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Robust Twin Bounded Support Vector Classifier
with Manifold Regularization

Junhong Zhang, Zhihui Lai, Heng Kong, Linlin Shen

Abstract—Support vector machine (SVM), as a supervised
learning method, has different kinds of varieties with signifi-
cant performance. In recent years, more researches focused on
nonparallel SVM, where twin support vector machine (TWSVM)
is the typical one. In order to reduce the influence of outliers,
more robust distance measurements are considered in these
methods, but the discriminability of the models is neglected. In
this paper, we propose robust manifold twin bounded support
vector machine (RMTBSVM), which considers both robustness
and discriminability. Specifically, a novel norm, i.e., capped
L1-norm, is used as the distance metric for robustness, and
a robust manifold regularization is added to further improve
the robustness and classification performance. In addition, we
also use kernel method to extend the proposed RMTBSVM for
nonlinear classification. We introduce the optimization problems
of the proposed model. Subsequently, effective algorithms for
both linear and nonlinear cases are proposed and proved to be
convergent. Moreover, the experiments are conducted to verify
the effectiveness of our model. Compared with other methods
under the SVM framework, the proposed RMTBSVM shows
better classification accuracy and robustness.

Index Terms—twin support vector machine, robust capped L1-
norm, manifold regularization, kernel method.

I. INTRODUCTION

SUPPORT vector machine (SVM) [1] is one of the most
commonly used tools for classification tasks in machine

learning. It is generally applied in image classification [2],
action recognition [3], energy resources prediction [4], and
so on. The essential points of support vector classification
(SVC) are the maximum margin principle, dual theory, and
kernel tricks [5], [6]. The traditional SVC expects to solve
an optimization problem that minimizes structural risk based
on hinge loss and L2-norm regularization. Based on dual
theory, the principle of SVC finally leads to a very large
quadratic programming problem (QPP). To solve the QPP
more efficiently, many algorithms were proposed, such as se-
quential minimal optimization (SMO) [7] and successive over-
relaxation (SOR) [8]. However, these algorithms might be still
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time-consuming in large-scale classification tasks. Because of
the large QPP in conventional SVM, many effective improved
methods of SVM were proposed in early studies. Suykens et
al proposed least square support vector machine (LSSVM),
which uses equality constraints instead of inequalities in SVM
[9], and the computation burden is decreased. Mangasarian
et al proposed Lagrangian support vector machine based on
implicit Lagrangian formulation, which can efficiently work
in large datasets [10].

Nonparallel support vector machine (NPSVM) is a new
genre of SVM [6]. Compared with classical SVM, NPSVM
uses nonparallel hyperplanes to classify data. Twin support
vector machine (TWSVM) [11] is a special case of NPSVM.
The main idea of TWSVM is to find two hyperplanes for two
classes, and each hyperplane is closer to the corresponding
class and far away from the other class. Therefore, TWSVM
is formulated with two optimization problems for two hyper-
planes respectively, which leads to a pair of QPPs. Compared
with the large QPP in SVM, these two QPPs in TWSVM
are both small and easy to solve. Thus TWSVM can be
trained more efficiently than SVM. Additionally, TWSVM can
effectively learn more complicated distribution than SVM, for
instance, the “cross planes” dataset [12]. Therefore, TWSVM
is widely applied in the classification problems. There are
many extensive methods based on TWSVM. Shao et al
presented twin bounded support vector machine (TBSVM)
implementing thestructural risk minimization principle with
L2-norm regularization [12]. Kumar et al proposed the least
square version of TWSVM, which can be solved with linear
equation efficiently instead of QPPs [13].

However, most of methods mentioned above use squared
L2-norm as metric and are sensitive to outliers, since the
impact of errors will be amplified by the square operator.
How to improve the robustness of discriminative methods
(e.g., SVM, regression) is still an important and open topic
in machine learning [14]. To improve the robustness, many
discriminative learning methods based on more robust met-
ric (e.g. L1-norm, L2,1-norm) were proposed, such as L1-
fisher discriminant analysis (L1-LDA), robust feature selection
(RFS), and robust discriminant regression (RDR) [15]–[17].
The robust metric is also widely studied in recent researches
in the TWSVM framework. Xu et al presented pin-TWSVM
which uses robust pinball loss in the objective functions [18].
Yan et al presented L1-TWSVM and its least square version
L1-LSTBSVM, which are both based on L1-norm distance
metric [19], [20]. Recently, the robustness of TWSVM model
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were further improved by introducing capped L1-norm metric,
such as CTWSVM, FRTBSVM, R-CTWSVM+ [21]–[23], and
robust correntropy-based metric, such as RCTSVM, ARTSVM
[24], [25]. However, these methods have not further discussed
the case of nonlinear classification so far.

Manifold learning is also an important topic in machine
learning in the past 20 years. Preserving the manifold struc-
ture can improve the discriminative property of data [26].
Therefore, many improved methods of SVM are developed
based on the technique of manifold learning framework.
Local coding method is applied in SVM to derives a locally
linear classifer in the early studies [27]. Recently, manifold
regularization has been a popular technique widely applied
in SVM models to preserve manifold structure, which can
effectively implement semi-supervised learning [28], [29].
In this framework, Laplacian TWSVM (Lap-TWSVM) was
developed for semi-supervised learning under the manifold
regularization framework [30], [31].

In this paper, we take advantages of robust metric and
manifold regularization techniques to propose a novel model
with significant robustness and discriminative performance.
We improve Lap-TWSVM and CTWSVM [21], [31] and
propose a comprehensive method, namely Robust Manifold
Twin Bounded Support Vector Machine (RMTBSVM). It
greatly enhances the robustness and classification performance
of TBSVM. The main contributions of this paper can be
concluded as below:
• We propose RMTBSVM, a novel nonparallel SVM model

with capped L1-norm loss and manifold regularization in
L1-norm. The different robust metrics are systematically
integrated into the model to take full advantage of their
function for SVM classifier’s design. Therefore, the ro-
bustness of SVM has been greatly improved. As such,
the proposed RMTBSVM is not only robust to outliers
but has stronger discriminative ability.

• We present the optimization problems of the proposed
model and derive effective algorithms to solve the prob-
lems. The convergence of the algorithm is proved.

• We further extend our model to nonlinear conditions. Ker-
nel method is used to implement nonlinear classification.
The theoretical analysis is also presented in this paper.

• Experiments are carried out to verify the effectiveness
of RMTBSVM. The results suggest that RMTBSVM is
more robust and performs better in classification tasks,
which is verified by statistical significance in this paper.

The rest of this paper is organized as follows: In section II,
we discuss the related works and give the motivation of our
method. In section III, we propose our model, and design an
effective algorithm to solve the optimization problem. Further
analysis of our method is presented in section IV. In section V,
we evaluate the performance of the RMTBSVM by performing
a set of experiments. Finally, a conclusion is made in section
VI.

II. PRELIMINARY

In this section, we review some related works, including
TWSVM, TBSVM, manifold regularization and capped L1-
norm loss.

A. TWSVM and TBSVM
Let us consider a binary classification problem. The training

sample matrix is X = [x1,x2, · · · ,xn] ∈ Rd×n, where
column vector xi ∈ Rd is the sample point. The label of i-th
sample is yi ∈ {−1, 1}. We use matrix A ∈ Rd×nA to denote
the samples of positive class (i.e. yi = 1), and use B ∈ Rd×nB

to denote the samples of negative class (i.e. yi = −1), where
nA + nB = n. We define

A = [x+
1 ,x

+
2 , · · · ,x+

nA
], B = [x−1 ,x

−
2 , · · · ,x−nB

],

where x+
i (or x−i ) represents the i-th sample of positive (or

negative) class. For convenience, we suppose in X the samples
are grouped by the labels, that is, X = [A,B].

Twin support vector machine (TWSVM) [11] defines two
nonparallel hyperplanes for classification task:

f1(x) = wT
1 x + b1 = 0, f2(x) = wT

2 x + b2 = 0,

where w1 ∈ Rd,w2 ∈ Rd, b1 ∈ R and b2 ∈ R. TWSVM
assumes that positive samples are closed to the hyperplane
f1(x) = 0 but far away from f2(x) = 0, and vice versa.
Therefore, the hyperplanes can be obtained by solving follow-
ing pair of optimization problems:

min
w1,b1,ξ

1

2
‖ATw1 + b1e1‖22 + c1e

T
2 ξ,

s.t. − (BTw2 + b1e2) + ξ ≥ e2, ξ ≥ 0, (1)

min
w2,b2,η

1

2
‖BTw2 + b2e2‖22 + cT2 e1η,

s.t. (ATw1 + b2e1)− η ≥ e1, η ≥ 0, (2)

where e1 ∈ RnA , e2 ∈ RnB are vectors of ones, and
ξ ∈ RnB , η ∈ RnA denote slack variables generated from
hinge loss. Generally, to implement structural risk minimiza-
tion principle and avoid over-fitting issues, L2-regularization
term is added to (1) and (2) to obtain an improved version
of TWSVM, namely twin bounded support vector machine
(TBSVM) [12]:

min
w1,b1,ξ

1

2
‖ATw1 + b1e1‖22 + c1e

T
2 ξ +

r1

2

(
‖w1‖22 + b21

)
,

s.t. − (BTw2 + b1e2) + ξ ≥ e2, ξ ≥ 0, (3)

min
w2,b2,η

1

2
‖BTw2 + b2e2‖22 + c2e

T
1 η +

r2

2

(
‖w2‖22 + b22

)
,

s.t. (ATw1 + b2e1)− η ≥ e1, η ≥ 0. (4)

Based on dual theory, we can obtain the dual problem of
(3) and (4):

max
0≤α≤c1e2

eT2 α−
1

2
αT B̃T (ÃÃT + r1I)

−1B̃α, (5)

max
0≤γ≤c2e1

eT1 γ −
1

2
γT ÃT (B̃B̃T + r2I)

−1Ãγ, (6)

where Ã = [AT , e1]T , B̃ = [BT , e2]T and 0, I denote zero-
vector and identity matrix both in appropriate dimension. [12]
points out that (5) and (6) has same formulation of QPP:

max
θ

eT θ − 1

2
θTQθ, s.t. 0 ≤ θ ≤ ce, (7)

which can be efficiently solved with successive over-relaxation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

algorithm (SOR) [8]. If α, γ in (5) and (6) are obtained, we
can easily compute w1, b1,w2, b2.
Remark 1. TWSVM (or TBSVM) uses kernel method to
implement nonlinear classification. The corresponding opti-
mization problems are similar with the linear case. For details,
see [12].

Finally, for a new data x, TWSVM and TBSVM uses the
same decision function to determine its label:

h(x) = sgn

(
|wT

2 x + b2|
‖w2‖

− |w
T
1 x + b1|
‖w1‖

)
. (8)

The multi-class TWSVM (or TBSVM) classifier can be
naturally derived with one-versus-rest strategy (OVR), which
is OVR-TWSVM [32]. Consider a dataset with k classes. We
denote Xi as the sample matrix of i-th class, and we define:

X = [X1, · · · ,Xk], (9)
X−i = [X1, · · · ,Xi−1,Xi+1, · · · ,Xk]. (10)

OVR-TWSVM generates k hyperplanes for classification, and
each hyperplane corresponds to one class. The hyperplane of
i-th class is obtained by solving the following optimization
problem:

min
wi,bi,ξi

1

2
‖XT

i wi + biei‖22 + cie
T
−iξi,

s.t. − (XT
−iwi + bie−i) + ξi ≥ e−i, ξi ≥ 0. (11)

where (wi, bi) indicates the hyperplane of i-th class, ci is the
penalty parameter, ξi denotes the slack variables, and ei, e−i
are vectors of ones of proper dimensions. Problem (11) is
directly extended from binary-class TWSVM (1), and it takes
the i-th class as the positive class and the rest classes as the
negative class. Therefore, we need to solve k QPPs to obtain
an OVR-TWSVM classifier. The geometric meaning of OVR-
TWSVM is that the i-th hyperplane should be close to the
data of i-th class and far away from the others. Hence the
corresponding decision function is

h(x) = min
i=1,2,··· ,k

(
|wT

i x + bi|
‖wi‖

)
. (12)

OVR-TWSVM is intuitive and easy to implement. The OVR
strategy can be also applied in the improved methods of
TWSVM easily, including the method we propose in this
paper.

B. Manifold regularization

Manifold regularization is a general technique commonly
used in semi-supervised learning [33]. Suppose we have
dataset {(xi, yi)}ni=1, and let matrix F ∈ Rn×n denote the
adjacency graph for training samples. The standard optimiza-
tion framework of manifold regularization can be written as

f∗ = arg min
f∈H

n∑
i=1

L(xi, yi, f) + λI

n∑
i,j=1

(f(xi)− f(xj))
2Wij

+ λH‖f‖2H, (13)

where λI , λH are regularization parameters. The second part
of (13) is the manifold regularizer, with which the model can

exploit and preserve locally geometric structure of data. This
term can be written as fTLf , where L is the Laplacian matrix
of W.

For example, [31] proposed a semi-supervised model based
on TBSVM, namely Laplacian TWSVM (Lap-TWSVM). Its
optimization problems can be formulated as

min
w1,b1,ξ

1

2
‖ATw1 + b1e1‖22 + c1e

T
2 ξ +

r1

2

(
‖w1‖22 + b21

)
+

n∑
i,j=1

(wT
1 xi −wT

1 xj)
2Fij ,

s.t. − (BTw2 + b1e2) + ξ ≥ e2, ξ ≥ 0, (14)

min
w2,b2,η

1

2
‖BTw2 + b2e2‖22 + c2e

T
1 η +

r2

2

(
‖w2‖22 + b22

)
+

n∑
i,j=1

(wT
2 xi −wT

2 xj)
2Fij ,

s.t. (ATw1 + b2e1)− η ≥ e1, η ≥ 0. (15)

Compared with (3) and (4), these new optimization problems
have a new manifold regularization term. The problems can be
naturally converted into the quadratic programming framework
(7) and solved efficiently [31].

C. Capped L1-norm and CTWSVM

In general, we always use different norms of vector to
measure loss or regularize the learning model. L2-norm is
commonly used in many models, which is defined as

‖x‖2 = (xTx)1/2. (16)

We usually square this term to simplify computation, i.e. ‖x‖22
is used. However, L2-norm is sensitive since the square term
amplifies the impact of the outliers [15], [21]. In contrast,
L1-norm is more robust since it is defined as the sum of the
absolute value of the elements in vector:

‖x‖1 =

n∑
i=1

|xi|. (17)

Based on L1-norm, we then introduce an operator derived from
L1-norm, called capped L1-norm. It is defined with a positive
parameter ε:

‖x‖1,ε =

n∑
i=1

min (|xi| , ε) , ε > 0. (18)

Remark 2. It should be noted that ‖ · ‖1,ε operator is not
absolutely homogeneous, i.e. ‖ρx‖1,ε 6≡ |ρ|‖x‖1,ε. Therefore,
it cannot be defined as a norm. Here we use this norm-like
notation just for convenience.

The capped norm is considered more robust to outliers [34].
Here we briefly compare the robustness of the loss based
on L2, L1 and capped L1-norm. Fig. 1 shows the curve
of different losses. We can see that for the large ui, which
might be seen as an outlier, capped L1-norm limits the impact
of the error to ε. Hence capped L1-norm can significantly
reduce the influence of noises or outliers. In recent researches,
more robust losses are used to improve the robustness of
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Fig. 1. Comparison of L2, L1, and capped L1-loss (ε = 1). The x-axis
denotes the input of loss function. For outlier point, say ui = 1.5 (the vertical
line), we can see that capped L1-loss > L1-loss > L2-loss. Therefore, L2-
loss is the most sensitive, the L1-norm is second, and capped L1-norm is the
most robust to outliers.

TWSVM [19], [21], [23]. Capped twin support vector machine
(CTWSVM) is a typical one which uses the following capped
L1-loss:

L1(xi, yi, f) =

{
min

(∣∣wT
1 xi + b

∣∣ , ε1) , yi > 0;

min[(1 + b1 + wT
1 xi)+, ε2], yi < 0;

,

L2(xi, yi, f) =

{
min

(∣∣wT
2 xi + b

∣∣ , ε3) , yi > 0;

min[(1− b1 −wT
2 xi)+, ε4], yi < 0.

Therefore, the optimization problems of CTWSVM are

min
w1,b1,ξ

‖ATw1 + b1e1‖1,ε1 + c1‖ξ‖1,ε2 ,

s.t. − (BTw1 + b1e2) + ξ ≥ e2, ξ ≥ 0, (19)

min
w2,b2,η

‖BTw1 + b2e1‖1,ε3 + c2‖η‖1,ε4 ,

s.t. (ATw1 + b1e2)− η ≥ e1, η ≥ 0. (20)

III. ROBUST MANIFOLD TWIN BOUNDED SUPPORT
VECTOR MACHINE

In this section, we first introduce the motivation of the
proposed model, and present the optimization problems of
RMTBSVM. Then we analyze the optimization problems and
present the algorithms for problems based on the analysis.

A. The motivation of RMTBSVM

We mention Lap-TWSVM and CTWSVM above, which
perform well in semi-supervised learning and robust learn-
ing, respectively. However, a drawback of Lap-TWSVM is
the model is sensitive to outliers since it uses L2-loss, and
CTWSVM cannot exploit locally manifold structures. There-
fore, it is worth trying to take advantages of both frameworks.
That is, using a more robust loss with manifold regulariza-
tion based on TBSVM not only enhances the robustness to
noise, but enables the proposed model to exploit the manifold
structure for robust classification.

In order to improve the classification performance, we
consider introducing supervised information to manifold regu-
larization. Thus, a special regularized term with graph preser-

vation is designed in the proposed model via using L1-norm
as metric to improve the robustness, which is presented as

n∑
i,j=1

∣∣wTxi −wTxj
∣∣Fij . (21)

In CTWSVM, the capped L1-norm is applied for misclas-
sification loss for robustness. Therefore, the loss is at most
ε for these points [21]. However, it restricts the penalties
for misclassification to a small value, which probably limits
the discriminability of the model. Since ‖ξ‖1 = eT2 ξ ≥
‖ξ‖1,ε, from the intuition, minimizing L1-loss derives a larger
between-class scatter after projection than capped L1-loss, so
according to Fisher discriminant criterion, it is supposed to
improve the performance of classification. Hence in our model,
L1-loss is applied to balance robustness and discriminability.
On the other hand, it also reduces the complexity of the model.

Furthermore, [19], [21], [22] does not consider the case of
nonlinear classification. However, most of the datasets have
complicated nonlinear distribution, and as a result, the perfor-
mance of the linear model is degraded. Therefore, to adapt
the model to nonlinear cases and improve the performance,
we propose an effective approach for nonlinear classification
based on kernel theory to further extend the proposed model.

B. Linear classification

We first consider the linear cases of RMTBSVM. The loss
term of TBSVM is substituted by capped L1-loss and L1-
hinge loss, and more robust L1-norm manifold regularizer is
added. Therefore, we present the optimization problems of
RMTBSVM:

min
w1,b1,ξ

‖ATw1 + b1e1‖1,ε + c1e
T
2 ξ +

r1

2
(‖w1‖22 + b21)

+
µ1

2

n∑
i,j=1

|wT
1 xi −wT

1 xj |Fij ,

s.t. − (BTw1 + b1e2) + ξ ≥ e2, ξ ≥ 0, (22)

min
w2,b2,η

‖BTw2 + b2e2‖1,ε + c2e
T
1 η +

r2

2
(‖w2‖22 + b22)

+
µ2

2

n∑
i,j=1

|wT
2 xi −wT

2 xj |Fij ,

s.t. (ATw2 + b2e1)− η ≥ e1, η ≥ 0. (23)

The optimization problems (22) and (23) are complicated.
Here we simplify them in two steps. First, we use augment
vectors to represent w1, b1 and w2, b2. Thus we define

v1 =

[
w1

b1

]
, v2 =

[
w2

b2

]
,

Ã =

[
A
eT1

]
, B̃ =

[
B
eT2

]
, X̃ =

[
X
eT

]
.

where e ∈ Rn is the vector of ones. Second, the optimization
problems are concave and hard to solve due to the capped norm
term. An elegant way is to substitute the objective function
with a convex one, such that minimizing the new objective
leads to the solution of the original problem. Thus inspired by
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[35], we reformulate (22) and (23) in the proposed model as
the following convex optimization problems:

min
v1,ξ

1

2
vT1 ÃD1Ã

Tv1 + c1e
T
2 ξ +

µ1

2

n∑
i,j=1

|vT1 x̃i − vT1 x̃j |Fij

+
r1

2
‖v1‖22, s.t. − B̃Tv1 + ξ ≥ e2, ξ ≥ 0, (24)

min
v2,η

1

2
vT2 B̃D2B̃

Tv2 + c2e
T
1 η +

µ2

2

n∑
i,j=1

|vT2 x̃i − vT2 x̃j |Fij

+
r2

2
‖v2‖22, s.t. ÃTv2 − η ≥ e1, η ≥ 0. (25)

where D1,D2 are diagonal matrices, and the diagonal entries
are

(D1)ii =
I(vT1 x̃

+
i ≤ ε)

|vT1 x̃
+
i |

, i = 1, 2, · · · , nA, (26)

(D2)jj =
I(vT2 x̃

−
j ≤ ε)

|vT2 x̃
−
j |

, j = 1, 2, · · · , nB , (27)

where I(·) denotes the indicative function.

Remark 3. For the reason why the proposed minimization
problems (24) and (25) leads to the solution of original
problems, see section IV-A.

Since the optimization of (25) is similar with (24), we
only analyze the optimization problem (24). The manifold
regularization term in (24) can be formulated as:

n∑
i,j=1

|vT1 x̃i − vT1 x̃j |Fij = vT1 X̃(DG −G)X̃Tv1

= vT1 X̃LGX̃
Tv1,

where LG = DG −G, and G,DG are defined as

Gij =
Fij

2|vT1 x̃i − vT1 x̃j |
, (28)

DG = diag

 n∑
j=1

G1j ,

n∑
j=1

G2j , · · · ,
n∑
j=1

Gnj

 . (29)

Therefore, the Lagrangian function of (24) is:

L1(Θ1) =
1

2
vT1 ÃD1Ã

Tv1 +
r1

2
vT1 v1 +

µ1

2
vT1 XLGX

Tv1

+ c1e
T
2 ξ + αT (e2 + B̃v1 − ξ)− βT ξ, (30)

where Θ1 = {v1, ξ, α, β} with α, β as Lagrangian multipliers,
and α, β ≥ 0. Take the partial derivative w.r.t v1 and ξ to be
zero, we have

∂L1

∂v1
= ÃD1Ã

Tv1 + r1v1 + µ1XLGX
Tv1 + αT B̃Tv1 = 0

⇒ v1 = −(ÃD1Ã
T + µ1X̃LGX̃

T + r1I)
−1B̃α, (31)

∂L1

∂ξ
= c1e2 − α− β = 0

⇒ β = c1e2 − α, (32)

where I is identity matrix with appropriate size. Since β ≥ 0,
we have

0 ≤ α ≤ c1e2. (33)

Algorithm 1 Training linear RMTBSVM
Input: Data matrices A,B, parameters c1, c2, r1, r2, µ1, µ2,

steps limitation T .
Output: Augment vectors v1,v2.

1: Compute matrices Ã, B̃, X̃.
2: Initialize v1,v2 with the solution of TBSVM.
3: for t = 1 to T do
4: Compute D1,G,DG with (26), (28), (29). Compute

D2,H,DH with (27), (36), (37).
5: Compute LG = DG −G and LH = DH −H.
6: Compute α, γ by solving (34) and (35) with SOR.
7: Compute v1,v2 with (31), (38).
8: if v1 and v2 are changeless then
9: Break;

10: end if
11: end for
12: return v1,v2.

From (30), (31) and (32), we can obtain the dual of the primal
optimization problem:

max
α

eT2 α−
1

2
αT B̃T (ÃD1Ã

T + µ1X̃LGX̃
T + r1I)

−1B̃α,

s.t. 0 ≤ α ≤ c1e2. (34)

By solving (34), the argument vector v1 can be computed with
(31). That is, w1 and b1 are obtained.

Similarly, we can obtain the dual of (25)

max
γ

eT1 γ −
1

2
γT ÃT (B̃D2B̃

T + µ2X̃LHX̃T + r2I)
−1Ãγ,

s.t. 0 ≤ γ ≤ c2e1, (35)

where γ is the Lagrangian multiplier, and LH = DH − H,
with DH ,H defined as

Hij =
Fij

2|vT2 x̃i − vT2 x̃j |
, (36)

DH = diag

 n∑
j=1

H1j ,

n∑
j=1

H2j , · · · ,
n∑
j=1

Hnj

 . (37)

With the solution of (35), v2 is given by

v2 = (B̃D2B̃
T + µ1X̃LHX̃T + r2I)

−1Ãγ. (38)

It should be noticed that {D1,LG} and {D2,LH} are both
dependent to v1 and v2, which means only one step com-
putation cannot obtain the optimal solution of the primal
optimization problem (24) and (25). Therefore, we propose an
iterative algorithm to compute v1,v2. More details are shown
in algorithm 1.

With v1,v2, we can obtain w1, b1 and w2, b2. Then we use
the decision function (8) to classify new points.

C. Nonlinear classification with kernel method

Similar to the linear cases, the optimization problems of
nonlinear RMTBSVM are formulated as

min
w1,b1,ξ

‖AT
Φw1 + b1e1‖1,ε +

r1

2
(‖w1‖2H + b21) + c1e

T
2 ξ
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+
µ1

2

n∑
i,j=1

|wT
1 φ(xi)−wT

1 φ(xj)|Fij ,

s.t. − (BT
Φw1 + b1e2) + ξ ≥ e2, (39)

min
w2,b2,η

‖BT
Φw2 + b2e2‖1,ε +

r2

2
(‖w2‖2H + b22) + c2e

T
1 η

+
µ2

2

n∑
i,j=1

|wT
2 φ(xi)−wT

2 φ(xj)|Fij ,

s.t. (AT
Φw2 + b2e1)− η ≥ e1, (40)

where

AΦ = [φ(x+
1 ), φ(x+

2 ), · · · , φ(x+
nA

)],

BΦ = [φ(x−1 ), φ(x−2 ), · · · , φ(x−nB
)],

XΦ = [AΦ,BΦ],

and φ(·) is nonlinear feature mapping, ‖ · ‖H denotes the
norm defined by the inner product in the corresponding Hilbert
feature space H. In general, we cannot explicitly express the
feature mapping φ(·), but the kernel function of φ(·) is known,
and can be defined as

K : Rn × Rn 7→ R, K(xi,xj) = φ(xi)
Tφ(xj).

We then reformulate the primal optimization problems as

min
w1,b1,ξ

1

2
(AT

Φw1 + b1e1)TDΦ
1 (AT

Φw1 + b1e1) + c1e
T
2 ξ

+
µ1

2

n∑
i,j=1

|wT
1 φ(xi)−wT

1 φ(xj)|Fij +
r1

2
(‖w1‖2H + b21),

s.t. − (BT
Φw1 + b1e2) + ξ ≥ e2, (41)

min
w2,b2,η

1

2
(BT

Φw2 + b2e2)TDΦ
2 (BT

Φw2 + b2e2) + c2e
T
1 η

+
µ2

2

n∑
i,j=1

|wT
2 φ(xi)−wT

2 φ(xj)|Fij +
r2

2
(‖w2‖2H + b22),

s.t. (AT
Φw2 + b2e1)− η ≥ e1, (42)

where DΦ
1 and DΦ

2 are defined in Table I. We suppose that the
optimal w1,w2 can be formulated as the linear combination
of training samples, i.e.

w∗1 =

n∑
i=1

piφ(xi) = XΦp,w
∗
2 =

n∑
i=1

qiφ(xi) = XΦq (43)

where p,q are linear representation coefficient. This assump-
tion greatly simplifies the problem. (we will justify why it is
valid in section IV-A). We further rewritten the optimization
problem (41) and (42) as follows:

min
p,b1,ξ

(AT
ΦXΦp + b1e1)TDΦ

1 (AT
ΦXΦp + b1e1) + c1e

T
2 ξ

+
µ1

2

n∑
i,j=1

|pTK(:,xi)− pTK(:,xj)|Fij +
r1

2
(pTKp + b21),

s.t. − (KT
Bp + b1e2) + ξ ≥ e2,

min
q,b2,η

(BT
ΦXΦq + b2e2)TDΦ

2 (BT
ΦXΦq + b2e2) + c2e

T
1 ξ

+
µ1

2

n∑
i,j=1

|qTK(:,xi)− qTK(:,xj)|Fij +
r2

2
(qTKq + b22),

s.t. (KT
Aq + b2e1)− η ≥ e1,

where K(:,xi) denotes i-th column of kernel matrix K.
Though AΦ,BΦ,XΦ are dependent to φ(·), the kernel ma-
trices KA = XT

ΦAΦ, KB = XT
ΦBΦ and K = XT

ΦXΦ can be
computed with kernel functions. Therefore we only need to
use kernel matrices to reformulate the optimization problems:

min
u1,ξ

1

2
uT1 K̃AD

Φ
1 K̃Au1 +

r1

2
uT1 Kpu1 + c1e

T
2 ξ

+
µ1

2

n∑
i,j=1

|uT K̃(:,xi)− uT K̃(:,xj)|Fij ,

s.t. − K̃T
Bu1 + ξ ≥ e2, (44)

min
u2,η

1

2
uT2 K̃BD

Φ
2 K̃Bu2 +

r2

2
uT2 Kpu2 + c2e

T
1 η

+
µ1

2

n∑
i,j=1

|uT2 K̃(:,xi)− uT2 K̃(:,xj)|Fij ,

s.t. (KT
Aq + b2e1)− η ≥ e1, (45)

and other notations can be find in Table I. Similar with linear
case, we can obtain

u1 = −(K̃AD
Φ
1 K̃

T
A + µ1K̃LΦ

GK̃ + r1Kp)
−1K̃Bα, (46)

u2 = (K̃BD
Φ
2 K̃

T
B + µ2K̃LΦ

HK̃ + r2Kp)
−1K̃Aγ, (47)

where α and γ are Lagrangian multipliers. The dual problems
of (44) and (45) are

max
α
− 1

2
αT K̃T

A(K̃AD
Φ
1 K̃

T
A + µ2K̃LΦ

GK̃ + r1Kp)
−1K̃Bα

+ eT2 α, s.t. 0 ≤ γ ≤ c1e2, (48)

max
γ
− 1

2
γT K̃T

A(K̃BD
Φ
2 K̃

T
B + µ2K̃LΦ

HK̃ + r2Kp)
−1K̃Aγ

+ eT1 γ, s.t. 0 ≤ γ ≤ c2e1. (49)

It is the same for nonlinear case that we should use iterative
algorithm to compute u1,u2. The details of our proposed
algorithm are listed in algorithm 2.

Finally, similar to (8), we define the decision function of
nonlinear RMTBSVM as

h(x) = sgn

(∣∣qTXT
Φx + b2

∣∣√
qTKq

−
∣∣pTXT

Φx + b1
∣∣√

pTKp

)
, (50)

where XT
Φx can be computed with kernel function.

IV. ALGORITHM ANALYSIS

In this section, we first give the convergence analysis for the
proposed method for linear and nonlinear cases, respectively.
And then, we also reveal more discriminative properties of
RMTBSVM based on manifold regularization view.

A. Convergence analysis
In this section, we prove the convergence of the proposed

algorithms in linear and nonlinear cases.
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TABLE I
NOTATION TABLE FOR NONLINEAR RMTBSVM

Description Definition of vectors or matrices

Augment vectors or matrices u1 =

[
p
b1

]
, u2 =

[
q
b2

]
, K̃A =

[
KA

eT1

]
, K̃B =

[
KB

eT2

]
, K̃ =

[
K
eT

]
, Kp =

[
K 0
0T 1

]
.

Diagonal matrices DΦ
1 ,D

Φ
2 DΦ

1 = diag

{
I(uT1 K̃(:,x+

i ) ≤ ε)
|uT1 K̃(:,x+

i )|

}nA

i=1

, DΦ
2 = diag

{
I(uT2 K̃(:,x−i ) ≤ ε)
|uT2 K̃(:,x−i )|

}nB

i=1

.

Graph matrices GΦ,HΦ GΦ
ij =

Fij

2|uT1 K̃(:,xi)− uT1 K̃(:,xj)|
, HΦ

ij =
Fij

2|uT2 K̃(:,xi)− uT2 K̃(:,xj)|
.

Laplacian matrices LΦ
G,L

Φ
H DΦ

G = diag


n∑
j=1

GΦ
ij


n

i=1

,DΦ
H = diag


n∑
j=1

HΦ
ij


n

i=1

,
LΦ
G = DΦ

G −GΦ

LΦ
H = DΦ

H −HΦ
.

Algorithm 2 Training nonlinear RMTBSVM
Input: Data matrices A,B, kernel function K, parameters

c1, c2, r1, r2, µ1, µ2, steps limitation T .
Output: Augment vectors u1, u2.

1: Compute matrices K̃A, K̃B , K̃,Kp with Table I.
2: Initialize u1,u2 with the solution of kernel TBSVM.
3: for t = 1 to T do
4: Compute DΦ

1 ,D
Φ
2 ,L

Φ
G,L

Φ
H based on Table I.

5: Compute α, γ by solving (48) and (49) with SOR.
6: Compute u1,u2 with (46), (47).
7: if u1 and u2 are changeless then
8: Break;
9: end if

10: end for
11: return u1,u2.

Recall that in section III-B, we reformulate the objective
function in (22) to obtain an easy-to-solved optimization
problem (24). To explain the relationship between (22) and
(24), we propose the following theorem.

Theorem 1. In each iteration, optimizing (24) is equivalent to
minimizing an upper bound of the objective function in (22).

Proof: Inspired by [35], we first define two functions:

h : Rd 7→ Rd+, h(x) = [|x1|, |x2|, · · · , |xd|]T , (51)

g : Rd+ 7→ R+, g(x) =

n∑
i=1

min{xi, ε}. (52)

Then we can rewrite the primal problem (22) as

min
w1,b1

g(h(ATw1 + b1e1)) +RK +RM

= min
w1,b1

g(h(z)) +R, (53)

where z = z(w1, b1) = ATw1 + b1e1, and R is defined as

R = R(w1, b1,G) = RK(w1, b1) +RM (w1, b1,G), (54)

RK(w1, b1) =

nB∑
i=1

(1− b1 −wT
1 x
−
i )+ +

r1

2
(‖w1‖22 + b21),

(55)

RM (w1, b1,G) =
µ1

2

n∑
i,j=1

(wT
1 xi −wT

1 xj)
2Gij , (56)

In t-th iteration, since g(·) is a concave function, the inequality
(57) holds based on the definition of sub-gradient:

g(h(z)) ≤ g(h(z(t))) +
〈

Ω(t),h(z)− h(z(t))
〉
, (57)

where Ω(t) is a sub-gradient of g(u) at u = h(z(t)). We can
find one of sub-gradients of g(u) at u = h(z(t))

Ω(t) =
1

2

[
I(z

(t)
1 ≤ ε), I(z

(t)
2 ≤ ε), · · · , I(z(t)

nA
≤ ε)

]T
.

(58)
By adding R on both sides in (57) we have

g(h(z)) +R

≤ g(h(z(t))) +
〈

Ω(t),h(z)− h(z(t))
〉

+R, (59)

where 〈·, ·〉 denotes inner product operator. Then we minimize
the right side of (59) with respect to w1, b1. Since Ω(t) and
h(z(t)) are both seen as constants, we have

min
w1,b1

g(h(z(t))) +
〈

Ω(t),h(z)− h(z(t))
〉

+R

⇔ min
w1,b1

(Ω(t))Th(z) +R. (60)

We can easily find that (60) is equivalent to the optimization
problem (24). Hence we say optimizing (24) is equivalent to
minimizing an upper bound of the original problem.

We can understand Theorem 1 as follows: The primal ob-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

jective function in (22) is non-convex and is hard to minimize
directly, but Theorem 1 ensures the proposed algorithm mini-
mizing an upper bound of the original objective in each step.
Based on Theorem 1, we can further prove the convergence
of algorithm 1. We begin with the following lemma [16]:

Lemma 1. For all positive real number a, b, the following
inequality holds

√
a− a

2
√
b
≤
√
b− b

2
√
b
. (61)

With Lemma 1, we have the following theorem.

Theorem 2. In each iteration, algorithm 1 monotonically
decreases the value of objective function (22). Therefore, the
iterative series will converge to a local optimum.

Proof: For convenience, we denote the objective function
of (22) in t-th iteration as G(w

(t)
1 , b

(t)
1 ,G(t)). According to

the proof of Theorem 1, we have

G(w
(t)
1 , b

(t)
1 ,G(t)) = g(h(z(t))) +R(t), (62)

where z(t) = ATw
(t)
1 + b

(t)
1 e1 and R(t) = R(w

(t)
1 , b

(t)
1 ,G(t))

is given by (54). Therefore, the conclusion we will prove
is G(w

(t+1)
1 , b

(t+1)
1 ,G(t+1)) ≤ G(w

(t)
1 , b

(t)
1 ,G(t)). On the

other hand, we denote the objective function of (24) as
F(w

(t)
1 , b

(t)
1 ,D

(t)
1 ,G(t)). Similarly we have

F(w
(t)
1 , b

(t)
1 ,D

(t)
1 ,G(t)) = (Ω(t))Th(z(t)) +R(t). (63)

In algorithm 1, we first solve the dual problem (34) and use
(31) to obtain v

(t+1)
1 , which further minimizes the objective

function. Therefore, we have

F(w
(t+1)
1 , b

(t+1)
1 ,D

(t)
1 ,G(t)) ≤ F(w

(t)
1 , b

(t)
1 ,D

(t)
1 ,G(t)).

(64)
For simplification, we define RL as:

RL(w1, b1; Ω(t)) = (Ω(t))Th(z) +RK ,

where Ω(t) is seen as a known constant with respective to RL.
Then we can rewritten the above inequality (64) as

R(t+1)
L +

µ1

2

n∑
i,j=1

|(w(t+1)
1 )Txi − (w

(t+1)
1 )Txj |2

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |

Fij

≤ R(t)
L +

µ1

2

n∑
i,j=1

|(w(t)
1 )Txi − (w

(t)
1 )Txj |2

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |

Fij , (65)

where

R(t)
L = RL(w

(t)
1 , b

(t)
1 ; Ω(t)),

R(t+1)
L = RL(w

(t+1)
1 , b

(t+1)
1 ; Ω(t)).

We can further write the inequality (65) as

R(t+1)
L +

µ1

2

n∑
i,j=1

(|(w(t+1)
1 )Txi − (w

(t+1)
1 )Txj |F 2

ij

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij

≤ R(t)
L +

µ1

2

n∑
i,j=1

(|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij)2

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij

. (66)

In Lemma 1, if we set

a =
∣∣∣((w

(t+1)
1 )Txi − (w

(t+1)
1 )Txj

)
Fij

∣∣∣2 ,
b =

∣∣∣((w
(t)
1 )Txi − (w

(t)
1 )Txj

)
Fij

∣∣∣2 ,
then we can easily obtain following inequality

n∑
i,j=1

|(w(t+1)
1 )Txi − (w

(t+1)
1 )Txj |Fij

−
n∑

i,j=1

|(w(t+1)
1 )Txi − (w

(t+1)
1 )Txj |2F 2

ij

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij

≤
n∑

i,j=1

|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij

−
n∑

i,j=1

|(w(t)
1 )Txi − (w

(t)
1 )Txj |2F 2

ij

2|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij

. (67)

Combining two inequalities (66) and (67), we can obtain

R(t+1)
L +

µ1

2

n∑
i,j=1

|(w(t+1)
1 )Txi − (w

(t+1)
1 )Txj |Fij

≤ R(t)
L +

µ1

2

n∑
i,j=1

|(w(t)
1 )Txi − (w

(t)
1 )Txj |Fij ,

which is same as R(t+1)
L + R(t+1)

M ≤ R(t)
L + R(t)

M , and it is
equivalent to

(Ω(t))Th(z(t+1)) +R(t+1) ≤ (Ω(t))Th(z(t)) +R(t). (68)

Therefore, we have the following inequality

g(h(z(t+1))) +R(t+1)

≤ g(h(z(t))) +
〈

Ω(t),h(z(t+1))− h(z(t))
〉

+R(t+1)

≤ g(h(z(t))) +
〈

Ω(t),h(z(t))− h(z(t))
〉

+R(t)

= g(h(z(t))) +R(t).

That is, G(w
(t+1)
1 , b

(t+1)
1 ,G(t+1)) ≤ G(w

(t)
1 , b

(t)
1 ,G(t)).

Therefore, algorithm 1 monotonically decreases objective
function in (22).

In the nonlinear case, the kernel function is used and the
training samples are mapped to a Hilbert feature spaces.
The Representer Theorem proposed in [33] gives the form
of the solution to the optimization problems under manifold
regularization framework, which is shown as Lemma 2.

Lemma 2 (Representer Theorem [33], [36]). For the opti-
mization problem (13), the optimal f∗ admits an expansion:

f∗ =

n∑
i=1

αiK(·,xi), (69)

where K(·, ·) is the kernel function.

With this lemma, we have the following theorem ensuring
the convergence of algorithm 2.

Theorem 3. In each iteration, algorithm 2 monotonically
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objective value

Hilbert space

Fig. 2. A visualization of the iterative process in nonlinear RMTBSVM.
For convenience, the bias b is ignored in this figure. In t-th iteration, the
optimal w

(t∗)
1 should be in the span of φ(x1), φ(x2), · · · , φ(xn). Since

w(t+1) = w(t∗), the objective will monotonically decrease.

decreases the value of objective function (44). Therefore, the
iterative series will converge to a local optimum.

Proof: In t-th iteration, we rewritten optimization prob-
lem (41):

min
w1,b1,ξ

(AT
Φw1 + b1e1)TDΦ

1 (AT
Φw1 + b1e1)

+ c1

nB∑
i=1

(1 + b1 + wT
1 φ(x−i ))+ +

r1

2
(‖w1‖2H + b21)

+
µ1

2

n∑
i,j=1

[
wT

1 φ(xi)−wT
1 φ(xj)

]2
G

(t)
ij .

This optimization problem is in the form of (13). Thus
according to Lemma 2, in t-th iteration, the optimal solution
w

(t∗)
1 is formulated as

w
(t∗)
1 =

n∑
i=1

piφ(xi).

Therefore, in algorithm 2, the derived w(t+1) satisfies
w

(t+1)
1 = w

(t∗)
1 . That is, w(t+1) minimizes the objective

function in (41) in each iteration, which is same as (64). Hence
the remained proof is similar to that of Theorem 2 and it is
omitted for avoiding repetition.

From Theorem 3, in each iteration, the Representer Theorem
gives a form of optimal w, which is the linear combination
of φ(xi). Based on this, the optimal w(t∗) can be obtained
by iteration. This is the reason why we should formulate
w∗ as (43). We illustrate the iteration process in Fig. 2. For
simplification, we ignore the bias term b1.

B. Multi-class RMTBSVM

The RMTBSVM are discussed as binary classifier above.
Here, we extend our proposed RMTBSVM with OVR strategy
for multi-class classification. We use the same notations as
section II-A. The i-th optimization problem of k-class RMTB-

SVM is formulated as

min
wi,bi,ξi

1

2
‖XT

i wi + biei‖22 + cie
T
−iξi +

ri
2

(‖wi‖22 + b2i ),

+
µi
2

n∑
r,s=1

|wT
i xr −wT

i xs|Frs,

s.t. − (XT
−iwi + bie−i) + ξi ≥ e−i, ξi ≥ 0. (70)

where ri, µi are regularization parameters for i-th class, This
problem can be easily solved by algorithm 1.

C. The discriminant of RMTBSVM

In this section, we study the manifold regularization term in
our method. In general, the geometric neighbor information is
used in the construction of graph matrix F. In our work, we
add supervised information in F to enhance the discriminative
ability of model, which is defined as

Fij =


1/nA, yi = yj = 1;

1/nB , yi = yj = −1;

0, Otherwise.
(71)

We consider the manifold regularization with L2-norm metric.
According to [37], we have

n∑
i,j=1

(wT
1 xi −wT

1 xj)
2Fij

=
1

nA

nA∑
i,j=1

[wT
1 (x+

i − x+
j )]2 +

1

nB

nB∑
i,j=1

[wT
1 (x−i − x−j )]2

= wT
1 (I− 1

nA
e1e

T
1 )w1 + wT

1 (I− 1

nB
e2e

T
2 )w1

= wT
1 (S1 + S2)w1,

where S1,S2 denote within-class scatter of positive and
negative class, respectively. According to fisher discriminant
principle, minimizing this term derives a more discriminative
model. Since it minimizes the sum of within-class scatter, the
samples in the same class will be mapped to be close to each
other. Similarly, in L1-norm case, the manifold regularization
term becomes

1

nA

nA∑
i,j=1

∣∣wT
1 (x+

i − x+
j )
∣∣+

1

nB

nB∑
i,j=1

∣∣wT
2 (x−i − x−j )

∣∣ ,
which leads the model to minimize within-class scatter based
on L1-norm metric. Therefore, our method can better discrim-
inate the data from different classes with strong robustness.
This is another reason why the proposed method is more robust
than other methods.

V. EXPERIMENTS

In this section, we carried the experiments on both binary-
class and multi-class datasets to test the effectiveness of
our model. We compare our method with other methods in
classification accuracy and robustness. The experiments were
run on PC (CPU: Intel Core i7, 2.30GHz; RAM: 8.00GB; OS:
64-bit Windows10).
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TABLE II
THE PROFILE OF DATASETS USED IN THE EXPERIMENTS. IN THE

EXPERIMENTS, THE RATIO OF THE NUMBER OF TRAINING SAMPLE
VERSUS THE TEST SAMPE AS 6:4.

Dataset #feature #sample #class
Heart 13 270 2
Sonar 60 208 2

Australian 14 690 2
Breast 10 683 2

German 24 1000 2
Adult 119 2000 2

Mushroom 112 4000 2
BreastMNIST 28×28 702 2

PneumoniaMNIST 28×28 2000 2
DNA 180 2000 3

Pendigits 16 2000 10
USPS 16×16 2000 10

DermaMNIST 28×28×3 5000 7

random blocks
(size: 8*8)

impulse noise
(density: 5%)

Gaussian noise

Fig. 3. The original images and images corrupted by different noises

A. Experimental setup

In the experiments, data preprocessing was first carried out.
The continuous features were scaled to [−1, 1] interval, and
the discrete features were expanded and encoded with one-hot
coding. We perform experiments on medical image datasets
[38], including BreastMNIST [39], PneumoniaMNIST [40]
and DermaMNIST datasets [41]. The first two are binary-class
datasets and the third is a multi-class dataset. The images of
these datasets were preprocessed as 28×28 pixels [38]. The
datasets we used in the experiments are shown in Table II.
We split each dataset into training set and testing set with the
proportion of samples as 6:4.

In the experiments, we tune the hyperparameters for the best
performance. Since RMTBSVM has many hyperparameters,
for simplification, we set the parameters as ci = c, ri = r

and µi = µ (i = 1, 2, · · · , k), where k is the number of
categories. The optimal c is selected from {2−5, 2−4, · · · , 25}.
r is chosen from {10−3, 10−2, · · · , 103}, and µ is selected
from {0} ∪ {10i : i = −7,−6, · · · , 0}. The kernel method
was used for nonlinear classification. In the experiments, we
mainly use RBF kernel:

K(xi,xj) = exp
(
−γ‖xi − xj‖22

)
,

and γ is selected from {2−5, · · · , 25}. The optimal range
of the threshold parameter ε usually varies with different
datasets. To determine it, we first set ε = ∞ and compute
Z = |wTφ(x) + b| with all training samples, and estimate
the mean value E(Z) and standard deviation σ(Z). Then the
optimal ε is searched in the interval [E(Z),E(Z)+3σ(Z)], and
we use 3σ(Z)/10 as step size to adjust ε. To search the optimal
combination of parameters, we perform grid searching with
three-fold cross-validation. The parameters corresponding to
the highest average accuracy on the validation set are selected
as the best parameters.

In the experiments, The proposed RMTBSVM was com-
pared with other five baseline SVM methods, including SVM
implemented by LIBSVM [42], LSSVM [43], TBSVM [12],
L1-TWSVM [19] and CTWSVM [21]. We also make compar-
ison with deep learning methods. Three different deep neural
networks are considered, i.e., convolutional neural network
(CNN) [44], residual neural network (ResNet) [45], and vision
transformer (ViT) [46]. The loss functions of the deep neural
networks are set as cross entropy loss. In addition, we also
study the performance of RMTBSVM using the deep learning
features. The features are extracted with the deep neural
networks and used as the input of RMTBSVM.

B. General experimental results

For each dataset, we randomly select the training data and
testing data for 10 times. Then we record the training time
and compute the average classification accuracy as well as the
standard deviation of each method. The results are shown in
Table III. The highest accuracy of each dataset is highlighted
by boldface. Then, we perform paired t-test comparing RMTB-
SVM with other methods, and compute the p-value to check
the statistical significance. The null hypothesis is that the
testing accuracy of RMTBSVM has no difference compared
to other methods. We report the results of significance tests
in Table IV. The null hypothesis is rejected if p < 0.05,
which means that the two methods have significantly different
performances.

From Table III, we can observe that our proposed RMTB-
SVM achieves the best accuracies among all methods on
10 out of 13 datasets. Our method obtains significantly
higher accuracies on Sonar, BreastMNIST, and DermaMNIST
datasets than the second-best method. The baseline method,
SVM, achieves higher accuracy than RMTBSVM on German
dataset, but obtain significantly poor performance on Sonar,
Pendigits and DermaMNIST. The reason may be the tradi-
tional SVM cannot infer the complex intrinsic distribution of
these datasets. In general, the nonparallel SVM methods (i.e.,
TBSVM, L1-TWSVM, CTWSVM, and RMTBSVN) perform
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TABLE III
THE AVERAGE TRAINING TIME (S), CLASSIFICATION ACCURACY (%), AND THE CORRESPONDING STANDARD DEVIATION ON DIFFERENT DATASETS.

DataSets SVM LSSVM TBSVM L1-TWSVM CTWSVM RMTBSVM
Heart 82.78±2.66 81.85±2.24 82.22±3.01 81.76±2.72 82.13±2.75 83.89±2.07

0.0008 0.0015 0.0060 0.0565 0.0514 0.0123
Mushroom 99.93±0.05 99.93±0.05 99.92±0.04 99.97±0.57 99.98±0.57 100.00±0.00

0.6201 0.9078 2.8160 7.1499 13.7819 4.0142
German 74.28±1.52 73.33±1.65 71.70±1.64 71.40±1.58 71.53±1.74 74.20±1.01

0.0299 0.0466 0.1651 2.342 2.8643 0.3765
Sonar 80.24±4.70 80.12±4.48 82.65±4.83 82.17±3.52 82.05±4.15 85.90±3.05

0.0032 0.0021 0.0086 0.0148 0.0205 0.0248
Australian 85.65±2.30 84.60±1.75 86.05±1.90 85.65±2.04 86.52±1.83 86.49±2.03

0.0049 0.0146 0.0492 0.6903 0.9249 0.1146
Breast 96.30±0.66 96.26±0.73 96.52±0.62 96.04±0.83 96.59±0.73 96.56±0.57

0.0017 0.0102 0.0311 0.3371 0.4578 0.0284
Adult 80.89±1.24 80.45±1.05 80.33±0.65 80.06±1.13 81.11±1.06 81.36±1.22

0.0802 0.2427 0.5661 1.6855 3.7605 4.9880
BreastMNIST 76.44±2.47 75.52±1.42 78.64±1.91 75.41±1.55 78.72±2.32 81.78±1.99

0.1247 0.0067 0.0337 0.1613 0.3355 0.255
PneumoniaMNIST 94.38±0.99 92.65±1.40 93.70±0.75 95.16±0.72 95.53±0.42 95.89±0.56

0.7389 0.0953 0.4702 2.7011 2.6490 5.0186
Pendigits 88.43±1.84 90.13±1.39 93.78±2.05 94.73±0.83 94.93±0.90 95.30±1.03

0.0203 0.0979 0.5159 9.5677 10.0287 8.3801
DNA 94.15±0.68 94.90±0.44 90.19±1.29 94.88±0.64 94.86±0.64 95.13±0.74

0.5556 0.5635 1.5880 3.2264 3.4162 4.6764
DermaMNIST 67.53±0.97 67.53±0.97 67.53±0.97 69.93±0.79 69.80±0.99 70.58±1.00

6.7839 0.2768 2.3347 4.0855 4.4527 6.1879
USPS 95.28±0.66 95.06±0.72 95.94±0.73 94.80±0.64 95.15±0.51 96.50±0.51

0.2179 0.6141 8.6429 12.3894 13.2304 18.3854

TABLE IV
THE RESULTANT P-VALUE OF PARIED T-TEST. “*” INDICATES THAT p < 0.05 FOR ALL METHODS ON THIS DATASET.

Datasets SVM LSSVM TBSVM L1-TWSVM CTWSVM
Heart 0.111373 0.046202 0.016328 0.033793 0.004439
Mushroom 0.003241 0.003241 0.000959 0.081126 0.222868
German 0.036029 0.004471 0.282486 0.005975 0.004898
Sonar* 0.000695 0.000049 0.000084 0.002604 0.000375
Australian 0.001165 0.000162 0.193422 0.000023 0.890531
Breast 0.343436 0.258547 0.879343 0.060694 0.872288
Adult 0.039209 0.002816 0.023989 0.002109 0.334350
BreastMNIST* 0.000751 0.000031 0.000375 0.000017 0.004202
PneumoniaMNIST* 0.000142 0.000048 0.000006 0.013186 0.038407
DNA 0.000008 0.158919 4.78e-08 0.031948 0.068701
Pendigits 0.000013 0.000012 0.011162 0.136480 0.240969
DermaMNIST* 0.000001 0.000013 0.002162 0.001168 0.000007
USPS* 0.000083 0.000008 0.001120 0.000041 0.000164

TABLE V
THE AVERAGE CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION OF RMTBSVM BASED ON DEEP LEARNING

DataSets CNN ResNet ViT CNN+ours ResNet+ours ViT+ours RMTBSVM
DermaMNIST 68.79±1.04 65.43±1.32 69.48±0.84 67.53±0.97 74.78±0.95 72.52±0.69 71.03±1.12

USPS 97.56±0.82 94.63±0.66 93.67±0.37 97.68±0.64 93.46±0.79 98.57±0.51 96.59±0.51
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TABLE VI
THE AVERAGE TRAINING TIME (S), CLASSIFICATION ACCURACY (%), AND THE CORRESPONDING STANDARD DEVIATION ON NOISED DATASETS

(τ = 0.2).

DataSets SVM LSSVM TBSVM L1-TWSVM CTWSVM RMTBSVM
Heart 81.29±2.18 80.46±2.82 82.41±1.94 81.85±3.13 81.48±3.31 83.80±2.16

0.0013 0.0032 0.0083 0.0486 0.0520 0.0152
Mushroom 99.75±0.17 99.85±0.05 99.93±0.05 99.91±0.07 99.91±0.06 99.92±0.05

0.1042 1.1493 3.2108 9.9200 18.2734 3.9047
German 71.20±1.39 70.73±1.49 72.13±1.75 70.25±2.13 72.53±2.15 73.20±1.23

0.0233 0.0346 0.1120 0.2196 2.8643 0.2087
Sonar 74.22±3.66 72.17±6.27 78.31±5.02 78.67±4.44 79.88±3.96 84.58±4.87

0.0024 0.0038 0.0093 0.0115 0.0112 0.0217
Australian 84.64±2.63 84.96±1.56 84.78±2.03 81.59±1.67 82.79±1.57 85.11±1.76

0.0052 0.0141 0.0416 0.2095 0.6369 0.0815
Breast 96.48±0.81 96.37±0.95 96.41±0.92 95.53±1.05 96.30±0.78 96.59±0.97

0.0033 0.0108 0.0265 0.2847 0.3867 0.0262
Adult 79.90±1.31 79.94±1.44 80.23±0.73 78.54±1.07 80.11±0.96 81.13±1.10

0.1744 0.0655 0.4997 3.5769 2.7945 4.7451
BreastMNIST 72.78±1.36 73.09±1.26 75.59±1.37 74.84±1.91 76.55±1.57 80.46±1.79

0.1532 0.0063 0.0319 0.1165 0.1064 0.2715
PneumoniaMNIST 94.35±0.81 86.41±2.42 90.18±1.76 94.40±0.84 93.86±0.94 94.50±0.69

1.1315 0.1362 0.4997 1.0214 1.3912 4.2485
Pendigits 85.55±1.93 86.73±1.98 89.45±1.27 89.73±1.18 90.25±1.53 89.68±0.74

0.0157 0.0719 0.2660 6.8596 8.6570 6.4048
DNA 92.81±0.74 93.25±0.72 93.06±0.85 91.51±0.85 93.11±0.99 93.50±1.07

0.2860 0.0952 0.5309 1.4957 1.4749 2.1751
DermaMNIST 67.53±0.97 68.15±1.23 69.69±0.84 69.63±1.11 69.91±1.15 71.03±1.12

5.7182 0.2997 2.6915 5.5031 5.3726 8.8269
USPS 92.10±0.59 95.11±0.65 95.33±0.73 95.34±0.54 94.71±0.66 95.76±0.63

0.2179 0.2579 1.8666 4.7147 4.9551 9.0862

better than SVM on these datasets, but RMTBSVM still obtain
the best classification accuracy. CTWSVM performs slightly
better than RMTBSVM on Australian and Breast datasets,
However, notice that the p-values of CTWSVM on these
two datasets are 0.8905 and 0.8723, which suggests that the
accuracy of RMTBSVM and CTWSVM has no difference on
Australian and Breas datasets statistically. Besides, we can
see that most entries of Table IV are less than 0.05, and
p < 0.05 always holds for all methods on Sonar, Adult, Pneu-
moniaMNIST, USPS, and DermaMNIST datasets. Therefore,
RMTBSVM significantly outperforms other SVM methods on
these datasets.

In terms of time consumption, The proposed RMTBSVM
costs similar time with CTWSVM, L1-TWSVM in most cases.
It turns out that L1-TWSVM, CTWSVM, and the proposed
RMTBSVM cost more time than the conventional SVM. The
main reason is that these methods use alternatively iterative
strategies to compute the optimal solution.

C. Robustness analysis

To study the robustness of RMTBSVM, we introduced
Gaussian noise into data and check the performance of dif-
ferent methods. Denote XN as the noised data matrix, which

is defined as
XN = X + τ

‖X‖F
‖M‖F

M,

where τ ∈ [0, 1] is the noise factor, and matrix M is a random
noise matrix with mij ∼ N (0, 1) [47]. In the experiments,
τ ∈ {0, 0.2, 0.4, 0.6}.

We first set τ = 0.2 and record the performance of methods
on noised data, The corresponding results are shown in Table
VI. We can observe that the accuracies of most methods
degrade due to noises. However, RMTBSVM still obtain the
best accuracies on 11 out of 13 datasets. The accuracy of SVM,
LSSVM and TBSVM obviously degrades on many datasets.
By contrast, the performance of L1-TWSVM, CTWSVM,
and RMTBSVM are relatively stable and better than SVM,
LSSVM, and TBSVM. This phenomenon demonstrates that
the L1-norm metric based methods are more robust against
noise, and this also validates the robustness of our method.

We conducted another experiment that study the influence
of the different noise factors. Fig. 4(a) and Fig. 4(b) illustrates
the classification accuracies of six SVM methods with different
noise factor τ . We can see that the proposed RMTBSVM
always possesses the best accuracy regardless of the pres-
ence of noises. The performance of LSSVM and TBSVM
suffers significant degradation as τ increases. By contrast,
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Fig. 4. (a), (b): the classification accuracy of each method in BreastMNIST dataset and Sonar dataset, respectively. (c): the convergence of RMTBSVM. (d):
the classification accuracy v.s. parameters of c, r on Sonar dataset. (e): accuracy v.s. parameter µ on Sonar dataset. (f): accuracy v.s. parameter ε on Sonar
dataset with different training/testing sets.

TABLE VII
THE AVERAGE CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION ON IMAGE DATASETS WITH NOISES

DataSets (noise type) SVM LSSVM TBSVM L1-TWSVM CTWSVM RMTBSVM
BreastMNIST (Gaussian) 72.84±1.49 66.76±1.62 73.99±1.10 76.12±2.26 76.87±1.97 78.90±2.00
BreastMNIST (block) 71.71±1.98 64.59±3.46 72.38±1.53 73.56±1.01 75.59±1.29 77.51±1.89
BreastMNIST (impluse) 69.29±2.36 64.23±2.74 72.46±2.68 75.55±2.29 75.80±2.16 78.01±1.47
PneumoniaMNIST (Gaussian) 94.14±0.90 88.34±1.84 91.94±1.24 94.80±0.55 94.09±0.70 94.66±0.53
PneumoniaMNIST (block) 92.51±1.12 85.01±1.70 81.26±2.02 93.20±0.69 91.59±0.94 94.11±0.65
PneumoniaMNIST (impulse) 93.95±1.03 83.69±2.39 89.64±1.55 94.40±0.79 93.75±0.95 94.54±0.59

RMTBSVM, CTWSVM and L1-TWSVM are more stable.
However, CTWSVM and L1-TWSVM are still not as good
as our method. This experiment suggests once again that our
proposed RMTBSVM possesses strong robustness and better
classification performance.

We performed an extra experiment of robustness analysis
on image data. We used different types of noise to corrupt
the image data. The instances of the corrupted images from
BreastMNIST are visualized in Fig. 3. For each dataset, the
images are corrupted by random blocks with the size of 8×8,
impulse noises with the density of 5%, and Gaussian noises
of N (0, 0.05). The results of the experiments are presented
in Table VII. We can observe that the performance of SVM,
LSSVM is severely affected by noises, where the random
blocks and impulse noises have larger impact. However, L1-
TWSVM, CTWSVM and RMTBSVM still retain high accu-
racy in spite of the presence of different noises. Obviously,
our proposed RMTBSVM still achieves the highest accuracy

on these datasets. Therefore, the experimental results further
suggest that RMTBSVM has better insensitivity to different
types of noise.

D. Convergence analysis
We analyze the convergence of RMTBSVM theoretically

in section IV-A. To validate it, we conducted the experiment
on Heart dataset. Fig. 4(c) illustrates the objective value in
each iteration step. The figure demonstrates the objective value
monotonically decreases in each iteration, which is consis-
tent with our previous analysis. In addition, the algorithm
converges in few steps (always less than 10 steps), which
indicates that the proposed algorithms converge in limited
iteration steps.

E. Parameters study
We report the accuracy of our method versus the hyperpa-

rameters. Fig. 4(d) illustrates the grid search result of param-
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eters c and r on Sonar dataset. It is clear that the parameter
r obviously influences the performance of RMTBSVM. The
performance is degraded significantly when r is large. It turns
out that the ideal value of r usually satisfies r ≤ 1. By contrast,
the accuracy is relatively robust to c in the searching interval.
In general, the performance is best when c ∈ [2−4, 1] and
r ∈ [10−3, 1].

Fig. 4(e) shows the validation accuracy versus the manifold
regularization parameter µ. One can find that r influences
the performance to a certain extent. The accuracy is rel-
atively low when µ is too large or too small. Especially,
when µ = 0, the validation accuracy is lowest as shown in
Fig. 4(e). That is, the performance is worse if we eliminate
the manifold regularization term. This phenomenon suggests
that the manifold regularization in RMTBSVM enhances the
discriminative ability and further improves performance. In the
experiments, we find that the potentially optimal interval of µ
is [10−7, 10−3] approximately.

Finally, ε is also a key hyperparameter in RMTBSVM. Since
the optimal range of ε is dependent on the training data, we
used a different way to determine the optimal ε (see section
V-A). Fig. 4(f) illustrates the accuracy versus ε on different
training/testing sets. Each curve represents one partitioning
of training and testing dataset. It is clear that the curves
share a similar pattern. The accuracy is low when ε is small.
As ε increases, the accuracy grows up to a certain extent,
but declines slightly when ε achieves the largest value.= The
best values of ε corresponding to the three tests are 0.0218,
0.0225, and 0.0267, respectively, which have no significant
difference. Therefore, the selection of ε is insensitive regarding
the training/testing sets.

F. Experiment with deep learning
In this section, we conducted a brief experiment on Der-

maMNIST and USPS datasets to study the joint learning of
deep neural networks and RMTBSVM. Since the proposed
RMTBSVM is not a feature extraction method, it is an
interesting problem that whether RMTBSVM performs better
than the feature extraction methods. Therefore, we considered
comparing RMTBSVM with deep learning methods. We also
used the output features (i.e., the input of the last fully
connected layer in the classification neural networks) as the
input of RMTBSVM to check the performance. The exper-
imental results are shown in Table V, where “CNN+ours”
denotes RMTBSVM using features extracted by CNN, and
the others are similar. We find some interesting phenomena in
the experiments.

First, RMTBSVM (using the original features) obtains better
performance than deep neural networks on DermaMNIST
dataset. We observe that RMTBSVM achieves the accuracy
of 71.03%, while the best result of deep learning method
is 69.48%, obtained by ViT. This suggests the proposed
RMTBSVM can perform better classification accuracy than
deep learning methods, which further validate the effectiveness
of the proposed method.

Another observation is that RMTBSVM improves the per-
formance of deep learning methods when the deep neu-
ral network features are used. The accuracy of ResNet is

65.43% on DermaMNIST dataset, which is poor compared
with other methods. However, RMTBSVM obtains the ac-
curacy of 74.48% when using the features from ResNet,
and achieves the best result on DermaMNIST dataset. The
proposed RMTBSVM fails to achieve better accuracy than
CNN on USPS dataset, but RMTBSVM still obtains best
accuracy on USPS using the features extracted from ViT.
These phenomena demonstrate that RMTBSVM can further
improve the performance of the neural networks via the
features extracted by the networks. This also verifies the good
classification performance of RMTBSVM.

VI. CONCLUSION

In this paper, we propose a novel robust model under
support vector machine framework, namely robust manifold
twin bounded support vector machine (RMTBSVM). Capped
L1-norm is used as the robust distance metric to reduce
the impact of outliers. The manifold regularization, which
imposes the model to exploit the geometric structure of
data, is integrated into the proposed model to enhance the
discriminability. Besides, since the existing methods such as
L1-TWSVM and CTWSVM have not discussed nonlinear
classification, we further generalize our model for nonlinear
classification by kernel method. The algorithms for both linear
and nonlinear cases are presented, and the convergence of the
algorithms is then analyzed. The experimental results show
that the proposed RMTBSVM outperforms the other types of
SVM in not only classification accuracy but also the robustness
against noises.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[2] I. Kotsia and I. Pitas, “Facial expression recognition in image sequences
using geometric deformation features and support vector machines,”
IEEE Transactions on Image Processing, vol. 16, no. 1, pp. 172–187,
2007.

[3] J. Liu, J. Yang, Y. Zhang, and X. He, “Action recognition by multiple
features and hyper-sphere multi-class svm,” in 2010 20th International
Conference on Pattern Recognition, 2010, pp. 3744–3747.

[4] A. Zendehboudi, M. Baseer, and R. Saidur, “Application of support
vector machine models for forecasting solar and wind energy resources:
A review,” Journal of Cleaner Production, vol. 199, pp. 272–285, 2018.

[5] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT press,
2002.

[6] Y. Tian, Z. Qi, X. Ju, Y. Shi, and X. Liu, “Nonparallel support vector
machines for pattern classification,” IEEE Transactions on Cybernetics,
vol. 44, no. 7, pp. 1067–1079, 2014.

[7] J. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” Microsoft, Tech. Rep. MSR-TR-98-14, April
1998.

[8] O. L. Mangasarian and D. R. Musicant, “Successive overrelaxation
for support vector machines,” IEEE Transactions on Neural Networks,
vol. 10, no. 5, pp. 1032–1037, 1999.

[9] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[10] O. L. Mangasarian and D. R. Musicant, “Lagrangian support vector
machines,” Journal of Machine Learning Research, vol. 1, no. Mar, pp.
161–177, 2001.

[11] Jayadeva, R. Khemchandani, and S. Chandra, “Twin support vector
machines for pattern classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 5, pp. 905–910, 2007.

[12] Y.-H. Shao, C.-H. Zhang, X.-B. Wang, and N.-Y. Deng, “Improvements
on twin support vector machines,” IEEE Transactions on Neural Net-
works, vol. 22, no. 6, pp. 962–968, 2011.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[13] M. A. Kumar and M. Gopal, “Least squares twin support vector
machines for pattern classification,” Expert Systems with Applications,
vol. 36, no. 4, pp. 7535–7543, 2009.

[14] D. Huang, R. Cabral, and F. D. l. Torre, “Robust regression,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 2, pp. 363–375, 2016.

[15] H. Wang, X. Lu, Z. Hu, and W. Zheng, “Fisher discriminant analysis
with l1-norm,” IEEE Transactions on Cybernetics, vol. 44, no. 6, pp.
828–842, 2014.

[16] F. Nie, H. Huang, X. Cai, and C. Ding, “Efficient and robust feature
selection via joint l2,1-norms minimization,” Advances in Neural Infor-
mation Processing Systems, vol. 23, pp. 1813–1821, 2010.

[17] Z. Lai, D. Mo, W. K. Wong, Y. Xu, D. Miao, and D. Zhang, “Robust
discriminant regression for feature extraction,” IEEE Transactions on
Cybernetics, vol. 48, no. 8, pp. 2472–2484, 2018.

[18] Y. Xu, Z. Yang, and X. Pan, “A novel twin support-vector machine
with pinball loss,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 28, no. 2, pp. 359–370, 2017.

[19] H. Yan, Q.-L. Ye, and D.-J. Yu, “Efficient and robust twsvm classi-
fication via a minimum l1-norm distance metric criterion,” Machine
Learning, vol. 108, no. 6, pp. 993–1018, 2019.

[20] H. Yan, Q. Ye, T. Zhang, D.-J. Yu, X. Yuan, Y. Xu, and L. Fu,
“Least squares twin bounded support vector machines based on l1-norm
distance metric for classification,” Pattern Recognition, vol. 74, pp. 434–
447, 2018.

[21] C. Wang, Q. Ye, P. Luo, N. Ye, and L. Fu, “Robust capped l1-norm twin
support vector machine,” Neural Networks, vol. 114, pp. 47–59, 2019.

[22] J. Ma, L. Yang, and Q. Sun, “Capped l1-norm distance metric-based
fast robust twin bounded support vector machine,” Neurocomputing, vol.
412, pp. 295–311, 2020.

[23] Y. Li, H. Sun, W. Yan, and Q. Cui, “R-CTSVM+: Robust capped
L1-norm twin support vector machine with privileged information,”
Information Sciences, vol. 574, pp. 12–32, 2021.

[24] C. Yuan, L. Yang, and P. Sun, “Correntropy-based metric for robust
twin support vector machine,” Information Sciences, vol. 545, pp. 82–
101, 2021.

[25] J. Ma, L. Yang, and Q. Sun, “Adaptive robust learning framework for
twin support vector machine classification,” Knowledge-Based Systems,
vol. 211, p. 106536, 2021.

[26] L. Rossi, A. Torsello, and E. R. Hancock, “Unfolding kernel embeddings
of graphs: Enhancing class separation through manifold learning,”
Pattern Recognition, vol. 48, no. 11, pp. 3357–3370, 2015.

[27] L. Ladicky and P. H. Torr, “Locally linear support vector machines,” in
ICML, 2011.

[28] S. Sun and X. Xie, “Semisupervised support vector machines with
tangent space intrinsic manifold regularization,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 9, pp. 1827–1839,
2016.

[29] X. Xie and S. Sun, “General multi-view semi-supervised least squares
support vector machines with multi-manifold regularization,” Informa-
tion Fusion, vol. 62, pp. 63–72, 2020.

[30] R. Khemchandani, S. Chandra et al., “TWSVM for unsupervised and
semi-supervised learning,” in Twin Support Vector Machines. Springer,
2017, pp. 125–152.

[31] Z. Qi, Y. Tian, and Y. Shi, “Laplacian twin support vector machine for
semi-supervised classification,” Neural Networks, vol. 35, pp. 46–53,
2012.

[32] J. Xie, K. Hone, W. Xie, X. Gao, Y. Shi, and X. Liu, “Extending
twin support vector machine classifier for multi-category classification
problems,” Intelligent Data Analysis, vol. 17, no. 4, pp. 649–664, 2013.

[33] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
Journal of Machine Learning Research, vol. 7, no. Nov, pp. 2399–2434,
2006.

[34] L. Zhang, M. Luo, Z. Li, F. Nie, H. Zhang, J. Liu, and Q. Zheng,
“Large-scale robust semisupervised classification,” IEEE Transactions
on Cybernetics, vol. 49, no. 3, pp. 907–917, 2019.

[35] P. Gong, J. Ye, and C. Zhang, “Multi-stage multi-task feature learning,”
The Journal of Machine Learning Research, vol. 14, no. 1, pp. 2979–
3010, 2013.

[36] Y. Luo, D. Tao, C. Xu, C. Xu, H. Liu, and Y. Wen, “Multiview vector-
valued manifold regularization for multilabel image classification,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 24, no. 5,
pp. 709–722, 2013.

[37] Xiaofei He, Shuicheng Yan, Yuxiao Hu, P. Niyogi, and Hong-Jiang
Zhang, “Face recognition using laplacianfaces,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328–340,
2005.

[38] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis,” arXiv e-
prints, pp. arXiv–2010, 2020.

[39] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of
breast ultrasound images,” Data in Brief, vol. 28, p. 104863, 2020.

[40] D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L.
Baxter, A. McKeown, G. Yang, X. Wu, F. Yan et al., “Identifying
medical diagnoses and treatable diseases by image-based deep learning,”
Cell, vol. 172, no. 5, pp. 1122–1131, 2018.

[41] P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset,
a large collection of multi-source dermatoscopic images of common
pigmented skin lesions,” Scientific data, vol. 5, no. 1, pp. 1–9, 2018.

[42] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[43] J. A. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. P.
Vandewalle, Least squares support vector machines. World Scientific,
2002.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[46] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[47] H. Wang, F. Nie, and H. Huang, “Robust distance metric learning via si-
multaneous L1-norm minimization and maximization,” in International
Conference on Machine Learning, 2014, pp. 1836–1844.

Junhong Zhang is now pursuing the B.S degree
in Shenzhen University, Shenzhen. He is with the
College of Computer Science and Software En-
gineering, Shenzhen University, Shenzhen 518060.
His research interests include machine learning and
pattern recognition.

Zhihui Lai received the B.S. degree in mathematics
from South China Normal University, M.S. degree
from Jinan University, and the Ph.D. degree in pat-
tern recognition and intelligence system from Nan-
jing University of Science and Technology (NUST),
China, in 2002, 2007 and 2011, respectively. He
has been a Research Associate, Postdoctoral Fellow
and Research Fellow at The Hong Kong Polytech-
nic University. His research interests include face
recognition, image processing and content-based im-
age retrieval, pattern recognition, compressive sense,

human vision modelization and applications in the fields of intelligent robot
research. He has published over 150 scientific articles. Now he is an associate
editor of International Journal of Machine Learning and Cybernetics. For more
information including all papers and related codes, the readers are referred to
the website (http://www.scholat.com/laizhihui).

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

Heng Kong received the M.D. and B.S. degree from
Chongqing Medical University, M.S. degree from
Guangzhou Medical University, and PhD. degree
from Southern Medical University, China, in 2000,
2005 and 2008, respectively. She works as a visiting
scholar in Cancer Center of Georgia Reagent Uni-
versity at Augusta in USA in 2014-2016. She is a
professor and director in department of thyroid and
breast surgery, BaoAn Central Hospital of Shenzhen
(the fifth affiliated Hospital of Shenzhen University),
Guangdong province. She is also doing basic and

clinic research associated breast and thyroid cancer. Her research interests
include gene therapy, immunotherapy, early diagnosis and prognosis analysis
of breast cancer, and tumor image processing and recognition using machine
learning and artificial intelligent methods.

Linlin Shen received the B.Sc. degree from Shang-
hai Jiaotong University, Shanghai, China, and the
Ph.D. degree from the University of Nottingham,
Nottingham, U.K., in 2005. He was a Research
Fellow with Medical School, University of Notting-
ham, researching brain image processing of mag-
netic resonance imaging. He is currently a Professor
and a Director with the Computer Vision Institute,
College of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, China. His
current research interests include Gabor wavelets,

face/palmprint recognition, medical image processing, and hyperspectral im-
age classification.


	Introduction
	Preliminary
	TWSVM and TBSVM
	Manifold regularization
	Capped L1-norm and CTWSVM

	Robust Manifold Twin Bounded Support Vector Machine
	The motivation of RMTBSVM
	Linear classification
	Nonlinear classification with kernel method

	Algorithm analysis
	Convergence analysis
	Multi-class RMTBSVM
	The discriminant of RMTBSVM

	Experiments
	Experimental setup
	General experimental results
	Robustness analysis
	Convergence analysis
	Parameters study
	Experiment with deep learning

	Conclusion
	References
	Biographies
	Junhong Zhang
	Zhihui Lai
	Heng Kong
	Linlin Shen


