
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ONLINE LOW-RANK APPROXIMATION VIA ADAPTIVE
SPHERICAL PARTITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of online low-rank approximation, where at each time step
an algorithm receives a new vector and must maintain a rank-k subspace that
serves as a compressed representation of the data. The specific formulation we
use is the weighted low-rank approximation (WLRA) objective: at each step, the
algorithm incurs loss equal to the weighted squared reconstruction error of the in-
coming point with respect to its current subspace. The goal is to minimize regret
against the best rank-k subspace in hindsight, whose reconstruction cost we denote
by C. We first establish an online-to-offline reduction: the existence of an efficient
no-regret online algorithm for WLRA would imply an efficient approximation
scheme for the offline problem, which is unlikely under standard complexity as-
sumptions. Although WLRA is APX-hard in the offline setting, we show that the
standard Multiplicative Weights Update Algorithm (MWUA) can achieve sublin-
ear regret in expectation with respect to a (1 + ε)-multiplicative approximation of
C. Specifically, we use an adaptive spherical hierarchical region decomposition
that iteratively refines the d-dimensional unit sphere Sd based on the density of
the data. At each split, a region is partitioned into 2d−1 sub-regions, producing
a hierarchal tree decomposition, while our algorithm maintains centroids of the
points in each region as the set of experts. Finally, we complement our theoretical
results with empirical evaluations that demonstrate the efficiency of our algorithm
compared to previous baselines.

1 INTRODUCTION

Modern applications generate data at massive scales, driven by the shift of everyday activities to
digital platforms. Processing such data streams efficiently is a central challenge in machine learn-
ing, as conventional algorithms often become computationally prohibitive. Introduced by Eckart
& Young (1936), low-rank approximation has long been a cornerstone of data analysis, providing
a unifying framework for compressing large datasets, uncovering latent structure, and improving
computational efficiency. Formally, given a data matrix A ∈ Rn×d, the goal is to approximate A
by a product of low-rank factors U ∈ Rn×k and V ∈ Rk×d that minimize the Frobenius norm
loss ∥A − UV∥2F . This formulation reduces dimensionality while retaining the most informative
components, enabling interpretability and efficiency. These advantages have made low-rank meth-
ods pervasive in machine learning, powering applications from recommendation systems, e.g., the
Netflix Prize (Bell et al., 2007; 2008; Koren, 2009; Bell et al., 2010), to modern foundation models,
where techniques such as LoRA (Hu et al., 2022; Xu et al., 2024; Wu et al., 2024; Li et al., 2024)
enable efficient fine-tuning by factoring weight updates into low-rank components. By approximat-
ing A with only (n+ d)k parameters rather than nd, low-rank approximation dramatically reduces
storage and speeds up matrix-vector multiplication, which is critical in large-scale settings.

In this work, we study online low-rank approximation, where rows of A arrive sequentially, and at
each time t, the algorithm must select a rank-k basis Vt before seeing xt, incurring loss

ℓ(Vt, xt) = ∥xt −VtV
⊤
t xt∥22.

This streaming formulation naturally arises in recommendation systems, fraud detection (Kamp &
Boley, 2019), and adaptive learning pipelines, where the full dataset is unknown in advance and
recomputing the SVD at each step is computationally infeasible. Performance is measured using the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

regret of the algorithm over T time steps: the difference between the cumulative projection loss of
the online algorithm and that of the optimal rank-k subspace chosen in hindsight:

RegretT =

T∑
t=1

ℓ(Vt, xt)− min
V∗∈Rd×k

T∑
t=1

∥xt −V∗(V∗)⊤xt∥22.

Our goal is to design online algorithms with sublinear regret, meaning that the average loss per time
step approaches that of the optimal offline solution as T grows.

This online low-rank approximation problem can be viewed through the lens of classical online
learning frameworks, particularly learning with experts. In this perspective, each candidate rank-
k basis can be treated as an expert, and the algorithm must select a basis before observing the
incoming vector, analogous to choosing an expert before seeing the outcome. The incurred loss
corresponds to the residual projection error, similar to the payoff (or loss) of the chosen expert.
Regret minimization in this context is directly analogous to minimizing cumulative loss relative to
the best fixed expert in hindsight. This connection seems to allow techniques from online learning,
such as the Multiplicative Weights Update Algorithm (MWUA) (Arora et al., 2012), to be adapted
to the low-rank setting, potentially enabling algorithms that adaptively combine candidate bases and
achieve provably low regret. Unfortunately, such algorithms provably incur regret Ω(

√
T log n),

where n is the number of experts (Gravin et al., 2017), which corresponds to the number of possible
rank-k bases in our setting. Naı̈vely, the number of such bases could be infinite and even more
involved techniques such as preemptively enumerating over the possible inputs would correspond to
n = exp(O(T)) experts, which would result in prohibitively large regret.

Paper organization. The remainder of this paper is structured as follows. Section 2 presents our
main theoretical and empirical contributions. Section 3 introduces our spherical hierarchical re-
gion decomposition algorithm, establishes regret bounds, and develops the underlying mathematical
framework. Section 4 demonstrates the practical effectiveness of our approach through experiments
on real-world datasets. The appendix then provides comprehensive supporting material: Appendix A
surveys related literature in online learning and low-rank approximation; Appendix B establishes
necessary notation and background; Appendix C details the incremental coreset construction pro-
cedure that enables our algorithm’s computational efficiency; Appendix D proves computational
hardness results connecting online and offline approximation; Appendix E extends our core algo-
rithmic framework to the weighted low-rank approximation setting; Appendix F contains complete
proofs of all theoretical results; and Appendix G presents additional experimental validation on both
synthetic and real-world datasets.

2 OUR CONTRIBUTIONS

While our focus is on online low-rank approximation, our results naturally extend to the more gen-
eral setting of weighted low-rank approximation (WLRA), where each entry of the data matrix
A ∈ Rn×d is assigned a non-negative weight Wi,j , and the goal is to find a rank-k factorization
UV minimizing the weighted Frobenius norm

∥W ◦ (A−UV)∥2F :=

n∑
i=1

d∑
j=1

Wi,j (Ai,j − (UV)i,j)
2
,

where ◦ denotes the Hadamard product. This formulation captures scenarios in which some entries
are more significant, noisy, or costly to approximate than others, including recommendation sys-
tems with varying confidence in ratings, robust matrix completion, and other applications with het-
erogeneous importance. Classical low-rank approximation is the special case with uniform weights
Wi,j = 1, but in practice, outlier or high-variance columns can dominate the approximation. WLRA
balances such effects via entry-specific weights, e.g., inversely proportional to variance, enabling
low-rank factors to capture the true underlying structure and improving interpretability and predic-
tive performance (Gillis & Glineur, 2011). Weighted low-rank approximation is APX-hard (Gillis &
Glineur, 2011), highlighting its computational difficulty. For further background and a comprehen-
sive overview of weighted low-rank approximation techniques and applications, we refer the reader
to the survey by Srebro & Jaakkola (2003).

Information-theoretic online guarantees via multiplicative weights. We introduce a novel on-
line algorithm grounded in the Multiplicative Weights Update Algorithm (MWUA), tailored to the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

weighted low-rank approximation setting. The algorithm operates over a hierarchy of candidate
rank-k bases derived from a structured decomposition of the unit sphere Sd, allowing it to maintain
diverse options for approximating incoming data points. At each time step, the algorithm selects
a basis according to a probability distribution weighted by the historical performance of each can-
didate, effectively balancing exploration and exploitation in high-dimensional subspace selection.
This design enables us to establish information-theoretic regret bounds of Õ(

√
T), where the no-

tation suppresses poly-logarithmic dependencies on T and polynomial dependencies on k and d.
While the full algorithm is not computationally efficient, it serves as a rigorous benchmark, provid-
ing insight into the fundamental limits of online approximation in the APX-hard regime of weighted
low-rank approximation. Beyond the formal bounds, this contribution underscores the potential of
combining multiplicative weights with geometric decompositions to adaptively manage candidate
subspaces in streaming environments.

Hardness results and offline-to-online connections. Building on this theoretical foundation,
we explore the interplay between online algorithms and classical offline computational complex-
ity. Specifically, we construct a formal reduction showing that any online algorithm with per-step
runtime f(t, k, d) can be transformed into an offline algorithm that achieves additive error ε in
time polynomial in n, k, d, 1

ε , and f(t, k, d). This reduction implies a striking consequence: a
polynomial-time online algorithm with sublinear regret would yield a fully polynomial-time approx-
imation scheme (FPTAS) for offline weighted low-rank approximation, which contradicts known
APX-hardness results (Gillis & Glineur, 2011). This connection provides a precise computational
rationale for why efficient, fully optimal online algorithms are unlikely to exist and motivates the
design of algorithms that trade off between achievable regret guarantees and feasible computation.
Moreover, it situates online low-rank approximation within a broader theoretical framework con-
necting online learning, approximation hardness, and high-dimensional optimization, highlighting
the subtle constraints imposed by sequential data arrival and weighted objectives.

Empirical evaluation and adaptive hierarchical strategies. Complementing our theoretical re-
sults, we present an empirical study that demonstrates the practical utility of our approach. We
implement a simplified hierarchical decomposition in which regions are split along randomly gener-
ated orthogonal hyperplanes, forming a coarse yet effective geometric structure over the unit sphere.
Despite this simplification relative to the more sophisticated angular decomposition used in the the-
oretical analysis, our MWUA-based algorithm consistently outperforms standard baselines across a
variety of synthetic and real-world datasets. The experiments reveal several key insights: the algo-
rithm robustly adapts to the intrinsic structure of data distributions, maintains low cumulative pro-
jection loss, and efficiently updates the approximation in a streaming setting. These results highlight
the importance of exploiting geometric information when designing online low-rank approximation
algorithms and suggest that full hierarchical decompositions could provide further improvements in
both accuracy and computational efficiency. More broadly, the experiments illustrate how adaptive
online algorithms can enable real-time analytics for high-dimensional streaming applications such
as recommendation systems, fraud detection, and adaptive learning pipelines, where recomputing
full singular value decompositions is infeasible.

Together, our contributions provide a comprehensive perspective on online weighted low-rank ap-
proximation. We establish both the limits of what is theoretically achievable and practical strategies
for approaching these limits, bridging information-theoretic guarantees, computational complexity,
and empirical performance. Our work not only advances the fundamental understanding of online
matrix approximation under sequential constraints but also provides actionable guidance for design-
ing adaptive, scalable algorithms capable of handling large-scale, high-dimensional data streams.

3 ALGORITHM

In this section, we present our algorithm for online low-rank approximation with spherical hierarchi-
cal refinement. The method combines two key ideas: (i) an adaptive spherical partitioning of the unit
ball that generates a hierarchical set of candidate centroids, and (ii) a multiplicative weights scheme
that treats these centroids as experts for constructing rank-k approximations. The latter is presented
in Algorithm 1, while the former is given in Algorithm 2. At each round, the algorithm updates a
lightweight coreset with the new data point, refines the spherical decomposition only where needed,
and adjusts expert weights based on observed projection loss. The selected basis is drawn according

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

to these weights, ensuring that the algorithm balances exploration of new regions with exploitation
of historically accurate ones. This design guarantees sublinear regret relative to the best fixed low-
rank subspace in hindsight, while maintaining computational and memory efficiency through the
adaptive coreset and hierarchical refinement.

Intuitively, the spherical HRD regret minimization algorithm maintains a collection of simple can-
didate subspaces, represented by centroids of spherical regions, and adaptively learns which ones
best capture the incoming data. Each region of the hierarchical spherical decomposition acts as an
“expert,” producing a basis vector candidate. At each time step, the algorithm forms a probabil-
ity distribution over these experts using multiplicative weights: experts that previously explained
the data well (low projection loss) are given higher weight, while poor-performing ones are down-
weighted. The chosen rank-k basis is then drawn from this distribution, ensuring that the algorithm
balances exploration of new regions with exploitation of reliable ones. The resulting regret guaran-
tee means that, over time, the algorithm performs nearly as well as the best fixed low-rank subspace
in hindsight. The coreset plays the role of a compressed memory, allowing the algorithm to retain
only the most informative vectors when making updates, which keeps computation efficient.

The spherical HRD update step determines how the partition of the sphere evolves as data accumu-
late. Given a new point, the algorithm checks whether the region containing it is too large or hetero-
geneous to represent the point well. If so, that region is refined by splitting it into smaller regions
along angular coordinates, much like recursively bisecting the sphere. This adaptive refinement en-
sures that only regions where the data distribution is complex are split, so the tree structure becomes
more detailed in dense or high-variance areas. The effect is a coreset that is spatially adaptive: it
provides fine resolution only where necessary, while leaving sparse regions coarsely represented.
This hierarchical structure allows the regret minimization algorithm to focus computational effort
where it matters most.

Algorithm 1 Spherical HRD Regret Minimization

Input: εhrd, x1, . . . , xT , learning rate η, rank k
1: Initialize spherical HRD tree H0 with root region
2: Initialize coreset S(0) ← ∅ and MTMW weights w0(p) = M(p)
3: for t = 1 to T do
4: Update coreset S(t) with incoming vector xt

5: Apply refinement criterion and update HRD tree Ht

6: Compute expert set Et from active leaf centroids
7: Compute probabilities pt(e) proportional to weights wt−1(e)
8: Select rank-k expert basis Ct = {c1, . . . , ck} according to probabilities pt
9: Receive xt and incur projection loss ℓ(Ct, xt)

10: Compute loss ℓ(e, xt) for each expert e ∈ Et
11: Update weights wt(e) using multiplicative rule with losses

Algorithm 2 Spherical HRD Update Step

Input: t, Rt−1, xt ∈ Sd, εhrd
1: Let q(·) be the refinement criteria for xt at t;
2: Rt ← ∅
3: Ut ← Rt−1

4: while Ut ̸= ∅ do
5: Pick and Remove a region R from Ut

6: if q(R) then
7: Rt ← Rt ∪ {R}
8: else
9: H ← split(R) ▷Halve along all angular coordinates

10: Ut ← Ut \R ∪H

11: return Rt

We now present the main theorem and defer the proof to the appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Theorem 3.1. Algorithm 1 has a regret of O
(
k log

(
kT 3

√
d

ε2

)√
dT
)
+ εC and a runtime of T ·

Õ
(√

dk2T 3 log T
ε2

)kd
.

3.1 SPHERICAL HIERARCHAL REGION DECOMPOSITION

A spherical region decomposition is a partition R = {R1, . . . , Rτ} of the surface of a d −
dimensional unit ball, Sd, where each part Ri is referred to as a region. A spherical hierarchal
region decomposition is a sequence of region decompositions {R1, . . . ,Rτ} where each Rt is a
refinement of Rt−1, so that for all τ ∈ [t] and regions R ∈ Rτ , there exists a region R′ ∈ Rτ−1

such that R ⊆ R′. Since a spherical hierarchical region decomposition H = {R1, . . . ,Rt} only
partitions existing regions, then we can naturally define a tree structure TH. Specifically, there is a
node TH for each region of each decomposition Rτ . There is an edge from the node representing
region R to the node representing region R′ if R ⊆ R′ and there exists a τ such that R ∈ Rτ and
R′ ∈ Rτ−1. We slightly abuse notation and use R to refer to the node corresponding to a region R.
The bottom-level spherical decomposition is the decomposition induced by the leaves of the tree.

Given a spherical hierarchical decomposition Ht = {R1, . . . ,Rt} and a set of points S ⊆ Sd of
size k, we define the representative regions of S in Ht as a sequence of multisets {R̃τ}tτ=1, where
R̃τ = {R∈Rτ | there exists s ∈ S : s ∈ R} with multiplicities defined with respect to S. These
representative regions correspond to a path in TH.

Let Sd denote the unit sphere equipped with the uniform surface probability measure σ. For a
measurable region R ⊆ Sd, define the mean vector

v(R) =

∫
x∈R

x dσ(x) = E
x∼Unif(R)

[x] ∈ Rd.

The spherical centroid of R is then given by

centroid(R) =
v(R)

∥v(R)∥2
∈ Sd,

where ∥ · ∥2 denotes the Euclidean norm in Rd. As our regions will always be non-empty, we can
ignore the degenerate case where v(R) = 0.

We then define the approximate centers of S induced by Ht as the sequence of multisets {S̃τ}tτ=1,
where S̃τ = {centroid(R) | R ∈ R̃τ}.

3.2 ADAPTIVE SPHERICAL HIERARCHICAL REGION DECOMPOSITION

Given a sequence of points in Rd, we describe an algorithm which maintains a hierarchal decompo-
sition of the surface Sd of a d-dimensional hypersphere. We first define d-dimensional polar coordi-
nates as follows. A point x ∈ Sd ⊂ Rd can be represented in d − 1-dimensional polar coordinates
x = (θ1, θ2, . . . , θd−1), where the coordinates are defined recursively as

x1 = cos(θ1), x2 = sin(θ1) cos(θ2), , . . . , xd = sin(θ1) · · · sin(θd−2) sin(θd−1),

with ranges
0 ≤ θi ≤ π for 1 ≤ i ≤ d− 2, 0 ≤ θd−1 < 2π.

Using this coordinate system, we will define each region R ⊆ Sd in the hierarchical decomposition
by a product of intervals in the angular coordinates:

R = [θmin
1 , θmax

1]× [θmin
2 , θmax

2]× · · · × [θmin
d−1, θ

max
d−1].

Observe that bisection along these angular intervals defines the refinement of the hierarchical de-
composition at each level. The spherical diameter ∆R can then be measured as the maximum
great-circle distance between any two points in R, which can be approximated from the ranges of
the angular coordinates. Formally, we have ∆R = supx,y∈R distSd(x, y), where distSd(x, y) de-
notes the geodesic (great-circle) distance between x and y on the unit sphere, i.e., distSd(x, y) =
arccos(⟨x, y⟩), x, y ∈ Sd.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Given a sequence of points on the unit hypersphere Sd ⊂ Rd, we describe an algorithm that main-
tains a hierarchical region decomposition with regions defined via d-dimensional polar coordinates
(r = 1) as follows. Let εhrd > 0 be a parameter such that εhrd

2T 3·
√
d

is a power of 2. This require-
ment allows us to define an implicit angular grid with angular resolution δT = εhrd

2T 3 , such that the
full spherical grid can be constructed from a single region covering the entire sphere by repeated
bisection in all angular coordinates. Denote the angular resolution at level t by δt =

εhrd
2T 3 . We refer

to this implicit angular grid, together with the tree structure induced by the successive bisections, as
the full spherical grid and the full spherical grid tree.

Consider a time t, a region R ∈ Rt, and a point x ∈ Sd. Denote the spherical diameter of R
by ∆R, as defined by the supremum of great-circle distances between points in R, and let r =
minp∈R distSd(p, x) be the geodesic distance between x and R, so that r = 0 if x ∈ R.

We define the refinement criterion induced by x at time t as q(R), which is true if and only
if the spherical diameter of R satisfies ∆R ≤ max

(
εhrd·r

2 , δt
)
. At a given time t, a new unit

vector xt is received, and the hierarchical region decomposition obtained at the end of time t −
1, Ht−1, is refined by successively bisecting any region R for which q(R) = false along one
or more angular coordinates, until all resulting regions satisfy the refinement criteria induced by
all vectors x1, . . . , xt at their corresponding insertion times. This procedure guarantees that the
spherical hierarchical decomposition maintains all angular intervals small enough relative to both
the local geodesic distance from inserted points and the target resolution δt.

Lemma 3.2. Consider the hierarchal region decomposition {R1, . . . ,Rt} produced by the algo-
rithm at any time t. Consider a region R ∈ Rt−1. Then either region R belongs to Rt, or each
child region of R inRt has angular diameter at most 4π

2t .

We next bound the number of times a single region can be refined along a chain of nested regions.
Consider a sequence of regions {Rt ∈ Rt}Tt=1 such that Rt+1 ⊆ Rt for all t. Let Λ denote the
number of strict refinements in this sequence, i.e., Λ = |{ t | Rt+1 ̸= Rt }|. Since the algorithm
never refines a region once its angular diameter is below δt, the total number of possible refinements
along such a chain is logarithmically bounded in the ratio between the initial and terminal diameters.
Combining this stopping rule with the upper bound on diameters from Lemma 3.2, we have:

Corollary 3.3. For any sequence of nested regions of length T , we have

Λ ≤ − log

(
δt√
d

)
= − log

(
εhrd

2T 3
√
d

)
.

Lemma 3.4. Let x1, . . . , xn ∈ Sd be a stream of unit vectors. The number of new regions added at

any step t is at most
(

2π
√
d

δT

)d−1

log
(

2T 3
√
d

εhrd

)
. Hence, the total number of regions after N steps is

at most N
(

2π
√
d

δT

)d−1

log
(

2T 3
√
d

εhrd

)
.

Corollary 3.5. Let R ∈ Rt be any region at step t, and let S = {R′ ∈ Rt+1 | R′ ⊆ R} be the set
of regions that refine R in the next time step. Then the maximum branching factor β satisfies

β := max
t,R
|S| ≤

(
2π
√
d

δT

)d−1

log

(
2T 3
√
d

εhrd

)
,

due to Lemma 3.4. Furthermore, for sufficiently large T , we have β ≤ d·Λ, where Λ is the maximum
number of refinements along any path in the hierarchical decomposition.

Having bounded the branching factor of the hierarchical decomposition, we next show that this
structural control also ensures stability of the loss across nearby bases within the same region.

Lemma 3.6. Consider an instance of the online low-rank approximation problem where a new unit
vector xt ∈ Rn arrives at each time step t, and let the spherical hierarchical region decomposition
with parameter εhrd produce the regions Rt at step t. Let εhrd > 0, and consider two multisets
of rank-k basis vectors S = {u1, . . . , uk}, S′ = {u′

1, . . . , u
′
k}, with ui, u

′
i ∈ Rn lying on the unit

sphere for all i ∈ [k].

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Suppose that for each i ∈ [k], the pair (ui, u
′
i) lies within the same spherical region of the decom-

position at step t. Then, for all 1 ≤ τ < t,

ℓ(S′, xτ) ≤ (1 + εhrd) ℓ(S, xτ) +
εhrd
τ5

.

In other words, for two points in the same region, the loss of S′ on any previously seen point is at
most (1 + εhrd) times the loss of S, up to a small additive term that decreases over time as εhrd

τ5 .

We now extend this lemma to the low-rank approximation setting. Given a collection of k unit vec-
tors U = {u1, . . . , uk} spanning the candidate rank-k subspace, and a spherical hierarchical region
decomposition H = {R1, . . . ,Rt}, we associate with U a sequence {Ũ1, . . . , Ũt} of approximate
bases induced by H. Specifically, for each ui ∈ U , we define its approximation at step t to be the
centroid vi of the region in Rt containing ui. Note that Ũt = {v1, . . . , vk} is a multiset of unit
vectors, which spans an approximate subspace Vt.

The next lemma follows directly from applying Lemma 3.6 to each such approximate basis Ũt in
place of U , and summing the resulting error bounds over all steps t.
Lemma 3.7. Let S∗ = {u1, . . . , uk} be the optimal set of k basis vectors in hindsight for the stream
x1, . . . , xT ⊆ Rn, and let S̃t = {ũt,1, . . . , ũt,k} denote the approximate basis vectors induced by
the spherical hierarchical decomposition with parameter εhrd, where each ũt,i is the centroid of
the region in Rt containing ui. Then the cumulative reconstruction loss of the approximate bases
satisfies

T∑
t=1

ℓ(S̃t+1, xt) ≤ (1 + εhrd)

T∑
t=1

ℓ(S∗, xt) + 2εhrd,

where C =
∑T

t=1 ℓ(S
∗, xt) is the optimal offline reconstruction cost.

As Corollary 3.3 shows, each basis vector ui can move to a new region centroid at most Λ times,
since each of the k regions containing ui can be refined at most Λ times. Hence, the approximate
basis S̃t+1 differs from S̃t at most k · Λ times over the entire stream. Moreover, since the instanta-
neous loss ℓ(S, xt) is bounded by d, combining this with Lemma 3.7 yields the following corollary.

Corollary 3.8. For the optimal set of basis vectors in hindsight S∗ and the approximate basis vectors
S̃t induced by the Spherical Hierarchical Region Decomposition at time step t, for an unweighted
stream x1, . . . , xT we have

T∑
t′=1

ℓ(S̃t′ , xt′) ≤ (1 + εhrd)C + k · Λ + 2εhrd,

3.3 MTMW - MWUA FOR TREE STRUCTURED EXPERTS

We present an algorithm, which we call Mass Tree MWUA (MTMW), that achieves low regret in the
setting of Prediction from Expert Advice, adapted to the online low-rank approximation problem.
Our presentation follows the hierarchical decomposition framework of Cohen-Addad et al. (2021)
for online clustering, combined with the regret analysis of Arora et al. (2012), and we adapt the
classical Multiplicative Weights Update Algorithm (MWUA) to this setting to obtain an analogous
regret bound. The set of experts is structured according to the spherical hierarchical region decom-
position (HRD) in polar coordinates, as previously described. Let ℓ denote a bounded loss function
on the unit sphere, with ℓ(x, y) ∈ [−1, 1] for all x, y ∈ Sd. Consider a spherical HRD HT of depth
T , where each leaf corresponds to a region of minimum angular diameter δT . Each vertex of the
decomposition corresponds to a region, and the set of experts is defined as all sequences of nested
regions from the root to a leaf:

P(HT) = {(R1, . . . , RT) : R1 is the root region, RT is a leaf region}.
For a path p = (R1, . . . , RT) ∈ P(HT), the prediction at step t is taken to be the centroid of region
Rt, and the cumulative loss of p on a sequence of arriving unit vectors X1:T = {x1, . . . , xT } is

ℓ(p,X1:T) =

T∑
t=1

ℓ(centroid(Rt), xt).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

To initialize the weights, we associate a mass to each region in the decomposition. The root is
assigned mass 1, and any other region R with parent region R′ is assigned M(R) = M(R′)

deg(R′) , where
deg(R′) is the number of children of R′. The mass of a path is defined as the mass of its terminal
leaf region.

This mass structure allows the MTMW algorithm to perform multiplicative weight updates over
the hierarchical expert set efficiently, exploiting the nested structure of the spherical HRD. Before
proving the regret bound, we present a key lemma on the properties of the mass distribution and the
relationship between region refinement and the maximum branching factor of the decomposition.

Lemma 3.9. Let v be a region in the spherical hierarchical decomposition, T̃ a subtree rooted at
v, and Ṽ the set of leaf regions of T̃ . Then the mass of v equals the sum of the masses of its leaf
regions, i.e., M(v) =

∑
v′∈Ṽ M(v′).

We now upper bound the expected regret of our algorithm.
Theorem 3.10. Let Tt be the tree corresponding to the spherical hierarchical region decomposition
at step t. Consider running the Mass Tree Multiplicative Weights Update Algorithm (MTMW) over
the set of experts given by all root-to-leaf paths of the final tree, P(Tt). Even if the tree is revealed
adaptively up to depth t at each time step, running MTMW is possible provided each path p ∈ P(Tt)
is initialized with weight M(p). Then, the regret of MTMW with respect to any path p is bounded by

Regret ≤
√
−T lnM(p).

Moreover, the algorithm can be implemented with time complexity O(|Tt|), i.e., proportional to the
number of vertices in the tree.

Corollary 3.11. For the low-rank matrix approximation problem with loss bounded by d, the Mass
Tree MWUA (MTMW) algorithm achieves a regret bound of Regret ≤ d

√
−T ln(M(p)), where

M(p) is the initial mass of the path corresponding to expert p, and the bound follows from using a
normalized loss function.

3.4 REGRET BOUND

Based on the above components of the algorithm, the regret bound for the full algorithm:

Before stating the main lemma in Lemma 3.12, we clarify the interpretation of the terms that appear
in the bound. The multiplicative term captures the approximation errors introduced by the algorithm:
εc corresponds to the error incurred approximating basis vectors with the centroids of their spherical
regions (canonical representations), while εhrd accounts for the error due to the hierarchical region
decomposition. The sum of these two errors is scaled by k, the rank of the approximation, and Λ, the
maximum refinement depth of the spherical HRD; the factor of 8 arises from the geometric argument
in the proof of Corollary 3.5. The additive term reflects the cost associated with maintaining k
experts across Λ levels of refinement in the Mass Tree MWUA algorithm. Specifically, d is the data
dimensionality, and kΛ bounds the cumulative regret incurred, as detailed in Corollary 3.3.
Lemma 3.12. Let H be a spherical HRD with parameter εhrd that is constructed from {Qt}Tt=1.
Let S∗ be the best low-rank basis in hindsight, and let S̃t be the approximate basis induced byH at
time t. Then, we have:

T∑
t=1

ℓ(S̃t, xt) ≤ (1 + εc + 8(εhrd + εc)kΛ) C + kΛ

where C =
∑T

t=1 ℓ(S
∗, xt) is the optimal offline reconstruction cost.

Consider the Spherical Hierarchical Region Decomposition Ht at step t, and its associated region
tree THt

as described in Section 3.1. We construct a k-region tree by taking a level-wise k-fold
tensor product of THt

: each vertex at depth t corresponds to a k-tuple of regions (v1, . . . , vk) at
level t of THt

, and a directed edge from (v1, . . . , vk) at level t to (u1, . . . , uk) at level t + 1 exists
if and only if (vi, ui) is an edge in THt

for every i ∈ [k]. We then define the corresponding k-
basis tree (or k-tree), whose vertices correspond to the centroids of the regions rather than the
regions themselves. Concretely, a vertex (v1, . . . , vk) in the k-region tree corresponds to a vertex

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

[µ(v1), . . . , µ(vk)] in the k-tree, where µ(vi) denotes the centroid of region vi. Each set of k basis
vectors S = {u1, . . . , uk} can be associated with a path in the k-region tree representing the regions
containing each ui, and the corresponding approximate basis vectors S̃t are associated with the path
in the k-tree through the centroids of these regions.

In this framework, the Mass Tree MWUA (MTMW) algorithm assigns a mass M(v) to each vertex
v in the k-tree, recursively defined as in Lemma 3.9. The mass of a path p through the k-tree reflects
the combined probability weight of choosing the sequence of approximate basis vectors along that
path. Lemma 3.12 guarantees that there exists a path p∗ in the k-tree corresponding to the optimal
set of basis vectors S∗ in hindsight, such that the cumulative loss of the sequence of centroids along
p∗ is close to the offline optimal reconstruction cost C.
Lemma 3.13. Let p∗ denote the path in the k-tree corresponding to the best set of basis vectors
in hindsight. Λ is the maximum refinement depth of the HRD and β bounds the logarithm of the
maximum branching factor of any region in the decomposition, as defined as in Corollary 3.3 and
Corollary 3.5, respectively. Then we have − lnM(p∗) ≤ k2Λβ.

Here, − lnM(p∗) quantifies the “effective number of experts” in the MWUA analysis, i.e., the
cumulative weight spread across all possible sequences of approximate basis vectors in the k-tree.
This upper bound ensures that MTMW achieves low regret relative to the optimal set of basis vectors
S∗ in hindsight. This concludes all the components to prove our main result of Theorem 3.1.

4 EXPERIMENTS ON MNIST DATASET

We use the MNIST (Modified National Institute of Standards and Technology) 784 dataset (LeCun
et al., 1998), which has 70,000 observations and 784 features. MNIST is a dataset widely used in
machine learning, where each example is a handwritten digit and the features are the pixel intensity
values of the digit image. This dataset was accessed through Kaggle.

Experimental setup. We perform dimensionality reduction on the MNIST dataset, reducing to
d = 50 dimensions with TruncatedSVD. This gives us a low rank approximation of the original
matrix with the top 50 singular values. The reduced vectors are then also normalized to unit length.
The HRD algorithm tests on target basis vector rank k = 10, k = 15, and k = 20, splitting threshold
dsplit = 15, minimum leaf size nmin=20, maximum leaf size nmax = 100, learning rate η = 0.5, and
refinement parameter εhrd = 0.1. We stream 500 data points and compare performance to the same
baseline non-adaptive net introduced in the synthetic experiments.

(a) k = 10 (b) k = 15 (c) k = 20

Fig. 1: Cumulative Loss of HRD Algorithm and Fixed Baseline Net over 500 Data Points for MNIST
Dataset with different values of k

Results and discussion. Our results in Figure 1 show that the HRD algorithm outperforms the
fixed baseline by a wide margin in all three cases, with a percent decrease in reconstruction loss of
57.64% in the rank-10 case, 64.75% in the rank-15 case, and 73.42% in the rank-20 case. Because
the MNIST dataset presents naturally occurring patterns from handwritten digits, these results indi-
cate that the HRD algorithm successfully adapts to patterns presented in the dataset, demonstrating
applicability beyond controlled, synthetic situations even in higher dimensions. Moreover, as ex-
pected, the improvements delivered by the HRD algorithm increased as we increased the dimension
of the basis vectors. Notably, this experiment ran for significantly longer than the synthetic exper-
iments despite having only 500 time steps compared to 1000. This increased computational cost
reflects the algorithm’s adaptive behavior when encountering complex, real-world data structures
that require more sophisticated partitioning decisions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012. 2, 7, 12, 20

Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of sub-
spaces from highly incomplete information. Allerton Conference on Communication, Control,
and Computing, pp. 704–711, 2010. 12

Robert M Bell, Yehuda Koren, and Chris Volinsky. The bellkor solution to the netflix prize. KorBell
Team’s Report to Netflix, 2007. 1

Robert M Bell, Yehuda Koren, and Chris Volinsky. The bellkor 2008 solution to the netflix prize.
Statistics Research Department at AT&T Research, 1(1), 2008. 1

Robert M Bell, Yehuda Koren, and Chris Volinsky. All together now: A perspective on the netflix
prize. Chance, 23(1):24–29, 2010. 1

Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
algebra and its applications, 415(1):20–30, 2006. 12

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay,
David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding
window models. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pp. 517–528, 2020. 14

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006. 12

Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the dimension
is small. J. ACM, 42(2):488–499, 1995. 12

Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade, and Guy Rom. Online k-means clustering.
In The 24th International Conference on Artificial Intelligence and Statistics, AISTATS, pp. 1126–
1134, 2021. 7, 13

Thomas M Cover. Behavior of sequential predictors of binary sequences. Number 7002 in Stanford
Electronics Laboratories Technical Report. Stanford University, Systems Theory, 1966. 12

Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Learned lessons in
credit card fraud detection from a practitioner perspective. In Expert systems with applications,
volume 41, pp. 4915–4928. Elsevier, 2014. 25

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936. 1, 11

Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust pca via stochastic optimization. Advances
in Neural Information Processing Systems, 26:404–412, 2013. 12

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997. 12

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999. 12

Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM J. Comput., 37(2):630–652, 2007. 12

Nicolas Gillis and François Glineur. Low-rank matrix approximation with weights or missing data
is np-hard. SIAM J. Matrix Anal. Appl., 32(4):1149–1165, 2011. 2, 3, 14, 15, 23

Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight lower bounds for multiplicative
weights algorithmic families. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP, pp. 48:1–48:14, 2017. 2

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53
(2):217–288, 2011. 12

Elad Hazan, Tomer Koren, Roi Livni, and Yishay Mansour. Online learning with low rank experts.
In Proceedings of the 29th Conference on Learning Theory, COLT, pp. 1096–1114, 2016. 12

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR, 2022. 1

Ian T Jolliffe. Principal component analysis. Springer, 2002. 12

Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for online decision problems. J.
Comput. Syst. Sci., 71(3):291–307, 2005. 12

Michael Kamp and Mario Boley. Streaming fraud detection: A survey and new research directions.
Data Mining and Knowledge Discovery, 33(2):497–531, 2019. 1

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 81
(2009):1–10, 2009. 1

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. The mnist database of handwritten
digits. 1998. URL http://yann.lecun.com/exdb/mnist/. 9

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. 1

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Comput., 108(2):
212–261, 1994. 12

H. Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and L1 regularization. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS, pp. 525–533, 2011. 12

Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res., 20(2):257–301, 1995. 12

David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning for
robust visual tracking. International journal of computer vision, 77(1-3):125–141, 2008. 12

Nathan Srebro and Tommi S. Jaakkola. Weighted low-rank approximations. In Machine Learning,
Proceedings of the Twentieth International Conference(ICML), pp. 720–727, 2003. 2

Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. {dLoRA}: Dy-
namically orchestrating requests and adapters for {LoRA}{LLM} serving. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 911–927, 2024.
1

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In The Twelfth International Conference on Learning Representations, ICLR, 2024. 1

A RELATED WORK

Low-rank approximation. Low-rank approximation has a rich history in both linear algebra and
machine learning, serving as a foundational technique for data compression, dimensionality reduc-
tion, and uncovering latent structure. The seminal result of Eckart & Young (1936) established that
the optimal rank-k approximation of a matrix in the Frobenius norm is obtained via truncated sin-
gular value decomposition (SVD). Building on this, a wide range of classical algorithms have been
developed for efficiently computing low-rank approximations of static datasets. Randomized SVD

11

http://yann.lecun.com/exdb/mnist/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

methods (Halko et al., 2011) exploit random projections to accelerate computation while preserving
accuracy, and principal component analysis (PCA) (Jolliffe, 2002) remains a widely used method
for identifying directions of maximal variance in high-dimensional data. These techniques are cen-
tral to many modern applications, including collaborative filtering, natural language processing, and
computer vision, where they reduce storage requirements, accelerate downstream computations, and
improve interpretability.

The online or streaming setting, in which data arrives sequentially, introduces additional challenges.
Unlike static datasets, where the full matrix is known prior, online low-rank approximation must
maintain an accurate representation of the matrix as new rows or columns arrive, without recomput-
ing the full SVD at each step. Incremental SVD updates (Brand, 2006) address this by algebraically
modifying existing decompositions to account for additions or deletions of rows and columns, en-
abling efficient updates while retaining the low-rank structure. Similarly, online subspace identifica-
tion from incomplete observations (Balzano et al., 2010) generalizes these ideas to sparse streaming
matrices, which are common in recommendation systems and user-item interactions. In these set-
tings, the matrix is only partially observed at each time step, and the algorithm must adaptively
update the underlying low-dimensional subspace to provide accurate predictions.

Online PCA extends these ideas further, enabling incremental dimensionality reduction in applica-
tions with continuously arriving high-dimensional data. For instance, Ross et al. (2008) apply online
PCA to visual tracking, processing frames sequentially, projecting each onto the current subspace,
and updating mean, covariance, and principal components. Subsequent work (Feng et al., 2013)
addresses the limitations of classical online PCA methods by incorporating robustness against out-
liers and corrupted observations, which frequently arise in real-world streaming datasets. These ap-
proaches demonstrate the importance of maintaining adaptability and resilience in online low-rank
models, particularly when the data distribution is non-stationary or contains noise.

Collectively, these contributions highlight both the theoretical foundations and practical algorithms
for online low-rank approximation. They motivate the need for methods that balance computational
efficiency with adaptive accuracy, especially in high-dimensional, streaming, and noisy environ-
ments. Our work builds on these insights by integrating hierarchical geometric decomposition with
multiplicative weights strategies, providing a framework that achieves provable regret guarantees
while maintaining adaptability to evolving data distributions.

Online learning with experts. Online learning with experts and related sequential decision-making
problems have been extensively studied in the machine learning and theoretical computer science
communities (Cesa-Bianchi & Lugosi, 2006). In this framework, an algorithm repeatedly selects
actions or “experts” from a predefined set, receives feedback in the form of losses, and aims to
minimize its cumulative loss relative to the best fixed expert in hindsight. Early work assumed the
existence of a “perfect expert” whose predictions were always correct. In this idealized scenario,
a folklore “halving” algorithm achieves at most log2 n mistakes by retaining the set of experts that
have not yet erred and predicting based on majority vote.

Recognizing that a perfect expert rarely exists in practice, Littlestone & Warmuth (1994) introduced
the randomized weighted majority (RWM) algorithm. Here, predictions are sampled according to a
probability distribution proportional to the experts’ weights, which are updated multiplicatively after
each round. This yields O(

√
T log n) regret and is asymptotically optimal (Cover, 1966). More

generally, the Multiplicative Weights Update (MWU) framework extends these ideas to arbitrary
loss functions and has found applications in boosting (e.g., AdaBoost (Freund & Schapire, 1997)),
approximately solving zero-sum games (Freund & Schapire, 1999), and efficiently approximating
linear and semi-definite programs (Clarkson, 1995; Plotkin et al., 1995; Garg & Könemann, 2007).
Variants such as Follow the Perturbed Leader (FTPL) and Follow the Regularized Leader (FTRL)
introduce random perturbations or regularization to improve stability and computational efficiency in
structured problems (Kalai & Vempala, 2005; McMahan, 2011). For an in-depth survey of MWUA
and its widespread applications in online optimization, game theory, and combinatorial learning, see
(Arora et al., 2012).

A particularly relevant extension is the work on online learning with low-rank experts by Hazan et al.
(2016), which exploits hidden low-rank structure in the expert loss matrix. In this setting, although
the nominal number of experts may be very large, the effective dimensionality of the loss matrix is
small, allowing regret bounds to scale with the rank rather than the total number of experts. This

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

insight is closely aligned with our online low-rank approximation problem: in our formulation, each
candidate low-rank basis can be interpreted as an “expert”, and the losses correspond to squared
residuals of projections. However, a key distinction in our work is that the expert set itself evolves
over time through incremental coreset updates and hierarchical decomposition of the space, rather
than being fixed in advance. This adaptive structure introduces additional challenges in maintaining
low regret while efficiently selecting high-quality bases.

Variants of MWUA have also been developed to handle hierarchical or tree-structured expert sets.
Notably, the Mass Tree MWUA (MTMW) framework by Cohen-Addad et al. (2021) introduces a
hierarchical organization of experts, allowing multiplicative updates to propagate efficiently along
the tree structure. This hierarchical approach provides both computational advantages and more
refined control over exploration versus exploitation across different scales of the expert set. Our
algorithm builds directly on these ideas: we treat candidate low-rank bases as hierarchical experts
organized according to a decomposition of the unit sphere, and we apply multiplicative weight
updates at multiple levels of this hierarchy. By combining these hierarchical MWUA techniques
with adaptive coreset selection, we can achieve theoretically meaningful regret guarantees in the
challenging setting of online low-rank approximation, while also enabling practical performance
improvements on high-dimensional streaming data.

Overall, these connections demonstrate that our approach not only leverages foundational insights
from the classical MWUA and low-rank experts literature, but also extends them to a dynamic,
geometrically structured expert space, bridging online learning theory with modern challenges in
matrix approximation and streaming data analysis.

B PRELIMINARIES

Notation and basic definitions. We first restate some basic notations and definitions necessary for
our results. We use the notation [n] to represent the set {1, ..., n} for some integer n. We typically
use bold-font to denote matrices, whereas we use default-font variables to represent vectors and
scalars. For a matrix A ∈ Rk×d, we denote its squared Frobenius norm by

∥A∥2F =

k∑
i=1

d∑
j=1

A2
ij ,

which is the sum of square of all entries of A.

For a vector x ∈ Rd, we denote the squared Euclidean norm by ∥x∥22 =
∑d

j=1 x
2
j . We use ◦

to denote the Hadamard (element-wise) product of matrices. For points x, y ∈ Sd, we define the
geodesic (great-circle) distance as

distSd(x, y) = arccos(⟨x, y⟩).

Multiplicative weighs update algorithm. For completeness, we briefly recall the standard Multi-
plicative Weights Update algorithm. For a learning rate η ≈ 1√

T
, MWU guarantees low regret over

T rounds. Specifically:

Theorem B.1. Consider n experts with losses at most ρ on each of T rounds. The MWU algorithm,
c.f., Algorithm 3, achieves expected regret O

(
ρ
√
T log n

)
.

Algorithm 3 Multiplicative Weights Update (MWU)

Input: Learning rate η, expert losses {ℓi(t)} for i ∈ [n], t ∈ [T]
Output: Sequence of expert selections

1: Initialize cumulative losses: wi ← 0 for all i
2: for t = 1 to T do
3: for i = 1 to n do
4: update cumulative loss: wi ← wi + ℓi(t)

5: Select expert i with probability proportional to exp(−ηwi)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Problem definition. We define the online low-rank approximation problem as follows. At each
time step t, a row vector xt ∈ [0, 1]d ⊆ Rd arrives, and we denote X1:t−1 the matrix formed by
stacking the rows {x1, . . . , xt−1}. The learning algorithm must output a rank-k approximation Vt

using only X1:t−1. We refer to Vt as the algorithm’s hypothesis subspace at time t.For convenience,
we define the multiset representation of this basis as

St := {vt,1, vt,2, . . . , vt,k},
where St contains all column vectors of Vt. Viewing Vt as a multiset St allows us to reason about
the basis in terms of its constituent vectors, and to compare two bases Vt,V

′
t by comparing the cor-

responding multisets St, S
′
t. With this representation in place, we can now define the instantaneous

loss incurred by the algorithm at time t as

ℓ(St, xt) = ∥xt −Vt(Vt)
⊤xt∥22

that is, the squared reconstruction error of xt under the approximation Vt.

The total loss of the algorithm up to time t is Lt =
∑t

τ=1 ℓ(Sτ , xτ). Let S∗
t denote the multiset of

the best rank-k approximation to the data {xτ}t−1
τ=1. In hindsight, the optimal rank-k solution after

T steps is denoted S∗
T+1. The loss of the best rank-k solution in hindsight after T steps is denoted

as C and is defined as C =
∑T

τ=1 ℓ(S
∗
T+1, xτ). The regret is then defined as Regret(T) = LT − C.

C CORESET CONSTRUCTION

The first part of our algorithm is to maintain the sets of basis vectors {S(t)}t∈[T], which induces a
(1 + ε)-approximation to the best rank-k approximation problem at each time t ∈ [T]. Moreover,
each S(t) contains at most O(k · log3 T) basis vectors and the sequence S(1), S(2), . . . , S(T) forms
an incremental coreset for low-rank approximation. Specifically, it is monotone in the sense that
S
(t−1)
i ⊆ S

(t)
i for all t, and any data vector x that is represented using a basis in S

(t)
i at time t

remains represented by that same basis in all subsequent sets S
(τ)
i for t ≤ τ ≤ T . To construct

and maintain these incremental low-rank coresets, we use the algorithm of Braverman et al. (2020),
whose performance guarantees are summarized in the following proposition, which follows directly
from their work.
Theorem C.1. (Braverman et al., 2020) There exists a randomized algorithm that constructs an
incremental coreset for low-rank approximation with probability at least 1 − 1

T 5 while storing
O
(

k
ε2 log

3 T
)

rows at any time and using nearly input-sparsity time.

We remark that as stated in Braverman et al. (2020), the online condition number, defined as the
ratio of the largest nonzero singular value to the smallest nonzero singular value of any intermediate
matrix defined by the data stream must be bounded by some polynomial in T , in order to achieve
(1 + ε)-multiplicative approximation in the above stated guarantee. Such an online condition num-
ber bound may not necessarily hold even if each row of the input matrix is a vector with entries
represented by O(log T) bits, normalized to a unit vector. In particular, there exist examples of
anti-Hadamard matrices with dimension n× d but optimal low-rank cost as small as exp(−O(k)).
Hence, the online condition number can be as large as exp(O(k)) · poly(T), which would poten-
tially result in a coreset with size k3 · polylog(T), since the number of rows sampled, as formally
stated by Braverman et al. (2020), is O

(
k
ε2 log n log2 κ

)
, where κ is the online condition number.

However, if we permit additive error by our coreset, then we can achieve the stated number of rows
O
(

k
ε2 log

3 T
)

with an additional additive error O(1), which suffices for our purposes.

D LOWER BOUND

Given the disappointing runtime of the grid-MWUA algorithm, one may wonder whether there is
a way to avoid explicitly storing a weight for each of the exponentially many experts and speed
up the MWUA algorithm. The following result gives evidence that it is unlikely that a significant
speed-up is possible under complexity-theoretic assumptions. First, recall that weighted low-rank
approximation is APX-hard (Gillis & Glineur, 2011), and the best known algorithms run in time
exponential in at least one of the parameters k or d.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Theorem D.1. (Gillis & Glineur, 2011) Weighted low-rank approximation is NP-hard to approxi-
mate to within a multiplicative factor of

(
1 + 1

poly(n)

)
.

On the other hand, a consequence of the following statement is that for instances of weighted low-
rank approximation with entries bounded in magnitude and optimal cost C ≥ 1

poly(n) , a per-round
polynomial-time online algorithm would imply the existence of a fully polynomial-time approxima-
tion scheme.
Theorem D.2. Suppose there exists an online weighted low-rank approximation algorithm A that
achieves regret Õ(T 1−α) and, at time t, runs in time f(t, k, d). Then, for any ε > 0, there exists a
randomized offline algorithm that, given an instance of weighted low-rank approximation, outputs a
solution with cost at most C + ε with constant probability and runs in time polynomial in n, k, d, 1

ε ,
and f(n, k, d).

E EXTENSION TO WEIGHTED LOW-RANK APPROXIMATION

We now extend the framework to the weighted low-rank approximation (WLRA) setting. Let W
denote the weight matrix and define W = maxi,j Wi,j . In this case, the projection loss for a vector
xt with respect to the multiset representation St of the rank-k basis Vt is bounded by

ℓ(St, xt) ≤ W 2
∥∥xt −VtV

⊤
t xt

∥∥2
2
,

so every loss expression inherits an additional multiplicative factor of W 2.

This scaling affects the spherical hierarchical region decomposition (HRD), which must be refined
more aggressively to accommodate high-weight points. Specifically, we adjust both the angular
resolution and refinement criterion to

δt =
εhrd

2T 3W 2
, ∆R ≤ max

(εhrd · r
2W 2

, δt

)
,

where r is the geodesic distance from xt to region R. These modifications propagate through Lem-
mas 3.2, 3.4 and 3.6 and corollaries 3.3 and 3.5, introducing at most an additional factor of W 2. In
effect, the HRD is refined proportionally to the weights while maintaining the same guarantees on
regret and coreset size.

By contrast, the MTMW definitions themselves, including expert weights, update rules, and aggre-
gation, are unaffected: the MWUA rule applies exactly as before. The only indirect impact is that
finer HRD refinements increase the number of experts. This enlargement of the expert pool does not
alter MWUA’s mechanics but does appear in the regret bound through the lnM(p) term.

In summary, introducing weights leaves the MWUA dynamics unchanged while inducing finer HRD
refinements. Consequently, the regret bound is scaled by a factor of W 2 and may include a larger
poly-logarithmic term due to the increased number of experts. The runtime is likewise affected only
through this growth in the expert pool, so the asymptotic structure of the algorithm remains the
same; both regret and runtime scale smoothly with the weight magnitude W .

F MISSING PROOFS

F.1 ADAPTIVE SPHERICAL HIERARCHICAL DECOMPOSITION

Lemma 3.2. Consider the hierarchal region decomposition {R1, . . . ,Rt} produced by the algo-
rithm at any time t. Consider a region R ∈ Rt−1. Then either region R belongs to Rt, or each
child region of R inRt has angular diameter at most 4π

2t .

Proof. We instead show the decay of the spherical diameter under full bisection as follows. Let the
root region (level 0) be represented by angular intervals

R(0) =

d∏
i=1

[θ0,min
i , θ0,max

i],

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

and write L
(0)
i = θ0,max

i − θ0,min
i . Suppose the hierarchical decomposition is obtained by bisecting

every angular interval at each refinement step. By the construction assumption, we bisect every
angular interval at each level. Therefore after t bisections each original interval length L

(0)
i has been

divided into 2t equal sub-intervals, so the i-th angular interval length satisfies

L
(t)
i =

L
(0)
i

2t
,

and the maximum interval length δt = maxi L
(t)
i satisfies δt+1 = δt

2 and by induction, δt ≤ δ0
2t .

Now, recall the chord-angle relation on the unit sphere. Specifically, for two points x, y ∈ Sd whose
geodesic separation (angle) is α = distSd(x, y), the Euclidean chord length satisfies

α ≤ π

2
· ∥x− y∥2.

Specifically, we have for all θ ∈
[
0, π

2

]
that sin θ ≥ 2

π · θ and thus

∥x− y∥2 = 2 sin(α/2) ≥ 2

π
· α.

Now, for any two vectors in Rd+1 the Euclidean distance is at most the L2-norm of the vector of
per-coordinate angular differences. In particular, by combining coordinate-wise differences and the
fact each coordinate change is at most L(t)

i , we obtain

∥x− y∥2 ≤

√√√√ d∑
i=1

(L
(t)
i)2 ≤

√
d · δt.

Fix a child R′ of R. Since ∆R′ is the supremum of the geodesic distances, then we have ∆R′ ≤
geodesic distance is comparable to the chord length in the small-angle regime, we therefore have the
angle-to-chord bound

∆R′ ≤ π

2
·
√
d δt ≤ 2δt.

Since δt ≤ δ0
2t and δ0 = 2π, then we have ∆R′ ≤ 4π

2t , as desired.

Lemma 3.4. Let x1, . . . , xn ∈ Sd be a stream of unit vectors. The number of new regions added at

any step t is at most
(

2π
√
d

δT

)d−1

log
(

2T 3
√
d

εhrd

)
. Hence, the total number of regions after N steps is

at most N
(

2π
√
d

δT

)d−1

log
(

2T 3
√
d

εhrd

)
.

Proof. Consider a point xt ∈ Sd arriving at step t. Let R ∈ Rt−1 be a region containing xt. Each
region is rectangular in polar coordinates, with angular width ∆

(k)
R along coordinate θk for each

k ∈ [d − 1]. To satisfy the refinement criterion, R is subdivided along each coordinate so that the
maximum angular width does not exceed δT .

Then the number of subregions along coordinate θk is at most ⌈∆
(k)
R

δT
⌉ ≤ 2π

δT
, since ∆

(k)
R ≤ 2π.

Multiplying over all d− 1 coordinates gives

γ :=

d−1∏
k=1

⌈
∆

(k)
R

δT

⌉
≤
(
2π

δT

)d−1

.

By Corollary 3.3, the hierarchical decomposition has depth at most log
(

2T 3
√
d

εhrd

)
, so the total num-

ber of new regions added to accommodate xt is at most

γ · log

(
2T 3
√
d

εhrd

)
≤

(
2π
√
d

δT

)d−1

log

(
2T 3
√
d

εhrd

)
,

accounting for the
√
d factor converting coordinate widths to geodesic diameter. Summing over all

N points gives the claimed bound.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Corollary 3.5. Let R ∈ Rt be any region at step t, and let S = {R′ ∈ Rt+1 | R′ ⊆ R} be the set
of regions that refine R in the next time step. Then the maximum branching factor β satisfies

β := max
t,R
|S| ≤

(
2π
√
d

δT

)d−1

log

(
2T 3
√
d

εhrd

)
,

due to Lemma 3.4. Furthermore, for sufficiently large T , we have β ≤ d·Λ, where Λ is the maximum
number of refinements along any path in the hierarchical decomposition.

Proof. By Lemma 3.4, the number of new regions added at any step is upper bounded by(
2π
√
d

δT

)d−1

log

(
2T 3
√
d

εhrd

)
.

Each region R ∈ Rt can generate at most this many child regions R′ ⊆ R at the next level, which
gives the stated bound on the maximum branching factor β.

Finally, since Λ bounds the number of refinement levels along any path in the hierarchy, for suffi-
ciently large T the logarithmic term is dominated by d · Λ, giving the inequality β ≤ d · Λ.

Lemma 3.6. Consider an instance of the online low-rank approximation problem where a new unit
vector xt ∈ Rn arrives at each time step t, and let the spherical hierarchical region decomposition
with parameter εhrd produce the regions Rt at step t. Let εhrd > 0, and consider two multisets
of rank-k basis vectors S = {u1, . . . , uk}, S′ = {u′

1, . . . , u
′
k}, with ui, u

′
i ∈ Rn lying on the unit

sphere for all i ∈ [k].

Suppose that for each i ∈ [k], the pair (ui, u
′
i) lies within the same spherical region of the decom-

position at step t. Then, for all 1 ≤ τ < t,

ℓ(S′, xτ) ≤ (1 + εhrd) ℓ(S, xτ) +
εhrd
τ5

.

In other words, for two points in the same region, the loss of S′ on any previously seen point is at
most (1 + εhrd) times the loss of S, up to a small additive term that decreases over time as εhrd

τ5 .

Proof. Fix a previously seen point xτ . For each i ∈ {1, . . . , k}, consider the optimal rank-k vector
ui ∈ U . Let Ri ∈ Rt denote the region in the spherical hierarchical decomposition that contains ui,
and let vi be the centroid of Ri. By the construction of the spherical hierarchical decomposition:

(1) Each region Ri is a subset of the unit sphere with angular diameter ∆Ri .

(2) The hierarchical decomposition guarantees that regions are refined whenever the angular
distance from any point in the stream is large relative to the region size. Therefore, the
diameter of Ri is bounded by the refinement criterion applied at the time each point was
inserted.

Formally, if ri := distSd(xτ , ui) denotes the geodesic (angular) distance between xτ and ui, then
the refinement criterion ensures that either:

• the region is refined down to the minimum allowed angular diameter δτ (corresponding to
very small distances or late times), or

• the region’s diameter is controlled proportionally to the distance ri as εhrd · ri/2 (so that
the local resolution adapts to the distance from the point).

Hence, for each i we have

distSd(ui, vi) ≤ ∆Ri ≤ max (εhrd · ri/2, δτ) ,
where ∆Ri is the angular diameter of Ri.

Intuitively, this means that each centroid vi is guaranteed to be close to ui on the sphere, and the
maximum distance is either determined by the minimum resolution of the grid or by a fraction of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

the distance from xτ , whichever is larger. This bound will allow us to control the error introduced
when replacing ui with vi in the low-rank approximation.

Let projU (xτ) denote the orthogonal projection of xτ onto the subspace spanned by the optimal
rank-k vectors U = {u1, . . . , uk}, and let projV (xτ) denote the orthogonal projection onto the
subspace spanned by the centroids V = {v1, . . . , vk}. We want to bound the difference in squared
projection error:

∥xτ − projV (xτ)∥22 − ∥xτ − projU (xτ)∥22.
Recall that each vector vi differs from ui by at most ∆Ri

along the surface of the unit sphere.
Therefore, we can consider the effect of replacing ui with vi on the projection sequentially, one
vector at a time. Using the triangle inequality, we have:

∥xτ − projV (xτ)∥2 ≤ ∥xτ − projU (xτ)∥2 + ∥projU (xτ)− projV (xτ)∥2
where U\i and V\i denote the subspaces spanned by all vectors except the i-th. Squaring both sides
gives

∥xτ − projV (xτ)∥22 ≤ ∥xτ − projU (xτ)∥22 + 2∥xτ − projU (xτ)∥2 · ∥projU (xτ)− projV (xτ)∥2
+ ∥projU (xτ)− projV (xτ)∥22.

The difference between the projections onto U and V can be bounded in terms of the deviations of
the individual basis vectors:

∥projU (xτ)− projV (xτ)∥2 ≤
k∑

i=1

∥projui
(xτ)− projvi(xτ)∥2,

where projui
denotes projection onto the one-dimensional subspace spanned by ui. Informally,

we can use the small-angle approximation on the unit sphere, though extended to all ranges of θ.
Formally, for each i, we have

∥projui
(xτ)− projvi(xτ)∥2 ≤

π

2
· ∥xτ∥2 · ∥ui − vi∥2 ≤

π

2
·∆Ri

.

Let ri := ∥xτ − projui
(xτ)∥2 denote the distance from xτ to the component along ui. Then, by the

previous inequalities and the Cauchy–Schwarz bound for the cross term:

2∥xτ − projU (xτ)∥2 · ∥projU (xτ)− projV (xτ)∥2 ≤ π

k∑
i=1

ri∆Ri
.

Similarly, the squared perturbation term gives

∥projU (xτ)− projV (xτ)∥22 ≤
k∑

i=1

(∆Ri
)2.

Combining all of the above, we obtain

∥xτ − projV (xτ)∥22 ≤ ∥xτ − projU (xτ)∥22 + π

k∑
i=1

ri∆Ri
+

k∑
i=1

(∆Ri
)2.

Intuitively, the term πri∆Ri
accounts for the linear change in distance caused by moving from ui

to vi, proportional to how far xτ is from ui, while the term (∆Ri
)2 accounts for the quadratic error

introduced by the misalignment of the subspace.

The hierarchical region decomposition guarantees that each region Ri satisfies the refinement crite-
rion

∆Ri
≤ max

(εhrd
2τ3

,
εhrdri
2

)
.

We consider the two possible cases separately.

Small-distance case: ri ≤ 1/τ3. In this case, the first term in the max dominates, so

∆Ri
≤ δτ ≤

εhrd
2τ3

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Then, the combined error term satisfies

ri∆Ri +∆2
Ri
≤ ri

εhrd
2τ3

+
(εhrd
2τ3

)2
≤ 1

τ3
· εhrd
2τ3

+
ε2hrd
4τ6

≤ εhrd
τ5

,

where the last inequality holds for sufficiently small εhrd ≤ 1 and τ ≥ 1.

Large-distance case: ri > 1/τ3 Here, the second term in the max dominates, so

∆Ri
≤ εhrdri

2
.

Then the error term becomes

ri∆Ri +∆2
Ri
≤ ri ·

εhrdri
2

+
(εhrdri

2

)2
=

εhrd
2

r2i +
ε2hrd
4

r2i ≤ εhrd r
2
i ,

where the last inequality holds since εhrd ≤ 1.

By combining these two cases, we have a uniform bound on each term ri∆Ri +∆2
Ri

:

ri∆Ri
+∆2

Ri
≤ max

(εhrd
τ5

, εhrdr
2
i

)
,

which directly feeds into the bound on the squared projection error.

Finally, summing over i = 1, . . . , k and using r2i ≤ ℓ(U, xτ) for each component, we obtain

ℓ(V, xτ) = ∥xτ − projV (xτ)∥22 ≤ (1 + εhrd)ℓ(U, xτ) +
εhrd
τ5

.

This proves that replacing the optimal basis vectors with the centroids of their spherical regions
increases the loss by at most a multiplicative (1+ εhrd) factor plus a small additive term that decays
as τ−5.

F.2 MTMW - MWUA FOR TREE STRUCTURED EXPERTS

Lemma 3.9. Let v be a region in the spherical hierarchical decomposition, T̃ a subtree rooted at
v, and Ṽ the set of leaf regions of T̃ . Then the mass of v equals the sum of the masses of its leaf
regions, i.e., M(v) =

∑
v′∈Ṽ M(v′).

Proof. We prove the statement by induction on the height h of the subtree T̃ rooted at v. We first
consider the base case h = 1. If the subtree has height 1, then Ṽ = {v}, i.e., v itself is a leaf. In this
case, ∑

v′∈Ṽ

M(v′) = M(v),

so the property holds.

For the inductive hypothesis, we assume the lemma holds for all subtrees of height h. Consider a
subtree of height h+ 1 rooted at v. Let U denote the set of children of v, and let Ṽv′ denote the set
of leaves of the subtree rooted at child v′ ∈ U . By the inductive hypothesis,∑

v′′∈Ṽv′

M(v′′) = M(v′).

Using the recursive definition of mass,

M(v′) =
M(v)

|U |
.

Thus, summing over all children:∑
v′∈Ṽ

M(v′) =
∑
v′∈U

∑
v′′∈Ṽv′

M(v′′) =
∑
v′∈U

M(v′) =
∑
v′∈U

M(v)

|U |
= M(v),

where Ṽ is the set of all leaves in the subtree rooted at v. This completes the induction, proving the
lemma.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Theorem 3.10. Let Tt be the tree corresponding to the spherical hierarchical region decomposition
at step t. Consider running the Mass Tree Multiplicative Weights Update Algorithm (MTMW) over
the set of experts given by all root-to-leaf paths of the final tree, P(Tt). Even if the tree is revealed
adaptively up to depth t at each time step, running MTMW is possible provided each path p ∈ P(Tt)
is initialized with weight M(p). Then, the regret of MTMW with respect to any path p is bounded by

Regret ≤
√
−T lnM(p).

Moreover, the algorithm can be implemented with time complexity O(|Tt|), i.e., proportional to the
number of vertices in the tree.

Proof. Consider a rooted path p = (v1, . . . , vT) in the spherical HRD tree TT . At time t, define the
cumulative weight of path p as

u(t)
p =

t−1∏
r=1

(1− ηℓ(vr, xr)) ,

where ℓ(vr, xr) is the loss of the low-rank approximation associated with vertex vr on the incoming
unit vector xr. This extends naturally to any path of length at least t.

For MTMW, the total weight of expert p at step t is

w(t)
p = M(p)u(t)

p ,

where M(p) is the mass of the path as defined in Lemma 3.9. Let p(v) denote the unique path from
the root to vertex v. Then, the unnormalized probability that MTMW selects vertex vt at depth t is

w(t)
vt =

∑
p∋vt

w(t)
p =

∑
p∋vt

M(p)u(t)
p = M(vt)u

(t)
p(vt)

,

where the final equality follows from the additive property of masses over descendant leaves, i.e.,
Lemma 3.9.

Analogously to the proof of Theorem (2.1) of Arora et al. (2012), we define the potential function
at time t as

Φ(t) =
∑

p∈P(TT)

w(t)
p .

Let m(t)
p = ℓ(p, xt) denote the loss of path p at step t, and let p(t)p be the normalized probability of

choosing expert p. Then, by the standard MWUA analysis, the potential at the final step satisfies

Φ(T+1)

M(p)
≤ 1

M(p)
exp

(
−η

T∑
t=1

m(t) · p(t)
)
.

On the other hand, the potential after the last round is at least the weight of path p divided by its
mass:

Φ(T+1)

M(p)
≥ w

(T+1)
p

M(p)
= u(T+1)

p .

Combining these inequalities and following the standard MWUA regret analysis, we obtain that for
any path p ∈ P(TT),

Regret ≤
√
−T lnM(p),

where the inverse of the path mass captures the effective number of experts in the hierarchical
decomposition.

Finally, the runtime of the algorithm is dominated by traversing the tree to update and normalize
the weights along paths, which scales with the total number of vertices in the tree at the current
depth.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

F.3 REGRET BOUND

Lemma 3.12. Let H be a spherical HRD with parameter εhrd that is constructed from {Qt}Tt=1.
Let S∗ be the best low-rank basis in hindsight, and let S̃t be the approximate basis induced byH at
time t. Then, we have:

T∑
t=1

ℓ(S̃t, xt) ≤ (1 + εc + 8(εhrd + εc)kΛ) C + kΛ

where C =
∑T

t=1 ℓ(S
∗, xt) is the optimal offline reconstruction cost.

Proof. Let t1, t2, . . . , tT0
denote the time steps at which the approximate basis S̃t changes, i.e.,

S̃t ̸= S̃t−1, with t1 = 1 and tT0+1 = T + 1. For all other t, we have S̃t = S̃t−1, so we can write

T∑
t=1

ℓ(S̃t, xt) =

T0∑
i=1

ℓ
(
S̃ti , X[ti : ti+1 − 1]

)
.

For each segment [ti, ti+1 − 1], we may bound the cumulative loss by considering the coreset ap-
proximation and the hierarchical refinement. Specifically, excluding the single-step refinements
themselves and using that the loss is bounded by at most 1, since each vector is a unit vector, we
have

T∑
t=1

ℓ(S̃t, xt) ≤
T0∑
i=1

(
ℓ
(
S̃ti+1−1, X[1 : ti+1 − 1]

)
− ℓ

(
S̃ti+1−1, X[1 : ti − 1]

))
+ T0.

By the spherical coreset property (Lemma 3.9), for each segment we can relate the loss of the
approximate basis to the optimal offline basis S∗:

ℓ(S̃ti+1−1, X[ti : ti+1 − 1]) ≤ (1 + εc)(1 + εhrd) ℓ(S
∗, X[ti : ti+1 − 1]).

Combining over all segments, the sums telescope and we obtain

T∑
t=1

ℓ(S̃t, xt) ≤ ℓ(S∗, X1:T) + (εc + εhrd)

T0∑
i=1

ℓ(S∗, X[ti : ti+1 − 1]) + T0.

Finally, applying Corollary 3.3 which bounds the total number of refinement steps by T0 ≤ kΛ, and
noting that

∑T0

i=1 ℓ(S
∗, X[ti : ti+1 − 1]) ≤ C, we conclude

T∑
t=1

ℓ(S̃t, xt) ≤ (1 + εc + 8(εc + εhrd)kΛ) C + kΛ,

as claimed.

Lemma 3.13. Let p∗ denote the path in the k-tree corresponding to the best set of basis vectors
in hindsight. Λ is the maximum refinement depth of the HRD and β bounds the logarithm of the
maximum branching factor of any region in the decomposition, as defined as in Corollary 3.3 and
Corollary 3.5, respectively. Then we have − lnM(p∗) ≤ k2Λβ.

Proof. By Corollary 3.3 and the definition of Λ, the term log(deg(vt)) can be nonzero at most kΛ
times. Each such occurrence is bounded by k · β, since in the k-tree a node can be expanded into at
most ((9

√
d/εhrd)

d log(T 3))k children.

Theorem 3.1. Algorithm 1 has a regret of O
(
k log

(
kT 3

√
d

ε2

)√
dT
)
+ εC and a runtime of T ·

Õ
(√

dk2T 3 log T
ε2

)kd
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Proof. First, we bound Λ. From the definition of the HRD refinement parameter,

Λ = log (2T
3
√
d

εhrd
) ≤ log (4adT

6k2

ε2) ≤ 2 log (akT
3
√
d

ε2)

We now relate εhrd to ε/(kΛ). By expansion:

εhrd · kΛ ≤
ε

2ak2 log (T 3
√
d)
· 2k log

(
ak
√
dT 3

ε2

)
.

After simplifying logarithmic factors, this yields

εhrd · kΛ ≤ 2ε
√
a.

By Corollary 3.5, for sufficiently large T we have β < dΛ. Applying Lemma 3.13, MWUA achieves
regret with respect to the best path bounded by

kΛ
√
dT ≤ 2k log (akT

3
√
d

ε2)
√
dT .

For a ≥ 342, we get
√
2ε/a ≤ ε/17, which ensures that the bound of Lemma 3.12 controls the

ε-approximate regret. Thus the final regret is

O

(
k log

(
akT 3

√
d

ε2

)
√
dT + εC

)
.

Additionally, since |QT | ≤ O(k
ε2 log

3 T), using Lemma 3.4, we can bound the k-tree vertices by
the amount of leaves times the depth T ; thus, we have:

Runtime = O

T

|QT |

(
2π
√
d

δT

)d−1

log

(
2T 3
√
d

εhrd

)k


= T ·
(
O

(
k

ε2
log3 T

))k

O

(√d
δT

)k(d−1)

logk

(
T
√
d

εhrd

)
= T ·

(
O

(
k

ε2
log3 T

))k

O

(√d k2T 3 log T

ε2

)k(d−1)

logk

(
T
√
d k2 log T

ε2

)

F.4 LOWER BOUND

Theorem D.2. Suppose there exists an online weighted low-rank approximation algorithm A that
achieves regret Õ(T 1−α) and, at time t, runs in time f(t, k, d). Then, for any ε > 0, there exists a
randomized offline algorithm that, given an instance of weighted low-rank approximation, outputs a
solution with cost at most C + ε with constant probability and runs in time polynomial in n, k, d, 1

ε ,
and f(n, k, d).

Proof. We reduce an offline instance of weighted low-rank approximation to the online setting. Let
A ∈ Rn×d be the weighted input matrix, and suppose the goal is to find a rank-k approximation
minimizing the weighted Frobenius error. We construct a stream X of T rows, sampled uniformly
with replacement from A, and feed these rows sequentially to the online algorithmA. The algorithm
produces a sequence of intermediate rank-k projections {Pt}Tt=1, and we output the projection with
the smallest error when evaluated on the full dataset A.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Let P ∗ denote the optimal offline rank-k projection for A. The regret guarantee of A ensures that,
if R denotes the internal randomness of A, then

E
R

[
E
X

[
T∑

t=1

ℓ(Pt, xt)− ℓ(P ∗
T+1, X)

]]
≤ Tα,

where ℓ(P, x) denotes the weighted squared error of approximating row x by Px.

By linearity of expectation, and since P ⋆
T+1 is independent of the randomness r, we obtain

T∑
t=1

E
R

[
E
X
[ℓ(Pt, xt)]

]
≤ Tα + EX [ℓ(P ∗, X)].

For any projection P , the expected loss on a uniformly sampled row equals its normalized loss on
the full matrix, i.e.

E
xt

[ℓ(P, xt)] =
1

n
ℓ(P,A).

Hence,
T∑

t=1

E
R

[
1

n
ℓ(Pt, A)

]
≤ Tα +

T

n
ℓ(P ∗, A).

Define εt ≥ 0 such that E
R
[ℓ(Pt, A)] = (1 + εt) ℓ(P

∗, A). Substituting gives

T∑
t=1

(1 + εt)
ℓ(P ∗, A)

n
≤ Tα +

T

n
ℓ(P ∗, A).

Rearranging yields
T∑

t=1

εt ≤
nTα

ℓ(P ∗, A)
.

Let ε∗ = mint εt. Then T · ε∗ ≤ nTα

ℓ(P∗,A) implies ε∗ ≤ nTα−1

ℓ(P∗,A) . Since ℓ(P ∗, A) ≥ 1
poly(n) by

assumption, choosing T = poly(n) allows ε∗ to be made arbitrarily small. Thus, the online-to-
offline reduction yields an efficient approximation scheme for weighted low-rank approximation,
contradicting the known APX-hardness of WLRA (Gillis & Glineur, 2011), i.e., Theorem D.1. This
completes the proof.

G OTHER EXPERIMENTS

G.1 SYNTHETIC OPTIMAL DATASET AND FIXED BASELINE CONSTRUCTION

Our first synthetic dataset was constructed as a stream of points in the format (x1, x2, 0, 0, 0). The
baseline was constructed as k fixed basis vectors in d-dimensional space using a deterministic pat-
tern. For each basis vector vi, the j-th coordinate is generated as coordinatej = signj ×

j+1
3 , where

sign[j] is a randomly assigned ±1 value that remains fixed for the duration of the experiment. Each
resulting vector is then normalized.

Experimental setup. For the purpose of reproducibility, our experiments were conducted with
Python 3.13.7 on a 64-bit operating system with an Intel Core i7-1165G7 CPU with 16 GB DDR4
RAM and 4 cores with base clock speed 2.70 GHz. The following core python packages are re-
quired: NumPy 2.2.6 for numerical computations and array operations, Matplotlib 3.10.6 for data
visualization and plot generation, scikit-learn 1.7.2 for dimensionality reduction (TruncatedSVD)
and machine learning utilities, and Pandas 2.3.2 for data manipulation and CSV file handling.

In these experiments, we compared the performance of low-rank approximation using our spherical
partitioning algorithm with the performance of low-rank approximation using the fixed baseline
net. We set the basis dimension to test at k = 2, k = 5, and k = 10 to provide a manageable
level of complexity while testing whether increasing the dimension would impact its effectiveness,
and streamed 1000 data points. The full vector dimension is set to d = 5. The HRD algorithm

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

uses splitting threshold dsplit = 15 (75% of ambient dimension) to prevent premature splits in high-
dimensional regions while allowing refinement when sufficient data concentration occurs. Minimum
leaf size nmin was set to 20, and maximum leaf size nmax to 100. The minimum prevents splits with
insufficient statistical support, while the maximum forces splits when nodes become overcrowded.
The learning rate is η = 0.5, which we have kept moderate so that adaptation is not overly sensitive
and also not too conservative. The refinement parameter εhrd is set to 0.1, another moderate choice to
prevent unnecessary splits that do not add much to approximation accuracy while also not preventing
actually beneficial splits. The reconstruction error is calculated as the Frobenius norm reconstruction
error, and the total cumulative loss is the loss accumulated starting from time step 0.

Moreover, in our experiments, we chose to split spherical regions using up to d orthogonal hyper-
planes instead of splitting via angular coordinate bisection along polar coordinates as described in
Section 3.2. For this process, we first attempt to use directions that were unused in previous splits by
projecting them orthogonally to the centroid c of the current node. Then, when insufficient reusable
directions exist, we generate random vectors orthogonal to c and orthogonalize them against ex-
isting directions using the Gram-Schmidt process. By using these random orthogonal vectors for
splitting, we get a more practical implementation that uses standard linear algebra operations rather
than complex angular coordinate manipulations, while achieving approximately equivalent region
refinements and maintaining the fundamental guarantee that region diameters decay exponentially
with tree depth.

(a) k = 2 (b) k = 5 (c) k = 10

Fig. 2: Cumulative loss comparisons of HRD Algorithm and Fixed Baseline Net for optimal data
with different values of k

Results and discussion. Our observations in Figure 2 on the optimal synthetic dataset show that the
HRD algorithm significantly outperforms the baseline net, with final cumulative loss of 8.7454 for
the HRD algorithm and 856.0313 for the baseline net given basis dimension k = 2. This is an im-
provement of around 98.98%. The HRD algorithm demonstrates adaptive learning as time increases,
successfully identifying and exploiting the optimal 2-dimension subspace within the 5-dimension
ambient space. The cumulative loss stays relatively constant throughout the whole time sequence
after an initial small increase. Meanwhile, the cumulative loss for the baseline non-adaptive net
increases linearly, leading to the difference in performance becoming increasingly pronounced as
more data points appear. Moreover, for the k = 5 and k = 10 cases, we see similarly large gaps
in performance. This demonstrates that when data lies in a low-dimensional subspace, HRD can
discover and exploit this structure.

G.2 SYNTHETIC DATASET WITH CLUSTERS

To evaluate the performance on synthetic data with natural groupings, we performed the experiment
again using synthetic data with three major clusters.

Experimental setup. We created three cluster centers by sampling random d-dimensional vectors
from a standard Gaussian distribution and normalizing them to unit length. The process is as follows:
for each of the 1000 data points, we select a cluster center in round-robin fashion. Each point is then
generated by adding Gaussian noise with standard deviation σ = 0.3 to the selected cluster center
and then normalizing the resulting vector to unit length to maintain spherical constraints. Each
cluster center represents a different region on the unit sphere. We then tested the HRD algorithm
against the non-adaptive baseline for target basis dimension k = 2, k = 5, and k = 10. The other
parameters remain the same as in the optimal dataset experiment.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(a) k = 2 (b) k = 5 (c) k = 10

Fig. 3: Cumulative Loss of HRD Algorithm and Fixed Baseline Net over 1000 Data Points for
Clustered Data with different values of k

Results and discussion. Our observations in Figure 3 on the synthetic dataset with clusters show
that the HRD algorithm still outperforms the baseline net, even though the rate of increase for both
is linear. The final reconstruction loss for the HRD algorithm is 419.3647, while the loss for the
baseline is 848.8485, giving us an improvement of 50.60% for the k = 2 case. This indicates that
the algorithm is able to identify the underlying three-cluster structure, adaptively partitioning the
spherical space to capture the distinct groupings.

Next, when we increase the rank of our basis vectors up to 5 and then 10, the HRD algorithms’
performance improves even more significantly, with reconstruction loss staying flat at the bottom
of the graph while the loss of the fixed baseline continues to rise linearly as before. The algorithm
gives us improvements of 98.94% and 99.64% for k = 5 and k = 10, respectively. These results
demonstrate that with higher rank basis vectors, HRD can better capture the underlying cluster
structure through adaptive partitioning.

G.3 CREDIT CARD DATASET

We also tested on a second real-world dataset, the Credit Card Fraud Detection dataset Dal Pozzolo
et al. (2014), which has 31 features and 284,807 observations. This dataset contains credit card
transactions made in two days in 2013, with 492 of them being fraudulent transactions. The features
are numerical input variables which are the result of transformation via PCA. This dataset was
accessed through Kaggle.

Experimental setup. To process the data, we first removed three non-essential columns from the
dataset (Time, Amount, Class). The Time feature does not provide any structural information for
the low-rank approximation. The Class feature is the fraud label and should not be included in the
feature representation. The Amount feature, while potentially informative, has a different scale than
the PCA-transformed V1-V28 features and could dominate the approximation. This preprocessing
yields 28-dimensional feature vectors corresponding to the principal components V1-V28. Next, all
vectors are normalized to ensure that they lie on the unit sphere. Next, we tested on target basis
vector dimension k = 10, 15, and 20 to analyze the effects of increasing dimensionality on the
performance. The splitting dimension dsplit is set to 15, as in the synthetic experiments. Due to the
large dataset size, we process the first 500 points, as in the MNIST experiment. We then run the
HRD algorithm against the fixed baseline described in the synthetic experiments section.

(a) k = 10 (b) k = 15 (c) k = 20

Fig. 4: Cumulative Loss of HRD Algorithm and Fixed Baseline Net over 500 Data Points for Credit
Card Fraud Dataset with different values of k

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Results and discussion. The results in Figure 4 show that the HRD algorithm outperforms the fixed
baseline over the credit card dataset, as it consistently achieves lower cumulative loss at each time
step, with total improvements of 53.25%, 53.25%, and 64.45% for basis vector dimension k = 10, 15,
and 20 respectively. These results indicate that the HRD algorithm is able to take advantage of the
structural patterns in the credit card dataset. Notably, on this credit card dataset, performance isn’t
improved as significantly as in the MNIST dataset, indicating that the PCA-transformed features
may not exhibit structure that is as easily exploitable by low rank approximation.

26

	Introduction
	Our Contributions
	Algorithm
	Spherical Hierarchal Region Decomposition
	Adaptive Spherical Hierarchical Region Decomposition
	MTMW - MWUA for Tree Structured Experts
	Regret Bound

	Experiments on MNIST Dataset
	Related Work
	Preliminaries
	Coreset Construction
	Lower Bound
	Extension to Weighted Low-Rank Approximation
	Missing Proofs
	Adaptive Spherical Hierarchical Decomposition
	MTMW - MWUA for Tree Structured Experts
	Regret Bound
	Lower Bound

	Other Experiments
	Synthetic Optimal Dataset and Fixed Baseline Construction
	Synthetic Dataset with Clusters
	Credit Card Dataset

