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Abstract
Coreset, as a summary of training data, offers an
efficient approach for reducing data processing
and storage complexity during training. In the
emerging vertical federated learning (VFL) set-
ting, where scattered clients store different data
features, it directly reduces communication com-
plexity. In this work, we introduce coresets con-
struction for regularized logistic regression both
in centralized and VFL settings. Additionally, we
improve the coreset size for regularized linear re-
gression in the VFL setting. We also eliminate the
dependency of the coreset size on a property of
the data due to the VFL setting. The improvement
in the coreset sizes is due to our novel coreset
construction algorithms that capture the reduced
model complexity due to the added regularization
and its subsequent analysis. In experiments, we
provide extensive empirical evaluation that backs
our theoretical claims. We also report the perfor-
mance of our coresets by comparing the models
trained on the complete data and on the coreset.

1. Introduction
Let Z be a set of n points and their corresponding la-
bels/responses. Here, Z consists of X ∈ Rn×d represents
the n points in Rd space and labels y ∈ Rn. Let zi repre-
sents the ith point (i.e., xi) and its corresponding label (i.e.,
yi) (see; Section 2 for notation). Let Q be the set of models
on which a machine learning algorithm optimizes its loss
function. Let, the algorithm uses a nonnegative function
f : Z×Q → R≥0 to compute the loss on the dataset for a
given model q ∈ Q as, loss(Z,q) =

∑
i∈[n] f(zi,q).

Regularization is a common technique to control model com-
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plexity and to avoid overfitting during training. If the model
is regularized by a user-defined parameter λ ∈ R>0, then
the loss function is also penalized by λ and the model. Thus,
it is defined as loss(Z,q, λ) =

∑
i∈[n] f(zi,q) + g(λ,q),

where g(·) adds a regularization penalty to the unregularized
loss function. In this paper, we focus on regularized logistic
regression and ridge regression problems. For the above
defined dataset Z, regularization parameter λ > 0 and a set
of models Q, the losses of regularized logistic regression
and ridge regression for any model q ∈ Q are defined as,

ClassLoss(Z,q, λ) :=

n∑
i=1

ln
(
1 + exp(−yix⊤

i q)
)

+λ∥q∥1 (1)

RegLoss(Z,q, λ) :=

n∑
i=1

(x⊤
i q− yi)

2 + λ∥q∥22 (2)

In the vertical federated learning (VFL) setting, there are
multiple scattered clients, so no clients have access to the
complete feature space. In the VFL setting, we study the
setup where the feature space is partitioned between clients.
Formally, let there are T scattered clients, we consider that
a dataset Z is partitioned among all the clients, each having
{Z(1),Z(2), . . . ,Z(T )}, such that no two clients share any
features and their union is Z. In this work, we present
coreset construction algorithms for the following two crucial
machine learning problems in the VFL model.

Definition 1.1 (Vertical Regularized Logistic Regression
(VRLog)). Given a dataset Z consisting of X representing
the points and y be their labels in the VFL model, a regu-
larization parameter λ > 0, the goal of the VRLog problem
is to compute a vector q ∈ Rd on the server that (approx-
imately) minimizes ClassLoss(Z,q, λ) while maintaining
minimum total communication complexity.

Definition 1.2 (Vertical Ridge Linear Regression
(VRLR)). Given a dataset Z consisting of X represent-
ing the points and y be their responses in the VFL model,
regularization parameter λ > 0, the goal of the VRLR
problem is to compute a vector q ∈ Rd on the server that
(approximately) minimizes RegLoss(Z,q, λ) while main-
taining minimum total communication complexity.
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For training a model in a VFL setting, the communication
cost grows proportionately to the data size, thus entails
finding approaches of reducing the training data without
compromising the trained model quality. So, to address
this issue, we take advantage of coresets. At a high level, a
coreset is a small summary of the original dataset that ap-
proximates the learning objective for every possible choice
of learning parameters. For VRLog and VRLR, we give
algorithms that return a weighted subset ensuring the fol-
lowing guarantees.

Definition 1.3. Let Z be a dataset as described in the Def-
inition 1.1 in the VFL setting. Let ε ∈ (0, 1), λ > 0. Let
Sw be a weighted set, comprising of a subset S ⊆ Z with
an associated weight function w : S→ [1,∞). We call Sw

an ε-coreset for VRLog if with at least 0.99 probability, it
guarantees that for every q ∈ Rd.

ClassLoss(Sw,q, λ) ∈ (1± ε) · ClassLoss(Z,q, λ),

where loss on Sw is ClassLoss(Sw,q, λ) defined as∑
i∈[|S|] w(i) · ln(1 + exp(−yi · x⊤

i q)) + λ∥q∥1.
Definition 1.4. Let Z be a dataset as described in the Def-
inition 1.2 in the VFL setting. Let ε ∈ (0, 1), λ > 0. Let
Sw be a weighted set, comprising of a subset S ⊆ Z with
an associated weight function w : S→ [1,∞). We call Sw

an ε-coreset for VRLog if with at least 0.99 probability, it
guarantees that for every q ∈ Rd.

RegLoss(Sw,q, λ) ∈ (1± ε) · RegLoss(Z,q, λ),

where RegLoss(Sw,q, λ) :=
∑

i∈[|S|] w(i)(x
⊤
i q − yi)

2 +

λ∥q∥22.

It is important to note that even though we consider a VFL
setup, where the features of the dataset have been parti-
tioned among multiple clients, however the ensured coreset
guarantees are on the loss functions defined on the loss func-
tions defined on the complete features of the dataset. Thin
inherently possesses some immediate challenges, which we
discuss later.

A unified algorithm for constructing a coreset in VFL setting
was introduced in (Huang et al., 2022). For completeness,
we restate it as algorithm 3. It uses importance sampling
for constructing a coreset by computing local importance
scores at each client for every point. In this paper, we focus
on constructing a coreset for VRLog and VRLR. Next, we
discuss our main contributions in this paper.

• We propose a novel algorithm for constructing core-
sets for centralized regularized logistic regression (see
Theorem 5.6). For the VRLog problem, we employ
algorithm 1 to locally compute the importance scores
for every point, at each client using ℓ1 Lewis weights.
The computed scores are then served as input to the

algorithm 3. Particularly, in the VFL setup, we show
how to aggregate the locally computed scores so that
it is sufficient to ensure a global guarantee. One of
the crucial contributions here is that for both cases,
our algorithm effectively captures the reduction in the
model complexity due to regularization. We analyze
and show that for λ > 0, the algorithm returns a core-
set, whose size decreases with an increasing λ (See;
Corollary 5.7).

• For the VRLR problem, we propose the algorithm 2 to
compute the local importance scores for every point at
each client. We further show that when these scores are
used as input for algorithm 3, the resulting coreset has
a size that decreases as the regularization parameter λ
increases (See Theorem 6.1).

• Intuitively, regularization reduces the model complex-
ity. The model complexity decreases with an increas-
ing regularization parameter, λ. The size of the core-
sets returned from algorithm 3 complements this phe-
nomenon. This is due to the importance scores returned
by both algorithms 1 and 2 for VRLog and VRLR, re-
spectively. Both algorithm incorporates the regulariza-
tion penalty to the original partitioned dataset at each
client. This dilutes each point’s sensitivity (see Defi-
nition 4.1), which in turn lowers its importance score.
As the coreset size depends on the total sensitivity, we
meticulously analyze this and show that it is equal to
ℓ1 and ℓ2 statistical dimension (see Definition 5.4) of
the data with respect to a regularization λ for VRLog
and VRLR respectively.

• Finally, we performed an extensive empirical evalua-
tion for both problems in the VFL setup. Our experi-
ments not only support our theoretical guarantees but
also show that our algorithm outperforms other coreset
construction algorithms in the same setup. We compare
the performance in multiple metrics on both training
and test data. We also show that the model trained on
our coresets is close to the model trained on the full
training dataset.

2. Model and Preliminaries
Notations: A scalar is denoted by a lowercase letter, e.g., p
while a vector is denoted by a boldface lowercase letter, e.g.,
x. By default, all vectors are considered as column vectors
unless specified otherwise. Matrices or sets are denoted by
boldface uppercase letters, e.g., X. Specifically, X denotes
an n×d matrix where n is the number of points (or rows) and
the feature space is Rd. Normally, x⊤

i and xj represents the
ith row and jth column respectively of the matrix X, unless
stated otherwise. We consider the case where n≫ d. For
any p ∈ [1, 2] we denote ℓp norm for a vector x as ∥x∥p =
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(
∑

i x
p
i )

1/p. The square of the Frobenius norm of a matrix is
defined as ∥X∥2F :=

∑
i,j x

2
i,j . For any p ∈ (0,∞), except

when p = 2, the ℓp norm of a matrix is defined as ∥X∥p :=(∑
i,j x

p
i,j

)1/p
. In this paper, by default, regularized linear

regression would mean ridge regression. Let a and b be two
scalars such that, (1 − ε)a ≤ b ≤ (1 + ε)a. We represent
this relation by b ∈ (1± ε)a. In asymptotic terms, such as
coreset size, we use Õ(·) to hide logarithmic terms.

2.1. Coresets

Coresets are weighted samples of datasets (Feldman & Lang-
berg, 2011) with provable theoretical guarantees. In general,
the size of the coreset depends on the optimization function
(i.e., its model complexity) and the size of the feature space.
For a given weighted dataset Z with an associated weight
function υ : Z → R>0, the goal of a machine learning
algorithm is to optimize a loss function that uses a function
f : Z× υ×Q→ R≥0. Here Q is the set of feasible model
parameters. Then for a parameter ε ∈ (0, 1) and δ ∈ (0, 1)
a subset S ⊂ Z with a weight function w : S → R>0 is
called an (ε, δ)-coreset if it satisfies the following with at
least 1− δ probability for every q ∈ Q.

(1− ε)f(Zυ,q) ≤ f(Sw,q) ≤ (1 + ε)f(Zυ,q). (3)

For simplicity, we denote the weighted sets as Zυ and
Sw. Our result holds for any arbitrary weight function
υ : Z → R>0 and δ ∈ (0, 1). However, for simplicity in
this paper, we assume υ : Z → 1 and δ = 0.01 for sim-
plicity. Consequently, our coresets are ε-coresets, which
ensures the above guarantees with at least 0.99 probability.

For both problems, our coreset construction algorithm relies
on an importance-based sampling method. Every point in
the dataset gets a score that intuitively captures the impor-
tance or relevance of the point during the training phase.
Points are sampled based on these scores, i.e., a point with
a higher score will have a higher chance of getting sampled.
Next, every sampled point uses these scores to define its
weight, eventually reflecting its significance during the train-
ing. Finally, the set of weighted sampled points guarantees
(3). We have used a standard coreset construction frame-
work (Feldman & Langberg, 2011; Chhaya et al., 2020a)
that comprises the following steps.

1. Importance Score: For a given dataset and an opti-
mization function, we define a function (aka sensitivity
function) that captures the importance of every point
with respect to the complete dataset.

2. Distribution: Next, we derive a tight upper bound for
these functions and define a distribution.

3. Weighted Sample: Sample points based on the distri-
bution and assign weights inversely proportional to the

sampling probability and the coreset size.

4. Coreset Guarantee: Compute the sum of the upper
bounds and the VC dimension of the model. Based
on these, sampling enough points ensures the desired
coreset guarantee.

The main idea is to ensure that the returned weighted sub-
sample is an unbiased estimator with a limited variance.

2.2. Federated Learning

Federated learning has become a go-to approach for train-
ing machine learning models on a distributed system of
clients where communicating data is precluded (Kairouz
et al., 2021). Often, the distributed system includes a desig-
nated node, called server, that stores a synchronized state
of the model being trained over peer nodes or clients. The
server orchestrates the client selection and synchronization
methodology. Federated Learning comes in two flavours: (a)
Horizontal Federated learning (HFL), where data with entire
feature space is available on individual clients; data remains
client local and can not be shared with either the server or a
peer client, (b) Vertical Federated Learning (VFL), where
data is distributed among clients in such a way that they
contain a subset of feature space. More formally,

1. HFL: Consider a model q and a set of clients T . A ba-
sic federated learning procedure Federated Averaging
(McMahan et al., 2017) is described as

q
(j)
r,k+1 = q

(j)
r,k − η∇q(j)cost(Z(j),q

(j)
r,k) (4)

∀j ∈ Sr ⊆ [T ],∀k ∈ [K − 1], ∀r ∈ [R]

qr+1 =
1

|Sr|
∑
j∈Sr

q
(j)
r,K , (5)

where at each synchronization round r ∈ [R], Sr ⊆
[T ] clients participate in local training for K − 1 steps
following (4). η > 0 is the learning rate, which we
take as a constant for simplicity. They synchronize at
the server by averaging the local models as in (5). The
clients j ∈ [T ] store local data Z(j). The server sends
the synchronized state back to a new subset of clients
at every synchronization round r ∈ [R].

Horizontal federated learning suffers from heterogene-
ity in data distribution and participation frequency
across clients. To address the issues, several improve-
ments have appeared in the literature: FedProx (Li
et al., 2020), SCAFFOLD (Karimireddy et al., 2020),
Adaptive Federated Optimization (Reddi et al., 2020)
are some of the well-known methods.

2. VFL: Here over a set of clients T we consider the
partition of feature space of data. We denote the dataset
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with subset of features partitioned over client set [T ]
as X(j) such that ∪j∈[T ]X

(j) = X. Thereby, a basic
VFL scheme can be described in (6).

Client j ∈ [T ] computes∇q(j)cost(X(j),q(j)
r ).

qr+1 = qr − η
⋃

j∈[T ]

∇q(j)cost(X(j),q(j)
r )

∀r ∈ [R], ∀j ∈ [T ]. (6)

In VFL setting the server orchestrates the accumulation
of gradients computed at the clients before performing
a step of gradient descent. The cost of communica-
tion is very high as the server has to wait for gradient
accumulation and therein a perfect synchronization.
Furthermore, each client has to participate in the pro-
cess, and one step of the gradient update includes a full
pass over each client. An early work on VFL appeared
in (Hardy et al., 2017). A recent survey on VFL can be
found in (Liu et al., 2024).

3. Related Work
Coresets have been extensively studied for numerous ma-
chine learning models, ranging from clustering (Feldman
& Langberg, 2011; Cohen-Addad et al., 2021; 2022; Shit
et al., 2022; Chhaya et al., 2022), regression (Avron et al.,
2017; Chhaya et al., 2020a), classification (Mai et al., 2021;
Tukan et al., 2022) to deep neural networks (Mirzasoleiman
et al., 2020; Maalouf et al., 2022). The regularized machine
learning models are common in practice, but to the best
of our knowledge, the study of their coreset construction
algorithms is limited to a few models (Avron et al., 2017;
Chhaya et al., 2020b; Ranjan & Shit, 2024). In this work, we
introduce a coreset construction algorithm for regularized
logistic regression in both centralized and VFL setups. We
also improve the coreset size for regularized regression, but
in a VFL setup. Lewis weights (Lewis, 1978) are used for
coreset construction in a centralized setup where preserving
ℓp subspace is important for real value of p (Cohen & Peng,
2015; Fazel et al., 2022).

Today, the literature on federated learning is sufficiently
mature with ever-improving developments. A comprehen-
sive report on the promises of this framework appeared
in (Kairouz et al., 2021). Improving federated learning via
coreset construction has attracted only limited attention from
the research community. (Sivasubramanian et al., 2024) pre-
sented a horizontal federated learning method where, at
every synchronization round, the gradients are computed
based on a coreset of local data that uses submodular func-
tions, which are not tractable. Given the limited size of
data available on a large number of clients in the majority
of horizontal federated learning applications, the impact of
such a construction is potentially limited.

The closest to our work is (Huang et al., 2022). They pre-
sented a framework for coreset construction for regularized
linear regression and k-means clustering in the VFL setting.
As discussed, the complexity of VFL is directly related to
the dataset, which has the same cardinality across clients.
Clearly, constructing coresets directly reduces data process-
ing and benefits the communication overhead. Compared to
(Huang et al., 2022), our work improves by (1) giving a new
coreset construction for regularized logistic regression, (2)
ensuring the coreset size for ridge regression is optimum.

4. Coreset Construction in VFL
We first state our VFL setup. Consider the dataset Z, con-
sisting of X representing n points in Rd and y ∈ Rn rep-
resenting their labels. We have [T ] scattered clients such
that every client has only limited access to the feature space,
and no two clients share any features. A client j ∈ [T ] has
access to all the points but only a limited number of features,
which is represented by Z(j). Now we describe the datasets
for both problems in detail.

VRLog: Z ∈ Rn×d be the datset where, zi = −yi ·xi ∈ Rd

for every i ∈ [n]. Hence, for every client j ∈ [T ], Z(j) ∈
Rn×dj , where z

(j)
i = −yi · x(j)

i for every i ∈ [n]. Here,∑T
i=1 di = d. Let λ > 0 be the regularization parameter.

VRLR: Z ∈ Rn×d+1 be the dataset where zi = [xi, yi] ∈
Rd+1 for every i ∈ [n],. Hence, for every client j ∈ [T − 1],
Z(j) ∈ Rn×dj , where z

(j)
i = x

(j)
i for every i ∈ [n]. For

the client T , Z(T ) ∈ Rn×dT where z
(T )
i = [x

(T )
i , yi] for

every i ∈ [n]. Here,
∑T

i=1 di = d + 1. Let λ > 0 be the
regularization parameter.

For both problems, we use the sensitivity framework for
importance sampling, which relies on importance scores
(sensitivity scores) of every point. Key challenges in this
framework are obtaining a tight upper bound on the sensi-
tivity scores and bounding the total sensitivity. Getting a
tighter upper bound on sensitivity scores is often as expen-
sive as solving the actual problem (Braverman et al., 2021).
Here, we show how coresets can significantly reduce com-
munication overhead while training a model in VFL. We
accomplished this by addressing the following challenges.

P1: Even in the VFL setup, our coreset guarantees hold for
the global model, similar to a centralized setting where
standard sensitivity scores are well-defined. These
bounds are typically derived by functions that have
access to the complete feature space. However, in a
VFL setup, where clients only possess partial feature
sets, determining a tight upper bound on the sensitivity
score is unknown.

P2: The model complexity of a machine learning algorithm
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reduces due to an added regularization. As a result, it is
natural to expect a smaller coreset size for this problem
compared to an unregularized version of the problem.
However, designing an algorithm that captures the re-
duced model complexity for a general problem through
the sensitivity scores and then using them to quantify
the size of the final coreset is unknown.

We first introduce the sensitivity scores that capture the im-
portance of a point under the reduced model complexity
in a centralized setting. In our definition, regularization
inherently reduces the importance of each point. As the reg-
ularization parameter increases, sensitivity scores decrease
accordingly. This is intuitively correct as higher regulariza-
tion leads to smaller model weights (or norm). The optimal
model tends to a zero vector for a very large regularization
parameter λ. In such a case, the sensitivity scores would
also be close to 0 (i.e., negligible importance of every point).

Definition 4.1 (Regularized Sensitivity). Let Z be a
dataset with n points along with its labels. Let Q be the
feasible model space and λ ∈ R>0 be a regularization pa-
rameter. Let, loss(Z,q, λ) =

∑n
i=1 f(zi,q) + g(λ,q) for

every q ∈ Q. Then for every point i ∈ [n] we define the
regularized sensitivity score as,

si := sup
q∈Q

f(zi,q)

loss(Z,q, λ)

In the above definition, the importance of every point i ∈ [n]
is quantified by si, which is the supremum of the relative
loss of the point to the complete regularized loss over all
feasible models. Notice that the sensitivity scores can be any
value between 0 and 1. Further, as λ increases, the sensitiv-
ity score decreases. Hence, compared with an unregularized
machine learning model for any λ > 0, we get a tighter
sensitivity score. We exemplify this further. For simplicity,
assume the number of clients to be 1, which can be easily
extended to a setup with multiple clients. Let X be a dataset
with n points in Rd such that n/d = c where c is a positive
integer. Again, for simplicity, in the case of ridge regression,
the response vector y is a zero vector, and for regularized
regression, it is an all 1 vector in n-dimensional space. Let
X =

[
I, · · · , I

]
∈ Rd×n where I is identity matrix. In

(Huang et al., 2022), the sensitivity score for every point in
the ridge regression problem is at least 1/c. Hence, the total
sensitivity for n points is n/c = d, which directly affects
the final coreset size. Notice that it is irrespective of the fact
whether λ is 0 or a positive scalar. So, in such a case, our
sensitivity scores are 1/(c+ λ). Hence, the total sensitivity
score is n/(c+ λ) < n/c = d. In fact, for higher values of
λ, the total sensitivity score could be significantly smaller.
So, theoretically, the improvement in the coreset size is at
least by a factor of c/(c+ λ). For our algorithm, obtaining
a tighter upper bound on these functions is sufficient.

Next, for both problems, we define a function for every point
and every client such that the aggregation of the functions
for every point from different clients ensures a tight upper-
bound on the sensitivity of the complete high-dimensional
points. These are then further used to sample points and as-
sign appropriate weights to them. We use the unified coreset
construction algorithm from (Huang et al., 2022), which we
state as algorithm 3 in the appendix for completeness. Here,
we describe the overview of the algorithm.

Algorithm Overview: The algorithm uses scores gj =

{g(j)1 , . . . , g
(j)
n } for every client j ∈ [T ]. Next, every j ∈

[T ] shares its local sum of scores, G(j), with the server.
Using these values, the server computes a distribution over
[T ] and samples a set of clients C ⊆ T . Here, clients with
higher G(j) will have a greater likelihood of being selected
by the server. Next, it asks every selected client to sample
⌈m/t⌉ points and send their indices to the server. This
ensures that the union of the sampled indices forms a set
S, with expected size of E[|S|] = m. Finally, based on the
received indices, the server determines the weight function
w for all the sampled indices S and returns the weighted set
Sw, where S ⊆ Z and w : S→ R>0.

Vertical Federated Optimization: At every round r ∈ [R],
the server makes a call of Algorithm 3 to compute a
coreset Sw of size m. It then informs Sw to the partic-
ipating clients j ∈ [T ] to compute the local gradients
∇q(j)cost(X(j),q

(j)
r ) using Sw. Similar to the equation

6, the server then collects the gradients to update the model
as qr+1 = qr − η

⋃
j∈[T ]∇q(j) loss(S

(j)
w ,q

(j)
r , λ).

5. Coreset Construction for VRLog

Here, we present how to compute the scores g(j)i for every
client j ∈ [T ] and every point i ∈ [n] for VRLog. For
simplicity, we start with the case where T = 1 and bound
the sensitivity scores. To get a practical bound, we use a data
dependent property known as µ-complexity of the dataset,
as introduced by (Munteanu & Schwiegelshohn, 2018).

Definition 5.1 (µ-Complexity). For a given dataset Z ∈
Rn×d and a vector q ∈ Rd, let (Zq)+ and (Zq)− be vectors
having only positive and negative entries respectively. Sim-
ilarly (q)+ and (q)− are defined. Then the µ-complexity
for the regularized logistic regression with a regularization
parameter λ is defined as,

µ(Z, λ) := sup
q∈Rd\{0}

∥(Zq)+∥1 + λ∥(q)+∥1
∥(Zq)−∥1 + λ∥(q)−∥1

.

Notice that due to supq(), we have µ(Z, λ) ≥ 1. It
implies µ−1 (∥(Zq)−∥1 + λ∥(q)−∥1) ≤ ∥(Zq)+∥1 +
λ∥(q)+∥1 ≤ µ (∥(Zq)−∥1 + λ∥(q)−∥1). For brevity, we
refer to µ(Z, λ) simply as µ in the future.W We consider
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an augmented matrix Ẑ⊤ :=
(
Z⊤, λI

)
. In the following

lemma, we show that the ℓ2 norm of the orthonormal column
basis of Ẑ is the upper bound of the sensitivity scores.

Lemma 5.2. Let Z ∈ Rn×d be a µ-complex dataset. Let
λ > 0, and U be an orthonormal column basis of Ẑ. Then
the sensitivity scores for every i ∈ [n],

sup
q∈Rd

f(zi,q)

ClassLoss(Z,q, λ)
≤ 20(1 + µ)

(√
u⊤
i ui +

1

n

)
.

To prove the above lemma, we analyze two possible cases
z⊤i q ≥ 0.5 and z⊤i q < 0.5 for every q ∈ Rd. Detailed
proof has been discussed in the appendix. The sensitivity
scores remain tight as they effectively capture the impact of
the regularization parameter.

Let, A ∈ Rn×d be a matrix with singular values are {σi}di=1.
Given a scalar λ > 0 the statistical dimension is defined as
sd(A, λ, 2) =

∑d
i=1

1
1+ λ

σ2
i

. Additionally, it is known that

the VC dimension of logistic regression is d+ 1. So, there
is a ε-net of queries of size O

(
2
ε

)d
(Matoušek, 1993).

Using a standard coreset construction framework, for an ε ∈

(0, 1), if the final coreset size is O
(√

n·sd(Z,λ,2)d log(1/ε)

ε2

)
then using Bernstein’s inequality and taking a union bound
over the ε-net, we get an ε-coreset for regularized logistic
regression with probability 0.99.

Notice that the coreset size is still a function of
√
n. We

get rid of this dependence due to an improved analysis of
our sensitivity-based coreset construction algorithm using
Lewis weights.

Theorem 5.3. (Lewis, 1978) Let Z be d-dimensional col-
umn space in Rn and a fixed 1 ≤ p <∞. Then, there exists
a basis matrix U that spans the column space of Z. The
matrix U is called ℓp Lewis Basis of Z if Dp/2−1U is an
orthonormal matrix, where D is a diagonal matrix such that
Dii =

√
u⊤
i ui, for every i ∈ [n].

As Lewis basis U is basis for the column space spanned by
Z, hence due to row operation on U by a positive definite
matrix D does not alter its column space. As a result, the
orthogonal matrix Dp/2−1U spans the same column space
of Z, making it an orthonormal column basis of the matrix.

In (Mai et al., 2021), it was shown that for models such as
logistic regression and hinge loss, sampling points propor-
tional to the ℓ1 Lewis Weights ensures coreset guarantees.
For every row i ∈ [n] its lewis weight is ∥ui∥p2, where ui

is the ith row vector of U. For a µ-complex dataset Z the
desired coreset size for unregularized logistic regression is
Õ
(

d·µ2

ε2

)
[Corollary 9 (Mai et al., 2021)]. The unregular-

ized logistic regression implies that λ = 0. This is due to the
fact that the logistic regression classification loss function

looks like a hinge, which is why the ℓ1 Lewis weights are
used to preserve the sum of absolutes, i.e., the essential part
of the hinge function. Since Z ∈ Rn×d considered to be
full rank, so for p = 1, D−1/2U being orthonormal column
basis of Z, it ensures that the sum of ℓ1 Lewis weights is
∥U∥2 := ∥D−1/2U∥22 = d. This is due to the existence
of the Lewis Basis (Musco et al., 2022). We give a simple
proof in the appendix for completeness.

Now, for the regularized logistic regression, we focus on the

augmented matrix Ẑ :=

(
Z
λI

)
which is a (n+ d)× d size

matrix. The algorithm computes the ℓ1 Lewis weights for Ẑ.
Now, in our VRLog problem, we use the Lewis weights for
computing the g

(j)
i for every client j ∈ [T ] and every point

i ∈ [n]. score for every point i ∈ [n].

Algorithm 1 Weights for VRLog

Input: Each client j ∈ [T ] holds data {X(j),y} and a real
number λ > 0
Output: Scores g(j) ∈ Rn

>0

1: Compute Z(j) ∈ Rn×dj , from {X(j),y}.

2: Compute Ẑ(j) :=

(
Z(j)

λIdj

)
3: return g(j) := LewisWeight(Ẑ(j), 1)

Algorithm Overview: The algorithm 1 considers that the
augmented dataset Ẑ is feature-wise partitioned among scat-
tered clients as governed by the original partition of Z,
where z

(j)
i = −yi · x(j)

i for every i ∈ [n]. It then computes
the ℓ1 Lewis scores for all the n + d rows, locally at each
client. However, the algorithm only returns the first n scores,
which are subsequently used by the algorithm 3 to define
a distribution and sample an appropriate number of points.
The final coreset size depends on the µ-complexity and the
statistical dimension of Z with regularization λ for ℓ1. The
statistical dimension for ℓ2 has been defined in (Avron et al.,
2017; Ranjan & Shit, 2024). For p = 1, we define the
statistical dimension for ℓ1 as follows.

Definition 5.4. Given a matrix A ∈ Rn×d and a real posi-
tive value λ, let U be the ℓ1 Lewis basis of A and {σi}di=1

be the singular values of M where M = U⊤Dp/2−1A.
Then the statistical dimension for ℓ1 is sd(A, λ, 1) :=∑d

i=1
1

1+ λ

σ2
i

.

The statistical dimension of a matrix in ℓp is an important
parameter. One of the main results in the paper is Lemma
5.5, which is the foundation for bonding the coreset size for
regularized logistic regression. We bound the total Lewis
scores of the first n points of the matrix Ẑ.

Lemma 5.5. In lemma 5.2, let U and Û be the ℓ1 Lewis
basis of Z and Ẑ respectively. Then the sum of ℓ1 Lewis
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weights of first n points in Û is sd(Z, λ, 1). Here M =
U⊤Dp/2−1Z such that D is the diagonal matrix defined
from U.

We prove the above lemma in the appendix. Now, using the
lemma 5.5 and Corollary 9 in (Mai et al., 2021), we have the
following theorem, which is our main result for regularized
logistic regression in the centralized setting.

Theorem 5.6. For a given Z, let λ > 0 be a regularization
parameter. Let Ẑ be the augmented matrix. If Ẑ be a µ-
complex dataset. Let algorithm 1 computes the scores g(j)

for every j ∈ [T ]. Then if then the size of the returned

set from algorithm 3 is O
(

sd(Z,λ,1)·µ2

ε2

)
, then the set if an

ε-coreset for VRLog with one client.

Lewis weights can be approximated by an iterative algo-
rithm (Cohen & Peng, 2015). We restate it as algorithm 4
for completeness. Notice that even though it is an iterative
algorithm, the weights are always non-negative. Hence, we
finally get a vector g representing the Lewis weights of all
the rows of the input matrix.

It is known from 5.2 or (Mai et al., 2021) that the sensitivity
scores for logistic regression are upper bound by a function
that is proportional to the ℓ2 norm of its corresponding in its
orthonormal column basis. These are effectively the square
root of the leverage scores, which is upper bounded by a
function proportional to

√
n (see Lemma 5.2). However, in

the case when an orthonormal column basis is constructed
from the Lewis basis, we get much tighter upper bounds.

Now, consider the VFL setting with T clients, such that
every j ∈ [T ] has access to X(j) ∈ Rn×dj and

∑
j∈[T ] dj =

d. The sensitivity scores on the complete feature space can
be upper bounded by the sum of local upper bounds and a
factor that is proportional to T . We have discussed this in
detail in the appendix.

Notice that algorithm 4 gets p = 1. For every client j ∈ [T ],
the algorithm takes O(nd2j ) to return the Lewis weights g(j)i

for every i ∈ [n]. The following corollary states our coreset
guarantee for VRLog.

Corollary 5.7 (Coresets for VRLog). For a given dataset
Z and a scalar λ > 0, let Ẑ be the augmented matrix such
that it is partitioned among T clients. For every j ∈ [T ],
as Ẑ(j) ∈ Rn×dj . If Ẑ be a µ-complex dataset then the
algorithm 3 computes an ε-coreset (see; Definition 1.3) in

Õ(nd2) of size m = O

(
µ2T

∑T
j=1 sd(Z(j),λ,1)

ε2

)
for some

ε ∈ (0, 1) and the model can be trained with communication
complexity O(mT ).

6. Coreset Construction for VRLR
In this section, we present an improved ε-coreset for VRLR
compared to (Huang et al., 2022). Recall the input dataset
Z and its partition among clients for this problem. Our al-
gorithm uses importance sampling and follows the unified
framework. We propose a new algorithm that computes a
tighter bound of the novel sensitivity scores (see Definition
4.1). Through improved analysis, we not only reduce the
coreset size but also eliminate the dependence on a dataset
property that is influenced by the partitioning among the
clients (Huang et al., 2022). This parameter can grow as

large as
(

σmax(Z)
σmin(Z)

)2
, where σmax and σmin are the largest

and the smallest singular values of the dataset Z. An adver-
sary can generate a dataset where this property is arbitrarily
large. In contrast, our approach ensures that the coreset size
is independent of this parameter, and instead it only depends
on T (number of clients). Now, we present our algorithm
for computing the g(j)i scores for every i ∈ [n] at each client
j ∈ [T ] for the VRLR problem.

Algorithm 2 Scores for VRLR

Input: Each client j ∈ [T ] holds data [X(j),y] and a real
number λ > 0
Output: Scores g(j) ∈ Rn

>0

1: if j == T then

2: Compute Ẑ(T ) :=

(
X(T ) y√
λIdT

0

)
3: else

4: Compute Ẑ(j) :=

(
X(j)
√
λIdj

)
5: end if
6: return g(j) := LewisWeight(Ẑ(j), 2)

Algorithm Overview: In algorithm 2, each client j con-
siders a partition of Ẑ as earlier. It computes a tight upper
bound of the sensitivity scores for their local data Ẑ(j). It
computes the local leverage scores (ℓ2 Lewis weights) at
each client j for every rows of Ẑ(j). For a tall and thin
matrix, these are the squares of the ℓ2 norms of the rows
of its orthonormal column basis. So, every client j ∈ [T ],
computes the orthonormal column U(j) for Ẑ(j)). These
computation happens in algorithm 4 where we set p = 2.
Then for every i ∈ [n] and every j ∈ [T ] the algorithm
LewisWeight(·) computes a score g(j)i = ∥u(j)

i ∥2. Finally it
returns an n-dimensional vector g(j) for every client j ∈ [T ]

These scores are finally used by the algorithm 3 to sample
points. The points returned by the algorithm 3 ensure the
following guarantees.

Theorem 6.1 (Coresets for VRLR). Let Z be the given
dataset, partitioned between T ≥ 1 clients and ε ∈ (0, 1).
The algorithm 3 returns a ε-coreset for VRLR (see; Def-
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inition 1.4) of size m = O

(
T

∑T
j=i sd(Z

(j),λ,2) log(d)

ε2

)
in

input sparsity time O(nnz(Ẑ)) such that with probability
at least 0.99. A model can be trained on this coreset with a
communication complexity O(mT ).

We prove the above theorem using multiple lemmas. Our
first lemma is one of the important lemmas that gives a tight
upper bound on the sensitivity scores in a VFL setup.
Lemma 6.2. For every point i ∈ [n] and client j ∈ [T ],
the scores returned by the Algorithm 4 for VRLR, g(j)i =

∥u(j)
i ∥22. Let U(1),U(2), . . . ,U(T ) be the orthonormal col-

umn basis of Ẑ(1), Ẑ(2), . . . , Ẑ(T ) respectively, then every
point i ∈ [n] the regularized sensitivity scores can be upper
bonded as,

sup
q

(x⊤
i q− yi)

2

∥Xq− y∥22 + λ∥q∥22
≤ T ·

 T∑
j=1

∥u(j)
i ∥

2
2


It is important to note that the bound on the sensitivity
scores of the points for ridge regression is a function of
T , i.e., the total number of clients and the aggregation of
locally computed leverage scores. To compute these scores,
the algorithm computes a thin SVD of Ẑ(j). This is the most
computationally expensive operation, which takes O(nd2j )
time. However, this running time can be significantly im-
proved using randomization techniques. Leverage scores
can be approximately computed in input sparsity time, i.e.,
O(nnz(Ẑ(j))) (Woodruff et al., 2014).

Our next result gives a tight bound on the total sensitivity
scores. Like VRLog, the total sensitivity is a function of the
regularization parameter λ and Ẑ.
Lemma 6.3. For the given regularization parameter λ, the
total sensitivity scores or the sum of the sensitivity scores
in the VFL setup with [T ] clients are upper bounded by

O
(
T ·
∑T

j=1 sd(Z
(j), λ, 2)

)
.

For every j ∈ [T ] the sd(Z(j), λ, 2) is the ℓ2 statistical
dimension of Z(j) with respect to λ. As the λ increases,
the statistical dimension decreases, thereby decreasing the
bound on the total sensitivity score. The proof is discussed
in the appendix. Finally, with the following lemma, we
prove that the approximation guarantee holds along every
direction in the complete feature space.
Lemma 6.4. For a given Z ∈ Rn×(d+1) be the augmented
matrix, let λ > 0 be a scalar and ε ∈ (0, 1). The algorithm
3 samples a set S ⊆ Z with appropriate weights w : S →
R>0. We represent the weighted set as Sw. If the size S is

at least O
(

T
∑T

j=1 sd(Z(j),λ,2) log(d)

ε2

)
then the set ensures

the following guarantee with at least 0.99 probability.

(1− ε)(Z⊤Z+ λI) ⪯ S⊤
wSw + λI ⪯ (1 + ε)(Z⊤Z+ λI)

Here, we use Matrix Bernstein’s inequality (Tropp et al.,
2015; Chhaya et al., 2020a) to prove the above lemma,
which has been deferred to the appendix. The above lemma
proves that difference between the covariances of the coreset
and the full dataset along with the regularization parameter
is PSD bounded, i.e, (1+ ε)(Z⊤Z+λI)−S⊤

wSw+λI ⪰ 0
and S⊤

wSw + λI − (1 − ε)(Z⊤Z + λI) ⪰ 0. As, it
ensures ridge ℓ2 subspace embedding, hence for every
query vector q ∈ Rd we have,

∣∣∥Zq∥22 − ∥Swq∥22
∣∣ ≤

ε
(
∥Zq∥22 + λ∥q∥22

)
. Finally, it ensures the desired guar-

antee in Theorem 6.1.

7. Experiments
We have conducted experiments for both regularized logis-
tic and regularized linear regression 1. We have considered
three datasets: (1) Credit Card for VRLog problem, (2) Fi-
nancial, and (3) Blog Feedback for VRLR. We have first
partitioned each dataset into a training and a testing set
(80:20). Further, for both problems, we have considered
the number of clients to be 3, i.e., T = 3. We compare
the performance of our coresets with various other sam-
pling techniques. Once we have a sample from one of the
sampling methods (including ours), we train an appropriate
model (i.e., either regularized logistic or ridge regression).
Next, we use this model to compute the training loss, test
accuracy, model closeness, and training time for the VRLog
experiment. For VRLR, we have reported test RMSE and
model closeness. We have repeated each experiment 10
times for every sample size and reported their medians.

VRLog: We have considered Credit Card data, which is
a binary class dataset, with imbalanced class sizes. Our
algorithm is AugLewis (Algorithm 1), and the rest of the
sampling methods are– (1) Uniform: points sampled uni-
formly at random. (2) HLSZ: Points are sampled based on
the sampling method in (Huang et al., 2022). (3) SqLev: it
is a heuristic sampling method, where the dataset is parti-
tioned into two sets based on the labels. From both sets, we
use the square root of leverage scores for sampling points
(Munteanu et al., 2018). (4) Lewis: Uses ℓ1 Lewis weights
of only dataset for sampling points.

In Figure 1, we have reported the training loss, balanced
accuracy on test data, model closeness, and training time.
Recall that in Corollary 5.7 our coreset ensures a ε approx-
imation guarantee on the training loss. The leftmost plot
corroborates our theoretical guarantees.

We further observe that our coreset gives balanced accu-
racy on par with the test dataset. Even though there are no
known theoretical guarantees for models trained on coresets
and models trained on the complete data, we observe that

1Codes available at https://github.com/
dcll-iiitd/CoresetForVFL
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Figure 1. VRLog Coreset Performance (Credit Card)

Figure 2. VRLR Coreset Performance (Blog Feedback, Financial Dataset)

the model trained on our coresets is closer to the model
trained on the complete data, compared to a model trained
on the HLSZ sample, only SqLev outperforms. Overall,
our coresets are either matching or outperforming in terms
of balanced accuracy on the test dataset compared to other
coreset construction methods. The SqLev and Lewis al-
gorithms are very close to the AugLewis. However, these
algorithms have poorer theoretical guarantees, such as the
sizes of the coreset are O(

√
n) and O(µ2d2ε−2), respec-

tively. In terms of training time, with our coresets training a
model is around 80x to 100x faster compared to training a
model on the complete dataset.

Samples→ 500 2500
Methods↓ Train Test Train Test
Uniform 0.8192 0.8185 0.8723 0.8731
HLSZ 0.8704 0.8712 0.9071 0.9078
Lewis 0.9220 0.9230 0.9304 0.9315
AugLewis 0.9330 0.9343 0.9319 0.9331

Table 1. F1 scores on the Credit Card dataset.

We also compared the F1 scores between all the sampling
methods on the Credit card datasets. We observe in table
1 that even though there are no known theoretical claims,
from our or any other coreset for logistic regression, our
algorithm is always better than other sampling methods for
various sample sizes.

Based on both empirical evidence and established theoreti-
cal guarantees, our algorithm 1, which leverages regularized
sensitivity scores, offers greater reliability and superiority

in constructing coresets for VRLog problems.

VRLR: For the VRLR problem, we used the Blog Feed-
back dataset and financial data. We compare our sampling
method (Algorithm 2) with a naive Uniform sampling and
Leverage Score sampling (Huang et al., 2022). In Figure 2,
we reported the test RMSE and the model closeness between
models trained on the coreset and a model trained on the
complete dataset. In both parameters, our algorithm (Lev)
clearly outperforms the other sampling methods, which are
uniform sampling and the sampling method from (Huang
et al., 2018). It verifies our theoretical claim that using regu-
larized sensitivity scores (see Definition 4.1), our sampling
method achieves smaller RMSE and parameter closeness
compared to others. Hence, Lev is superior to its competi-
tors for the VRLR problem.

Conclusion
In this paper, we highlight the advantages of using core-
sets in Vertical Federated Learning (VFL). We introduce
smaller coresets for regularized logistic regression in both
centralized and VFL settings. Additionally, we demonstrate
how a global guarantee on loss functions, utilizing the full
feature space, can be achieved while maintaining data pri-
vacy among clients. We further enhance the coreset size for
regularized linear regression in VFL, making it independent
of data-dependent parameters. Notably, as the regulariza-
tion parameter λ increases, model complexity decreases—a
trend observed in both coresets. This relationship was em-
pirically validated through our experiments.
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Appendix
Here we present all the missing (or known) algorithms for completeness and discuss all the proofs that are missing in the
main paper.

A. Missing Algorithms
Here we state the known algorithms used in our coreset construction for completeness.

A.1. Unified Framework

The unified framework from (Huang et al., 2022) is as follows.

Algorithm 3 Unified Coreset for VFL

Input: Each client j ∈ [T ] has data Z(j), a vector g(j) ∈ Rn, an integer m ≥ 1 for coreset size.
Output: Weighted Set Sw

1: Each client j ∈ [T ] sends G(j) :=
∑

i∈[n] g
(j)
i to the server.

2: The server computes G :=
∑

j∈[T ] G
(j) and samples a client subset C ⊆ [T ] of size t, where each client j ∈ [T ] is

sampled with a probability G(j)

G .
3: Each client j ∈ C, samples a subset S(j) ⊆ [n] of size ⌈m/t⌉, where each point i ∈ [n] is sampled with a probability

g
(j)
i

G(j) , and sends S(j) to the server.
4: The server broadcasts S ←

⋃
j∈[T ] S

(j) to all parties.

5: Each client j ∈ C sends
{
g
(j)
i : i ∈ S

}
to the server.

6: For every point i ∈ S, server computes weights w(i)← G

|S|·
∑

j∈[T ] g
(j)
i

.

7: return weighted set Sw

A.2. Lewis Weights

The algorithm to compute Lewis Weights (Cohen & Peng, 2015) is as follows.

Algorithm 4 LewisWeight

Input: A matrix X, an integer p ∈ {1, 2}
Output: g ∈ Rn

1: n = #row(X)
2: W = In
3: for t = 1 . . . 10 do
4: for i = 1 . . . n do
5: Set Wii ←

(
x⊤
i (X

⊤W1−2/pX)−1xi

) p
2 .

6: end for
7: end for
8: return g := diag(W)

B. Proofs of VRLog
B.1. Proof of Lemma 5.2

Lemma B.1. Let Z ∈ Rn×d be a µ-complex dataset. Let λ > 0, and U be an orthonormal column basis of Ẑ. Then the
sensitivity scores for every i ∈ [n],

sup
q∈Rd

f(zi,q)

ClassLoss(Z,q, λ)
≤ 200(1 + µ)

(√
u⊤
i ui +

1

n

)
.

12
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Proof. Let i ∈ [n] and qi ∈ argmaxq
f(zi,q)

ClassLoss(Z,q,λ) . We prove the theorem by considering two cases.

1. zTi qi ≥ 0.5

2. zTi qi < 0.5

Case 1: zTi qi ≥ 0.5

Proof. Consider QR decomposition of Ẑ as Ẑ = UR. Here U is an orthonormal basis for the column space of Ẑ. When
0.5 ≤ z⊤i q and monotonicity of f that

f(z⊤i q) = f
(
z⊤i q

)
= f

(
u⊤
i Rq

)
(i)

≤ f (∥ui∥2∥Rq∥2)
(ii)
= f (∥ui∥2∥URq∥2)

= f
(
∥ui∥2∥Ẑq∥2

)
(iii)

≤ 2∥ui∥2∥Ẑq∥2
≤ 2∥ui∥2∥Ẑq∥1
(iv)

≤ 2∥ui∥2(1 + µ)∥(Ẑq)+∥1

≤ 2∥ui∥2(1 + µ)

 ∑
j:z⊤

j q≥0

f(z⊤j q) + λ|q(+)|


≤ 2∥ui∥2(1 + µ)ClassLoss(Z,q, λ). (7)

The inequality (i) is due to Cauchy Schwarz. Since U is an orthonormal matrix which is invariant towards ℓ2 so we have the
equality (ii). For a sufficiently large |a|, we have |a| ≤ f(a) ≤ 2|a|; due to this, we get the inequality (iii). The inequality
is from the µ-complexity of Ẑ. Finally we get the equation (7).

Case 1: zTi qi < 0.5

Proof. Let K− = {j ∈ [n] | z⊤j q) ≤ −2} and K+ = {j ∈ [n] | z⊤j q > −2}. Note that f(−2) > 1/100 and
f(z⊤j q) ≤ f(0.5) < 1. Also, n = |K+|+ |K−|. Thus if |K+| ≥ n

2 then

ClassLoss(Z,q, λ) =
n∑

i=1

f(z⊤j q) + λ∥q∥1

(i)

≥ n

200

≥ n

200
· f(x⊤

i q). (8)

We have the inequality (i) because z⊤j q > −2 and such cases f(−2) ≥ 1/100 further |K+| ≥ n/2. Now, if |K+| < n
2

then |K−| ≥ n
2 . Further, f(z⊤j q) ≤ 1 so we get the equation (8).

ClassLoss(Z,q, λ) ≥ ∥(Zq)+∥1 + λ∥q(+)∥1
(i)

≥ ∥(Zq)−∥1 + λ∥q(−)∥1
µ

≥ n/(2µ)

≥ n

2µ
· f(z⊤i q). (9)

13
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The inequality (i) is due to the µ-complexity property of Ẑ, and the following two inequality is due to the same reason from
the previous analysis.

So, using the equations (7), (8) and (9) we have the following claim for every q ∈ Rd

f(zi,q)

ClassLoss(Z,q, λ)
≤ 200(1 + µ)

(√
u⊤
i ui +

1

n

)

Lemma B.2. Given a Lewis basis U of Z for some fixed p, we have ∥Dp/2−1U∥2F = ∥U∥p2.

Proof. We know Dii =
√

u⊤
i ui where D is a diagonal matrix. So,

D = diag
(√

u⊤
1 u1,

√
u⊤
2 u2, . . . ,

√
u⊤
nun

)
and subsequently we have, D

p
2−1 = diag

(
(u⊤

1 u1)
p
2
−1

2 , . . . , (u⊤
nun)

p
2
−1

2

)
Now compute ∥D

p
2−1U∥2F

∥D
p
2−1U∥2F =

n∑
i=1

∥e⊤i Dp/2−1U∥22 =

n∑
i=1

[
(u⊤

i ui)
p/2S−1(u⊤

i ui)
]
=

n∑
i=1

(u⊤
i ui)

p
2 = ∥U∥p2

B.2. Proof of Lemma 5.5

Lemma B.3. In lemma 5.2, let U and Û be the ℓ1 Lewis basis of Z and Ẑ respectively. Then the sum of ℓ1 Lewis weights of
first n points in Û is sd(Z, λ, 1). Here M = U⊤Dp/2−1Z such that D is the diagonal matrix defined from U.

Proof. Let Û be the Lewis Basis of the matrix Ẑ and U is the Lewis Basis of Z. Let D̂ and D be the diagonal matrices
defined from Û and U. From the above lemma B.2 we know that ∥D̂−1/2Û∥2F = ∥Û∥2. Hence, in the regularized logistic
regression, the total Lewis weights is

∑n
i=1 ∥ûi∥1 =

∑n
i=1 D̂

2
iiû

⊤
i ûi.

Let M = U⊤D−1/2Z a d × d full rank matrix, such that its decomposition is M = ŨΣ̃Ṽ⊤. Now, consider a matrix

N =

(
D−1/2UŨΣ̃Σ√

λṼΣ

)
where Σ =

(
Σ̃2 + λId

)−1/2

. It is not difficult to verify that N⊤N = Id. Now, recall that the

column space of Ẑ is same as the column space of both Û and D̂−1/2Û. Further, N is a column basis of Ẑ and N is an
orthonormal matrix. Hence, N is an orthonormal column basis of Ẑ. Since, N and D̂−1/2Û both are the orthonormal
column basis of Ẑ, so they are a rotation apart from each other. As Frobenius norm is invariant to rotations hence, we have∑n

i=1 ∥ûi∥1 =
∑n

i=1 D̂
−1
ii û⊤

i ûi =
∑n

i=1 n
⊤
i ni where n⊤

i is the ith row of N.

Now, we bound
∑n

i=1 n
⊤
i ni.

n∑
i=1

n⊤
i ni = ∥D−1/2UŨΣ̃Σ∥2F

(i)
= ∥Σ̃Σ∥2F
(ii)
=

d∑
i=1

σ̃2
i

σ̃2
i + λ

.

Here, (i) is because both D−1/2U and Ũ are the orthonormal column basis, to which the Frobenius norm is invariant. Since
both Σ and Σ̃ are diagonal matrices, we get the final equality (ii).
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B.3. Proof of Corollary 5.7

Corollary B.4. For a given dataset Z and a scalar λ > 0, let Ẑ be the augmented matrix such that it is partitioned among
T clients. For every j ∈ [T ], as Ẑ(j) ∈ Rn×dj . If Ẑ be a µ-complex dataset then the algorithm 3 computes an ε-coreset

(see; Definition 1.3) in Õ(nd2) of size m = O

(
µ2T

∑T
j=1 sd(Z(j),λ,1)

ε2

)
for some ε ∈ (0, 1) and the model can be trained

with communication complexity O(mT ).

Proof. For logistic regression from Lemma 5.2 we know that the sensitivity scores for every point i ∈ [n] can be upper
bounded by a function that is proportional to the ℓ2 norm of the row of any orthonormal column basis of the matrix. Further,
from (Mai et al., 2021) we know due to the existence of Lewis Basis, there is a tighter upper bound that is proportional to
the square of the ℓ2 norm of a special orthonormal column basis of dataset that is constructed from its Lewis Basis.

So, for a matrix A ∈ Rn×d, the higher upper bound for any i ∈ [n] is maxq∈Rd
(ai⊤q)2

∥Aq∥2
2

. Now, in the case of VRLog,

we can upper bound these scores as, maxq∈Rd
(ai⊤q)2

∥Aq∥2
2
≤ d

∑d
j=1

(
(aij ·qj)2

e⊤
j A⊤Aej ·q2j

)
= d

∑d
j=1

(
a2
ij

e⊤
j A⊤Aej

)
. We get

this bound by applying Cauchy Schwarz in the numerator and the in the denominator we use a lower bound. We use
∥Aq∥22 ≥ e⊤j A

⊤Aej · q2j for every j ∈ [d].

Now, recall that due to lemma B.2, the coreset size depends on the ∥D−1/2U∥2. For every point i ∈ [n], its sensitivity score
is upper bounded by the ∥e⊤i D−1/2U∥2. Hence, the sum of the Lewis weights from different clients and factor of T upper
bounds the actual Lewis weight of the point in higher dimensional space.

C. Proofs of VRLR
C.1. Proof of Lemma 6.2

Lemma C.1. For every point i ∈ [n] and client j ∈ [T ], the scores returned by the Algorithm 4 for VRLR, g(j)i = ∥u(j)
i ∥22.

Let U(1),U(2), . . . ,U(T ) be the orthonormal column basis of Ẑ(1), Ẑ(2), . . . , Ẑ(T ) respectively, then every point i ∈ [n]
the regularized sensitivity scores can be upper bonded as,

sup
q

(x⊤
i q− yi)

2

∥Xq− y∥22 + λ∥q∥22
≤ T ·

 T∑
j=1

∥u(j)
i ∥

2
2


Proof. For every point i, the regularized sensitivity function is defined as, supq

(x⊤
i q−yi)

2

∥Xq−y∥2
2+λ∥q∥2

2
. For simplicity, assume

that T = d and y = 0, such that every client j ∈ [T ], has access to xj , which is the jth column of X. We consider Z = X

and Ẑ =

(
Z√
λI

)
. Now we analyze the sensitivity score for every q without the supremum as follows.

(x⊤
i q− yi)

2

∥Xq− y∥22 + λ∥q∥22
=

(x⊤
i q)

2

∥Xq∥22 + λ∥q∥22

=
(z⊤i q)

2

∥Ẑq∥22

=
(zi1 · q1 + zi2 · q2 + . . .+ zid · qd)2

∥Ẑq∥22
(i)

≤
d
(
(zi1 · q1)2 + (zi2 · q2)2 + . . .+ (zid · qd)2

)
∥Ẑq∥22

(ii)

≤ d

(
(zi1 · q1)2

e⊤1 Ẑ
⊤Ẑe1 · q21

+
(zi2 · q2)2

e⊤2 Ẑ
⊤Ẑe2 · q22

+ . . .+
(zid · qd)2

e⊤d Ẑ
⊤Ẑed · q2d

)
(iii)
= d

(
(zi1)

2

e⊤1 Ẑ
⊤Ẑe1

+
(zi2)

2

e⊤2 Ẑ
⊤Ẑe2

+ . . .+
(zid)

2

e⊤d Ẑ
⊤Ẑed

)
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The inequality (i) is due to Cauchy Schwarz in the numerator. In inequality (ii), we use the lower bound in the denominator,
i.e., ∥Ẑq∥22 ≥ e⊤j Ẑ

⊤Ẑej · q2j for every j ∈ [d]. Finally, we get (iii). Since it is independent of q, so it upper bounds the

above function even with a supremum over q. Here, every client j ∈ [d] upper bounds their own function by (zij)
2

e⊤
j Ẑ⊤Ẑej

and

sensitivity scores entire point is upper bounded by aggregating these scores and scaling it with d.

Notice that if T = 1, then we do not need to apply Cauchy Schwarz in (i) since there is only one client, and it has access to
the complete data. So instead of (iii) we could upper bound the above function by z⊤i (Ẑ

⊤Ẑ)†zi. This is also equal to the
square of the ℓ2 norm of the ith row of the orthonormal column basis of Ẑ. So, z⊤i (Ẑ

⊤Ẑ)†zi = ∥ui∥22 where ui is the ith

row of U which is the orthonormal column basis of Ẑ.

In a similar manner, when 1 < T < d every client j ∈ [T ] upper bounds its scores by g
j)
i = (z

(j)
i )⊤((Ẑ(j))⊤(Ẑ(j)))†(z

(j)
i ).

Here g
(j)
i are the values that were returned by LewisWeight. Finally, the sensitivity score of the entire point is upper bound

by aggregating these scores and scaling them with T .

So, for a general T we y ̸= 0 we have,

sup
q

(x⊤
i q− yi)

2

∥Xq− y∥22 + λ∥q∥22
≤ T ·

 T∑
j=1

∥u(j)
i ∥

2
2


Here U(j) is the orthonormal column basis of Ẑ(j) for every j ∈ [T ].

C.2. Proof of Lemma 6.3

Lemma C.2. For the given regularization parameter λ, the total sensitivity scores or the sum of the sensitivity scores in the
VFL setup with [T ] clients are upper bounded by O

(
T ·
∑T

j=1 sd(Z
(j), λ, 2)

)
.

Proof. This proof is similar to the proof of lemma B.3.

Consider singular value decomposition of Ẑ(j), i.e., Ẑ(j) = UΣV⊤, where U ∈ Rn×dj representing the orthonormal
column basis of Ẑ(j), Σ is a dj×dj diagonal matrix and V ∈ Rdj×dj orthonomal row basis of Ẑ(j). Let Σ̂ = (Σ2+λIdj

)−
1
2 .

Let M =

(
UΣΣ̂

V
√
λΣ̂

)
. Notice, that M⊤M = Idj and Ẑ(j) = MΣ̂−1V⊤. Hence, M is the orthonormal column basis of

Ẑ(j). Although there are infinitely many orthonormal column basis for any given matrix, each is a rotation of another. Hence,
the row norms of each orthonormal column basis are the same. So,

∑n
i=1 ∥mi∥2 = ∥UΣΣ̂∥2F = ∥ΣΣ̂∥2F =

∑dj

j=1
1

1+ λ

σ2
i

.

Now, due to lemma C.1 the sum of upper bounds are
∑n

i=1 g
(j)
i = T · sd(Z(j), λ, 2) = T ·

∑dj

j=1
1

1+ λ

σ2
i

. Hence,

G = T ·
∑T

j=1 sd(Z
(j), λ, 2).

Now, we bound the sampling complexity by applying the following Matrix Bernstein’s inequality.

Theorem C.3 (Matrix Bernstein (Tropp et al., 2015)). Let X1,X2, . . . ,Xn are independent d× d random matrices such
that ∀i ∈ [n], |∥Xi∥| ≤ b and var(∥X∥) ≤ σ2 where X =

∑n
i=1 Xi, then for some t > 0,

Pr (|∥X∥ − E[∥X∥]| ≥ t) ≤ d · exp
(
−t2/2

bt/2 + σ2

)

C.3. Proof of Lemma 6.4

Lemma C.4. For a given Z ∈ Rn×(d+1) be the augmented matrix, let λ > 0 be a scalar and ε ∈ (0, 1). The algorithm 3
samples a set S ⊆ Z with appropriate weights w : S→ R>0. We represent the weighted set as Sw. If the size S is at least

O

(
T

∑T
j=1 sd(Z(j),λ,2) log(d)

ε2

)
then the set ensures the following guarantee with at least 0.99 probability.

(1− ε)(Z⊤Z+ λI) ⪯ S⊤
wSw + λI ⪯ (1 + ε)(Z⊤Z+ λI)
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Proof. Let R be the random variable that holds the sampled points. So, we have the random matrix R as,

R =
{

ziz
⊤
i

pim
, with probability pi, if ith row of Z sampled

Note that E[
∑m

j=1 Rj ] = Z⊤Z. So, the sum of the random matrices is unbiased and is equal to the original data matrix
Z⊤Z. Here {R1, . . . ,Rm} are the random variables that hold the sampled points from the algorithm. Now we bound ∥R∥2.

∥R∥ (i)
=

∥∥∥∥ziz⊤ipim

∥∥∥∥
2

(ii)
=

∥∥∥∥ziz⊤i Ggim

∥∥∥∥
2

(iii)

≤

∥∥∥∥∥ (ziz⊤i )†ziz⊤i Ẑ⊤ẐG

m

∥∥∥∥∥
2

(iv)

≤

∥∥∥∥∥ Ẑ⊤ẐG

m

∥∥∥∥∥
2

In the above, the equality (i) and (ii) are by definition. In the inequality (iii) we use the lower bound of gi =
∑T

j=1 g
(j)
i ≥

(z⊤
i q)2

∥Ẑq∥2
2

for every q. In the final inequality we upper bound z⊤i )
†ziz

⊤
i ≺ Id.

Now, we bound var
(∥∥∥∑m

j=1 Rj

∥∥∥
2

)
using var[Rj ] ≤ E[R2

j ] for every j ∈ [T ].

var

∥∥∥∥∥∥
m∑
j=1

Rj

∥∥∥∥∥∥
2

 ≤ E

∥∥∥∥∥∥
m∑
j=1

R2
j

∥∥∥∥∥∥
2


=

∥∥∥∥∥∥
m∑
j=1

n∑
i=1

(ziz
⊤
i )

2

pim2

∥∥∥∥∥∥
2

(i)

≤

∥∥∥∥∥∥
m∑
j=1

n∑
i=1

(ziz
⊤
i )

†(ziz
⊤
i )

2Ẑ⊤ẐG

m2

∥∥∥∥∥∥
2

(ii)

≤

∥∥∥∥∥ (Ẑ⊤Ẑ)2G

m

∥∥∥∥∥
2

In the above analysis, the inequalities (i) and (ii) are same as the previous analysis in ∥R∥.

Therefore by applying Matrix Bernstein Theorem C.3 we get,

Pr

∣∣∣∣∣∣
∥∥∥∥∥∥

m∑
j=1

Rj

∥∥∥∥∥∥
2

−
∥∥∥Ẑ⊤Ẑ

∥∥∥
2

∣∣∣∣∣∣ ≥ ε
∥∥∥Ẑ⊤Ẑ

∥∥∥
2

 ≤ 2d · exp

 −(ε∥Ẑ⊤Ẑ∥2)
2

2

ε∥Ẑ⊤Ẑ∥2
2G

3m +
∥∥∥∥Ẑ⊤Ẑ∥2

2G
m

∥∥∥


≤ 2d · exp
(
−ε2

3G/m

)
Now to ensure that the event happens with probability at least 0.99 we need m ≥ O

(
3G log(d)

ε2

)
. As we know from the

lemma C.2 that G = O
(
T ·
∑T

j=1 sd(Z
(j), λ, 2)

)
hence we have the claimed value of m.

D. More Empirical Evaluations
Here, we show more rigorous experiments over more real-world datasets. Building on the setup used in the main paper, each
dataset was partitioned into training and testing sets, with each experiment repeated up to 5 times, and then the median
performance of these repetitions is reported.
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• The Wave Energy Converters dataset consists of positions and absorbed power outputs of wave energy converters
(WECs) in four real wave scenarios from the southern coast of Australia (Sydney, Adelaide, Perth, and Tasmania). We
used the Sydney dataset that consisted of 71999 samples and 48 features after preprocessing. The dataset was split into
training and testing subsets in a ratio of 4:1.

• The Year Prediction UCI ML dataset aims to predict the release year of a song based on audio features, specifically tim-
bre attributes.It includes 90 attributes—12 representing timbre averages and 78 representing timbre covariances—across
a range of songs from 1922 to 2011. The dataset was split into training (463,715 examples) and testing (51,630 exam-
ples) subsets, ensuring no artist appears in both sets.

• The KDD Cup dataset is used for network intrusion detection. It contains 125,973 instances of network traffic data with
122 attributes. The dataset was split into 4:1 train-test sets for intrusion detection tasks, where the goal is to classify
network traffic as either normal or intrusive.

• The Credit Card Fraud Detection dataset contains 284,315 legitimate transactions and 492 fraudulent cases, resulting in
a highly imbalanced dataset. We address this imbalance using SMOTE sampling, which generates a balanced dataset
of 568,630 samples while maintaining the original split ratio. The task is to identify fraudulent transactions.

• Gold Price Financial Markets dataset captures 50 market indicators over 3,904 trading days. The task is to predict the
future movements of stock prices, making it a time-series regression problem.

• The Blog Feedback dataset consists of 56,239 samples and 280 features and is used to predict the popularity of blog
posts. The dataset contains a mix of continuous and categorical features, making it suitable for regression tasks.

• The UJIIndoorLoc UCI ML dataset is used for indoor positioning and consists of 21,048 samples with 527 WiFi signal
attributes. The task is a multi-target regression problem, where the goal is to predict the latitude and longitude of a
mobile device based on its WiFi signal strengths.

D.1. VRLog Experiments

Figure 3. VRLog Coreset Performance (KDD Cup)

Samples→ 50 2500
Methods↓ Train Test Train Test
Uniform 0.3419 0.3412 0.9184 0.9155
HLSZ 0.4717 0.4702 0.9685 0.9659
Lewis 0.8715 0.8688 0.9712 0.9684
AugLewis 0.8801 0.8772 0.9713 0.9685

Table 2. F1 scores on the KDD Cup dataset.

Here, we have considered KDD dataset with similar setup as we had for the credit card dataset in the main section of the
paper. In figure 3 we again observe that our sampling methods outperforms the other sampling methods in all aspects,
but the difference between trained model on the subsample and full dataset. Even though SqLev performs better in terms
of the model difference, however there are no known theoretical guarantees in this regard for Logistic regression from
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any sampling methods. Further, SqLev known to have coresets whose size is proportional to
√
n, makes it less reliable in

practice, where n is the number of data points in the training set.

We again compared the F1 scores between all the sampling methods on the KDD datasets. Similar to the Credit Card dataset,
we observe that our sampling method outperforms others in the table 2, even though there are no known theoretical claims.

Now, extending our experiments from section 7, on the Credit Card Fraud Detection dataset, this time, the coresets were
partitioned into five clients, where each client consisted of around 6 features. Here and we have considered various λ values.
We compared our sampling method Augmented Coreset with Lewis with other sampling methods, which are (1) Uniform, (2)
Class-wise QR, and (3) Coreset With Lewis are SqLev and Lewis from the section 7 respectively.

We observe in Figure 4, the plots are consistent, where our coreset outperforms all the other sampling methods (Uniform,
QR, Lewis Weights) in both the training and testing phases. In the QR sampling, we partition the dataset based on the labels
and then compute QR decomposition on each partition separately. Next, the row norms were used to define the distribution
over the training dataset, and then it was sampled. In the Lewis weights sampling, our sampling method here does not
consider the regularization term in the Lewis weight approximation.

Figure 4. VRLog Coreset Performance (Credit Card)
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D.2. VRLR Experiments

Here, we also increase the number of clients. We have considered the regularization parameter λ to be 102 for the Wave
dataset and 104 for the Year dataset. We have considered similar competitive sampling methods as we had in the section 7.
Our coreset outperforms both in the training phase as well as the testing phase in both datasets.

In the top two images of Figure 5, we show our results in the Wave Energy Converters dataset. We partitioned the coreset
into 3 and 10 clients for better analysis. We have considered various regularization parameter values λ. These are captured
by the parameter α, which is defined as α = 1/λ. Notice, our coreset (i.e., Ridge Leverage) performance significantly
improves compared to uniform and (Huang et al., 2022), which is Leverage. Even with a coreset size as small as 0.5 percent
of the full data, the performance of our coreset is significant.

Next, we tried an analysis on the Year Prediction UCI ML dataset. Here, we partitioned the coreset into 5 clients, each with
around 18 features. The bottom two images in Figure 5 report the MSE of the Year dataset. While our coreset does not
improve the results significantly compared to the other two sampling methods, it consistently outperforms them.

Figure 5. VRLR Coreset Performance (Wave Energy and Year Prediction)
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We extended our experiments to additional datasets - UJIIndoorLoc, and Blog Feedback, which are presented in figure 6
and the Gold Price Finance dataset in figure 7 for different values of λ. To evaluate performance with all three sampling
algorithms further, we also reported relative training time and model closeness as done in the section 7. The relative training
time is defined as the ratio of the time taken to train a model on the complete training dataset to the time taken to train a
model on the coreset. These are better when they are greater. The model closeness is the relative measure between the
Euclidean distance between a trained model on the subsample and a trained model on the complete dataset, to the trained
model from the complete dataset. These are better when smaller.

The training and the test RMSE are very similar because both train and test well represent the distribution of the population.
Here, also notice that our algorithm 2 clearly outperforms all the other coreset construction methods.

Figure 6. VRLR Coreset Performance (UJIIndoorLoc and Blog Feedback)

Based on this extensive empirical evidence and established theoretical guarantees, we again reiterate that our algorithm 1
and algorithm 2, which leverages regularized sensitivity scores, offers greater reliability and superiority in constructing
coresets for VRLog problems and VRLR problems, respectively.

21



Coreset for Regularized Linear and Logistic Regression in VFL

Figure 7. VRLR Coreset Performance (Financial)
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