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Abstract

We present a new, carefully designed and well-annotated dataset of images and1

image-based profiles of cells that have been treated with chemical compounds and2

genetic perturbations. Each gene that is perturbed is a known target of at least two3

compounds in the dataset. The dataset can thus serve as a benchmark to evaluate4

methods for predicting similarities between compounds and between genes and5

compounds, measuring the effect size of a perturbation, developing style-transfer6

methods to predict one experimental condition from another, and more generally,7

learning effective representations for measuring cellular state from microscopy8

images.9

1 Introduction10

Computer vision has benefitted dramatically from the revolution in deep learning. Biomedical11

research is an exceptionally satisfying domain on which to apply advances in machine learning, and12

yet deep learning applied to images in the biomedical domain has been relatively limited to medical13

imaging from patients, including X rays and MRI, PET, and CT scans. By comparison, deep-learning14

based image analysis for cell biology has generally focused on segmentation [1, 2]; whereas feature15

extraction and applications have lagged behind [3].16

One cell biology method – image-based profiling of cell samples – is proving increasingly useful17

for the discovery of disease underpinnings and useful drugs [4]. In image-based profiling, human18

cells are cultured in samples of a few hundred cells, each sample treated with a different chemical or19

genetic perturbation. The resulting morphology (visual appearance) of each sample is compared by20

microscopy to identify meaningful differences and similarities. Among many others, applications21
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include: (a) identifying the mechanisms of a disease by comparing cells from patients with a disease22

to those without the disorder, (b) identifying the impact of a drug by comparing cells treated with it23

to untreated cells, (c) identifying gene functions or the impact of chemicals on cells by unsupervised24

clustering of large sets of samples to determine relationships among the perturbations tested in the25

experiment. Thus, image-based profiling can reveal new targets for diseases, potential therapeutics,26

and toxicities for particular compounds.27

The vast majority of research using image-based profiling uses classical segmentation and feature28

extraction; deep learning methods are beginning to be explored [3] and there is much room for29

advancement. Historically, the lack of ground truth has been a major limiting factor in the field, as30

the “correct” high-dimensional profile of a given sample is unknown, and the “correct” relationships31

among most genes and compounds are unknown. Image-based profiling applications typically can be32

described as representation learning tasks; if samples are represented optimally and ideal distance33

metrics are applied, then biologically meaningful differences between samples will be detectable and34

technical artifacts will be suppressed.35

To push forward advancements in this field, we assembled a consortium of ten pharmaceutical36

companies, two non-profit institutions, and several supporting companies, known as the JUMP-Cell37

Painting Consortium (Joint Undertaking in Morphological Profiling). After extensive optimization38

of the main assay used in image-based profiling, called the Cell Painting assay [5], this Consortium39

created a ground truth dataset to move methods in the field forward. We selected and curated a set40

of genes and compounds with (relatively) known relationships among each other, and designed an41

experimental layout to enable testing and comparing methods to quantify their relationships.42

Here, we describe our design and creation of this dataset from a single large experiment comprising43

nearly three million images and over seventy five million single cells, called CPJUMP1, which44

contains chemical and genetic perturbation pairs that target the same genes in cells. It allows45

exploring a number of technical and biological parameters that might affect matching ability and46

testing computational strategies to match samples to each other and thus uncover valuable biological47

relationships.48

2 Related datasets49

We are not aware of any other Cell Painting image-based datasets that include pairs of genetic50

and chemical perturbations with their relationships to each other annotated, and executed in par-51

allel so as to minimize technical variations that may confound the signal. Nevertheless, other52

Cell Painting datasets are public and may be useful to the community, for example as train-53

ing data for self-supervised feature extraction methods. These single-perturbation-type experi-54

ments include several datasets from the Carpenter-Singh laboratory (available through the Im-55

age Data Resource [6] at https://idr.openmicroscopy.org/search/?query=Publication%56

20Authors:Carpenter and the 2018 CytoData challenge https://github.com/cytodata/57

cytodata-hackathon-2018), one from the New York Stem Cell Foundation [7] and several from58

Recursion, a clinical-stage biotechnology company (available at http://rxrx.ai).59

3 Data acquisition60

3.1 Compound and gene selection61

Our dataset consists of images and profiles of cells that were perturbed separately by chemical62

and genetic perturbations, where both sets were chosen based on known relationships among them.63

Chemical perturbations are small molecules (i.e. chemical compounds) that modulate the function64

of cells while the genetic perturbations are either open reading frames (ORFs) that can overexpress65

genes (i.e. yield more of the gene’s product in the cell) or guide RNAs that mediate CRISPR-Cas966

(clustered regularly interspaced short palindromic repeats) that can knockdown gene function (i.e.67

yield less of the gene’s product in the cell). Most compounds are thought to inhibit the function of68

their target gene’s product, so we expect CRISPRs to generally correlate to (mimic) the corresponding69

compound’s profile, whereas ORFs are generally expected to anti-correlate (oppose) the corresponding70

small molecule’s profile, and ORFs and CRISPRs targeting the same gene should generally yield71

opposite (anti-correlated) effects on the cells’ profiles. However, we strongly note that there will72

be numerous exceptions given the non-linear behavior of many biological systems and a number of73
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distinct mechanisms by which these general principles may not hold. In fact, one aim of generating74

this dataset is to quantify how often the expected relationships and directionalities occur.75

We derived the list of compounds from Broad’s Drug Repurposing Hub dataset [8], a curated and76

annotated collection of FDA-approved drugs, clinical trial drugs, and pre-clinical tool compounds.77

The genes perturbed by genetic perturbations were chosen because they are the annotated targets of78

the compounds. We filtered the Repurposing Hub compounds using several criteria, of which three79

are important:80

1. The compounds should target genes that belong to diverse gene families (Table 1). This is81

because the ideal methods would work well for many different biological pathways, not just82

a few that are well-characterized and/or easy to predict.83

2. Each gene should be targeted by at least two compounds, so that gene-compound matching84

and compound-compound matching can both be performed using the dataset.85

3. We additionally considered applying the constraint that each compound should target only a86

single gene. However, this criterion is difficult to achieve due to polypharmacology (Table87

2), which is the property for compounds to bind and impact many different gene products in88

the cell; this is especially common for protein kinase inhibitors in the dataset. Instead, we89

only filtered out the so-called “historical compounds” listed in the Chemical Probes Portal90

[9], comprising compounds that are known to be quite non-selective (or not sufficiently91

potent) compared with other available chemical probes.92

Our list of compounds and genes also includes both negative and positive controls. The negative93

controls for each perturbation modality are:94

• Compounds: DMSO (Dimethyl sulfoxide), which is the solvent for all the compounds95

studied. In other words, all samples will have DMSO added at the same concentration but96

the negative controls have no additional compound added.97

• ORFs: 15 ORFs with the weakest signature in previous image-based profiling experiments98

(Rohban et al., 2017).99

• CRISPRs: 30 CRISPR guides that target an intergenic site (cutting controls, n = 3) or don’t100

have a target sequence that exists in human cells (non-cutting controls, n = 27).101

There are three types of compound positive controls in our list. First, we included chemical probes102

that are very well-studied and (unlike most compounds) are known to very selectively modulate the103

genes that they target [9]. Second, we included compounds that strongly correlate with the correct104

genetic perturbation in previous image-based profiling experiments with ORFs [10] and compounds105

[11]. Finally, we included a set of maximally diverse pairs of compounds with strong intra-pair and106

weak inter-pair correlations.107

A complete description of the filtering criteria and the procedure for selecting positive and negative108

controls is available at https://github.com/jump-cellpainting/JUMP-Target/.109

In the future, a commercial vendor may offer the compound set so others can test the same perturba-110

tions in other contexts for comparison.111

3.2 Plate layout design112

After applying the filters and including positive controls, we selected a total of 306 compounds and113

160 genes such that they could fit into three 384-well plates, one plate per perturbation modality114

(compounds, ORFs and CRISPRs). Apart from a dozen or so compounds, most compounds are in115

singlicate. All plates included negative controls as discussed above: n=4 replicates of the 15 ORF116

negative controls in the ORF plate, n=2 replicates of the 30 CRISPR negative controls in the CRISPR117

plate, and n=64 replicates of DMSO in the compound plate. On the CRISPR plate, there are two118

guides per gene, each arrayed in its own well and kept separate, with no within-plate replicates. In119

the case of the ORF plate, for which there was only one perturbation reagent per gene, there are two120

replicates per plate.121

We also considered the impact of edge effects, or plate-layout effects, in our design. Edge effects are122

the technical artifact whereby different samples will yield different behavior depending on where123
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Table 1: Number of gene families with a given number of gene targets. To maximize the diversity
of genes, the genes were chosen such that most gene families (n=92) have only a single gene targeted
in the final list.

Number of gene targets (N) Number of gene families with N gene targets in the final list

1 92
2 16
3 2

Table 2: Number of compounds with a given number of gene targets. The compounds were
chosen such that most compounds (n=218) in the final list are annotated as having only a single target.

Number of gene targets (N) Number of compounds in the final list targeting N gene targets

1 218
2 49
3 23
4 7
5 4
6 3
7 1
8 1

they are located on a plate; generally this is most observed in the outer two rows and columns of the124

plate, and the problem persists despite efforts to mitigate it experimentally (Lundholt, Scudder and125

Pagliaro, 2003). While designing the plate layout, we divided the plate into outer and inner wells126

where the outer wells are the two rows and columns closest to the edge of the plate and the inner127

wells are the rest of the wells on the plate. Then we applied the following constraints in order to128

minimize the impact of edge effects:129

1. Both of the compounds that target the same gene will either be in the inner wells or in the130

outer wells. They will not be split such that one of the compounds is in the inner well while131

the other is in the outer well.132

2. The gene target of outer well compounds will be in the outer wells of the genetic perturbation133

plate.134

3. All the positive control compounds are in the inner wells.135

If preferable, an analysis can be constrained to the inner wells only, to ensure that edge effects have136

minimal influence on the results.137

3.3 Experimental conditions138

We acquired our data under the following experimental conditions:139

1. Four replicate plates of compounds and CRISPRs and two replicate plates of ORFs (which,140

as mentioned, contain two replicates within each plate) at two time points and two cell lines141

each. The short and long time points were different for each perturbation type: compounds142

(24-hour, 48-hour), ORFs (48-hour, 96-hour) and CRISPRs (96-hour, 144-hour). The two143

cell lines were U2OS and A549.144

2. One plate of the A549 96-hour ORF plate where the cells have been additionally treated145

with Blasticidin (a drug that kills cells that have not been properly infected with the genetic146

reagent).147

3. Two replicate plates of the A549 144-hour CRISPR plate where the cells have been addi-148

tionally treated with Puromycin (a drug that kills cells that have not been properly infected149

with the genetic reagent).150

4. Two replicate plates of the A549 48-hour compound plate with 20% higher cell seeding151

density than the baseline.152
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Figure 1: Percent Replicating vs. perturbation modality. Compounds have a stronger within-
replicate correlation compared to ORFs and CRISPRs.

5. Two replicate plates of the A549 48-hour compound plate with 20% lower cell seeding153

density than the baseline.154

6. Four replicate plates of the A549 24-hour compound plate were imaged six additional times155

to test photobleaching from repeated imaging.156

7. Two replicates of the ORF plates in U2OS and A549 at 96-hour and 144-hour were imaged157

four additional times, once on each of days 1, 4, 14, 28 after the first imaging, to test the158

stability of samples over time.159

4 Potential uses160

The CPJUMP1 dataset was designed to test several experimental conditions to determine which yield161

the highest signals and best matching ability. We will establish best practices for the laboratory work162

based on our analysis of these results, not further detailed here (Cimini et al., in preparation). Here163

we focus on the applications that are most of interest to a machine learning audience.164

4.1 Benchmarking perturbation-detection methods165

Detecting which samples are measurably different from negative controls is one task that often166

precedes other useful applications, and is equivalent to measuring the effect size. For example, a set167

might be filtered by this criterion before embarking on subsequent laboratory experiments, or prior to168

training a model, or other analysis that could be confounded by noisy signals. It can also be useful169

for determining what experimental protocol or computational analysis pipeline to use among several170

alternatives. It should be noted that even given perfect computational methods for feature extraction,171

batch correction, and profile comparison, not all samples will be detectably different from negative172

controls for several biological reasons. For example, a drug or genetic perturbation may only impact173

cell morphology in a particular cell type, under particular environmental conditions, at a particular174

time, or if particular stains were used, conditions which may not have been met in the experiment.175

To detect the number of samples with a measurably distinct phenotype, we estimated Percent176

Replicating (Figure 1), which is the proportion of samples that are distinct from the null distribution177

built from samples that are non-replicates. A sample is considered to have a detectable signature if178

the median of the correlation between the replicates of the sample is greater than the 95th percentile179

of the null distribution. In other words, Percent Replicating is the True Positive Rate if the False180

Positive Rate is set to 5%, for a binary classification problem where replicates make up the positive181

class and non-replicates make up the negative class.182
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Figure 2: Percent Matching between compounds and genetic perturbations. Axis labels include
the cell lines (A549 or U2OS) and the timepoints (48 hour, 96 hour, and 144 hour).

4.2 Benchmarking gene-compound matching methods183

This dataset presents a unique opportunity to match profiles of perturbations across modalities184

(chemical versus genetic), because genes in this dataset that are targeted by two types of genetic185

perturbations (ORF and CRISPR) are also targeted by two compounds. To establish a baseline186

approach to match profiles across modalities, we computed the Pearson correlation between all187

chemical and genetic perturbation pairs. We then evaluated the performance of our approach by188

estimating Percent Matching (Figure 2), which is the proportion of “true” connections (chemical-189

genetic perturbation pairs that target the same gene) that are distinct from a null distribution built190

from “false” connections (chemical-genetic perturbation pairs that are not known to target the same191

gene). A true connection is considered to be correctly detected if its correlation is greater than the192

95th percentile of the null distribution. In other words, Percent Matching is the True Positive Rate if193

the False Positive Rate is set to 5%, for a binary classification problem where the true connections194

make up the positive class and the false connections make up the negative class.195

The baseline results show that there is a signal in this dataset for matching chemical and genetic196

perturbations that target the same gene ( 7-11%, against a false positive rate of 5%), but there is much197

room for improvement. It should be strongly noted, though, that significant time and resources can198

be required to identify the target of a compound, and similarly to identify compounds that target a199

particular gene. Therefore, these low rates may already be highly meaningful, and improvements in200

image representations and measuring similarities could have a major impact on the pharmaceutical201

industry.202

Given this dataset also has pairs of compounds targeting the same gene, it can also be used to test203

compound-compound matching.204

4.3 Benchmarking style transfer methods205

The design of CPJUMP1 included multiple cell types, timepoints, modalities (compound, ORF, and206

CRISPR), imaging conditions, and selection conditions. This allows the unusual opportunity to207

attempt prediction of one experimental condition from another. There are many potential combinations208

here, so we do not provide a baseline but simply point out this possibility to the interested researcher.209

5 Code and Data availability210

Cell images, morphological profiles, image analysis pipelines, profile generation pipelines, plate maps211

and plate and compound metadata are available online at https://broad.io/neurips-cpjump1.212
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The data used to generate the figures are available online. Figure 1: https://github.com/213

jump-cellpainting/neurips-cpjump1/tree/main/analysis#percent-replicating214

and Figure 2: https://github.com/jump-cellpainting/neurips-cpjump1/tree/main/215

analysis#percent-matching-across-modalities.216

6 Methods217

6.1 Sample preparation and image acquisition218

The Cell Painting assay involves staining eight components of cells with six fluorescent dyes: nucleus219

(Hoechst), nucleoli and cytoplasmic RNA (SYTO 14), endoplasmic reticulum (concanavalin A), Golgi220

and plasma membrane (wheat germ agglutinin; WGA), mitochondria (MitoTracker), and the actin221

cytoskeleton (phalloidin). We optimized the Cell Painting assay described in (Bray et al., 2016) by222

changing the concentrations of Hoechst, phalloidin, concanavalin A and SYTO14 and combining dye223

addition and dye permeabilization steps. These changes will be described in more detail in (Cimini et224

al., in preparation) and are currently publicly available at https://github.com/carpenterlab/225

2016_bray_natprot/wiki#updates-to-the-cell-painting-protocol. The images were226

acquired across five fluorescent channels using a Perkin Elmer Opera Phenix HCI microscope at 20x227

magnification.228

6.2 Image processing229

We used the CellProfiler [12] bioimage analysis software to process the images. We corrected230

for variations in background intensity, and then segmented cells, distinguishing between nuclei231

and cytoplasm. Then, across the various channels captured, we measure various features of cells232

across several categories including fluorescence intensity, texture, granularity, density, location (see233

http://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html for234

more details). Following the image analysis pipeline, we obtain more than 75 million cells and 5792235

feature measurements.236

6.3 Image-based profiling237

We used cytominer (https://cytomining.github.io/profiling-handbook/) and pycy-238

tominer workflows (https://github.com/jump-cellpainting/profiling-recipe) to pro-239

cess the single cell features. We aggregated the single cell profiles by computing the mean. We then240

normalized the averaged profiles by subtracting the median and dividing by the median absolute241

deviation (m.a.d.) of each feature. This was done in two ways: using the median and m.a.d. of (i)242

the negative control wells on the plate (used in the analysis shown here), and (ii) all the wells on the243

plate. Finally, we filtered out redundant features as well as features with low variance. All the steps244

in the profiling workflow were performed for each individual plate separately.245
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A Appendix329

The landing page of the GitHub repository for this dataset has all the relevant additional information:330

https://broad.io/neurips-cpjump1.331

We have released the data with a CC0 licence and the code with a BSD 3-Clause license.332

We have chosen GitHub as the hosting platform, and use GitLFS to store large files.333
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