

000 001 002 003 004 005 SURGE: SURPRISE-GUIDED TOKEN REDUCTION FOR 006 EFFICIENT VIDEO UNDERSTANDING WITH VLMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Videos contain rich information but also high redundancy, as consecutive frames
028 often share similar backgrounds and predictable motions. Current video-language
029 models (VLMS) are unable to exploit this redundancy and therefore perform a
030 significant amount of superfluous computation, processing thousands of patch
031 tokens even when little new information is present. What is missing is an on-
032 the-fly, model-agnostic signal of temporal predictability to decide whether tokens
033 carry unpredictable information that merits computation. We propose SURGE, a
034 training-free and backbone-agnostic method that measures surprise in token space.
035 Surprise scores are defined by the prediction error of each token from its recent
036 history; high-surprise tokens are retained, while predictable ones are pruned. Ag-
037 gregating scores over time produces a surprise curve that highlights key events,
038 which can be further refined with CLIP-based query relevance to form a com-
039 pact spatio-temporal mask. Experiments on multiple video understanding bench-
040 marks show that SURGE reduces tokens by up to $7\times$ and prefill cost by **86–98%**,
041 while maintaining accuracy within ± 1 point of full-token baselines. By aligning
042 computation with novelty, SURGE enables video VLMS to handle long contexts
043 efficiently and without retraining.
044

1 INTRODUCTION

045 VLMs face a fundamental scalability problem in video understanding tasks. Even short clips expand
046 into thousands of visual tokens, and longer videos quickly overwhelm memory and computational
047 resources. The quadratic complexity of attention makes long-context reasoning especially expen-
048 sive, and practical deployments add further constraints such as streaming inputs, limited hardware,
049 and the inability to retrain models. Recent large-scale systems, including InternVL (Chen et al.,
050 2024b), Qwen series VL (Wang et al., 2024a; Bai et al., 2025), and LLaVA-Next (Li et al., 2024a),
051 demonstrate strong video understanding but expose the steep computational price for long inputs.
052

053 To address this bottleneck, research has explored efficiency along temporal, representational and
054 token-level directions. Temporal methods reduce cost by selecting a subset of frames (Hu et al.,
055 2025; Park et al., 2024), which can be effective for long-video QA but may miss fine-grained events
056 within frames. Representation-focused approaches instead compress each frame into fewer tokens,
057 for example by distilling features into compact query embeddings or by learning hierarchical rep-
058 resentations that adjust granularity to budget (Li et al., 2023; 2025). At the token level, merging
059 methods collapse redundant patches across space and time (Bolya et al., 2023; Lee et al., 2024;
060 Choudhury et al., 2024), while pruning methods remove less useful tokens during inference (Zhang
061 et al., 2024). These strategies are effective, yet many introduce complexity by requiring auxiliary
062 selectors, fine-tuning of the backbone, or access to internal attention maps that are not always avail-
063 able in deployed systems. What is still missing is a training-free, backbone-agnostic criterion that
064 can allocate computation more flexibly as a video unfolds.
065

066 A natural way to think about such a signal is to ask: **which parts of a video actually surprise the**
067 **model as it evolves over time?** We define surprise as the prediction error of a token given its recent
068 history: low error indicates predictable, redundant content, while high error signals novel events that
069 merit computation. In videos, where continuity is common, surprise provides a clear criterion for
070 allocating effort. Based on this idea, we introduce SURGE, a training-free and backbone-agnostic
071 surprise mask that directs computation to new content. After the vision encoder produces patch
072
073

tokens for each frame, SURGE applies a lightweight temporal predictor to estimate each token from its recent history. The surprise score is the difference between the estimate and the actual embedding: high-surprise tokens are kept, while predictable ones are pruned. Aggregating token scores over time yields a surprise curve which, after smoothing and peak picking, provides key event windows. The surprise mask is usable as is for efficient inference, and can be further refined with CLIP-based query relevance: we reweight event windows by query–keyframe similarity so the final spatio-temporal mask prioritizes content that is both new and on-topic. This reduces tokens before the language interface, adds negligible overhead, and fits naturally with other methods (e.g. AKS (Tang et al., 2025)). Across comprehensive experimental analysis, SURGE reduces tokens by up to $7\times$ and prefill cost by 86–98%, while keeping accuracy within ± 1 point of full-token baselines. The pipeline of SURGE is shown in Fig. 2. Our contributions can be summarized as:

- A training-free method that measures temporal predictability in token space, yielding surprise curves and token masks that work with any ViT-based backbone without retraining.
- A compact spatio-temporal masking scheme, effective on its own and further refinable with CLIP for query-aware event selection.
- Extensive experiments across models, benchmarks and pruning budgets, demonstrating SURGE’s robustness and its ability to combine with complementary strategies (e.g., keyframe selection) for additional gains.

2 RELATED WORK

Sparsity as Selection. A common strategy for VLM efficiency is to process only a sparse subset of the visual stream, either across time or at the token level. Temporal sparsity assumes most frames are redundant, so a small set of keyframes suffices. Methods such as SeViLA (Li et al., 2023; Yu et al., 2023), ViLA (Wang et al., 2024b), and AKS (Tang et al., 2025) follow this idea, improving long-video QA but sometimes missing fine-grained evidence when relevance estimates are imperfect (Park et al., 2024; Hu et al., 2025). **Recent work such as BOLT (Liu et al., 2025) and ViLAMP (Cheng et al., 2025) extend this by jointly selecting relevant frames and condensing information hierarchically.** Token sparsity instead prunes less useful patches within frames. Approaches like FastV (Shu et al., 2025), IVTP (Huang et al., 2024), ATP-LLaVA (Ye et al., 2025), and SparseVLM (Zhang et al., 2024) typically rely on attention thresholds or relevance scores. **More recent methods like DyCoke (Tao et al., 2025) and DivPrune (Alvar et al., 2025) aim to dynamically retain diverse or cache-critical tokens, achieving strong accuracy without retraining.** These methods are effective, yet often need careful calibration of thresholds and policies, and some depend on internal attention maps often unavailable in deployed systems (Wei et al., 2023; Chen et al., 2024a). Realistically, sparsity proxies highlight what seems important at the current step but not what has changed, so redundant but on-topic segments may still absorb computation while unseen events can be overlooked.

Representation Compression. Another strategy is to compress visual representations so fewer tokens are processed per frame or interval. Some methods replace dense patches with compact learned embeddings: LLaMA-VID encodes each frame into just two tokens via cross-attention (Li et al., 2024b), Video-XL learns adaptive summarization tokens (Shu et al., 2025), and Matryoshka generates nested coarse-to-fine token sets for dynamic accuracy–efficiency trade-offs (Cai et al., 2024). These designs achieve large tokens reductions but require retraining, architectural changes, or additional hyperparameters. Another complementary approach is token merging (ToMe) (Bolya et al., 2023), which progressively merges similar patches during inference to reduce redundancy. Extensions to video include methods such as vid-TLDR (Choi et al., 2024) and TempMe (Shen et al., 2024a), as well as spatio-temporal schemes like STTM (Feng et al., 2024; Lee et al., 2024; Choudhury et al., 2024). **Recent works like VisionZip Yang et al. (2025), LongVU (Shen et al., 2024b) and Chat-UniVi (Jin et al., 2024) further combine spatial and temporal compression to enable long-horizon video processing.** Two-stage pipelines like PruMerge (Shang et al., 2024) combine pruning and clustering for up to $14\times$ reductions. While effective, these approaches depend on architectural modifications, merge schedules, or retrained summarizers that are often model- or dataset-specific.

Predictability and Surprise. Beyond sparsity and compression, a longstanding idea in cognitive science and machine learning is to use prediction error (*surprise*) as a signal of information value. Predictive coding suggests that expected inputs are suppressed while unexpected ones receive deeper



Figure 1: Token surprise vs. pixel change. For four random patches, we compare pixel dissimilarity (blue), raw surprise (orange; Eq. 3), and normalized surprise (purple; Eq. 5). Normalization suppresses drift and aligns peaks with true content changes.

processing (Itti & Baldi, 2005), and curiosity modules in reinforcement learning reward high prediction error to drive exploration (Pathak et al., 2017). In video, frame-level errors have been used for anomaly detection (Liu et al., 2018). The common principle is that novelty, defined as a "deviation from expectation", deserves computation. By contrast, most VLM efficiency methods rely on proxies such as attention weights, similarity scores, or trained selectors (Zhang et al., 2024; Huang et al., 2024; Ye et al., 2025), which add complexity and often depend on model-specific thresholds or attention maps that may not transfer across datasets or deployment settings.

We argue that a more intuitive criterion is to test predictability itself: tokens that align with prior context contribute little new information, while those that diverge from expectation indicate genuine change. Unlike attention weights or similarity scores, this signal directly measures novelty as it unfolds, offering a lightweight and training-free mechanism that complements sparsity and compression by aligning computation with new information.

3 FROM PREDICTABILITY TO SURPRISE IN TOKEN SPACE

3.1 PRELIMINARIES AND TOKEN DYNAMICS

Given a sequence of frames $I \in \mathbb{R}^{T \times C \times H \times W}$, the vision tower partitions each frame into m spatial cells and produces patch embeddings $Z_t = [z_t^{(1)}, \dots, z_t^{(m)}] \in \mathbb{R}^{m \times d}$, where $z_t^{(j)} \in \mathbb{R}^d$ is the token for spatial index j . Formally, $z_t^{(j)} = f_j(I_t)$, where f_j is the encoder map for cell j . Natural videos evolve smoothly: consecutive frames satisfy $I_{t+1} \approx I_t + \Delta I_t$ with bounded perturbation ΔI_t . Since f_j is differentiable, a first-order Taylor expansion gives

$$z_{t+1}^{(j)} \approx z_t^{(j)} + J_{f_j}(I_t) \Delta I_t, \quad (1)$$

where $J_{f_j}(I_t)$ is the Jacobian of f_j at I_t . This implies approximately linear dynamics in token space:

$$z_{t+1}^{(j)} - 2z_t^{(j)} + z_{t-1}^{(j)} \approx 0. \quad (2)$$

Eq. 2 encodes a constant-velocity prior: smooth motions satisfy it, while abrupt events yield large deviations interpreted as *surprise*. This connects to representation learning approaches that model videos as smooth stochastic processes (e.g., Brownian bridges) (Zhang et al., 2023) and to frame interpolation methods that rely on constant-velocity or higher-order motion priors (Zhong et al., 2024). We adopt the same principle at the token level, using deviations from constant-velocity prediction as surprise signals that highlight semantically meaningful events.

3.2 TRAINING-FREE TEMPORAL PREDICTION

Building on Sec. 3.1, we can use a causal constant-velocity predictor, common in tracking and interpolation, to estimate tokens from recent displacements.

Constant-velocity extrapolation. For token j , let $\Delta z_t^{(j)} = z_t^{(j)} - z_{t-1}^{(j)}$ denote its displacement between consecutive steps. A natural causal predictor is to carry forward the most recent displacement,

$$\hat{z}_t^{(j)} = z_{t-1}^{(j)} + \tilde{\delta}_{t-1}^{(j)}, \quad \tilde{\delta}_{t-1}^{(j)} \approx z_{t-1}^{(j)} - z_{t-2}^{(j)}. \quad (3)$$

For $t \leq 2$, we initialize $\tilde{\delta}_1^{(j)} = 0$ and set $\hat{z}_2^{(j)} = z_1^{(j)}$. This autoregressive extrapolation is consistent with the constant-velocity prior in Eq. 2. It is causal, training-free, and applies uniformly across

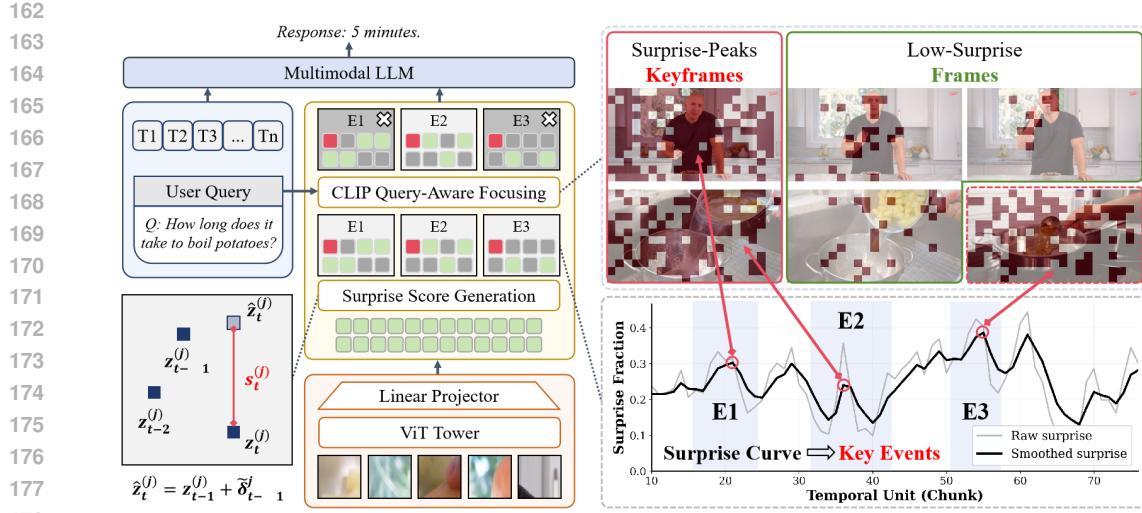


Figure 2: **SURGE pipeline.** Tokens are predicted with a constant-velocity model, then detrended and variance-normalized to yield surprise scores. **This surprise computation is performed directly on the raw patch embeddings output by the vision tower before projection into the language model.** We retain the top- ρ tokens, aggregate them into a surprise curve to segment key events, and optionally rank events with CLIP (Top- K). Finally, only high-surprise tokens from key events are forwarded to the LLM, while others are pruned. **Note, the SURGE block appears after the projection layer to reflect where the masking is applied, but the surprise scores themselves are computed earlier, on pre-projection features.**

spatial indices, ensuring compatibility with any ViT backbone. However, this naive form cannot distinguish novelty from large-scale coherent motion, arising from camera panning, scene-level shifts, or other global transformations, which induce nearly uniform changes across tokens (Lian et al., 2023).

Global drift correction. Such drift is spatially smooth and can dominate residuals, causing false surprise (Lian et al., 2023; James et al., 2023). To suppress this effect, we approximate the displacement field with an affine function of spatial coordinates, a standard choice in motion compensation and stabilization (Nie et al., 2024). Let (x_j, y_j) denote the normalized position of token j , and define

$$\Delta z_t^{(j)} \approx c_0 + c_x x_j + c_y y_j,$$

with coefficients $c_0, c_x, c_y \in \mathbb{R}^d$ fit by least squares. Concretely, let $X = [\mathbf{1}, x, y] \in \mathbb{R}^{m \times 3}$ stack token coordinates and $\Delta Z_t \in \mathbb{R}^{m \times d}$ stack displacements row-wise; the closed-form is $\hat{C} = (X^\top X)^{-1} X^\top \Delta Z_t \in \mathbb{R}^{3 \times d}$, with rows corresponding to $c_0^\top, c_x^\top, c_y^\top$. The detrended displacement is then

$$\tilde{\delta}_t^{(j)} = \Delta z_t^{(j)} - (c_0 + c_x x_j + c_y y_j). \quad (4)$$

This removes global translation (c_0) and first-order planar flow (c_x, c_y), ensuring that residuals reflect true surprise rather than scene-level drift. Special tokens (e.g., [CLS] or register tokens) are excluded from this fit and always retained. The 3×3 least-squares solve per frame adds negligible $O(md)$ cost. Finally, Eq. 3 is applied using the detrended displacement $\tilde{\delta}_t^{(j)}$ to produce the causal prediction.

Surprise scoring. Given the causal prediction $\hat{z}_t^{(j)}$, we compute the *surprise vector*: $e_t^{(j)} = z_t^{(j)} - \hat{z}_t^{(j)}$, which measures the prediction error of token j . Under smooth motion, the vector remains small but new information makes them large. To obtain a scalar measure, we define the *surprise score* of token j by normalizing the squared magnitude with a running estimate of its variance:

$$s_t^{(j)} = \frac{\|e_t^{(j)}\|_2^2}{\sigma_t^{2,(j)} + \varepsilon}, \quad (5)$$

216 where $\sigma_t^{2,(j)}$ is an exponential moving average of past vector variances for token j , and $\varepsilon > 0$ prevents division by zero. This variance-normalized formulation provides a calibrated statistic: under
 217 locally linear-Gaussian dynamics with no change, $s_t^{(j)}$ stays near its expectation, while significant
 218 deviations directly indicate surprise.
 219

220 As a sanity check, Fig. 1 shows that token-space surprise tracks pixel change, validating predictor
 221 residuals as a proxy. Specifically, the raw constant-velocity predictor (Eq. 3) often fires spuriously
 222 under global shifts such as camera pans. After applying drift detrending (Eq. 4) and variance
 223 normalization (Eq. 5), surprise spikes align more closely with true content changes, suppressing noise
 224 and yielding a stable, patch-consistent signal.
 225

226 4 FROM TOKEN SURPRISE TO A SPATIO-TEMPORAL MASK

227 Given per-token surprise scores $s_t^{(j)}$ (Sec. 3), we produce a compact spatio-temporal mask in two
 228 stages: (i) global percentile thresholding to keep the most surprising tokens across the sequence,
 229 and (ii) construction of a *surprise curve* per temporal unit to segment key events. For query-focused
 230 applications, we then rank these events using CLIP similarity (Radford et al., 2021) at peak frames
 231 and concentrate computation on the top- K relevant ones.
 232

233 4.1 ADAPTIVE TOKEN MASKING

234 Within each sequence, we adaptively keep the most surprising tokens according to a global per-
 235 centile. Let \mathcal{B} denote the current buffer of tokens (the full clip offline, or the observed prefix in
 236 streaming), and collect all surprise scores $\mathcal{S}_{\mathcal{B}} = \{s_u^{(j)} : (u, j) \in \mathcal{B}\}$. The global p -percentile is
 237 $q(p) = \text{Quantile}_p(\mathcal{S}_{\mathcal{B}})$ for $p \in (0, 1]$. The binary mask is then
 238

$$239 M_{u,j} = \mathbb{1}\{s_u^{(j)} \geq q(p)\}. \quad (6)$$

240 This global selection retains the top $\rho = (1 - p)$ fraction where content changes: dynamic frames
 241 contribute more, redundant frames contribute less. Note that special tokens (e.g. *[CLS]*) are always
 242 preserved. The mask is applied after the vision encoder and positional encodings, and before the lan-
 243 guage model, making the procedure training-free, backbone-agnostic, and compatible with standard
 244 ViT-based pipelines.
 245

246 4.2 SURPRISE CURVE AND KEY EVENTS

247 After generating token-level masks, we aggregate surprise over time to detect salient events. For
 248 each temporal unit u (a frame or a chunk), we count how many tokens exceed the global threshold:
 249 $S_u = \sum_{j=1}^m M_{u,j}$, equivalently the fraction S_u/m . The sequence $\{S_u\}$ forms the *surprise curve*.
 250 We smooth it with an exponential moving average, $\bar{S}_u = \gamma \bar{S}_{u-1} + (1 - \gamma) S_u$, to reduce noise.
 251

252 **Peak-based event segmentation.** Let $\mathcal{P} = \{\tau_1 < \dots < \tau_n\}$ be the local maxima (peaks) of \bar{S}_u ,
 253 found with minimum separation Δ and a small prominence threshold. Let U be the total number of
 254 units. We define event boundaries at midpoints between adjacent peaks:
 255

$$256 b_0 = 1, \quad b_k = \left\lfloor \frac{\tau_k + \tau_{k+1}}{2} \right\rfloor \quad (k = 1, \dots, n-1), \quad b_n = U, \quad (7)$$

257 and assign each peak τ_k the event interval $\mathcal{I}_k = [b_{k-1}, b_k)$, $k = 1, \dots, n$. Thus, *durations between*
 258 *peaks* are taken as key events.
 259

260 **Query-aware event focusing.** To align events with a text query q , we use CLIP similarity at the
 261 peak frames. Let v_{τ_k} be the frame-level embedding at peak τ_k and define $r_k = \text{sim}(q, v_{\tau_k})$. We
 262 rank events by $\{r_k\}$ and keep the top- K : $\mathcal{E}_K = \text{TopK}_k(r_k)$. We then concentrate computation on
 263 $\{\mathcal{I}_k : k \in \mathcal{E}_K\}$ by applying $M_{u,j}$ within these intervals, while maintaining only a small context
 264 floor elsewhere. Although this adds one CLIP pass over the set of peak frames, it further reduces
 265 tokens forwarded to the language model and improves focus in very long-context retrieval. Finally,
 266 based on the surprise mask $M_{u,j}$, event intervals $\{\mathcal{I}_k\}$, and CLIP-selected indices \mathcal{E}_K , define the
 267 event indicator $A_u = \mathbb{1}\{u \in \bigcup_{k \in \mathcal{E}_K} \mathcal{I}_k\}$. With a small context floor $C_{u,j}$ (e.g., the top- k_{ctx} tokens
 268 by $s_u^{(j)}$ when $A_u = 0$), the final mask is (see Appendix A.4 and A.5 for additional visualizations):
 269

$$M_{u,j}^* = A_u \cdot M_{u,j} + (1 - A_u) \cdot C_{u,j}. \quad (8)$$

5 EXPERIMENTS

Benchmarks & Baselines. We evaluate SURGE on five representative video–language benchmarks: (1) **Video-MME** (Fu et al., 2025): overall QA on short–long clips; (2) **MLVU** (Zhou et al., 2025): long-video multi-task evaluation (M-Avg/G-Avg) including Needle QA, grounding, and summarization; (3) **MMBench-Video** (Fang et al., 2024): curated multi-step QA probing compositional/temporal reasoning; (4) **TempCompass** (Liu et al., 2024): structured temporal QA on short clips; (5) **LongVideoBench** (Wu et al., 2024): very long videos emphasizing retrieval and cross-event reasoning. As baselines, we compare against random token pruning, **FastV** (token pruning/aggregation) (Shu et al., 2025) and **AKS** (adaptive keyframe selection) (Tang et al., 2025), chosen because they are publicly available, replicable, and applicable across model families.¹ We also report *AKS w/ SURGE* and *AKS w/ SURGE** to assess complementarity with temporal selection. Full details and justifications are in Appendix A.3 and Appendix A.2.

Models. To demonstrate SURGE’s breadth, we evaluate three flagship VLMs: (i) **InternVL-3.5-VL** (Wang et al., 2025) (8B; *15k-token* context): the latest open-source model with strong general-purpose video QA and extended text window; (ii) **Video-LLaVA-Qwen** (Lin et al., 2023) (7B; *64-frame* cap): a mid-size video variant with a strict frame budget, highlighting token efficiency; (iii) **Qwen2.5-VL** (Bai et al., 2025) (7B; *131k-token* context): a long-context model able to process hours-long videos, ideal for testing SURGE’s scalability. Together these models provide a comprehensive generality test. Further implementation details and justifications are in Appendix A.1 and Appendix A.3.

Evaluation pipeline & Hyperparameters. We use **VLMEvalKit** (Duan et al., 2024) for benchmarks, applying SURGE purely at inference. Experiments run on 1–8 A100 80GB GPUs. By default, we retain the top $\rho = 0.25$ tokens (75th percentile), smooth surprise curves with EMA ($\gamma = 0.9$), and enforce a minimum separation $\Delta = 8$ units between peaks. For query-focused retrieval, we select the *Top-5* events by CLIP (ViT-B/32) similarity at peak frames. No context floor (Eq. 8) is used in the main experiments, isolating surprise-driven gains.

5.1 PERFORMANCE

Large token reductions with stable accuracy. At the default $\rho=0.25$, SURGE retains only $\sim 26\%-27\%$ of visual tokens ($\sim 4\times$ fewer), and SURGE* with CLIP Top-5 further reduces this to $\sim 14\%-16\%$ ($\sim 7\times$ fewer). Yet benchmark scores remain within ± 1 point of the baseline (Tab. 1), validating our hypothesis that predictability in token space is a reliable proxy for redundancy (Sec. 3). The qualitative examples (Fig. 3) further illustrate this: even when the base model gives incomplete answers, SURGE and SURGE* recover more accurate and detailed responses by focusing on novel and relevant tokens. In contrast, random pruning often drops critical evidence, producing unstable outputs, while surprise-driven selection preserves informativeness.

¹Several other methods currently support only specific VLMs. For FastV, we follow its official implementation and adapt to Owen2LM by replacing the k-l attention layer with an eager version to access attentions.

Figure 3: Qualitative examples. SURGE and SURGE* can even provide more accurate and detailed answers than the base model.

324 **Table 1: Benchmark results (64 frames).** SURGE retains a global top- $\rho=0.25$ of tokens; SURGE*
 325 adds CLIP Top-5 event focusing. “Tokens” reports average visual+fixed text tokens per sample at
 326 64 frames. \dagger Exceeds InternVL-3.5-VL’s 15k-token context; inputs were truncated by the runtime,
 327 so scores reflect truncated context. Best performance is in **bold**.

Model	Tokens	V-MME	MLVU (M / G)	MMB-V	T-Compass	LVB
InternVL-3.5-VL (8B)	17,124 \dagger	66.0	71.7 / 3.44	1.54	68.9	61.3
+ SURGE	4,674	64.9	71.5 / 3.45	1.57	69.0	61.7
+ SURGE*	2,932	65.8	71.7 / 3.69	1.57	69.7	62.2
+ AKS	17,124	66.1	71.6 / 3.48	1.54	68.6	62.2
+ AKS w/ SURGE	4,819	65.9	71.7 / 3.39	1.56	68.6	62.0
+ AKS w/ SURGE*	2,390	66.2	72.3 / 3.58	1.55	68.4	61.9
Video-LLaVA-Qwen (7B)	12,246	63.4	72.9 / 3.30	1.53	66.9	58.3
+ SURGE	3,324	63.1	72.9 / 3.30	1.53	67.0	59.1
+ SURGE*	1,884	64.5	72.7 / 3.20	1.60	66.9	61.9
+ FastV	3,300	58.1	52.3 / 3.11	1.29	61.7	55.4
+ AKS	12,246	64.7	72.7 / 3.30	1.55	66.9	61.4
+ AKS w/ SURGE	3,157	64.9	72.4 / 3.27	1.55	66.7	62.3
+ AKS w/ SURGE*	1,961	62.4	72.8 / 3.56	1.61	66.9	62.2
Qwen2.5-VL (7B)	41,590	62.2	65.8 / 4.26	1.60	70.5	60.0
+ SURGE	10,992	60.9	65.7 / 4.26	1.72	70.5	59.4
+ SURGE*	5,207	62.7	66.1 / 4.24	1.70	67.7	61.3
+ AKS	41,590	62.0	65.8 / 4.26	1.67	70.7	59.9
+ AKS w/ SURGE	11,588	61.9	65.8 / 4.25	1.68	71.1	60.3
+ AKS w/ SURGE*	6,204	62.7	66.0 / 4.26	1.73	70.9	60.4

349 **Performance across contexts.** On benchmarks stressing long videos and cross-event reasoning,
 350 SURGE* not only preserves but *surpasses* full-token baselines: e.g., in Tab. 1, InternVL-3.5-VL on
 351 **LVB** (+0.9) and **MLVU** G-Avg (+0.25), with consistent improvements on **T-Compass** (+0.8) and
 352 **MMB-V** (+0.03). These are precisely the conditions where surprise-based reallocation and query-
 353 aware focusing are most useful, confirming that SURGE effectively identifies and prioritizes new,
 354 relevant content (Sec. 4). For short-form QA benchmarks such as **V-MME**, where redundancy is
 355 lower, SURGE induces only small fluctuations (typically within ± 1 point). Importantly, SURGE*
 356 often recovers or slightly improves over the baseline (e.g., +1.1 on Video-LLaVA-Qwen), under-
 357 scoring that SURGE is safe to apply even in short-video settings with relatively low redundancy.

358 **Comparison to pruning and keyframe baselines.** Against FastV (attention-based pruning),
 359 SURGE is markedly more reliable at the same budgets, e.g., on Video-LLaVA-Qwen, V-MME 64.5
 360 vs. 58.1, MLVU 72.7/3.20 vs. 52.3/3.11 (Tab. 1), indicating that temporal surprise can be a stronger
 361 criterion than attention magnitude for deciding which visual tokens to keep in video understanding
 362 tasks. In contrast, AKS selects fewer frames instead of pruning tokens, and can match or surpass
 363 baselines on long-video metrics. Combined with SURGE, the two act complementarily, obtaining
 364 further gains in efficiency and accuracy, showing SURGE is both competitive alone and composable
 365 with temporal selection.

367 5.2 EFFICIENCY-ACCURACY TRADE-OFFS

368 **Token Efficiency Analysis.** At moderate pruning ($\rho=0.50-0.75$), SURGE maintains accuracy
 369 within ± 1 of baseline, while improves it for **T-Compass** (+1.8) and **MMB-V** (+0.1-0.2). This
 370 suggests that surprise-guided masking effectively discards predictable background while preserving
 371 transition-heavy evidence. CLIP focusing further helps in some cases (e.g., **MLVU**, +0.3 M-Avg),
 372 validating that query-aware peak selection reallocates budget toward relevant content.

373 The random pruning baseline provides an informative contrast: at moderate levels ($\rho \geq 0.50$), it
 374 can approximate baseline accuracy, confirming that redundancy is indeed present in visual tokens.
 375 However, once more than 75% of tokens are dropped, performance becomes highly unstable, with
 376 maximum relative deviations exceeding 20% (Tab. 2), reflecting frequent loss of critical information.
 377 By comparison, SURGE stays within $\pm 1.1\%$ across all pruning levels, remaining stable even

378 Table 2: **Token-accuracy trade-off on Qwen2.5-VL.** ρ is the fraction of visual tokens retained
 379 (1.0=full tokens). ” $\pm\%$ ” indicates the maximum relative deviation (5 runs), reflecting result stability.
 380

Method	ρ	V-MME	MLVU (M/G)	MMB-V	T-Compass	LVB
Qwen2.5-VL (7B)	1.00	62.2	65.8 / 4.26	1.60	70.5	60.0
+ SURGE $\pm 0.8\%$	0.75	62.3	65.8 / 4.22	1.60	70.3	60.5
+ SURGE* $\pm 1.1\%$	0.75	62.1	66.4 / 4.25	1.60	70.2	58.1
+ Random $\pm 3.7\%$	0.75	61.9	65.7 / 4.26	1.61	69.7	50.1
+ SURGE $\pm 0.7\%$	0.50	62.0	65.8 / 4.26	1.66	72.3	59.7
+ SURGE* $\pm 0.5\%$	0.50	62.1	66.2 / 4.22	1.70	71.7	57.9
+ Random $\pm 4.2\%$	0.50	62.0	64.9 / 4.24	1.62	66.1	57.0
+ SURGE $\pm 0.4\%$	0.25	60.9	65.7 / 4.26	1.72	70.5	59.4
+ SURGE* $\pm 0.6\%$	0.25	62.0	66.1 / 4.24	1.70	67.7	56.3
+ Random $\pm 13.2\%$	0.25	53.6	55.9 / 3.32	0.96	57.4	49.7
+ SURGE $\pm 0.7\%$	0.10	60.3	65.8 / 4.22	1.58	70.2	58.6
+ Random $\pm 23.9\%$	0.10	36.8	37.4 / 3.11	0.94	50.9	46.0
+ SURGE $\pm 1.0\%$	0.01	58.7	65.8 / 4.22	1.55	70.2	55.7
+ Random $\pm 9.8\%$	0.01	29.8	35.0 / 3.10	0.84	50.6	37.3

397 Table 3: **Top- K CLIP event focusing evaluation on Qwen2.5-VL (7B).** Baseline=full tokens,
 398 SURGE=percentile masking ($\rho=0.25$), SURGE*=SURGE ($\rho=0.25$) + CLIP Top- K event selection.
 399

Method	K	V-MME	MLVU (M/G)	MMB-V	T-Compass	LVB
Qwen2.5-VL (7B)	–	62.2	65.8 / 4.26	1.60	70.5	60.0
+ SURGE	–	60.9	65.7 / 4.26	1.72	70.5	59.4
+ SURGE*	1	51.7	37.9 / 2.51	1.09	23.9	40.1
+ SURGE*	3	59.0	60.5 / 3.70	1.15	59.7	49.6
+ SURGE*	5	62.0	66.1 / 4.24	1.70	67.7	56.3
+ SURGE*	7	62.3	66.8 / 4.30	1.65	70.5	60.2
+ SURGE*	10	62.7	66.8 / 4.26	1.71	71.0	60.2

409 under aggressive settings ($\rho=0.10$ –0.01). This yields usable accuracy while exposing a clear com-
 410 pute–accuracy trade-off.

411 **Effect of Top- K CLIP Focusing.** We investigate CLIP event focusing by varying K , the number
 412 of peak events retained (Table 3). Extremely small K (e.g., $K=1$) collapses coverage and causes
 413 severe accuracy drops, while larger K steadily restores performance: with $K=5$ –10, SURGE* of-
 414 ten matches or exceeds the full-token baseline, especially on long-context benchmarks like **MLVU**
 415 and **LVB**. This illustrates the precision–coverage trade-off: small K risks missing relevant events,
 416 whereas moderate K balances query alignment with sufficient context. In practice, $K=5$ –7 provides
 417 a robust setting, confirming that query-aware focusing complements surprise masking by allocating
 418 compute to both *new* and *relevant* content.

419 **Long-Context Performance.** On **MLVU** with **Qwen2.5-VL**², we test up to 3600 frames (Fig. 4).
 420 Accuracy rises for both baseline and SURGE up to 256 frames. Beyond ~ 230 frames, the baseline
 421 exceeds A100 80GB VRAM, while SURGE/SURGE* remain executable, extending to 1024 and
 422 3600 frames. Performance drops when truncation dominates (e.g., 52.3/3.61 at 1024, 35.4/3.30 at
 423 3600), but the key result is that SURGE raises the practical upper bound, enabling over an order-
 424 of-magnitude longer videos to be processed on fixed hardware, while maintaining near-baseline
 425 accuracy within the feasible range.

426 **Efficiency Analysis.** On Video-MME with **Qwen2.5-VL (7B)**, SURGE achieves substantial prefill
 427 savings: at $\rho=0.25$, FLOPs/latency drop by **86%/-79%** (Fig. 5(a),(c)), respectively, while generation
 428 FLOPs/latency also show modest reductions (**-38%/-14%** (Fig. 5(b),(d))). At extreme pruning
 429 ($\rho=0.01$), prefill costs shrink by over **98%**, and generation FLOPs are roughly halved. Total visual
 430 tokens reduce by **-72%** ($\rho=0.25$) to **-96%** ($\rho=0.01$). Together with accuracy stable at moderate

431 ²Extended ~ 131 k context window, ~ 230 frames; beyond this inputs are truncated though outputs remain.

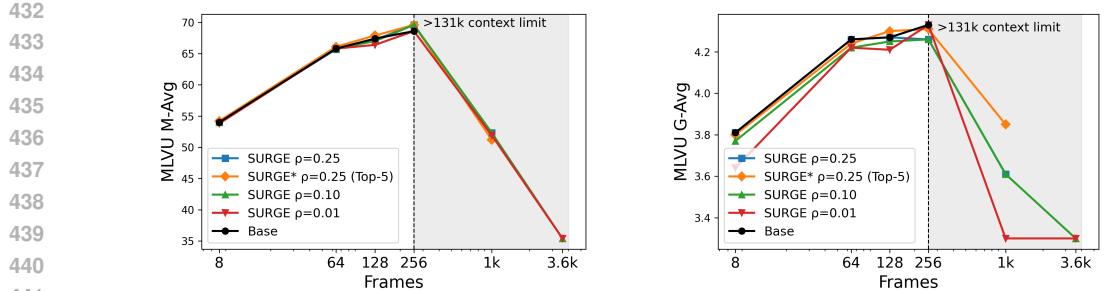


Figure 4: **Long-context evaluation on MLVU using Qwen2.5-V.** M-Avg and G-Avg across frame counts; shaded area exceeds the ~ 131 k-token limit. SURGE and SURGE* extend capacity to 3600 frames while staying competitive below the limit.

pruning (Tab. 2), this shows SURGE translates token savings into substantial FLOP/latency gains, especially in the compute-heavy prefill stage. For SURGE*, a CLIP pass over 5–8 peaks adds roughly **0.63–1.0 TFLOPs/1027–1891 ms** per query, while pre-LLM pruning still removes most KV-cache and prefill load, keeping both variants effective under memory or throughput limits.

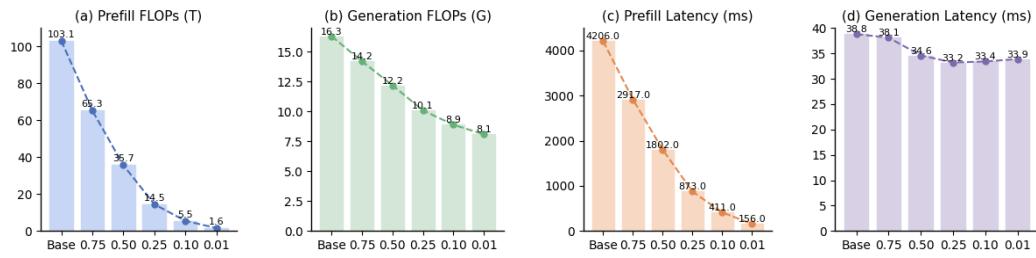


Figure 5: **Efficiency on Video-MME with Qwen2.5-VL (7B).** X-axis in all panels: token retention ρ . Approximate total token counts per setting: 41.6k, 31.6k, 21.5k, 11.6k, 5.5k, 1.8k.

Table 4: **Component ablations at fixed budget.** Each row removes a single ingredient from SURGE (global affine drift detrending, variance normalization, or the causal temporal predictor), while keeping the global percentile mask and event segmentation unchanged.

Variant (Qwen2.5-VL, $\rho=0.25$)	MLVU (M/G)	T-Compass	MMB-V
SURGE	65.7 / 4.26	70.5	1.72
w/o drift detrend (Eq. 4)	64.9 / 4.18	69.4	1.65
w/o variance norm (Eq. 5)	65.1 / 4.22	69.7	1.70
w/o temporal predictor (frame-diff only Eq. 3)	63.4 / 4.17	66.9	1.55

5.3 COMPONENT ABLATIONS

Table 4 reports ablations on: **MLVU** (long multi-task), **TempCompass** (fine-grained temporal), and **MMB-V** (multi-step QA), chosen to cover complementary reasoning settings without redundancy. Removing drift detrend or variance normalization yields moderate but consistent drops, showing their role in stabilizing surprise. The largest degradation comes from discarding the temporal predictor, where frame-differences mistake smooth motion for novelty. Overall, each component contributes to robustness. In addition, we also sweep hyperparameters and find SURGE to be stable: EMA smoothing $\gamma \in [0.7, 0.95]$, peak separation $\Delta \in [4, 12]$, K in Tab. 3 and percentile in Tab. 2. With default settings, SURGE ($\gamma=0.9$, $\Delta=8$, $K=5$, $\rho=0.25$) offers a good balance.

486 **6 CONCLUSION**
 487

488 We introduced *SURGE*, a training-free and backbone-agnostic method that allocates computation
 489 to high-surprise content. *SURGE* addresses the scalability of video VLMs by cutting the cost of
 490 long inputs and expanding the *memory-bounded* effective context: by pruning predictable visual
 491 tokens before the multimodal LLMs, it reduces embedding/attention activations and KV-cache growth,
 492 which are typically constrained by the device VRAM/system memory and latency budgets. In prac-
 493 tice, *SURGE* reduces token counts by up to $7\times$ and cuts prefill cost by nearly 90%, while keeping
 494 accuracy within ± 1 point of full-token baselines. On commodity accelerators, this enables pro-
 495 cessing sequences that would otherwise hit out-of-memory (or unacceptable latency) for the same
 496 model; *SURGE* also composes with keyframe selection or query-aware focusing for added effi-
 497 ciency. A current limitation is that *SURGE** requires an extra CLIP pass and is sensitive to K and
 498 query phrasing. Future work will explore lighter relevance models, adaptive event selection, and
 499 in-context alignment to improve robustness.
 500

501 **REPRODUCIBILITY STATEMENT**
 502

503 We have taken several steps to ensure reproducibility. All models used in this work (InternVL-
 504 3.5-VL, Video-LLaVA-Qwen, and Qwen2.5-VL) are publicly available through HuggingFace, and
 505 Appendix A.1 details where *SURGE* is integrated into each codebase. Our implementation re-
 506 lies only on open-source tools and libraries, including HuggingFace Transformers, OpenAI CLIP,
 507 and VLMEvalKit for standardized evaluation on Video-MME, MLVU, MMBench-Video, Temp-
 508 Compass, and LongVideoBench. Hyperparameter ranges, default values, and ablation settings are
 509 reported in Section 5 and the appendix. Hardware (NVIDIA A100 80GB GPUs) and evaluation
 510 protocols (latency, FLOPs, token counts, and accuracy) are likewise fully specified. We will release
 511 our *SURGE/SURGE** modules, modified model wrappers, and experiment scripts upon acceptance
 512 to enable exact reproduction of all tables and figures.
 513

514 **ETHICS STATEMENT**
 515

516 This work focuses on improving the efficiency of video VLMs at inference. We do not collect new
 517 datasets or involve human subjects; all models and benchmarks used are publicly available under
 518 their respective licenses. Our method reduces computation and memory usage, which can lower the
 519 energy footprint of large-scale inference. Potential risks stem from the underlying pretrained models
 520 (e.g., biases or misuse), which *SURGE* does not alter. We encourage responsible deployment of
 521 VLMs and will release our code to facilitate transparent and reproducible research.
 522

523 **REFERENCES**
 524

525 Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
 526 based visual token pruning for large multimodal models. In *Proceedings of the Computer Vision*
 527 and *Pattern Recognition Conference*, pp. 9392–9401, 2025.

528 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 529 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 530 2025.

531 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
 532 Hoffman. Token merging: Your vit but faster. In *ICLR*, 2023.

533 Mu Cai, Jianwei Yang, Jianfeng Gao, and Yong Jae Lee. Matryoshka multimodal models. In
 534 *Workshop on Video-Language Models@ NeurIPS 2024*, 2024.

535 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
 536 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
 537 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.

538 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 539 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning

540 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer*
 541 *vision and pattern recognition*, pp. 24185–24198, 2024b.
 542

543 Chuanqi Cheng, Jian Guan, Wei Wu, and Rui Yan. Scaling video-language models to 10k frames
 544 via hierarchical differential distillation. In *Forty-second International Conference on Machine*
 545 *Learning*, 2025.

546 Joonmyung Choi, Sanghyeok Lee, Jaewon Chu, Minhyuk Choi, and Hyunwoo J Kim. Vid-tldr:
 547 Training free token merging for light-weight video transformer. In *Proceedings of the IEEE/CVF*
 548 *Conference on Computer Vision and Pattern Recognition*, pp. 18771–18781, 2024.
 549

550 Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, and László Jeni. Don’t
 551 look twice: Faster video transformers with run-length tokenization. *Advances in Neural Informa-*
 552 *tion Processing Systems*, 37:28127–28149, 2024.

553 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 554 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
 555 ing large multi-modality models. In *Proceedings of the 32nd ACM International Conference on*
 556 *Multimedia*, pp. 11198–11201, 2024.
 557

558 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
 559 Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. *Advances*
 560 *in Neural Information Processing Systems*, 37:89098–89124, 2024.

561 Zhanzhou Feng, Jiaming Xu, Lei Ma, and Shiliang Zhang. Efficient video transformers via spatial-
 562 temporal token merging for action recognition. *ACM Transactions on Multimedia Computing,*
 563 *Communications and Applications*, 20(4):1–21, 2024.
 564

565 Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 566 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive eval-
 567 uation benchmark of multi-modal llms in video analysis. In *Proceedings of the Computer Vision*
 568 *and Pattern Recognition Conference*, pp. 24108–24118, 2025.

569 Kai Hu, Feng Gao, Xiaohan Nie, Peng Zhou, Son Tran, Tal Neiman, Lingyun Wang, Mubarak
 570 Shah, Raffay Hamid, Bing Yin, et al. M-llm based video frame selection for efficient video
 571 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 572 13702–13712, 2025.
 573

574 Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. Ivtp: Instruction-guided
 575 visual token pruning for large vision-language models. In *European Conference on Computer*
 576 *Vision*, pp. 214–230. Springer, 2024.

577 Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. *Advances in neural infor-*
 578 *mation processing systems*, 18, 2005.

580 Jerin Geo James, Devansh Jain, and Ajit Rajwade. Globalflownet: Video stabilization using deep
 581 distilled global motion estimates. In *Proceedings of the IEEE/CVF winter conference on applica-*
 582 *tions of computer vision*, pp. 5078–5087, 2023.
 583

584 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified visual
 585 representation empowers large language models with image and video understanding. In *Pro-*
 586 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13700–
 587 13710, 2024.

588 Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
 589 Kurt Keutzer. Learned token pruning for transformers. In *Proceedings of the 28th ACM SIGKDD*
 590 *Conference on Knowledge Discovery and Data Mining (KDD ’22)*, 2022.
 591

592 Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, and Xinyu Li. Video token merging for long
 593 video understanding. *Advances in Neural Information Processing Systems*, 37:13851–13871,
 2024.

594 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 595 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *CoRR*,
 596 2024a.

597 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 598 pre-training with frozen image encoders and large language models. In *International conference
 599 on machine learning*, pp. 19730–19742. PMLR, 2023.

600 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhang Zhu, Haian Huang, Jianfei Gao, Kunchang
 601 Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
 602 video modeling. *CoRR*, 2025.

603 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 604 models. In *European Conference on Computer Vision*, pp. 323–340. Springer, 2024b.

605 Long Lian, Zhirong Wu, and Stella X Yu. Bootstrapping objectness from videos by relaxed common
 606 fate and visual grouping. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 607 Pattern Recognition*, pp. 14582–14591, 2023.

608 Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
 609 visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*, 2023.

610 Shuming Liu, Chen Zhao, Tianqi Xu, and Bernard Ghanem. Bolt: Boost large vision-language
 611 model without training for long-form video understanding. In *Proceedings of the Computer Vision
 612 and Pattern Recognition Conference*, pp. 3318–3327, 2025.

613 Wen Liu, Weixin Luo, Dongze Lian, and Shenghua Gao. Future frame prediction for anomaly
 614 detection—a new baseline. In *Proceedings of the IEEE conference on computer vision and pattern
 615 recognition*, pp. 6536–6545, 2018.

616 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun, and
 617 Lu Hou. Tempcompass: Do video llms really understand videos? In *ACL (Findings)*, 2024.

618 Lang Nie, Chunyu Lin, Kang Liao, Yun Zhang, Shuaicheng Liu, Rui Ai, and Yao Zhao. Eliminating
 619 warping shakes for unsupervised online video stitching. In *European Conference on Computer
 620 Vision*, pp. 390–407, 2024.

621 Jongwoo Park, Kanchana Ranasinghe, Kumara Kahatapitiya, Wonjeong Ryoo, Donghyun Kim, and
 622 Michael S Ryoo. Too many frames, not all useful: Efficient strategies for long-form video qa.
 623 *CoRR*, 2024.

624 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 625 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 626 PMLR, 2017.

627 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 628 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 629 models from natural language supervision. In *International conference on machine learning*, pp.
 630 8748–8763. PMLR, 2021.

631 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 632 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.

633 Leqi Shen, Tianxiang Hao, Tao He, Sicheng Zhao, Yifeng Zhang, Yongjun Bao, Guiguang Ding,
 634 et al. Tempme: Video temporal token merging for efficient text-video retrieval. In *The Thirteenth
 635 International Conference on Learning Representations*, 2024a.

636 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 637 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal
 638 adaptive compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*,
 639 2024b.

648 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
 649 and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
 650 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26160–26169,
 651 2025.

652 Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, and Qixiang Ye. Adaptive keyframe sam-
 653 pling for long video understanding. In *Proceedings of the Computer Vision and Pattern Recog-
 654 nition Conference*, pp. 29118–29128, 2025.

655 Keda Tao, Can Qin, Haoxuan You, Yang Sui, and Huan Wang. Dycok: Dynamic compression of
 656 tokens for fast video large language models. In *Proceedings of the Computer Vision and Pattern
 657 Recognition Conference*, pp. 18992–19001, 2025.

658 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 659 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 660 world at any resolution. *CoRR*, 2024a.

661 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 662 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 663 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.

664 Xijun Wang, Junbang Liang, Chun-Kai Wang, Kenan Deng, Yu Lou, Ming C Lin, and Shan Yang.
 665 Vila: Efficient video-language alignment for video question answering. In *European Conference
 666 on Computer Vision*, pp. 186–204. Springer, 2024b.

667 Siyuan Wei, Tianzhu Ye, Shen Zhang, Yao Tang, and Jiajun Liang. Joint token pruning and squeez-
 668 ing towards more aggressive compression of vision transformers. In *Proceedings of the IEEE/CVF
 669 conference on computer vision and pattern recognition*, pp. 2092–2101, 2023.

670 Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, and Linfeng Zhang. Token pruning in multimodal
 671 large language models: Are we solving the right problem? In *Findings of the Association for
 672 Computational Linguistics*, 2025.

673 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 674 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 675 37:28828–28857, 2024.

676 Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
 677 Visionzip: Longer is better but not necessary in vision language models. In *Proceedings of the
 678 Computer Vision and Pattern Recognition Conference*, pp. 19792–19802, 2025.

679 Xubing Ye, Yukang Gan, Yixiao Ge, Xiao-Ping Zhang, and Yansong Tang. Atp-llava: Adaptive
 680 token pruning for large vision language models. In *Proceedings of the Computer Vision and
 681 Pattern Recognition Conference*, pp. 24972–24982, 2025.

682 Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for
 683 video localization and question answering. *Advances in Neural Information Processing Systems*,
 684 36:76749–76771, 2023.

685 Heng Zhang, Daqing Liu, Qi Zheng, and Bing Su. Modeling video as stochastic processes for fine-
 686 grained video representation learning. In *Proceedings of the IEEE/CVF Conference on Computer
 687 Vision and Pattern Recognition*, pp. 2225–2234, 2023.

688 Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis A
 689 Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsi-
 690 fication for efficient vision-language model inference. In *Forty-second International Conference
 691 on Machine Learning*, 2024.

692 Zhihang Zhong, Gurunandan Krishnan, Xiao Sun, Yu Qiao, Sizhuo Ma, and Jian Wang. Clearer
 693 frames, anytime: Resolving velocity ambiguity in video frame interpolation. In *European Con-
 694 ference on Computer Vision*, pp. 346–363, 2024.

695 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang Liang, Shitao Xiao, Minghao Qin, Xi Yang,
 696 Yongping Xiong, Bo Zhang, et al. Mlvu: Benchmarking multi-task long video understanding.
 697 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 13691–13701,
 698 2025.

702
703 A APPENDIX704
705 USE OF LARGE LANGUAGE MODELS706
707 We used large language models (LLMs) solely to assist with grammar checking, wording suggestions, and polishing of the manuscript text. No LLMs were used for idea generation, experimental design, analysis, or results.
708
709710
711 A.1 IMPLEMENTATION DETAILS712
713 We implement SURGE as a lightweight masking module between the vision encoder and the language model, requiring no retraining or modification of backbone weights. For **InternVL-3.5-VL**
714 (8B), we use the official HuggingFace release and insert SURGE after the vision encoder outputs,
715 before token projection to the LLM. For **Video-LLaVA-Qwen** (7B), we build on the Hugging-
716 Face Transformers implementation of LLaVA-Video, applying SURGE to patch embeddings from
717 the SigLIP-SO400M vision encoder before they are passed into the multimodal backbone. For
718 **Qwen2.5-VL** (7B), we extend the HuggingFace Transformers classes for the vision transformer
719 and multimodal generation to incorporate SURGE masking in the visual embedding pipeline. For
720 query-aware focusing (SURGE*), we add a CLIP relevance scorer, applied only to candidate peak
721 frames.
722723 For baseline comparisons, we adopt **FastV** (Chen et al., 2024a) (attention-based pruning) and
724 **AKS** (Tang et al., 2025) (adaptive keyframe selection), using their official open-source implemen-
725 tations within the HuggingFace/Transformers ecosystem. FastV is integrated on **Video-LLaVA-**
726 **Qwen** via its attention pruning hooks, while AKS performs frame selection upstream of the vision
727 encoder and is applicable to all models.
728729 All benchmarks are evaluated using *VLMEvalKit* (Duan et al., 2024), a standardized open-source
730 toolkit for multimodal evaluation. **We adopt its official protocols, prompt templates, and de-**
731 **coding settings** for Video-MME, MLVU, MMBench-Video, TempCompass and LongVideoBench,
732 ensuring consistent and comparable results. All models, baselines, and toolkits are open-source, and
733 we will release our SURGE/SURGE* modules and wrapper code for each model upon acceptance.
734 **Results are averaged over 5 random seeds** ($\{41, 79, 138, 534, 963\}$) **for robustness.**735
736 A.2 BASELINE METHODS737 **FastV.** FastV (Chen et al., 2024a) targets inefficiencies in VLM attention by observing that image
738 and video tokens receive vanishingly small attention in deeper layers of models like LLaVA and
739 Qwen-VL. To reduce redundant computation, FastV adaptively prunes visual tokens after a chosen
740 layer, guided by their average attention scores. This plug-and-play pruning avoids both self-attention
741 and FFN costs on discarded tokens, gaining large FLOP savings with little performance drop. Simi-
742 lar attention-guided pruning strategies exist (Zhang et al., 2024; Ye et al., 2025; Huang et al., 2024),
743 but they rely on internal attention maps that may not be exposed in deployed systems. In contrast,
744 SURGE is *training-free and attention-agnostic*: it measures novelty directly via token prediction
745 error, enabling pruning without accessing internal gradients or hidden states. This makes SURGE
746 more robust across backbones and applicable even when attention maps are inaccessible.
747748 **Adaptive Keyframe Sampling (AKS).** AKS (Tang et al., 2025) reduces temporal redundancy by
749 selecting a subset of video frames prior to encoding. It balances *relevance* (frame–query similarity)
750 and *coverage* (temporal diversity) through a recursive judge-and-split strategy, yielding high-quality
751 keyframes under fixed context budgets. While highly effective for long-video QA, AKS operates
752 only at the frame level, meaning all patch tokens from selected frames are preserved. SURGE is
753 complementary: it operates *within frames*, pruning predictable patches after encoding. Combin-
754 ing AKS and SURGE leverages both temporal and token-level sparsity, balancing efficiency and
755 accuracy across compute budgets.756 **Random Pruning.** Random pruning removes a fixed fraction of visual tokens uniformly at random.
757 Despite its simplicity, it is often a surprisingly competitive baseline: Wen et al. (Wen et al., 2025)
758 show that random selection or simple pooling can match or even outperform attention-based pruning
759 methods such as FastV and SparseVLM on several benchmarks, due to position bias and instability

756 in attention-based importance scores. More broadly, Transformers are known to be robust to random
 757 token dropping at low-to-moderate ratios, as demonstrated by Kim et al. (Kim et al., 2022), which
 758 highlights the redundancy and sparsity inherent in visual tokens. However, because random pruning
 759 ignores content, it risks discarding critical information as pruning increases. In contrast, SURGE
 760 explicitly measures temporal predictability: it prunes only redundant tokens while retaining novel
 761 ones, achieving efficiency without sacrificing essential content.

762

763 A.3 BENCHMARKS AND MODELS: DETAILS AND JUSTIFICATION

764

765 A.3.1 BENCHMARKS

766 We evaluate on five public video–language benchmarks that together span *breadth* (general QA),
 767 *depth* (temporal reasoning), and *length* (long-context). This diversity avoids redundancy and ensures
 768 SURGE is tested under complementary stressors.

769 (1) **Video-MME** (Fu et al., 2025): covers short and long clips with multimodal inputs and diverse
 770 QA types, and is widely used as a general evaluation suite for VLMs. We include it both in main
 771 results and as the basis for FLOP/latency profiling (Fig. 5), since efficiency patterns are primarily
 772 model-driven and do not require redundant measurements across multiple datasets.

773 (2) **MLVU** (Zhou et al., 2025): a long-video, multi-task benchmark reporting M-Avg/G-Avg across
 774 heterogeneous tasks such as needle QA, grounding, and summarization. Because it stresses both
 775 extended context and task variety, we use it broadly: in main results, in ablations/hyperparameter
 776 sweeps, and for long-context scaling (Fig. 4), where its long videos make it the natural choice to
 777 probe robustness under extreme input lengths.

778 (3) **MMBench-Video (MMB-V)** (Fang et al., 2024): emphasizes multi-step and compositional reasoning
 779 on multi-shot videos, complementing MLVU’s multi-task design with a focus on logical consistency
 780 and stepwise inference. We use it in main results and ablations with **Video-LLaVA-Qwen**,
 781 since its free-form QA format is particularly sensitive to token loss.

782 (4) **TempCompass** (Liu et al., 2024): isolates temporal reasoning (order, speed, duration) by con-
 783 structing nearly identical clips that differ only in motion attributes. We include it to verify that
 784 pruning does not compromise event chronology, a weakness of many sparsity methods. It appears
 785 in main results and ablations as a targeted “stress test” for SURGE.

786 (5) **LongVideoBench (LVB)** (Wu et al., 2024): targets very long videos with referring/retrieval-
 787 style questions, stressing extreme long-range reasoning. We use it in main results to demonstrate
 788 SURGE’s scalability, and in hyperparameter studies with **Qwen2.5-VL**, since only models with
 789 extended context can operate in this regime.

790 **Benchmark coverage.** All five benchmarks are included in the main results with all three models.
 791 Ablations and hyperparameters focus on **Video-LLaVA-Qwen** with MLVU, TempCompass, and
 792 MMB-V, as these sets are most diagnostic for pruning behavior. Efficiency analysis is done on
 793 Video-MME with **Qwen2.5-VL**, and long-context scaling on MLVU with **Qwen2.5-VL**, since these
 794 are the only realistic pairings for those analyses.

795

796 A.3.2 MODELS

797 We select three open-source VLMs that represent distinct integration styles and compute regimes,
 798 ensuring that SURGE is evaluated across both high-capacity and practical backbones.

800 (1) **InternVL-3.5-VL (8B)** (Chen et al., 2024b): a flagship open model with strong general VLM
 801 performance and adaptive vision encoding. We include it in the main results to show SURGE re-
 802 mains effective on a high-capacity backbone at the frontier of open performance.

803 (2) **Video-LLaVA-Qwen (7B)** (Li et al., 2024a): a widely used LLaVA-Video variant coupling a
 804 Qwen LLM with a SigLIP encoder, capped at 64 frames. Because of its popularity and stable infer-
 805 ence pipeline, we use it extensively for ablations and hyperparameter sweeps, making comparisons
 806 with prior sparsity methods more direct.

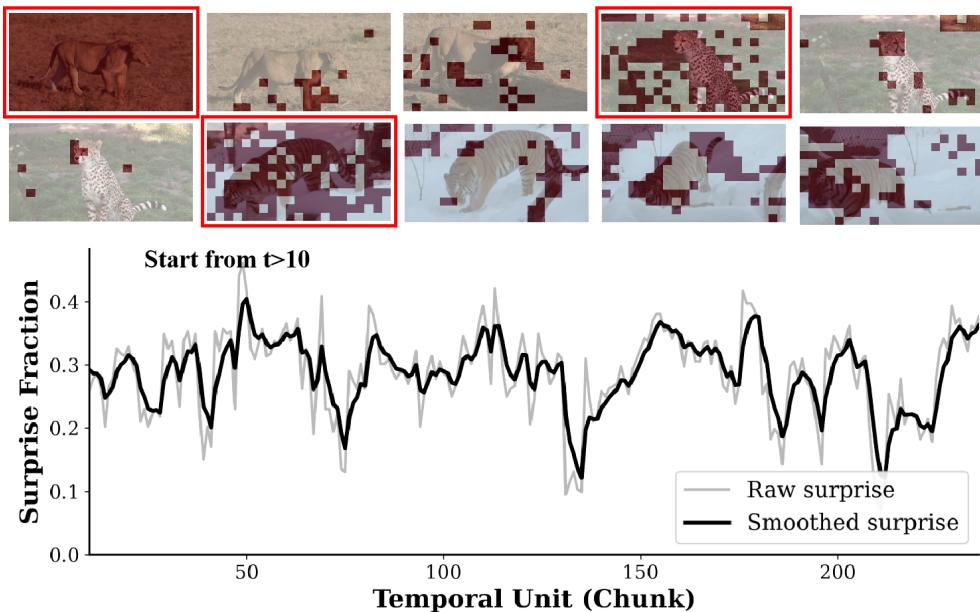
807 (3) **Qwen2.5-VL (7B)** (Bai et al., 2025; Wang et al., 2024a): the latest long-context VL model with
 808 efficient vision encoding and a $\sim 131k$ token window. It is the only backbone among the three that

810 can run extended contexts beyond 230 frames on standard hardware, which is why most efficiency
 811 breakdowns, scaling studies, and token-accuracy trade-offs are conducted on it.
 812

813 **Model coverage.** InternVL-3.5-VL represents a flagship, high-capacity baseline; Video-LLaVA-
 814 Qwen covers a video-specialized, widely adopted LLaVA-style architecture; and Qwen2.5-VL rep-
 815 resents the state of the art in long-context efficiency. This spread justifies why not all models appear
 816 in every experiment, while ensuring SURGE is validated across distinct backbones and deployment
 817 scenarios.

818 A.4 ADDITIONAL VISUALIZATIONS OF SURGE MASKING

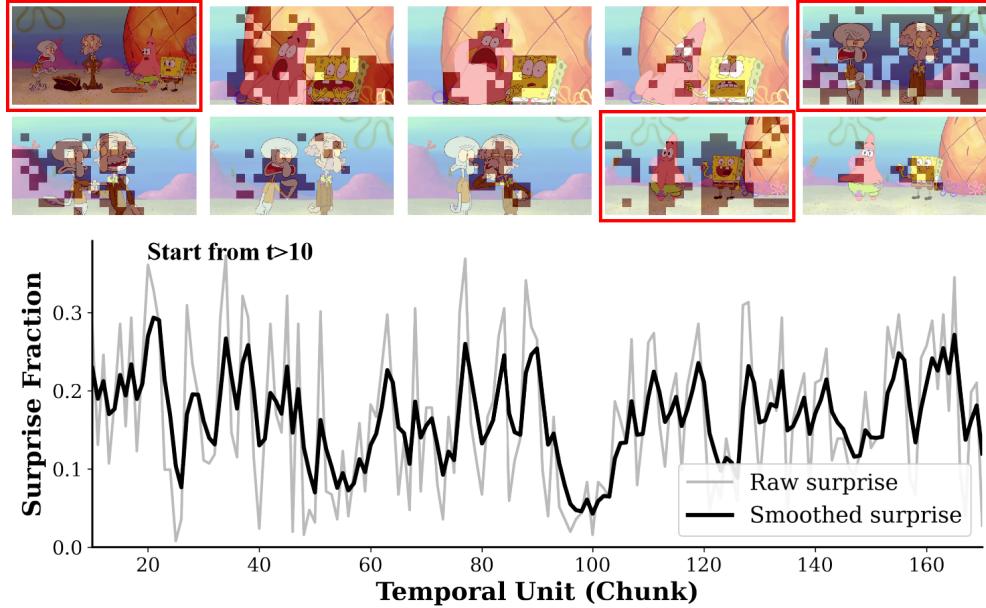
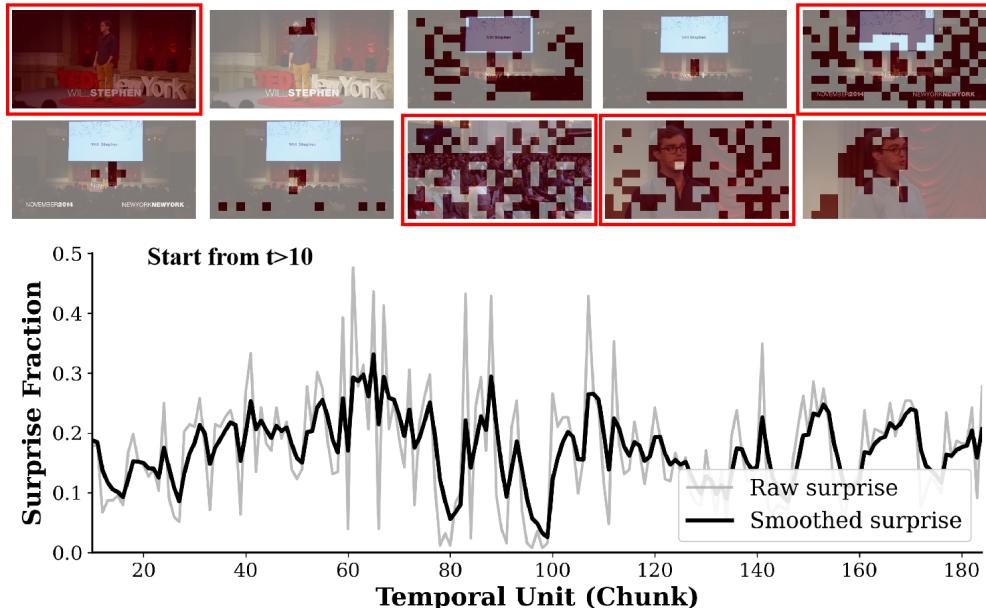
819 We provide qualitative examples of SURGE across different video domains. Figures 6–8 show raw
 820 and smoothed surprise curves alongside a *subset of the processed frames* for clarity. Red boxes
 821 indicate peak events, and shaded patches denote tokens retained by SURGE. In our implementation,
 822 the first frame is always treated as full-surprise and fully preserved, since no temporal history exists
 823 for prediction. Results demonstrate that SURGE highlights novel content across natural, animated,
 824 and lecture-style videos.



848 Figure 6: SURGE visualization on an **animal documentary** clip. SURGE emphasizes novel motion
 849 events (e.g., cheetah appearance, tiger interaction), with smoothed surprise peaks aligning with key
 850 scene changes.

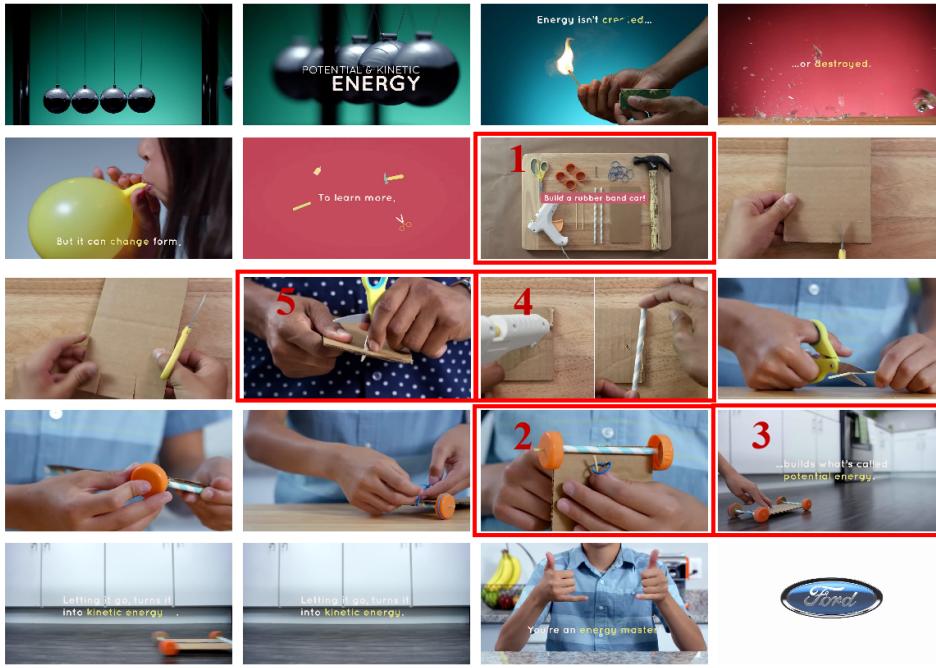
851 A.5 ADDITIONAL QUALITATIVE EXAMPLES

853 We further illustrate SURGE and SURGE* on video-QA tasks (Figs. 9–11). Across these examples,
 854 SURGE/SURGE* perform on par with the base model, successfully retaining key evidence tokens.
 855 For clarity, we display only a subset of processed frames; in SURGE*, red boxes mark peak-event
 856 selections, and we show the first frame of each event.

864
865
866
867
868
869
870
871
872
873887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930

931 Q: As depicted in the video, which tool is not necessary to make a rubber band car?
932



933 A. Straw **B. Pencil** C. Scissors D. Hammer

934 **Base Model:** B. Pencil **SURGE:** B. Pencil **SURGE*:** B. Pencil

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Both SURGE and SURGE* retain the key content and match the base model's correct prediction.

972
973974 Q: When demonstrating the Germany modern Christmas tree is initially decorated with apples,
975 candles and berries, which kind of the decoration has the largest number?
976

977 A. Apples B. Candles C. Berries D. The three kinds are of the same number

978 Base Model: C. Berries SURGE: C. Berries SURGE*: C. Berries

1000

1001 Figure 10: This task requires counting the dominant decoration type. SURGE and SURGE* preserve
1002 key frames showing dense berries, enabling them to match the base model's correct answer despite
1003 heavy pruning.

1004

1005

1006

1007

Q: Which of the following reasons motivated the archaeologists to excavate the tomb?

1008 A. Because it's from Ming Dynasty and of specific archaeological significance.
1009 B. Because a new railway line will be built nearby.
1010 C. Because there were treasures inside the tomb.
1011 D. Highway realignment.

1012 Base Model: A SURGE: C SURGE*: A

1021

1022

1023

Figure 11: The correct reason ("highway realignment") is non-visual and not inferable from frames
1024 alone. All models, including the base, fail here.
1025