/G-Avg) including Needle QA, grounding,
and summarization; (3) MMBench-Video (Fang et al., 2024): curated multi-step QA probing com-
positional/temporal reasoning; (4) TempCompass (Liu et al., 2024): structured temporal QA on
short clips; (5) LongVideoBench (Wu et al., 2024): very long videos emphasizing retrieval and
cross-event reasoning. As baselines, we compare against random token pruning, FastV (token prun-
ing/aggregation) (Shu et al., 2025) and AKS (adaptive keyframe selection) (Tang et al., 2025), cho-
sen because they are publicly available, replicable, and applicable across model families.1 We also
report AKS w/ SURGE and AKS w/ SURGE⋆ to assess complementarity with temporal selection.
Full details and justifications are in Appendix A.3 and Appendix A.2.

Models. To demonstrate SURGE’s breadth, we evaluate three flagship VLMs: (i) InternVL-3.5-
VL (Wang et al., 2025) (8B; 15k-token context): the latest open-source model with strong general-
purpose video QA and extended text window; (ii) Video-LLaVA-Qwen (Lin et al., 2023) (7B;
64-frame cap): a mid-size video variant with a strict frame budget, highlighting token efficiency;
(iii) Qwen2.5-VL (Bai et al., 2025) (7B; 131k-token context): a long-context model able to process
hours-long videos, ideal for testing SURGE’s scalability. Together these models provide a compre-
hensive generality test. Further implementation details and justifications are in Appendix A.1 and
Appendix A.3.

Evaluation pipeline & Hyperparameters. We use VLMEvalKit (Duan et al., 2024) for bench-
marks, applying SURGE purely at inference. Experiments run on 1–8 A100 80GB GPUs. By
default, we retain the top ρ = 0.25 tokens (75th percentile), smooth surprise curves with EMA
(γ = 0.9), and enforce a minimum separation ∆ = 8 units between peaks. For query-focused re-
trieval, we select the Top-5 events by CLIP (ViT-B/32) similarity at peak frames. No context floor
(Eq. 8) is used in the main experiments, isolating surprise-driven gains.

5.1 PERFORMANCE

Large token reductions with stable accuracy. At the default ρ=0.25, SURGE retains only
∼26%–27% of visual tokens (∼4× fewer), and SURGE⋆ with CLIP Top-5 further reduces this
to ∼14%–16% (∼7× fewer). Yet benchmark scores remain within ±1 point of the baseline (Tab. 1),
validating our hypothesis that predictability in token space is a reliable proxy for redundancy
(Sec. 3). The qualitative examples (Fig. 3) further illustrate this: even when the base model gives in-
complete answers, SURGE and SURGE⋆ recover more accurate and detailed responses by focusing
on novel and relevant tokens. In contrast, random pruning often drops critical evidence, producing
unstable outputs, while surprise-driven selection preserves informativeness.

1Several other methods currently support only specific VLMs. For FastV, we follow its official implemen-
tation and adapt to Qwen2 LM by replacing the k-1 attention layer with an eager version to access attentions.
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Table 1: Benchmark results (64 frames). SURGE retains a global top-ρ=0.25 of tokens; SURGE⋆

adds CLIP Top-5 event focusing. “Tokens” reports average visual+fixed text tokens per sample at
64 frames. † Exceeds InternVL-3.5-VL’s 15k-token context; inputs were truncated by the runtime,
so scores reflect truncated context. Best performance is in bold.

Model Tokens V-MME MLVU (M / G) MMB-V T-Compass LVB

InternVL-3.5-VL (8B) 17,124† 66.0 71.7 / 3.44 1.54 68.9 61.3
+ SURGE 4,674 64.9 71.5 / 3.45 1.57 69.0 61.7
+ SURGE⋆ 2,932 65.8 71.7 / 3.69 1.57 69.7 62.2
+ AKS 17,124 66.1 71.6 / 3.48 1.54 68.6 62.2
+ AKS w/ SURGE 4,819 65.9 71.7 / 3.39 1.56 68.6 62.0
+ AKS w/ SURGE⋆ 2,390 66.2 72.3 / 3.58 1.55 68.4 61.9

Video-LLaVA-Qwen (7B) 12,246 63.4 72.9 / 3.30 1.53 66.9 58.3
+ SURGE 3,324 63.1 72.9 / 3.30 1.53 67.0 59.1
+ SURGE⋆ 1,884 64.5 72.7 / 3.20 1.60 66.9 61.9
+ FastV 3,300 58.1 52.3 / 3.11 1.29 61.7 55.4
+ AKS 12,246 64.7 72.7 / 3.30 1.55 66.9 61.4
+ AKS w/ SURGE 3,157 64.9 72.4 / 3.27 1.55 66.7 62.3
+ AKS w/ SURGE⋆ 1,961 62.4 72.8 / 3.56 1.61 66.9 62.2

Qwen2.5-VL (7B) 41,590 62.2 65.8 / 4.26 1.60 70.5 60.0
+ SURGE 10,992 60.9 65.7 / 4.26 1.72 70.5 59.4
+ SURGE⋆ 5,207 62.7 66.1 / 4.24 1.70 67.7 61.3
+ AKS 41,590 62.0 65.8 / 4.26 1.67 70.7 59.9
+ AKS w/ SURGE 11,588 61.9 65.8 / 4.25 1.68 71.1 60.3
+ AKS w/ SURGE⋆ 6,204 62.7 66.0 / 4.26 1.73 70.9 60.4

Performance across contexts. On benchmarks stressing long videos and cross-event reasoning,
SURGE⋆ not only preserves but surpasses full-token baselines: e.g., in Tab. 1, InternVL-3.5-VL on
LVB (+0.9) and MLVU G-Avg (+0.25), with consistent improvements on T-Compass (+0.8) and
MMB-V (+0.03). These are precisely the conditions where surprise-based reallocation and query-
aware focusing are most useful, confirming that SURGE effectively identifies and prioritizes new,
relevant content (Sec. 4). For short-form QA benchmarks such as V-MME, where redundancy is
lower, SURGE induces only small fluctuations (typically within ±1 point). Importantly, SURGE⋆

often recovers or slightly improves over the baseline (e.g., +1.1 on Video-LLaVA-Qwen), under-
scoring that SURGE is safe to apply even in short-video settings with relatively low redundancy.

Comparison to pruning and keyframe baselines. Against FastV (attention-based pruning),
SURGE is markedly more reliable at the same budgets, e.g., on Video-LLaVA-Qwen, V-MME 64.5
vs. 58.1, MLVU 72.7/3.20 vs. 52.3/3.11 (Tab. 1), indicating that temporal surprise can be a stronger
criterion than attention magnitude for deciding which visual tokens to keep in video understanding
tasks. In contrast, AKS selects fewer frames instead of pruning tokens, and can match or surpass
baselines on long-video metrics. Combined with SURGE, the two act complementarily, obtaining
further gains in efficiency and accuracy, showing SURGE is both competitive alone and composable
with temporal selection.

5.2 EFFICIENCY–ACCURACY TRADE-OFFS

Token Efficiency Analysis. At moderate pruning (ρ=0.50–0.75), SURGE maintains accuracy
within ±1 of baseline, while improves it for T-Compass (+1.8) and MMB-V (+0.1–0.2). This
suggests that surprise-guided masking effectively discards predictable background while preserving
transition-heavy evidence. CLIP focusing further helps in some cases (e.g., MLVU, +0.3 M-Avg),
validating that query-aware peak selection reallocates budget toward relevant content.

The random pruning baseline provides an informative contrast: at moderate levels (ρ≥0.50), it
can approximate baseline accuracy, confirming that redundancy is indeed present in visual tokens.
However, once more than 75% of tokens are dropped, performance becomes highly unstable, with
maximum relative deviations exceeding 20% (Tab. 2), reflecting frequent loss of critical informa-
tion. By comparison, SURGE stays within ±1.1% across all pruning levels, remaining stable even
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Table 2: Token-accuracy trade-off on Qwen2.5-VL. ρ is the fraction of visual tokens retained
(1.0=full tokens). ”±%” indicates the maximum relative deviation (5 runs), reflecting result stability.

Method ρ V-MME MLVU (M/G) MMB-V T-Compass LVB

Qwen2.5-VL (7B) 1.00 62.2 65.8 / 4.26 1.60 70.5 60.0

+ SURGE ±0.8% 0.75 62.3 65.8 / 4.22 1.60 70.3 60.5
+ SURGE⋆ ±1.1% 0.75 62.1 66.4 / 4.25 1.60 70.2 58.1
+ Random ±3.7% 0.75 61.9 65.7 / 4.26 1.61 69.7 50.1

+ SURGE ±0.7% 0.50 62.0 65.8 / 4.26 1.66 72.3 59.7
+ SURGE⋆ ±0.5% 0.50 62.1 66.2 / 4.22 1.70 71.7 57.9
+ Random ±4.2% 0.50 62.0 64.9 / 4.24 1.62 66.1 57.0

+ SURGE ±0.4% 0.25 60.9 65.7 / 4.26 1.72 70.5 59.4
+ SURGE⋆ ±0.6% 0.25 62.0 66.1 / 4.24 1.70 67.7 56.3
+ Random ±13.2% 0.25 53.6 55.9 / 3.32 0.96 57.4 49.7

+ SURGE ±0.7% 0.10 60.3 65.8 / 4.22 1.58 70.2 58.6
+ Random ±23.9% 0.10 36.8 37.4 / 3.11 0.94 50.9 46.0

+ SURGE ±1.0% 0.01 58.7 65.8 / 4.22 1.55 70.2 55.7
+ Random ±9.8% 0.01 29.8 35.0 / 3.10 0.84 50.6 37.3

Table 3: Top-K CLIP event focusing evaluation on Qwen2.5-VL (7B). Baseline=full tokens,
SURGE=percentile masking (ρ=0.25), SURGE⋆=SURGE (ρ=0.25) + CLIP Top-K event selection.

Method K V-MME MLVU (M/G) MMB-V T-Compass LVB

Qwen2.5-VL (7B) – 62.2 65.8 / 4.26 1.60 70.5 60.0
+ SURGE – 60.9 65.7 / 4.26 1.72 70.5 59.4

+ SURGE⋆ 1 51.7 37.9 / 2.51 1.09 23.9 40.1
+ SURGE⋆ 3 59.0 60.5 / 3.70 1.15 59.7 49.6
+ SURGE⋆ 5 62.0 66.1 / 4.24 1.70 67.7 56.3
+ SURGE⋆ 7 62.3 66.8 / 4.30 1.65 70.5 60.2
+ SURGE⋆ 10 62.7 66.8 / 4.26 1.71 71.0 60.2

under aggressive settings (ρ=0.10–0.01). This yields usable accuracy while exposing a clear com-
pute–accuracy trade-off.

Effect of Top-K CLIP Focusing. We investigate CLIP event focusing by varying K, the number
of peak events retained (Table 3). Extremely small K (e.g., K=1) collapses coverage and causes
severe accuracy drops, while larger K steadily restores performance: with K=5–10, SURGE⋆ of-
ten matches or exceeds the full-token baseline, especially on long-context benchmarks like MLVU
and LVB. This illustrates the precision–coverage trade-off: small K risks missing relevant events,
whereas moderate K balances query alignment with sufficient context. In practice, K=5–7 provides
a robust setting, confirming that query-aware focusing complements surprise masking by allocating
compute to both new and relevant content.

Long-Context Performance. On MLVU with Qwen2.5-VL2, we test up to 3600 frames (Fig. 4).
Accuracy rises for both baseline and SURGE up to 256 frames. Beyond ∼230 frames, the baseline
exceeds A100 80GB VRAM, while SURGE/SURGE⋆ remain executable, extending to 1024 and
3600 frames. Performance drops when truncation dominates (e.g., 52.3/3.61 at 1024, 35.4/3.30 at
3600), but the key result is that SURGE raises the practical upper bound, enabling over an order-
of-magnitude longer videos to be processed on fixed hardware, while maintaining near-baseline
accuracy within the feasible range.

Efficiency Analysis. On Video-MME with Qwen2.5-VL (7B), SURGE achieves substantial prefill
savings: at ρ=0.25, FLOPs/latency drop by 86%/79% (Fig. 5(a),(c)), respectively, while generation
FLOPs/latency also show modest reductions (–38%/–14% (Fig. 5(b),(d))). At extreme pruning
(ρ=0.01), prefill costs shrink by over 98%, and generation FLOPs are roughly halved. Total visual
tokens reduce by –72% (ρ=0.25) to –96% (ρ=0.01). Together with accuracy stable at moderate

2Extended ∼131k context window, ∼230 frames; beyond this inputs are truncated though outputs remain.
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Figure 4: Long-context evaluation on MLVU using Qwen2.5-V. M-Avg and G-Avg across frame
counts; shaded area exceeds the ∼131k-token limit. SURGE and SURGE⋆ extend capacity to 3600
frames while staying competitive below the limit.

pruning (Tab. 2), this shows SURGE translates token savings into substantial FLOP/latency gains,
especially in the compute-heavy prefill stage. For SURGE⋆, a CLIP pass over 5–8 peaks adds
roughly 0.63–1.0 TFLOPs/1027–1891 ms per query, while pre-LLM pruning still removes most
KV-cache and prefill load, keeping both variants effective under memory or throughput limits.

Figure 5: Efficiency on Video-MME with Qwen2.5-VL (7B). X-axis in all panels: token retention
ρ. Approximate total token counts per setting: 41.6k, 31.6k, 21.5k, 11.6k, 5.5k, 1.8k.

Table 4: Component ablations at fixed budget. Each row removes a single ingredient from
SURGE (global affine drift detrending, variance normalization, or the causal temporal predictor),
while keeping the global percentile mask and event segmentation unchanged.

Variant (Qwen2.5-VL, ρ=0.25) MLVU (M/G) T-Compass MMB-V

SURGE 65.7 / 4.26 70.5 1.72
w/o drift detrend (Eq. 4) 64.9 / 4.18 69.4 1.65
w/o variance norm (Eq. 5) 65.1 / 4.22 69.7 1.70
w/o temporal predictor (frame-diff only Eq. 3) 63.4 / 4.17 66.9 1.55

5.3 COMPONENT ABLATIONS

Table 4 reports ablations on: MLVU (long multi-task), TempCompass (fine-grained temporal), and
MMB-V (multi-step QA), chosen to cover complementary reasoning settings without redundancy.
Removing drift detrend or variance normalization yields moderate but consistent drops, showing
their role in stabilizing surprise. The largest degradation comes from discarding the temporal pre-
dictor, where frame-differences mistake smooth motion for novelty. Overall, each component con-
tributes to robustness. In addition, we also sweep hyperparameters and find SURGE to be stable:
EMA smoothing γ ∈ [0.7, 0.95], peak separation ∆ ∈ [4, 12], K in Tab. 3 and percentile in Tab. 2.
With default settings, SURGE (γ=0.9, ∆=8, K = 5, ρ=0.25) offers a good balance.
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6 CONCLUSION

We introduced SURGE, a training-free and backbone-agnostic method that allocates computation
to high-surprise content. SURGE addresses the scalability of video VLMs by cutting the cost of
long inputs and expanding the memory-bounded effective context: by pruning predictable visual to-
kens before the multimodal LLMs, it reduces embedding/attention activations and KV-cache growth,
which are typically constrained by the device VRAM/system memory and latency budgets. In prac-
tice, SURGE reduces token counts by up to 7× and cuts prefill cost by nearly 90%, while keeping
accuracy within ±1 point of full-token baselines. On commodity accelerators, this enables pro-
cessing sequences that would otherwise hit out-of-memory (or unacceptable latency) for the same
model; SURGE also composes with keyframe selection or query-aware focusing for added effi-
ciency. A current limitation is that SURGE⋆ requires an extra CLIP pass and is sensitive to K and
query phrasing. Future work will explore lighter relevance models, adaptive event selection, and
in-context alignment to improve robustness.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. All models used in this work (InternVL-
3.5-VL, Video-LLaVA-Qwen, and Qwen2.5-VL) are publicly available through HuggingFace, and
Appendix A.1 details where SURGE is integrated into each codebase. Our implementation re-
lies only on open-source tools and libraries, including HuggingFace Transformers, OpenAI CLIP,
and VLMEvalKit for standardized evaluation on Video-MME, MLVU, MMBench-Video, Temp-
Compass, and LongVideoBench. Hyperparameter ranges, default values, and ablation settings are
reported in Section 5 and the appendix. Hardware (NVIDIA A100 80GB GPUs) and evaluation
protocols (latency, FLOPs, token counts, and accuracy) are likewise fully specified. We will release
our SURGE/SURGE⋆ modules, modified model wrappers, and experiment scripts upon acceptance
to enable exact reproduction of all tables and figures.

ETHICS STATEMENT

This work focuses on improving the efficiency of video VLMs at inference. We do not collect new
datasets or involve human subjects; all models and benchmarks used are publicly available under
their respective licenses. Our method reduces computation and memory usage, which can lower the
energy footprint of large-scale inference. Potential risks stem from the underlying pretrained models
(e.g., biases or misuse), which SURGE does not alter. We encourage responsible deployment of
VLMs and will release our code to facilitate transparent and reproducible research.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely to assist with grammar checking, wording sugges-
tions, and polishing of the manuscript text. No LLMs were used for idea generation, experimental
design, analysis, or results.

A.1 IMPLEMENTATION DETAILS

We implement SURGE as a lightweight masking module between the vision encoder and the lan-
guage model, requiring no retraining or modification of backbone weights. For InternVL-3.5-VL
(8B), we use the official HuggingFace release and insert SURGE after the vision encoder outputs,
before token projection to the LLM. For Video-LLaVA-Qwen (7B), we build on the Hugging-
Face Transformers implementation of LLaVA-Video, applying SURGE to patch embeddings from
the SigLIP-SO400M vision encoder before they are passed into the multimodal backbone. For
Qwen2.5-VL (7B), we extend the HuggingFace Transformers classes for the vision transformer
and multimodal generation to incorporate SURGE masking in the visual embedding pipeline. For
query-aware focusing (SURGE⋆), we add a CLIP relevance scorer, applied only to candidate peak
frames.

For baseline comparisons, we adopt FastV (Chen et al., 2024a) (attention-based pruning) and
AKS (Tang et al., 2025) (adaptive keyframe selection), using their official open-source implemen-
tations within the HuggingFace/Transformers ecosystem. FastV is integrated on Video-LLaVA-
Qwen via its attention pruning hooks, while AKS performs frame selection upstream of the vision
encoder and is applicable to all models.

All benchmarks are evaluated using VLMEvalKit (Duan et al., 2024), a standardized open-source
toolkit for multimodal evaluation. We adopt its official protocols, prompt templates, and de-
coding settings for Video-MME, MLVU, MMBench-Video, TempCompass and LongVideoBench,
ensuring consistent and comparable results. All models, baselines, and toolkits are open-source, and
we will release our SURGE/SURGE⋆ modules and wrapper code for each model upon acceptance.
Results are averaged over 5 random seeds ({41, 79, 138, 534, 963}) for robustness.

A.2 BASELINE METHODS

FastV. FastV (Chen et al., 2024a) targets inefficiencies in VLM attention by observing that image
and video tokens receive vanishingly small attention in deeper layers of models like LLaVA and
Qwen-VL. To reduce redundant computation, FastV adaptively prunes visual tokens after a chosen
layer, guided by their average attention scores. This plug-and-play pruning avoids both self-attention
and FFN costs on discarded tokens, gaining large FLOP savings with little performance drop. Simi-
lar attention-guided pruning strategies exist (Zhang et al., 2024; Ye et al., 2025; Huang et al., 2024),
but they rely on internal attention maps that may not be exposed in deployed systems. In contrast,
SURGE is training-free and attention-agnostic: it measures novelty directly via token prediction
error, enabling pruning without accessing internal gradients or hidden states. This makes SURGE
more robust across backbones and applicable even when attention maps are inaccessible.

Adaptive Keyframe Sampling (AKS). AKS (Tang et al., 2025) reduces temporal redundancy by
selecting a subset of video frames prior to encoding. It balances relevance (frame–query similarity)
and coverage (temporal diversity) through a recursive judge-and-split strategy, yielding high-quality
keyframes under fixed context budgets. While highly effective for long-video QA, AKS operates
only at the frame level, meaning all patch tokens from selected frames are preserved. SURGE is
complementary: it operates within frames, pruning predictable patches after encoding. Combin-
ing AKS and SURGE leverages both temporal and token-level sparsity, balancing efficiency and
accuracy across compute budgets.

Random Pruning. Random pruning removes a fixed fraction of visual tokens uniformly at random.
Despite its simplicity, it is often a surprisingly competitive baseline: Wen et al. (Wen et al., 2025)
show that random selection or simple pooling can match or even outperform attention-based pruning
methods such as FastV and SparseVLM on several benchmarks, due to position bias and instability
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in attention-based importance scores. More broadly, Transformers are known to be robust to random
token dropping at low-to-moderate ratios, as demonstrated by Kim et al. (Kim et al., 2022), which
highlights the redundancy and sparsity inherent in visual tokens. However, because random pruning
ignores content, it risks discarding critical information as pruning increases. In contrast, SURGE
explicitly measures temporal predictability: it prunes only redundant tokens while retaining novel
ones, achieving efficiency without sacrificing essential content.

A.3 BENCHMARKS AND MODELS: DETAILS AND JUSTIFICATION

A.3.1 BENCHMARKS

We evaluate on five public video–language benchmarks that together span breadth (general QA),
depth (temporal reasoning), and length (long-context). This diversity avoids redundancy and ensures
SURGE is tested under complementary stressors.

(1) Video-MME (Fu et al., 2025): covers short and long clips with multimodal inputs and diverse
QA types, and is widely used as a general evaluation suite for VLMs. We include it both in main
results and as the basis for FLOP/latency profiling (Fig. 5), since efficiency patterns are primarily
model-driven and do not require redundant measurements across multiple datasets.

(2) MLVU (Zhou et al., 2025): a long-video, multi-task benchmark reporting M-Avg/G-Avg across
heterogeneous tasks such as needle QA, grounding, and summarization. Because it stresses both
extended context and task variety, we use it broadly: in main results, in ablations/hyperparameter
sweeps, and for long-context scaling (Fig. 4), where its long videos make it the natural choice to
probe robustness under extreme input lengths.

(3) MMBench-Video (MMB-V) (Fang et al., 2024): emphasizes multi-step and compositional rea-
soning on multi-shot videos, complementing MLVU’s multi-task design with a focus on logical con-
sistency and stepwise inference. We use it in main results and ablations with Video-LLaVA-Qwen,
since its free-form QA format is particularly sensitive to token loss.

(4) TempCompass (Liu et al., 2024): isolates temporal reasoning (order, speed, duration) by con-
structing nearly identical clips that differ only in motion attributes. We include it to verify that
pruning does not compromise event chronology, a weakness of many sparsity methods. It appears
in main results and ablations as a targeted ”stress test” for SURGE.

(5) LongVideoBench (LVB) (Wu et al., 2024): targets very long videos with referring/retrieval-
style questions, stressing extreme long-range reasoning. We use it in main results to demonstrate
SURGE’s scalability, and in hyperparameter studies with Qwen2.5-VL, since only models with
extended context can operate in this regime.

Benchmark coverage. All five benchmarks are included in the main results with all three models.
Ablations and hyperparameters focus on Video-LLaVA-Qwen with MLVU, TempCompass, and
MMB-V, as these sets are most diagnostic for pruning behavior. Efficiency analysis is done on
Video-MME with Qwen2.5-VL, and long-context scaling on MLVU with Qwen2.5-VL, since these
are the only realistic pairings for those analyses.

A.3.2 MODELS

We select three open-source VLMs that represent distinct integration styles and compute regimes,
ensuring that SURGE is evaluated across both high-capacity and practical backbones.

(1) InternVL-3.5-VL (8B) (Chen et al., 2024b): a flagship open model with strong general VLM
performance and adaptive vision encoding. We include it in the main results to show SURGE re-
mains effective on a high-capacity backbone at the frontier of open performance.

(2) Video-LLaVA-Qwen (7B) (Li et al., 2024a): a widely used LLaVA-Video variant coupling a
Qwen LLM with a SigLIP encoder, capped at 64 frames. Because of its popularity and stable infer-
ence pipeline, we use it extensively for ablations and hyperparameter sweeps, making comparisons
with prior sparsity methods more direct.

(3) Qwen2.5-VL (7B) (Bai et al., 2025; Wang et al., 2024a): the latest long-context VL model with
efficient vision encoding and a ∼131k token window. It is the only backbone among the three that
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can run extended contexts beyond 230 frames on standard hardware, which is why most efficiency
breakdowns, scaling studies, and token–accuracy trade-offs are conducted on it.

Model coverage. InternVL-3.5-VL represents a flagship, high-capacity baseline; Video-LLaVA-
Qwen covers a video-specialized, widely adopted LLaVA-style architecture; and Qwen2.5-VL rep-
resents the state of the art in long-context efficiency. This spread justifies why not all models appear
in every experiment, while ensuring SURGE is validated across distinct backbones and deployment
scenarios.

A.4 ADDITIONAL VISUALIZATIONS OF SURGE MASKING

We provide qualitative examples of SURGE across different video domains. Figures 6–8 show raw
and smoothed surprise curves alongside a subset of the processed frames for clarity. Red boxes
indicate peak events, and shaded patches denote tokens retained by SURGE. In our implementation,
the first frame is always treated as full-surprise and fully preserved, since no temporal history exists
for prediction. Results demonstrate that SURGE highlights novel content across natural, animated,
and lecture-style videos.

Figure 6: SURGE visualization on an animal documentary clip. SURGE emphasizes novel motion
events (e.g., cheetah appearance, tiger interaction), with smoothed surprise peaks aligning with key
scene changes.

A.5 ADDITIONAL QUALITATIVE EXAMPLES

We further illustrate SURGE and SURGE⋆ on video–QA tasks (Figs. 9–11). Across these examples,
SURGE/SURGE⋆ perform on par with the base model, successfully retaining key evidence tokens.
For clarity, we display only a subset of processed frames; in SURGE⋆, red boxes mark peak-event
selections, and we show the first frame of each event.
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Figure 7: SURGE visualization on a cartoon (SpongeBob) clip. Surprise spikes capture exaggerated
expressions and character interactions, while redundant frames are pruned.

Figure 8: SURGE visualization on a TED talk clip. Peaks correspond to speaker appearance
changes and audience reactions, whereas static slides yield low surprise.
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Figure 9: Both SURGE and SURGE⋆ retain the key content and match the base model’s correct
prediction.
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Figure 10: This task requires counting the dominant decoration type. SURGE and SURGE⋆ preserve
key frames showing dense berries, enabling them to match the base model’s correct answer despite
heavy pruning.

Figure 11: The correct reason (”highway realignment”) is non-visual and not inferable from frames
alone. All models, including the base, fail here.
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