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Abstract

Our approach combines motion planning with several scripted motion primitives to manipulate the
cuboid. In the previous two phases we focused on learning corrections to our controller, but in this
phase we did not have time to train and test the models. However, we find that our controller is able to
complete the four tasks. A video of our approach can be found fhere.

1 Approach

In this phase of the competition, we are tasked with manipulating a small cuboid by picking it up and
moving it to various goal poses using the TriFinger Platform developed by Wiithrich et al. [6]. The task has
four different levels, the first three require reaching a goal position, while the fourth requires also achieving
a desired orientation (i.e., a goal pose). These are challenging tasks that often require multiple grasps and
manipulations to achieve the goal pose. We find that many feasible grasps of the object are not suitable for
solving the task, especially when matching orientation is required. Therefore, a successful approach must
be able to search or plan over the space of possible grasps in some way. The small size of the object also
requires precise positioning of the fingertips, which can be challenging in the presence of observation noise.

The core of our approach is a grasp-planning loop in which feasible grasps are sampled until a path using
that grasp can be found to a desired pose. The path is then executed by tracking target joint positions with
a PD controller. This approach doesn’t rely on feedback of the object’s pose while the object is in motion,
allowing us to be robust to inaccurate or missed object observations. We combine this with a set of motion
primitives which grasp and align the object before attempting to move it to the goal pose. An overview of
our approach can be found in Figure

1.1 Grasp and Motion Planning

We sample grasps in two ways: by randomly sampling a set of three contact points on the surface of the
object, and by selecting from a set of predefined heuristic contact points. A grasp is then generated by
assigning a fingertip to each contact point. We reject grasps that don’t exhibit the following two properties:
the grasp is feasible, meaning the finger tips can reach the contact points and there are no collisions between
the fingers (excluding the tips) and the cube, and the grasp is in force closure, meaning we can resist any
external force applied to the object. The force closure check is computed by assuming a Coulomb friction
model and making a linear approximation to the friction cone.

Once a grasp has been sampled, we run an RRT [3] in task space (i.e., the pose of the object) starting
from the current object pose and planning to a desired object pose. We enforce that the grasp is maintained
during planning by rejecting object poses if the corresponding grasp is not feasible. If no feasible path to
the goal is found, we sample another grasp and try again. To ensure we eventually find a feasible path, we
slowly increase the size of the goal set of the RRT.

We then use the resulting waypoints to control the joint positions of the fingers. During execution, we
check to see if the object has been dropped. If so, we reset and plan again. Notably, the execution of this plan
does not rely on feedback of the object’s pose. This makes us robust to errors in the observations, which
can be substantial when the cube is occluded by the fingers, including missed detections and occasional
180 degree flips in the detected orientation. In the previous two phases, we included force control to help
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Figure 1: Structure of our approach. We first align the pose of the object by moving it to the center of the
workspace and executing a yaw rotation to align the object with the goal orientation. We then find a grasp
and motion plan which can move the object to the goal location. The object is then grasped and the plan
is executed by tracking joint positions with a PD controller.

maintain grasping forces as the object moved, but the controller was not able to handle the increased
observation noise of this phase.

In the cases in which the RRT generates a plan that does not move the object to the exact goal pose,
we append a correction to the plan after execution that moves directly to the goal pose by translating and
rotating the fingertip positions accordingly. In the previous phase, we also corrected for other errors such as
slippage or changes in the grasp during execution of the plan, but we found the observation noise to be too
large for this to work reliably.

1.2 Motion Primitives and Object Alignment

Many goal poses cannot be reached with a single grasp. Consequently, we use a set of scripted motion
primitives to first align the object to the goal on the ground. These include: grasping the object, moving the
object to the center of the workspace, and aligning the orientation of the object with the goal orientation.
These primitives are combined as shown in Figure

The grasping motion primitive moves the fingertips in a straight line to a predefined pregrasp position
near the contact points, then grasps the object. This helps avoid accidentally hitting the object when
approaching it. The smallest sides of the object are about the same size as the fingertips. As a result,
grasping is prone to failure if there is noise in the object’s observed pose. To combat this, we first move the
fingers to a position that does not occlude the camera’s view of the object and collect several observations.
We then average and project those observations onto the ground plane by setting the height of the object’s
position and projecting its orientation into the subspace of yaw-only rotations. We then use the averaged
observations for grasping.

The move-to-center motion primitive first grasps the object, then moves the fingertips along a straight-
line path to the center of the workspace. We find that there is no need to use the above grasp-planning loop
to orchestrate this motion ahead of time as it works well with almost all feasible force-closure grasps. The
fingertips then release the object by moving away from and above it.

To make it easier to find a grasp and plan that can move the object to the goal, the align-yaw motion
primitive rotates the object to be close to the goal orientation while remaining on the ground. This cor-
responds to projecting the goal-orientation onto the space of yaw-only rotations and rotating the object to
the projected orientation. This primitive is used only for Level 4. In the previous phase, we used a scripted
motion to rotate the object, but in this phase we found that the smaller object size often leads to collisions
between the fingers. Instead, we use the grasp-planning loop defined above to find a feasible grasp and plan
that achieve the rotation. We then grasp the cube, execute the planned motion, and release the grasp of the
object.



Task Mean Median Std. Dev.

Level 1 7,944 —8,104 4,214
Level 2 —4,039  —3,888 446
Level 3 —9,806  —6,046 10,066
Level 4 —24,755  —23,409 10, 548

Table 1: Unofficial performance of our approach showing the reward statistics for each level based on 10
episodes on the real system. Official results can be found on the leaderboard with username ‘ardentstork’ at
https://real-robot-challenge.com/leader-board.

2 Discussion

We evaluate our approach by running 10 episodes for each level on the real robot. Table [I] presents the
performance of each algorithm. We find that our approach is able to consistently solve the tasks, is robust to
observation noise, and can recover from failures (i.e., dropping the object). However, there is still room for
improvement. We often find that executing our planned motions only takes the object near the goal pose.
This is because the grasp was invalid at the goal pose, planning failed or took too long, or the object slipped
while executing the plan. Robustly correcting for these errors could improve our performance considerably.
Additionally we accumulate a lot of negative reward while the RRT is planning, and failures that trigger
another round of planning can lead to a large variance in rewards. Using a Probabilistic Roadmap (PRM) [2]
would allow us to precompute the search space, and thereby speed up planning significantly.

Due to time constraints, we were unable to try everything we had planned for Phase 3. Specifically, we
implemented a framework for residual policy learning [I], 4] with domain randomization [5] to help transfer
from simulation to the real robot, but did not have time to train and test the learned policies with a finalized
controller. In the previous two phases, our policies were able to learn useful corrections to our controllers,
and we believe such an approach would be beneficial in this phase as well.

We thank the organizers for all the effort they put into creating the TriFinger platform and hosting this
competition. We are excited to use this platform to extend this work or for other research projects related
to dexterous manipulation.
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