

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 DUMA: DUAL MATCHING AGGREGATION FOR IMAGE-TO-POINT CLOUD REGISTRATION

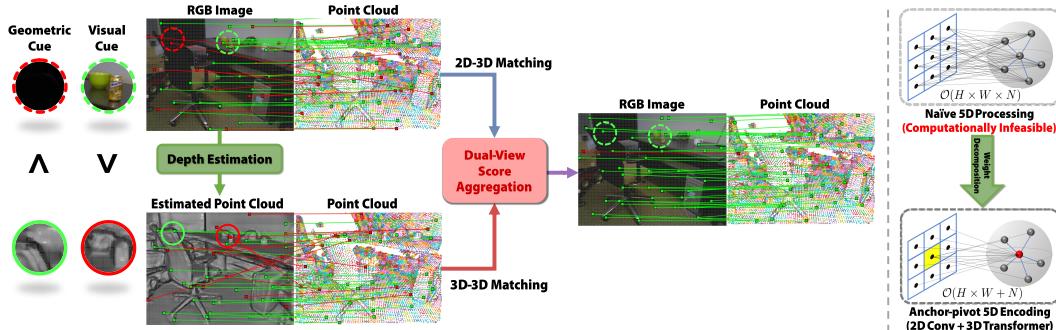
005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Aligning 2D images with 3D point clouds remains a challenging problem due to
013 intrinsic modality differences. In this paper, we introduce Dual-view Matching
014 Aggregation (DuMA), a novel image-to-point cloud registration framework de-
015 signed to address this challenge. Our approach incorporates a dual-view matching
016 strategy that harmonizes 2D-3D and 3D-3D correspondences, leveraging com-
017 plementary insights from both modalities. We design a score aggregation module
018 that fuses dual correspondence scores through a detailed analysis of neighborhood
019 relationships, thereby inducing a robust geometric verification effect and enforc-
020 ing spatial consistency. To reduce the burden associated with high-dimensional
021 score aggregation, we additionally propose an innovative Anchor-Pivot 5D en-
022 coder that decomposes and processes multi-modality scores. Extensive experi-
023 ments on challenging indoor and outdoor datasets demonstrate that our method
024 significantly mitigates ambiguity while delivering robustness and effectiveness in
025 complex scenes. Code and models will be made available: TBD.

1 INTRODUCTION



040 Figure 1: (a) Our proposed DuMA framework integrates both cross-modal (2D-3D) and intra-modal
041 (3D-3D) matching through a dual-view score aggregation process. By capturing complementary
042 cues from image and point cloud data, DuMA enhances alignment accuracy and robustness in chal-
043 lenging scenes. (b) To aggregate high-dimensional multi-modality matching scores, we introduce
044 an Anchor-Pivot 5D encoder that employs a decomposition technique to significantly reduce the
045 computational overhead associated with high-dimensional operations.

046 Image-to-Point Cloud (I2P) registration is crucial in many computer vision applications that require
047 precise pixel-to-point correspondences, such as Simultaneous Localization and Mapping (SLAM),
048 Augmented Reality (AR), 3D reconstruction, and visual localization.

049 Achieving accurate registration between 2D images and 3D point clouds is inherently challenging
050 due to the distinct nature of these modalities. Traditional 2D-3D matching approaches Wang et al.
051 (2021); Li et al. (2023); Feng et al. (2019); Pham et al. (2020); Wu et al. (2024) face fundamental
052 difficulties: while 2D images provide rich visual cues, such as color and texture, 3D point clouds
053 primarily encode spatial geometry, making direct correspondence non-trivial. This disparity between

054 visual and spatial information can lead to ambiguities and inaccuracies, particularly in complex or
 055 cluttered scenes, which ultimately affects registration reliability.

056
 057 Recent efforts have aimed to bridge the gap between image and point cloud modalities by creating
 058 unified representations for robust correspondence estimation. For example, FreeReg Wang et al.
 059 (2024) fuses RGB and depth features into a shared modality to facilitate correspondence estimation.
 060 However, its fully non-trainable design, coupled with the lack of explicit 2D-3D feature interactions
 061 and joint optimization, limits its adaptability in complex or ambiguous scenes.

062 In this paper, we introduce DuMA, a novel dual-view matching aggregation registration framework
 063 for image-to-point cloud alignment. Aligning 2D images with 3D point clouds is challenging due
 064 to inherent modality differences, and our approach is designed to address this issue by harmonizing
 065 both 2D-3D and 3D-3D correspondences. Figure 1(a) illustrates why harmonizing the two corre-
 066 spondence types is essential. The 2D-3D matches rely on visual cues, so they excel in texture-rich
 067 regions but generate false matches where colors are similar (e.g., the top of the chair). In contrast,
 068 3D-3D matches depend solely on geometry and therefore capture shape-distinct areas accurately,
 069 yet struggle on repetitive structures lacking distinctive visual information. Thus, DuMA extracts
 070 complementary cues by matching features across both views, thereby enhancing cross-modality
 071 alignment.

072 To further boost matching reliability, we design a score aggregation module that fuses dual corre-
 073 spondence scores through a detailed analysis of neighborhood relationships, inducing a robust
 074 geometric verification effect and enforcing spatial consistency. Unlike traditional methods that rely
 075 solely on feature similarity, our module leverages spatial relationships and geometric constraints to
 076 filter out ambiguous or incorrect matches. By aligning feature representations with their underly-
 077 ing geometric properties, this approach significantly reduces false correspondences and improves
 078 registration robustness, especially in complex or cluttered environments.

079 A major challenge in multi-modal registration is the computational burden associated with high-
 080 dimensional score aggregation. As shown in Figure 1(b), considering both 2D and 3D spatial di-
 081 mensions simultaneously can lead to prohibitive complexity, making a naive 5D convolution virtu-
 082 ally impossible in practice. To overcome this, we propose an innovative Anchor-Pivot 5D encoder
 083 that decomposes high-dimensional matching scores into separate 2D and 3D components. This
 084 decomposition not only reduces computational overhead but also preserves robust alignment.

085 Extensive experiments on indoor and outdoor datasets demonstrate that DuMA significantly miti-
 086 gates ambiguity while achieving state-of-the-art performance in terms of inlier ratio, feature match-
 087 ing recall, and registration recall.

088 Our key contributions can be summarized as follows:

- 089 • We present DuMA, a novel image-to-point cloud registration framework that harmonizes
 090 2D-3D and 3D-3D correspondences for robust multi-modal alignment.
- 091 • To enhance matching reliability, we design a score aggregation module that fuses dual
 092 correspondence scores through detailed neighborhood analysis and geometric verification.
- 093 • We develop an innovative Anchor-Pivot 5D encoder that decomposes high-dimensional
 094 matching scores into separate 2D and 3D components, reducing computational overhead.
- 095 • With the aforementioned contributions, DuMA achieves state-of-the-art performance on
 096 several image-to-point cloud registration benchmarks on both indoor and outdoor datasets.

098 2 RELATED WORK

100 2.1 CORRESPONDENCE-BASED REGISTRATION.

101 Correspondence-based methods estimate feature correspondences and recover the relative transfor-
 102 mation using robust pose estimators. Classical approaches relied on handcrafted features Dalal &
 103 Triggs (2005); Lowe (2004); Bay (2006), while recent works leverage deep learning for improved
 104 matching in both 2D Lee et al. (2021); Cho et al. (2021); Kim et al. (2022); Huang et al. (2022);
 105 Tang et al. (2023); Li et al. (2024) and 3D Yu et al. (2021); Choy et al. (2019); Qin et al. (2023);
 106 Huang et al. (2021); Yu et al. (2023a;b); Chen et al. (2023) registration. However, adapting these
 107 single-modality techniques to image-to-point registration requires modality conversion, which leads
 108 to information loss and degraded performance.

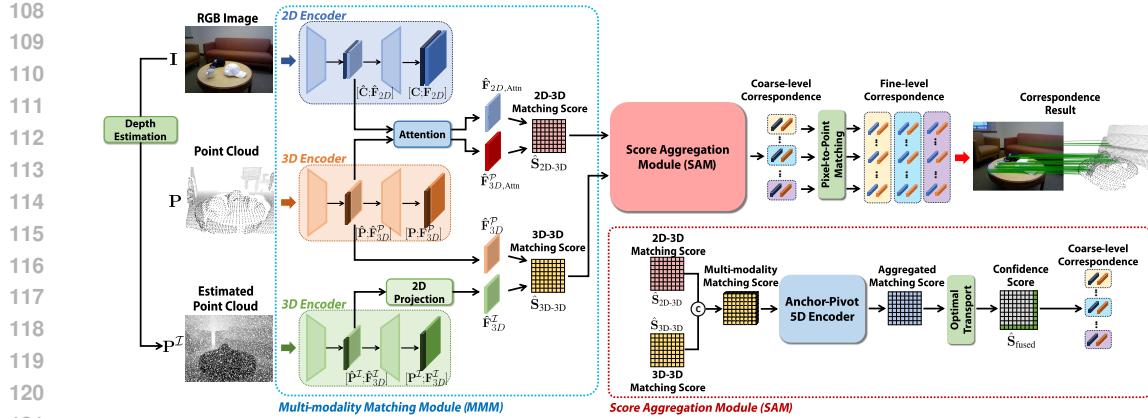


Figure 2: Overall Architecture of the proposed DuMA. DuMA consists of three main parts: Multi-Modality Matching Module, Score Aggregation Module, and fine correspondence matching.

2.2 IMAGE-TO-POINT CLOUD REGISTRATION.

Image-to-point cloud registration aims to bridge the modality gap and establish reliable correspondences between images and 3D point clouds. Previous works have addressed this by generating points from images to enable intra-modality comparisons Shotton et al. (2013); Brachmann & Rother (2019); Li et al. (2020), or by extracting and matching keypoints across modalities Feng et al. (2019); Pham et al. (2020); Wang et al. (2021). Recently, methods such as coarse-to-fine matching with multi-scale patches Li et al. (2023), diffusion model-based progressive refinement Wu et al. (2024); Mu et al. (2025), and channel-adaptive feature enhancement Cheng et al. (2025) have significantly improved registration performance. FreeReg Wang et al. (2024) unifies RGB and depth features to close the modality gap, but lacks explicit modeling of inter-modality feature correlations and geometric consistency verification, resulting in ambiguities in challenging scenes. To address these limitations, we propose a novel 5D anchor-pivot encoder that explicitly integrates 2D-3D feature interactions with joint optimization, thereby enhancing geometric consistency and matching robustness.

3 METHOD

3.1 OVERVIEW

Our proposed method first establishes correspondences at the 2D patch and 3D cluster, then determines pixel-to-point correspondences within each matched 2D patch–3D cluster pair. To this end, we propose two modules: the Multi-modality Matching Module (MMM) and the Score Aggregation Module (SAM). Our Multi-modality Matching Module (MMM) extracts 2D and 3D features from images and 3D features from point clouds. Subsequently, Our Score Aggregation Module (SAM) takes matching scores from 2D-3D and 3D-3D matching as input, and aggregates these scores into a single matching score, while considering neighboring regions’ scores to enhance alignment accuracy. The overall architecture is depicted in Figure 2.

3.2 PROBLEM STATEMENT

Given a 2D image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$ and a 3D point cloud $\mathbf{P} \in \mathbb{R}^{N \times 3}$, the task of 2D-3D registration is to determine the transformation \mathbf{T} , defined by a rotation $\mathbf{R} \in \text{SO}(3)$ and a translation $t \in \mathbb{R}^3$. By establishing correspondences $\mathcal{C} = \{(x_i, y_i) \mid x_i \in \mathbb{R}^3, y_i \in \mathbb{R}^2\}$ between 3D points and 2D pixels, the transform can be solved by:

$$\min_{R, t} \sum_{(x_i, y_i) \in \mathcal{C}} \| \text{Proj}(Rx_i + t, K) - y_i \|^2, \quad (1)$$

where K denotes the intrinsic parameters of the camera, and $\text{Proj}(\cdot, \cdot)$ is the function projecting 3D points onto the 2D image plane. Our focus is on refining the correspondence estimation process,

162 as the precision of these correspondences plays a pivotal role in the accuracy and stability of the
 163 resulting alignment transformation. The predicted correspondences can be leveraged to estimate the
 164 transformation matrix using PNP-RANSAC Lepetit et al. (2009).

166 3.3 MULTI-MODALITY MATCHING MODULE (MMM)

168 The MMM module extracts features from an image \mathbf{I} and a point cloud \mathbf{P} at both coarse and fine
 169 levels. Specifically, from an image \mathbf{I} , MMM extracts both 2D and 3D features at each level, resulting
 170 in four distinct features. From a point cloud \mathbf{P} , it extracts only 3D features at both levels, resulting in
 171 two distinct features. In total, MMM outputs six unique features (four for the image and two for the
 172 point cloud). The six features are (1) $\hat{\mathbf{F}}_{2D} \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{d}}$, (2) $\mathbf{F}_{2D} \in \mathbb{R}^{H \times W \times d}$, (3) $\hat{\mathbf{F}}_{3D}^P \in \mathbb{R}^{\hat{N} \times \hat{d}}$,
 173 (4) $\mathbf{F}_{3D}^P \in \mathbb{R}^{N \times d}$, (5) $\hat{\mathbf{F}}_{3D}^T \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{d}}$, (6) $\mathbf{F}_{3D}^T \in \mathbb{R}^{H \times W \times d}$.

174 In the above notation, the hatted character ($\hat{\cdot}$) represents the features at the coarse level, while the
 175 vanilla character denotes the features at the fine level. This module is designed to not only perform
 176 2D-3D and 3D-3D matching but also to jointly learn and integrate their complementary geometric
 177 information.

178 **2D Backbone.** Following Wu et al. (2024), let $\hat{\mathbf{F}}_{2D} \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{d}}$ and $\mathbf{F}_{2D} \in \mathbb{R}^{H \times W \times d}$ represent
 179 the 2D features extracted from the image using 2D backbones such as ResNet He et al. (2016) and
 180 FPN Lin et al. (2017). $\hat{\mathbf{F}}_{2D}$ is the feature down-sampled at the patch level (coarse level), whereas
 181 \mathbf{F}_{2D} is the feature obtained at the pixel level (fine level). We denote the corresponding coordinate
 182 matrices of $\hat{\mathbf{F}}_{2D}$ and \mathbf{F}_{2D} as $\hat{\mathbf{C}} \in \mathbb{R}^{\hat{H} \times \hat{W} \times 2}$ and $\mathbf{C} \in \mathbb{R}^{H \times W \times 2}$, respectively. In addition, we use
 183 the pretrained feature $\hat{\mathbf{F}}_{DINO}^T$ derived from DINOV2 Oquab et al. (2023), a self-supervised vision
 184 foundation model, to address the scale ambiguity Li et al. (2023) between 2D and 3D patches. In
 185 the hierarchical architecture, the coarse-level features capture the overall structure of the scene to
 186 support broad-scale matching, while the fine-level features provide detailed information for precise
 187 matching at a finer level.

188 **3D Backbone.** We utilize a 3D backbone based on KPConv Thomas et al. (2019) to the point cloud
 189 \mathbf{P} , producing the cluster-level (coarse level) $\hat{\mathbf{F}}_{3D}^P \in \mathbb{R}^{\hat{N} \times \hat{d}}$ and the point-level (fine level) features
 190 $\mathbf{F}_{3D}^P \in \mathbb{R}^{N \times d}$, with the corresponding coordinates represented by $\hat{\mathbf{P}} \in \mathbb{R}^{\hat{N} \times 3}$ and $\mathbf{P} \in \mathbb{R}^{N \times 3}$,
 191 respectively.

192 Additionally, we lift the 2D image into a 3D by applying the monocular depth estimator Zoe-Depth
 193 Bhat et al. (2023). Specifically, we first generate a depth map $\mathbf{D}^T \in \mathbb{R}^{H \times W}$ and draw N^T sample
 194 points $\mathbf{P}^T = \{\mathbf{p}^T\}$ by
 195

$$\mathbf{p}^T \sim \mathbf{K}^{-1} \cdot \mathbf{D}^T \cdot \mathbf{C}. \quad (2)$$

196 Then, due to differences in scale between the depth-estimated and original point clouds, these
 197 sampled points are processed with a separate encoder. The resulting features are projected back
 198 onto the image, generating the patch-level feature $\hat{\mathbf{F}}_{3D}^T \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{d}}$, and the pixel-level feature
 199 $\mathbf{F}_{3D}^T \in \mathbb{R}^{H \times W \times d}$, equalizing resolutions for subsequent matching.

200 **2D-3D Attention.** To bridge the modality gap between image 2D features and point cloud 3D
 201 features, we follow the standard cross-attention mechanism introduced in previous work Li et al.
 202 (2023). Specifically, the 2D image feature $\hat{\mathbf{F}}_{2D}$ and 3D point cloud feature $\hat{\mathbf{F}}_{3D}^P$ are iteratively
 203 processed by applying self-attention and cross-attention. Through this process, we obtain cross-
 204 modality features denoted as $\hat{\mathbf{F}}_{2D,Attn}$ and $\hat{\mathbf{F}}_{3D,Attn}^P$.

205 **Multi-modality Matching Score Mapping.** We compute coarse-level matching scores $\hat{\mathbf{S}} \in$
 206 $\mathbb{R}^{(\hat{H} \times \hat{W}) \times \hat{N}}$ for the 2D-3D and 3D-3D matching. For 2D-3D matching, we compute the matching
 207 score $\hat{\mathbf{S}}_{2D-3D}$ between the 2D image feature $\hat{\mathbf{F}}_{2D,Attn}$ and the 3D point feature $\hat{\mathbf{F}}_{3D,Attn}^P$ by
 208

$$\hat{\mathbf{S}}_{2D-3D} = \hat{\mathbf{F}}_{2D,Attn}(\hat{\mathbf{F}}_{3D,Attn}^P)^T / \sqrt{\hat{d}}. \quad (3)$$

In the similar way, for 3D-3D matching, we compute the matching score $\hat{\mathbf{S}}_{3D-3D}$ between the 3D image feature $\hat{\mathbf{F}}_{3D}^T$ and the 3D point feature $\hat{\mathbf{F}}_{3D}^P$ by

$$\hat{\mathbf{S}}_{3D-3D} = \hat{\mathbf{F}}_{3D}^T (\hat{\mathbf{F}}_{3D}^P)^T / \sqrt{\hat{d}}. \quad (4)$$

3.4 SCORE AGGREGATION MODULE (SAM)

In this section, we introduce the Score Aggregation Module (SAM), which integrates dual matching scores $\hat{\mathbf{S}}_{2D-3D}$ and $\hat{\mathbf{S}}_{3D-3D}$ obtained from MMM into a single unified matching score $\hat{\mathbf{S}}_{fused}$. This module refines the unified scores by leveraging spatial context, incorporating local correspondence cues from the 2D image while exploiting the inherent spatial relationships of the 3D point cloud.

Anchor-Pivot 5D Encoder. Our anchor-pivot 5D encoder takes as input the set of matching score maps $\{\hat{\mathbf{S}}_{2D-3D}, \hat{\mathbf{S}}_{3D-3D}\} \in \mathbb{R}^{2 \times (\hat{H} \times \hat{W}) \times \hat{N}}$ and merges them into a single fused matching score, $\hat{\mathbf{S}}_{fused} \in \mathbb{R}^{(\hat{H} \times \hat{W}) \times \hat{N}}$. To fully leverage the spatial relationships in both 2D and 3D modalities, we accomplish this by building 5D correlation blocks.

However, unlike fixed image coordinates, the spatial coordinates of the 3D point cloud are not static, making it challenging to use a fixed-form kernel for 5D convolution. Furthermore, the 5D correlation network demands significant computational resources due to its high dimensional complexity, as detailed in the Appendix. To address this challenge with an effective and feasible solution, we introduce an anchor-pivot 5D encoder, inspired by the structure of the center-pivot 4D convolution Min et al. (2021).

Our anchor-pivot 5D encoder separates the 2D and 3D kernels, effectively eliminating ambiguities in connections between the 2D and 3D dimensions. This structure enables explicit modeling of the matching relationships among neighboring pixels and points, ensuring that the aggregated correspondences exhibit strong geometric consistency. A detailed architecture of this encoder is depicted in Figure 3.

Given coarse-level coordinates $\hat{\mathbf{C}} = [\hat{\mathbf{c}}]$ and $\hat{\mathbf{P}} = [\hat{\mathbf{p}}]$, where $\hat{\mathbf{c}} \in \mathbb{R}^2$ and $\hat{\mathbf{p}} \in \mathbb{R}^3$ are the elements of $\hat{\mathbf{C}}$ and $\hat{\mathbf{P}}$, respectively, the anchor-pivot 5D encoder block can be formulated by

$$\mathbf{AP}_{5D}(\hat{\mathbf{S}}(\hat{\mathbf{c}}, \hat{\mathbf{p}})) = \mathcal{E}_{2D}(\hat{\mathbf{S}}(\hat{\mathbf{C}}, \hat{\mathbf{p}})) + \mathcal{E}_{3D}(\hat{\mathbf{S}}(\hat{\mathbf{c}}, \hat{\mathbf{P}}), \hat{\mathbf{P}}), \quad (5)$$

where $\mathcal{E}_{2D}(\cdot)$ and $\mathcal{E}_{3D}(\cdot)$ are the encoder of 2D and 3D, respectively, and their detailed architectures are described in the Appendix.

When the score map $\mathbf{S}^l \in \mathbb{R}^{d^l \times (\hat{H} \times \hat{W}) \times \hat{N}}$ enters the block, it is reshaped into two separate forms. One is reshaped to $\hat{N} \times d^l \times \hat{H} \times \hat{W}$ to serve as input for the 2D encoder, and the other is reshaped to $(\hat{H} \times \hat{W}) \times d^l \times \hat{N}$ for the 3D encoder. After separately processing these features, both outputs are reshaped back to the original map size, and an element-wise sum is applied to generate the score map \mathbf{S}^{l+1} .

By repeatedly processing matching scores through multiple Anchor-Pivot 5D encoder blocks, we progressively incorporate broader spatial context from both 2D and 3D modalities, resulting in an aggregated matching score map $\hat{\mathbf{S}}_{fused}$ with enhanced structural consistency. Then, we adopt Sinkhorn iterations Cuturi (2013) to compute a soft assignment matrix.

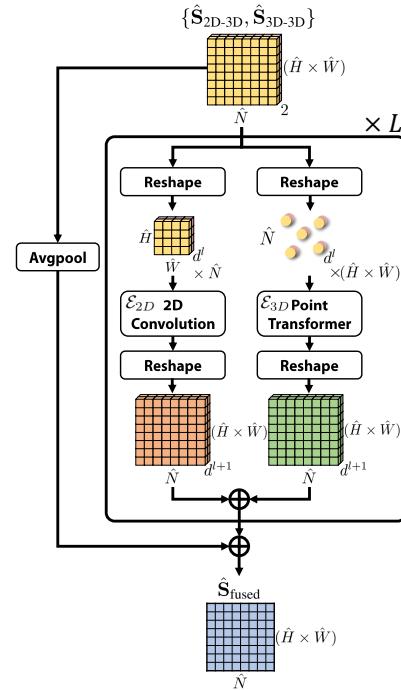


Figure 3: The detailed structure of the anchor-pivot 5D encoder. By splitting the high-dimensional (5D) computation into a 2D convolution for the image side and a point transformer for the point cloud side, this design not only reduces the computational burden but also captures the matching relationships among neighboring pixels and points. Consequently, the encoder promotes geometric consistency in the aggregated matching scores.

270 **Coarse and fine correspondence matching.** The coarse-to-fine matching procedure involves two
 271 steps. First, we identify coarse correspondences by selecting the top-K matches based on aggregated
 272 multi-modal matching scores. Then, within each coarse correspondence region, we perform fine-
 273 level matching exclusively within the localized coarse region. Specifically, fine-level pixel-to-point
 274 correspondences are estimated by computing cosine similarity between pixel-wise and point-wise
 275 feature descriptors. For the pixel-wise representation, we concatenate \mathbf{F}_{2D} and \mathbf{F}_{3D}^T , while the
 276 point-wise representation is obtained by duplicating \mathbf{F}_{3D}^P . Among these fine-level matches, mutual
 277 top-K correspondences within each coarse region are selected as the final correspondence set.
 278

279 3.5 TRAINING OBJECTIVE

280 We utilize two types of loss functions commonly used in matching tasks: circle loss Sun et al.
 281 (2020); Li et al. (2023); Wu et al. (2024); Qin et al. (2022), a type of contrastive loss and focal
 282 loss Wu et al. (2024). In the circle loss, for the coarse level, we apply a scaled circle loss Li et al.
 283 (2023); Qin et al. (2022) to adaptively adjust the loss based on the degree of overlap between the
 284 image and point cloud. To train the similarity of features across various dimensions, 2D-3D circle
 285 loss $\mathcal{L}_{coarse}^{2D-3D}$, and 3D-3D circle loss $\mathcal{L}_{coarse}^{3D-3D}$ is used. For the fine level, we use the standard circle
 286 loss Li et al. (2023) to achieve precise feature matching. So, \mathcal{L}_{fine} is used to compare the 2D and
 287 3D features of the image with the 3D features of the point cloud. Then, our entire circle loss is
 288 $\mathcal{L}_{circle} = \lambda_{coarse}(\mathcal{L}_{coarse}^{2D-3D} + \mathcal{L}_{coarse}^{3D-3D}) + \lambda_{fine}\mathcal{L}_{fine}$. We also adopt focal loss Wu et al. (2024)
 289 \mathcal{L}_{focal} for the coarse level by comparing the ground truth of coarse matching relations with our
 290 aggregated matching score. Therefore, Our total loss is computed as a weighted sum of the two
 291 components: $\mathcal{L}_{total} = \lambda_c\mathcal{L}_{circle} + \lambda_f\mathcal{L}_{focal}$.
 292

293 4 EXPERIMENTS

294 4.1 IMPLEMENTATION DETAILS

295 **Backbone.** For the 2D backbone, we use a 4-stage ResNet He et al. (2016) with FPN, where
 296 each stage outputs $\{128, 128, 256, 512\}$ channels. Following Wu et al. (2024), we crop the input
 297 image resolution to (476, 630) for compatibility with the DINOv2 network. Then, the patch size
 298 at the coarse level is downsampled to (34, 43). For the 3D backbone, we use two 3-stage KPConv
 299 Thomas et al. (2019) with each stage outputting $\{128, 256, 512\}$ channels. The point clouds are
 300 initially divided into voxels with a size of 2.5 cm, and the voxel size is doubled progressively at each
 301 subsequent stage. Each transformer layer consists of 256 feature channels, utilizes 4 attention heads,
 302 and applies ReLU as the activation function. The DINO features are combined with the coarsest-
 303 level feature from the ResNet and are also utilized as inputs to the transformer for image feature
 304 processing. At the fine level, we utilize the 128-dimensional finest level features from both the
 305 2D encoder and the 3D encoder. By combining these multi-modality features, we perform feature
 306 matching in a 256-dimensional space.
 307

308 **Anchor-Pivot 5D Encoder.** Our anchor-pivot 5D encoder consists of a 4-stage 5D correlation
 309 block, with output channels set to $\{4, 8, 16, 1\}$ for each stage. The $\mathcal{E}_{2D}(\cdot)$ operation employs a
 310 ResNet He et al. (2016) structure, while $\mathcal{E}_{3D}(\cdot)$ adopts the Point Transformer Zhao et al. (2021)
 311 structure.
 312

313 **Training detail.** We use the Adam optimizer with a learning rate of 1×10^{-4} , weight decay of
 314 1×10^{-6} , and a step learning rate scheduler which decreases the learning rate to 95% every one
 315 steps. The network is trained for 20 epochs with batch size 1. We set $\lambda_{coarse} = 1.0$, $\lambda_{fine} = 1.0$,
 316 $\lambda_c = 1.0$ and $\lambda_f = 1.0$.
 317

318 **Dataset.** We evaluate our method on three datasets: RGB-D Scenes V2 Lai et al. (2014), 7-Scenes
 319 Glocker et al. (2013), and KITTI-DC Uhrig et al. (2017). The RGB-D Scenes V2 dataset contains
 320 indoor image-to-point-cloud pairs with at least 30% overlap, split into 1,748 training, 236 validation,
 321 and 497 testing pairs. The 7-Scenes dataset comprises indoor scenes with a minimum 50% over-
 322 lap, resulting in 4,048 training, 1,011 validation, and 2,304 testing pairs. The KITTI-DC dataset
 323 presents outdoor scenarios with sparse LiDAR point clouds, and we created 2,985 training pairs
 324 specifically for short-range outdoor registration evaluation. More detailed information is provided
 325 in the Appendix.
 326

324 Table 1: Evaluation results on RGB-D Scenes V2 and 7Scenes. The best scores are highlighted in
 325 **boldfaced**, while the second-best are underlined.
 326

Model	RGB-D Scenes V2					7Scenes						Mean		
	Scene-11	Scene-12	Scene-13	Scene-14	Mean	Chess	Fire	Heads	Office	Pupk	Kitc	Stairs		
<i>Inlier Ratio(%) ↑</i>														
FCGF-2D3D	6.8	8.5	11.8	5.4	8.1	34.2	32.8	14.8	26.0	23.3	22.5	6.0	22.8	15.5
P2-Net	9.7	12.8	17.0	9.3	12.2	55.2	46.7	13.0	36.2	32.0	32.8	5.8	31.7	22.0
Predator-2D3D	17.7	19.4	17.2	8.4	15.7	34.7	33.8	16.6	25.9	23.1	22.2	7.5	23.4	20.0
2D3D-MATR	32.8	34.4	<u>39.2</u>	23.3	32.4	72.1	66.0	31.3	60.7	50.2	52.5	18.1	50.1	41.3
FreeReg	36.6	34.5	34.2	18.2	30.9	-	-	-	-	-	-	-	-	-
Diff-Reg	<u>47.2</u>	<u>48.7</u>	32.9	22.4	<u>37.8</u>	<u>78.2</u>	<u>68.8</u>	<u>49.1</u>	<u>65.6</u>	46.4	<u>54.6</u>	21.2	54.9	<u>46.4</u>
CA-I2P	38.6	40.6	38.9	<u>24.0</u>	35.5	73.6	66.4	34.5	62.4	52.1	52.8	19.1	51.6	43.6
Diff ² I2P	-	-	-	-	36.9	74.1	<u>68.8</u>	39.2	<u>65.6</u>	52.1	54.2	18.1	53.2	45.1
DuMA(Ours)	58.2	61.4	52.0	<u>31.1</u>	<u>50.7</u>	81.1	<u>70.0</u>	53.6	67.6	<u>51.9</u>	58.5	<u>19.5</u>	57.5	54.1
<i>Feature Matching Recall(%) ↑</i>														
FCGF-2D3D	11.0	30.4	51.5	15.5	27.1	<u>99.7</u>	98.2	69.9	97.1	83.0	87.7	16.2	78.8	53.0
P2-Net	48.6	65.7	82.5	41.6	59.6	100.0	99.3	58.9	<u>99.1</u>	87.2	92.2	16.1	79.0	69.3
Predator-2D3D	44.4	41.2	21.6	13.7	30.2	91.3	95.1	76.7	88.6	79.2	80.6	31.1	77.5	53.9
2D3D-MATR	98.6	98.0	88.7	77.9	90.8	100.0	<u>99.6</u>	<u>98.6</u>	100.0	<u>92.4</u>	95.9	58.1	92.1	91.5
FreeReg	91.9	93.4	<u>93.1</u>	49.6	82.0	-	-	-	-	-	-	-	-	-
Diff-Reg	100.0	100.0	88.7	77.0	91.4	100.0	100.0	<u>98.6</u>	100.0	90.3	<u>98.2</u>	64.9	<u>93.1</u>	92.3
CA-I2P	100.0	100.0	91.8	<u>82.7</u>	<u>93.6</u>	100.0	100.0	<u>98.6</u>	100.0	92.0	<u>95.5</u>	<u>60.8</u>	92.4	<u>93.0</u>
Diff ² I2P	-	-	-	-	77.1	100.0	100.0	100.0	100.0	93.4	96.2	55.4	92.2	84.7
DuMA(Ours)	100.0	100.0	100.0	<u>84.1</u>	<u>96.0</u>	100.0	100.0	100.0	100.0	90.3	99.9	58.1	93.8	94.9
<i>Registration Recall(%) ↑</i>														
FCGF-2D3D	26.4	41.2	37.1	16.8	30.4	<u>89.5</u>	79.7	19.2	85.9	69.4	79.0	6.8	61.4	45.9
P2-Net	40.3	40.2	41.2	31.9	38.4	96.9	<u>86.5</u>	20.5	91.7	75.3	82.0	4.1	65.7	52.1
Predator-2D3D	44.4	41.2	21.6	13.7	30.2	69.6	<u>60.7</u>	17.8	62.9	56.2	62.6	9.5	48.5	39.4
2D3D-MATR	63.9	53.9	58.8	49.1	56.4	96.9	90.7	52.1	95.5	80.9	86.1	28.4	75.8	66.1
FreeReg	74.2	72.5	54.5	27.9	57.3	-	-	-	-	-	-	-	-	-
Diff-Reg	<u>98.6</u>	99.0	<u>86.6</u>	<u>63.7</u>	<u>87.0</u>	97.9	86.5	<u>84.9</u>	97.3	76.7	<u>91.9</u>	21.6	79.6	<u>83.3</u>
CA-I2P	68.1	73.5	63.9	47.8	63.3	99.0	90.7	68.5	96.2	<u>83.0</u>	88.1	<u>31.1</u>	79.5	71.4
Diff ² I2P	-	-	-	-	60.5	99.0	<u>95.6</u>	74.0	98.9	<u>86.8</u>	90.2	<u>36.5</u>	<u>83.0</u>	71.8
DuMA(Ours)	100.0	<u>98.0</u>	92.8	<u>79.6</u>	<u>92.6</u>	98.6	<u>92.3</u>	89.0	<u>98.4</u>	78.8	<u>93.4</u>	<u>31.1</u>	83.1	87.9

349
 350 **Evaluation Metrics.** We use three evaluation metrics to assess the accuracy of image-to-point
 351 cloud registration across both indoor and outdoor datasets. (1) **Inlier Ratio (IR)** measures the
 352 ratio of pixel-to-point matches with a 3D distance below a specified threshold among all candidate
 353 matches. We set this threshold to 5 cm for indoor datasets (e.g., RGB-D Scenes V2, 7Scenes)
 354 and 3 m for outdoor datasets (e.g., KITTI-DC). (2) **Feature Matching Recall (FMR)** evaluates
 355 the ratio of I2P pairs with an inlier ratio that surpasses a specified threshold (e.g., 10%), indicating
 356 the proportion of pairs with sufficiently accurate correspondences. (3) **Registration Recall (RR)**
 357 measures the percentage of correctly aligned I2P pairs. We define alignment as RMSE below 10 cm
 358 for indoor datasets (e.g., RGB-D Scenes V2, 7Scenes) and translation error under 3 m for KITTI-
 359 DC.

4.2 EVALUATIONS ON RGB-D SCENES V2

360 **Comparisons to the state-of-the-arts.** We provide the evaluation results on RGB-D Scenes V2
 361 in Table 1. The results demonstrate that our proposed method, DuMA, achieves the best performance
 362 across all three metrics. DuMA achieves a mean score of 50.7% for the Inlier Ratio (IR),
 363 which is 12.9% higher than Diff-Reg at 37.8%. Notably, DuMA demonstrates strong performances
 364 in Scene-13 and Scene-14, particularly challenging scenarios requiring detailed feature matching.
 365 This indicates DuMA’s capability in accurately identifying and maintaining correspondences under
 366 demanding conditions. In Feature Matching Recall (FMR), DuMA achieves the top score across all
 367 scenes, with an impressive average of 96.0%. This high recall rate demonstrates DuMA’s effectiveness
 368 to find reliable matches across diverse and complex environments. Furthermore, for Registration
 369 Recall (RR), DuMA secures a top score of 92.6%, the highest among all tested models, showing
 370 its ability to identify precise correspondences required for accurate alignment across varying depth
 371 ranges. Notably, DuMA shows remarkable performance improvements in challenging scenes such
 372 as Scene-14, highlighting its robust capacity for multi-modal alignment, which is a crucial factor
 373 in registration tasks. These impressive results can be attributed to our approach, which explicitly
 374 models inter-modal feature relationships through a dedicated score aggregation network. Unlike
 375 FreeReg, which processes multi-modal features in parallel without interaction, our method fuses 2D
 376 and 3D features to enhance spatial correspondence, resulting in improved alignment accuracy and
 377 robustness across diverse scene conditions.

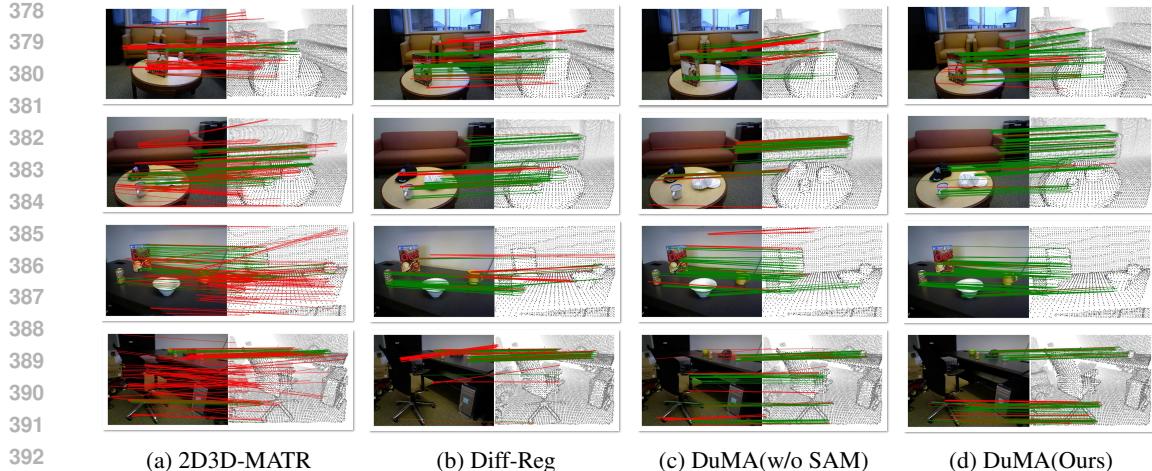


Figure 4: Qualitative results on RGB-D V2 dataset. Correct / incorrect matches are colored with green / red.

Qualitative results. In Figure 4, we compare our approach with the two latest methods and also with the average of our model’s dual matching scores. DuMA consistently maintains high matching accuracy even in complex scenes, particularly in environments where objects and backgrounds are intricately intertwined. In contrast, the other two methods exhibit more incorrect matches in complex scenes compared to DuMA. 2D3D-MATR frequently produces incorrect matches, reducing its accuracy in complex scenes. While Diff-Reg achieves relatively high accuracy, its diffusion-based approach to refining the matching matrix often leads to a concentration on specific points. This limitation makes the model overlook broader context, reducing performance in complex scenes.

When using the simple average of our model’s dual matching scores, matching tends to occur only in specific areas where both 2D and 3D features are distinctly prominent. Therefore, by merging the two matching scores while incorporating surrounding spatial context, our approach yields more precise correspondences that exhibit enhanced geometric consistency.

4.3 EVALUATIONS ON 7SCENES

Comparisons to the state-of-the-arts. The evaluation of 7Scenes is shown in Table 1. Overall, DuMA outperforms all compared methods and achieves the best overall results. Additionally, while performance varies across scenes, DuMA consistently achieves strong results by effectively integrating both 2D–3D and 3D–3D matching cues, demonstrating robustness in both complex and sparse feature scenarios.

4.4 EVALUATIONS ON KITTI-DC

Comparisons to the state-of-the-arts. DuMA outperforms existing methods and is shown to be effective in outdoor environments, with a notable improvement in registration recall as shown in Table 2. This highlights the robustness of our method in handling sparse LiDAR data, enabling more reliable feature matching and registration in challenging outdoor scenarios.

4.5 ABLATION STUDIES

In this ablation study on the RGB-D Scenes V2 dataset, we provide a qualitative assessment of the geometric consistency achieved through feature matching score visualization. We also analyze the impact of the fusion weight between 2D and 3D features, demonstrating how different weighting strategies affect the balance between geometric and appearance cues. In the Appendix, we further report ablation studies on (i) the effectiveness of the Multi-Modality Matching and Score Aggregation modules, (ii) the impact of the number of sampling points, (iii) the effect of backbone quality and depth estimation, (iv) different 3D–3D transformation estimation methods, (v) runtime and memory, (vi) the complexity analysis of the anchor–pivot 5D encoder, and (vii) generalization tests.

432
433
434
435
Table 2: Evaluation results on KITTI-DC.
The best scores are highlighted in **boldfaced**,
while the second-best are underlined.

Model	IR(%)	FMR(%)	RR(%)
2D3D-MATR	59.1	<u>99.7</u>	75.4
FreeReg	58.3	<u>99.7</u>	70.5
Diff ² I2P	<u>62.9</u>	<u>99.7</u>	82.2
DuMA(Ours)	65.8	100.0	85.9

441
442
443 **Feature Matching Score Visualization.** We visualize the matching scores to assess how
444 our anchor-pivot 5D encoder enhances geometric consistency in the final matching results.
445 To this end, a point cluster from
446 the point cloud is selected as the
447 query, and we visualize the cor-
448 responding matching scores in
449 the image, reflecting the con-
450 tributions from 2D-3D match-
451 ing, 3D-3D matching, and our
452 anchor-pivot 5D encoder. As
453 shown in Figure 5, when the
454 query cluster is located in ar-
455 eas of the image that are dif-
456 ficult to distinguish from the
457 background, using only 2D-3D
458 matching results in a wide dis-
459 tribution of high matching scores
460 across regions with similar colors and features. Conversely, relying solely on 3D-3D matching ex-
461 ploits geometric cues (e.g., edges), concentrating high scores on edge-related areas. Notably, our
462 Anchor-Pivot 5D encoder combines these two perspectives while also considering surrounding spatial
463 information, thereby enhancing geometric consistency in the final score distribution. By merging
464 the complementary information from 2D images and 3D point clouds, the encoder produces match-
465 ing regions that are both precise and context-aware, yielding robust correspondences even in visually
466 or geometrically challenging scenarios.

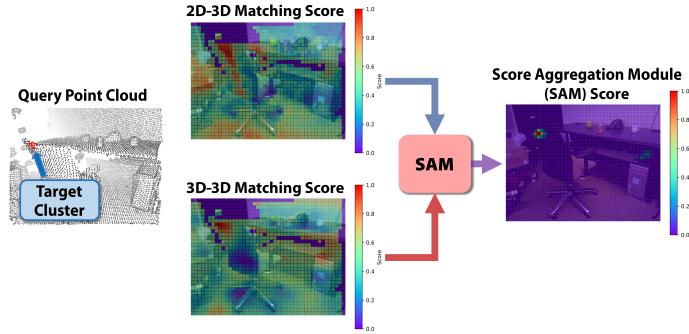


Figure 5: Feature matching score visualization.

467 **Impact of Feature Fusion Weight** To analyze the contribution of each modality, we conducted
468 a weighted feature fusion experiment in the final block of the Anchor-Pivot 5D encoder, where the
469 fused feature is computed as $\mathbf{f}^{(L)} = \alpha \cdot \mathbf{f}_{2D}^{(L)} + (1 - \alpha) \cdot \mathbf{f}_{3D}^{(L)}$. As shown in Table 3, the model performs
470 best when the 2D and 3D features are balanced. When over-relying on one modality (especially 2D)
471 led to a decrease in overall performance. This confirms that jointly leveraging both modalities is
472 crucial for achieving robust registration.

5 CONCLUSION

473
474 In this paper, we presented DuMA, a novel learnable framework for image-to-point cloud regis-
475 tration that utilizes the complementary strengths of simultaneous 2D-3D and 3D-3D matching. By
476 integrating geometric verification into our score aggregation module, DuMA effectively filters out
477 ambiguous correspondences and preserves structural consistency across modalities. Moreover, our
478 innovative Anchor-Pivot 5D encoder decomposes high-dimensional matching scores into distinct
479 2D and 3D components, enabling feasible aggregation with reduced computational overhead. Ex-
480 perimental results show that DuMA significantly improves alignment accuracy and robustness, es-
481 pecially in complex environments. Our method still has limitations, as it is sensitive to the quality
482 of depth estimation and struggles in extreme scenarios such as textureless regions where both visual
483 and geometric cues are insufficient. Future work could incorporate depth uncertainty modeling or
484 refinement to further improve robustness, and addressing textureless cases may require integrating
485 additional modalities or stronger priors to resolve the inherent ambiguity.

432
433
434
435
Table 3: Ablation on fusion weight between 2D and
436 3D features. The best scores are highlighted in **bold-
437 faced**, while the second-best scores are underlined.

α	0.0	0.2	0.4	0.5	0.6	0.8	1.0
IR(%)	45.9	<u>50.1</u>	50.7	50.7	50.7	47.7	37.4
FMR(%)	96.0	96.0	96.0	96.0	96.0	96.0	88.7
RR(%)	91.5	<u>92.0</u>	<u>92.6</u>	<u>92.6</u>	<u>92.6</u>	90.9	79.2

486 REFERENCES
487

488 Herbert Bay. Surf: Speeded up robust features. *Computer Vision—ECCV*, 2006.

489 Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-
490 shot transfer by combining relative and metric depth. *arXiv preprint arXiv:2302.12288*, 2023.

491

492 Eric Brachmann and Carsten Rother. Neural-guided ransac: Learning where to sample model hy-
493 potheses. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
494 4322–4331, 2019.

495

496 Zhi Chen, Yufan Ren, Tong Zhang, Zheng Dang, Wenbing Tao, Sabine Süsstrunk, and Mathieu
497 Salzmann. Diffusionpcr: Diffusion models for robust multi-step point cloud registration. *arXiv*
498 *preprint arXiv:2312.03053*, 2023.

499

500 Zhixin Cheng, Jiacheng Deng, Xinjun Li, Xiaotian Yin, Bohao Liao, Baoqun Yin, Wenfei Yang, and
501 Tianzhu Zhang. Ca-i2p: Channel-adaptive registration network with global optimal selection.
502 *arXiv preprint arXiv:2506.21364*, 2025.

503

504 Seokju Cho, Sunghwan Hong, Sangryul Jeon, Yunsung Lee, Kwanghoon Sohn, and Seungryong
505 Kim. Cats: Cost aggregation transformers for visual correspondence. *Advances in Neural Infor-
506 mation Processing Systems*, 34:9011–9023, 2021.

507

508 Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully convolutional geometric features. In
509 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8958–8966, 2019.

510

511 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
512 information processing systems*, 26, 2013.

513

514 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In *2005 IEEE Com-
515 puter Society Conference on Computer Vision and Pattern Recognition (CVPR'05)*, volume 1, pp.
516 886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177.

517

518 Mengdan Feng, Sixing Hu, Marcelo H Ang, and Gim Hee Lee. 2d3d-matchnet: Learning to match
519 keypoints across 2d image and 3d point cloud. In *2019 International Conference on Robotics and
520 Automation (ICRA)*, pp. 4790–4796. IEEE, 2019.

521

522 Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time rgb-d camera relo-
523 calization. In *2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)*,
524 pp. 173–179. IEEE, 2013.

525

526 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
527 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
528 770–778, 2016.

529

530 Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation
531 via shared attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
532 Recognition*, pp. 4775–4785, 2024.

533

534 Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas Wieser, and Konrad Schindler. Predator:
535 Registration of 3d point clouds with low overlap. In *Proceedings of the IEEE/CVF Conference
536 on computer vision and pattern recognition*, pp. 4267–4276, 2021.

537

538 Shuaiyi Huang, Luyu Yang, Bo He, Songyang Zhang, Xuming He, and Abhinav Shrivastava. Learn-
539 ing semantic correspondence with sparse annotations. In *European Conference on Computer
540 Vision*, pp. 267–284. Springer, 2022.

541

542 Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
543 ate shift. *arXiv preprint arXiv:1502.03167*, 2015.

544

545 Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. *Acta Crystallo-
546 graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography*, 32
547 (5):922–923, 1976.

540 Seungwook Kim, Juhong Min, and Minsu Cho. Transformatcher: Match-to-match attention for
 541 semantic correspondence. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 542 *Pattern Recognition*, pp. 8697–8707, 2022.

543

544 Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3d scene labeling. In
 545 *2014 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 3050–3057. IEEE,
 546 2014.

547 Jae Yong Lee, Joseph DeGol, Victor Fragoso, and Sudipta N Sinha. Patchmatch-based neighbor-
 548 hood consensus for semantic correspondence. In *Proceedings of the IEEE/CVF Conference on*
 549 *Computer Vision and Pattern Recognition*, pp. 13153–13163, 2021.

550

551 Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Ep n p: An accurate o (n) solution to
 552 the p n p problem. *International journal of computer vision*, 81:155–166, 2009.

553

554 Minhao Li, Zheng Qin, Zhirui Gao, Renjiao Yi, Chenyang Zhu, Yulan Guo, and Kai Xu. 2d3d-matr:
 555 2d-3d matching transformer for detection-free registration between images and point clouds. In
 556 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 14128–14138,
 2023.

557

558 Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene co-
 559 ordinate classification and regression for visual localization. In *Proceedings of the IEEE/CVF*
 560 *Conference on Computer Vision and Pattern Recognition*, pp. 11983–11992, 2020.

561

562 Xinghui Li, Jingyi Lu, Kai Han, and Victor Adrian Prisacariu. Sd4match: Learning to prompt
 563 stable diffusion model for semantic matching. In *Proceedings of the IEEE/CVF Conference on*
 564 *Computer Vision and Pattern Recognition*, pp. 27558–27568, 2024.

565

566 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 567 Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on com-
 568 puter vision and pattern recognition*, pp. 2117–2125, 2017.

569

570 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of*
 571 *computer vision*, 60:91–110, 2004.

572

573 Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrelation squeeze for few-shot segmentation.
 574 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6941–6952,
 575 2021.

576

577 Juncheng Mu, Chengwei Ren, Weixiang Zhang, Liang Pan, Xiao-Ping Zhang, and Yue Gao. Diff
 578 2 i2p: Differentiable image-to-point cloud registration with diffusion prior. *arXiv preprint arXiv:2507.06651*, 2025.

579

580 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 581 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 582 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

583

584 Quang-Hieu Pham, Mikaela Angelina Uy, Binh-Son Hua, Duc Thanh Nguyen, Gemma Roig, and
 585 Sai-Kit Yeung. Lcd: Learned cross-domain descriptors for 2d-3d matching. In *Proceedings of the*
 586 *AAAI conference on artificial intelligence*, volume 34, pp. 11856–11864, 2020.

587

588 Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu. Geometric trans-
 589 former for fast and robust point cloud registration. In *Proceedings of the IEEE/CVF conference*
 590 *on computer vision and pattern recognition*, pp. 11143–11152, 2022.

591

592 Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Slobodan Ilic, Dewen Hu, and Kai
 593 Xu. Geotransformer: Fast and robust point cloud registration with geometric transformer. *IEEE*
 594 *Transactions on Pattern Analysis and Machine Intelligence*, 45(8):9806–9821, 2023.

595

596 Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
 597 Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d images. In
 598 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2930–2937,
 2013.

594 Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen
 595 Wei. Circle loss: A unified perspective of pair similarity optimization. In *Proceedings of the*
 596 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 6398–6407, 2020.

597 Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
 598 correspondence from image diffusion. *Advances in Neural Information Processing Systems*, 36:
 599 1363–1389, 2023.

600 Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
 601 and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
 602 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 6411–6420, 2019.

603 Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas Geiger.
 604 Sparsity invariant cnns. In *2017 international conference on 3D Vision (3DV)*, pp. 11–20. IEEE,
 605 2017.

606 Bing Wang, Changhao Chen, Zhaopeng Cui, Jie Qin, Chris Xiaoxuan Lu, Zhengdi Yu, Peijun Zhao,
 607 Zhen Dong, Fan Zhu, Niki Trigoni, et al. P2-net: Joint description and detection of local features
 608 for pixel and point matching. In *Proceedings of the IEEE/CVF International Conference on*
 609 *Computer Vision*, pp. 16004–16013, 2021.

610 Haiping Wang, Yuan Liu, Bing Wang, Yujing Sun, Zhen Dong, Wenping Wang, and Bisheng Yang.
 611 Freereg: Image-to-point cloud registration leveraging pretrained diffusion models and monocular
 612 depth estimators. In *ICLR*, 2024.

613 Qianliang Wu, Haobo Jiang, Lei Luo, Jun Li, Yaqing Ding, Jin Xie, and Jian Yang. Diff-reg: Diffu-
 614 sion model in doubly stochastic matrix space for registration problem. In *European Conference*
 615 *on Computer Vision*, pp. 160–178. Springer, 2024.

616 Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slobodan Ilic. Cofinet: Reliable coarse-to-fine
 617 correspondences for robust pointcloud registration. *Advances in Neural Information Processing*
 618 *Systems*, 34:23872–23884, 2021.

619 Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, and Slobodan Ilic.
 620 Rotation-invariant transformer for point cloud matching. In *Proceedings of the IEEE/CVF con-
 621 ference on computer vision and pattern recognition*, pp. 5384–5393, 2023a.

622 Junle Yu, Luwei Ren, Yu Zhang, Wenhui Zhou, Lili Lin, and Guojun Dai. Peal: Prior-embedded ex-
 623 plicit attention learning for low-overlap point cloud registration. In *Proceedings of the IEEE/CVF*
 624 *Conference on Computer Vision and Pattern Recognition*, pp. 17702–17711, 2023b.

625 Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
 626 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 16259–16268,
 627 2021.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

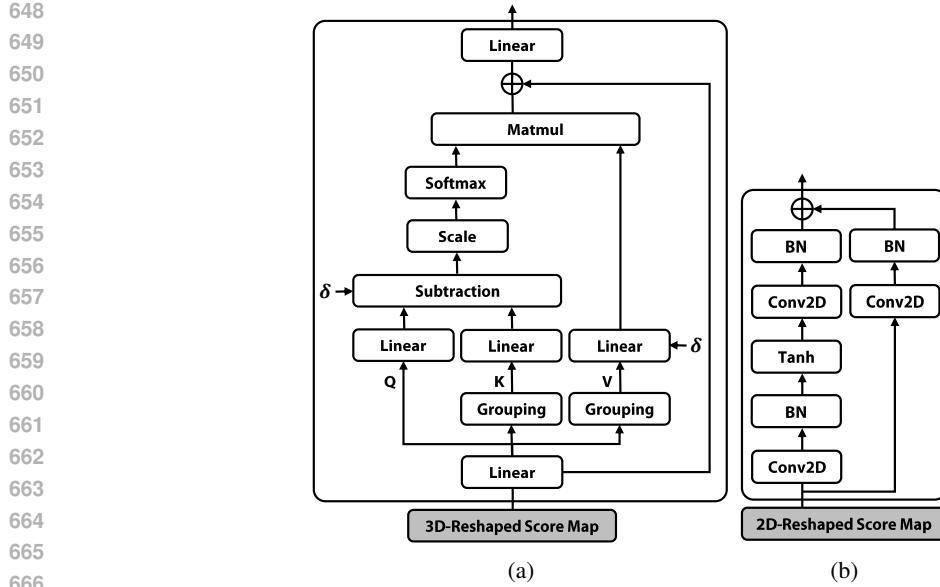


Figure 6: More architectural details of Anchor-Pivot 5D Encoder: (a) Point transformer block Zhao et al. (2021). Grouping: K Nearest Neighbor. δ : Position Encoding. (b) Resnet block He et al. (2016). BN: Batch Normalization Ioffe (2015).

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Backbone. For the 2D backbone, we use a 4-stage ResNet He et al. (2016) with FPN, where each stage outputs $\{128, 128, 256, 512\}$ channels. Following Wu et al. (2024), we crop the input image resolution to $(476, 630)$ to ensure compatibility with the DINOv2 network. Subsequently, the patch size at the coarse level is reduced to $(34, 45)$. Additionally, the coarsest-level feature from the ResNet is combined with the DINO features, which are then passed through a progressive upsampling process to generate pixel-level features. For the 3D backbone, we use two 3-stage KPConv Thomas et al. (2019) with each stage outputting $\{128, 256, 512\}$ channels. The point clouds are initially divided into voxels with a size of 2.5 cm, and the voxel size is doubled progressively at each subsequent stage. For the 3D backbone input from the image, the number of sampling points N^T through the depth map is set to 30,000.

Anchor-Pivot 5D Encoder. Our anchor-pivot 5D encoder comprises a 4-stage 5D correlation block, where the output channels for each stage are set to $\{4, 8, 16, 1\}$. The $\mathcal{E}_{3D}(\cdot)$ use the Point Transformer Zhao et al. (2021) structure, while $\mathcal{E}_{2D}(\cdot)$ adopts a ResNet He et al. (2016) structure. We choose ResNet for its proven effectiveness in structured, grid-based image feature extraction, and Point Transformer for its inherent ability to handle irregular, unordered point cloud data through self-attention mechanisms. This encoder combination naturally suits the distinct characteristics of each modality, facilitating effective geometric verification at the coarse matching stage. Our detailed architecture of the anchor-pivot 5D encoder is illustrated in Figure 6. Given the matching score map $\mathbf{S}^l \in \mathbb{R}^{d^l \times (\hat{H} \times \hat{W}) \times \hat{N}}$, it is transformed into two distinct shapes within the block. The first shape is $\hat{N} \times d^l \times \hat{H} \times \hat{W}$, which is fed into the 2D encoder, while the second is reshaped to $(\hat{H} \times \hat{W}) \times d^l \times \hat{N}$ for input to the 3D encoder. Then, within each encoder, batch-wise computations are performed on the reshaped score maps. In the 3D encoder, we perform attention based on the K nearest neighbor (K-NN) search, considering the information from surrounding points to generate features. In this process, we set K=3 to capture local dependencies. Finally, we obtain the output score map $\mathbf{S}^{l+1} \in \mathbb{R}^{d^{l+1} \times (\hat{H} \times \hat{W}) \times \hat{N}}$.

702 A.2 LOSS FUNCTION
703

704 **Circle Loss.** We apply three types of circle loss at both the coarse and fine levels: 2D-3D patch
705 matching loss at the coarse level $\mathcal{L}_{coarse}^{2D-3D}$, 3D-3D patch matching loss at the coarse level $\mathcal{L}_{coarse}^{3D-3D}$,
706 and pixel-to-point matching loss at the fine level \mathcal{L}_{fine} .

707 For a given target descriptor d_i , the descriptors of its positive and negative pairs are denoted by \mathcal{D}_i^P
708 and \mathcal{D}_i^N , respectively. The general form of the circle loss for d_i is defined as:
709

$$710 \quad 711 \quad 712 \quad 713 \quad \mathcal{L}_{circle} = \frac{1}{N} \sum_{i=1}^N \frac{1}{\gamma} \log \left[1 + \sum_{d_j \in \mathcal{D}_i^P} e^{\beta_p^j (d_i^j - \Delta_p)} \cdot \sum_{d_k \in \mathcal{D}_i^N} e^{\beta_n^k (\Delta_n - d_i^k)} \right] \quad (6)$$

714 where d_i^j represents the ℓ_2 -norm feature distance between the anchor descriptor d_i and its positive
715 pair d_j , and d_i^k is similarly defined but for the negative pairs. The individual weights for positive
716 pairs, $\beta_p^j = \gamma \lambda_p (d_i^j - \Delta_p)$, and for negative pairs, $\beta_n^k = \gamma \lambda_n (\Delta_n - d_i^k)$, where λ_p and λ_n are
717 scaling factors for positive and negative pairs, respectively. The terms Δ_p and Δ_n are margins that
718 control the influence of positive and negative samples.
719

720 Following Li et al. (2023), positive and negative samples are identified based on the overlapping
721 ratio. At the coarse level, if the patch overlapping ratio between 2D and 3D patches is at least
722 30%, it is regarded as positive, while a ratio below 20% is regarded as negative. Additionally, λ_p is
723 defined as the overlapping ratio, while λ_n is set to 1. At the fine level, a pixel-point pair is regarded
724 as positive if the 3D distance is within 3.75 cm and the 2D distance is within 8 pixels. Conversely,
725 it is identified as negative if the 3D distance exceeds 10 cm or the 2D distance exceeds 12 pixels. At
726 this level, both λ_p and λ_n are set to 1. Furthermore, the margins are defined as $\Delta_p = 0.1$ and $\Delta_n =$
727 1.4.
728

728 **Focal Loss.** For the matching score map $\hat{\mathbf{S}}_{fused} \in \mathbb{R}^{(\hat{H} \times \hat{W}) \times \hat{N}}$ obtained after score aggregation at
729 the coarse level, we use the focal loss Wu et al. (2024) \mathcal{L}_{focal} .
730

731 Specifically, we define focal loss as

$$732 \quad 733 \quad \mathcal{L}_{focal,p} = -\alpha \sum_{i \in \mathcal{P}} (1 - \hat{\mathbf{S}}_{fused}(i))^\gamma \cdot \log(\hat{\mathbf{S}}_{fused}(i)) \quad (7)$$

$$734 \quad 735 \quad \mathcal{L}_{focal,n} = -\alpha \sum_{i \in \mathcal{N}} (\hat{\mathbf{S}}_{fused}(i))^\gamma \cdot \log(1 - \hat{\mathbf{S}}_{fused}(i)) \quad (8)$$

$$736 \quad 737 \quad \mathcal{L}_{focal} = w_{pos} \cdot \frac{\mathcal{L}_{focal,p}}{|\mathcal{P}|} + w_{neg} \cdot \frac{\mathcal{L}_{focal,n}}{|\mathcal{N}|} \quad (9)$$

738 where \mathcal{P} represents the set of positive locations in the ground truth, while \mathcal{N} denotes the set of
739 negative locations. Here, γ is a focusing parameter, with the weights for positive and negative
740 samples represented by w_{pos} and w_{neg} , respectively. Specifically, α and γ are set to 0.25 and 2.0,
741 while both w_{pos} and w_{neg} are set to 1.
742

743 A.3 DETAILED DATASETS
744

745 **RGB-D Scenes V2.** RGB-D Scenes V2 Lai et al. (2014) consists of 11,427 RGB-D frames cap-
746 tured across 14 indoor scenes. We use the training data preprocessed by Li et al. (2023), where
747 image-to-point-cloud pairs are generated by creating point cloud fragments from every 25 consecu-
748 tive depth frames and sampling an RGB image at the same interval. Only image-point-cloud pairs
749 with an overlap ratio of at least 30% are retained. The dataset is divided into training, validation, and
750 testing sets based on scene numbers: scenes 1-8 for training, scenes 9-10 for validation, and scenes
751 11-14 for testing, resulting in 1,748 training pairs, 236 validation pairs, and 497 testing pairs.
752

753 **7-Scenes.** 7-Scenes Glocker et al. (2013) consists of 46 RGB-D sequences captured across 7 in-
754 door scenes. We adopt the training data prepared in Li et al. (2023), Image-to-point-cloud pairs
755 are generated by creating point cloud fragments and sampling RGB images at regular intervals, re-
taining only those pairs with an overlap ratio of at least 50%. The dataset is divided into training,

validation, and testing sets based on the official sequence split, resulting in 4,048 training pairs, 1,011 validation pairs, and 2,304 testing pairs.

KITTI-DC. The KITTI-DC dataset Uhrig et al. (2017) consists of 342 image-to-point cloud (I2P) pairs captured across four outdoor driving scenes. Unlike the RGB-D Scenes V2 and 7Scenes datasets, which primarily contain indoor environments with dense point clouds, KITTI-DC presents a more challenging setting with sparse point clouds obtained from a 64-line LiDAR scan. We use the dataset as processed in Wang et al. (2024), where the distance between each I2P pair is less than 10 meters, making it suitable for evaluating short-range outdoor registration performance. For training, we generated a total of 2,985 training pairs from seven distinct scenes.

A.4 DETAILED METRICS

Given a 3D point cloud $\mathbf{P} \in \mathbb{R}^{N \times 3}$ and a 2D image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$, DuMA estimates correspondences $\mathcal{C} = \{(x_i, y_i) \mid x_i \in \mathbb{R}^3, y_i \in \mathbb{R}^2\}$ between 3D points and 2D pixels. Following Li et al. (2023), we evaluate the estimated correspondences based on three metrics.

Inlier Ratio (IR). IR represents the ratio of inliers to all putative pixel-point correspondences $(x_i, y_i) \in \mathcal{C}$. A correspondence is considered an inlier if its 3D Euclidean distance is below the threshold $\tau_1 = 5$ cm under the ground-truth transformation \mathbf{T}^* :

$$\text{IR} = \frac{1}{|\mathcal{C}|} \sum_{(x_i, y_i) \in \mathcal{C}} 1(\|\mathbf{T}^*(\mathbf{x}_i) - \mathcal{K}^{-1}(\mathbf{y}_i)\|_2 < \tau_1), \quad (10)$$

where $1()$ is the indicator function, and \mathcal{K}^{-1} is the function that converts a pixel into a 3D point based on its depth value.

Feature Matching Recall (FMR). FMR measures the fraction of image-point cloud pairs whose IR exceeds the threshold $\tau_2 = 0.1$:

$$\text{FMR} = \frac{1}{N} \sum_{i=1}^N 1(\text{IR}_i > \tau_2), \quad (11)$$

where N is the number of all point-image pairs in the test dataset.

Registration Recall (RR). Registration Recall (RR) measures the fraction of correctly aligned image-point cloud pairs based on the putative correspondences. A pair is considered correctly aligned if the Root Mean Square Error (RMSE) between the point clouds after applying the ground-truth transformation and the predicted transformation \mathbf{T} is below the threshold $\tau_3 = 0.1$ m:

$$\text{RMSE} = \sqrt{\frac{1}{|\mathcal{P}|} \sum_{\mathbf{p}_i \in \mathcal{P}} \|\mathbf{T}(\mathbf{p}_i) - \mathbf{T}^*(\mathbf{p}_i)\|_2^2}, \quad (12)$$

$$\text{RR} = \frac{1}{M} \sum_{i=1}^M 1(\text{RMSE}_i < \tau_3). \quad (13)$$

A.5 ADDITIONAL ABLATION STUDIES AND ANALYSIS

A.5.1 EFFECTIVENESS OF MULTI-MODALITY MATCHING MODULE (MMM) AND SCORE AGGREGATION MODULE (SAM).

The experimental results in Table 4 demonstrate that the integration of our anchor-pivot 5D encoder with the combined matching strategy yields the highest overall performance. Interestingly, when an anchor-pivot 5D encoder is applied to a single modality, the IR decreases slightly. This is because the encoder introduces a more rigorous geometric verification process that filters out some potential correspondences, although the remaining matches are more reliable, leading to an increase in RR and overall alignment performance.

810 Table 4: Ablation on effectiveness of MMM and SAM. The best scores are highlighted in **boldfaced**,
 811 while the second-best are underlined.

Method	IR(%)	FMR(%)	RR(%)
2D-3D	46.3	94.2	89.3
2D-3D + AP _{5D}	42.2	<u>95.0</u>	<u>90.3</u>
3D-3D	36.2	94.0	84.5
3D-3D + AP _{5D}	32.6	92.3	86.1
2D-3D / 3D-3D	<u>49.5</u>	94.3	89.0
2D-3D / 3D-3D + AP _{5D}	50.7	96.0	92.6

812
 813 Table 5: Ablation on effectiveness of architectural designs in SAM. The best scores are highlighted
 814 in **boldfaced**, while the second-best are underlined.

Method	IR(%)	FMR(%)	RR(%)
Average	49.5	94.3	89.0
MLP	<u>50.5</u>	95.7	<u>90.8</u>
Only 2d Encoder	49.2	95.7	89.2
Only 3d Encoder	48.8	94.6	90.4
Late Fusion	48.1	96.1	89.6
Shared Attention	49.6	94.8	89.8
AP _{5D}	50.7	<u>96.0</u>	92.6

815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 A.5.2 EFFECTIVENESS OF ARCHITECTURAL DESIGNS IN SCORE AGGREGATION MODULE (SAM).

We conduct an ablation study to evaluate various fusion strategies for aggregating the dual matching scores, as summarized in Table 5. Using a simple averaging baseline, we observe moderate performance across all metrics. Replacing this with a learnable MLP-based fusion improves both the inlier ratio (IR) and registration recall (RR), suggesting that non-linear integration of dual cues provides better correspondence estimation.

To further investigate fusion strategies, we implement four additional baselines. 'Only 2D Encoder' and 'Only 3D Encoder' use a single modality by removing the other branch from the pipeline. These models show inferior performance, highlighting the importance of multi-modal interaction for accurate matching. The 'Late Fusion' strategy employs independent 2D and 3D encoders and combines matching scores only at the final stage, without intermediate interaction. Although it achieves the highest feature matching recall (FMR), it performs worse in IR and RR due to the lack of joint spatial reasoning during encoding. The 'Shared Attention' method adopts a cross-modal attention mechanism inspired by Hertz et al. (2024), where both modalities attend to a common latent representation. While this design enables early interaction between views, it does not explicitly model spatial alignment between modalities, resulting in slightly lower overall performance compared to our method.

Our proposed AP-5D encoder achieves the best performance across all metrics, demonstrating its ability to effectively leverage both geometric and visual cues through spatially decomposed and harmonized aggregation. Notably, it yields the highest registration recall (92.6%), validating its strength in preserving reliable correspondences across complex scene structures.

A.5.3 IMPACT OF NUMBER OF SAMPLING POINTS

We explore the impact of the number of sampling points N^2 projected from the depth map in the image. The results are reported in Table 6. The result shows that IR tends to decrease as the number of sampling points increases, and the performance of Registration Recall (RR) no longer improves beyond a certain number of sampling points. The highest performance for RR occurs at 30k sampling points, which indicates that this is the optimal number of sampling points. These results suggest

864 Table 6: Ablation on different number of sampling points. The best scores are highlighted in **bold-faced**
 865 while the second-best scores are underlined.

#	IR(%)	FMR(%)	RR(%)
10K	53.6	96.3	<u>91.6</u>
20K	51.8	95.7	<u>91.1</u>
30K	50.7	96.0	92.6
40K	<u>52.3</u>	<u>96.1</u>	90.0
50K	48.3	<u>96.1</u>	89.9
60K	46.7	95.2	86.7
70K	44.3	94.6	85.3
80K	48.9	94.9	90.3

877 Table 7: Ablation on (a)Backbone quality, (b)Depth estimation. The best scores are highlighted in
 878 **boldfaced**, while the second-best scores are underlined.

Method	IR(%)	FMR(%)	RR(%)
(a) Pretrained Backbone	<u>53.1</u>	<u>96.8</u>	<u>92.6</u>
(b) GT Depth	60.9	97.2	94.4
DuMA	50.7	96.0	<u>92.6</u>

887 that when too many points are sampled, the overlap between points increases, making it difficult
 888 to extract the appropriate geometric features. Therefore, for optimal matching performance, it is
 889 more effective to use an appropriate number of sampling points rather than excessively increasing
 890 the number of points.

891 A.5.4 IMPACT OF BACKBONE QUALITY AND DEPTH ESTIMATION

893 To evaluate the impact of backbone representations, we conducted experiments using pretrained
 894 2D (ImageNet) and 3D (FCGF on 3DMatch) encoders. As shown in Table 7-(a), while feature
 895 matching quality improves slightly, the final registration accuracy remains largely unchanged. This
 896 indicates that the robustness of our method primarily arises from the proposed dual-view aggregation
 897 framework rather than the pretrained features.

898 In addition, we performed oracle experiments using ground-truth depth to analyze the influence of
 899 depth estimation quality. As shown in Table 7-(b), performance improves under accurate depth,
 900 confirming that better depth predictions lead to more reliable correspondences. While our current
 901 focus is on the matching framework itself, We leave the incorporation of depth uncertainty modeling
 902 or refinement to future work to further improve robustness.

904 A.5.5 3D-3D TRANSFORMATION ESTIMATION METHOD

906 Using Zoe-Depth Bhat et al. (2023), we generate a depth map \mathbf{D}^T from the image, enabling the
 907 mapping of pixel-to-point correspondences into 3D point correspondences. By leveraging these 3D
 908 point-to-point matches, we compute the $\text{SE}(3)$ relative pose using the Kabsch algorithm Kabsch
 909 (1976). Leveraging the Kabsch algorithm, the transform can be solved given the estimated corre-
 910 spondences $\mathcal{C} = \{(x_i, y_i) \mid x_i \in \mathbb{R}^3, y_i \in \mathbb{R}^2\}$ between 3D points and 2D pixels, as defined by:

$$\min_{R, t} \sum_{(x_i, y_i) \in \mathcal{C}} \|x_i - R\text{Proj}^{-1}(y_i, d_{y_i}^T, K) + t\|^2, \quad (14)$$

914 where $\text{Proj}^{-1}(y_i, \mathbf{D}^T, K)$ lifts the 2d image pixel to 3d point using the depth $d_{y_i}^T$ and the intrinsic
 915 matrix K . The results are presented in Table 8. We observe that the performance of the transfor-
 916 mation estimated using the Kabsch algorithm is inferior to that of PnP. This result arises due to the
 917 scale discrepancy between the depth map predicted by Zoe-Depth and the actual depth values, which
 prevents the generation of points at identical locations. In other words, it demonstrates that a more

918
919 Table 8: Ablation on different transformation estimation methods. The best scores are highlighted
920 in **boldfaced**, while the second-best are underlined.
921
922
923
924
925

Method	Scene-11	Scene-12	Scene-13	Scene-14	Mean
Mean depth (m)	1.74	1.66	1.18	1.39	1.49
<i>Registration Recall(%) ↑</i>					
FreeReg +Kabsch	38.7	51.6	30.7	15.5	34.1
FreeReg +PnP	<u>74.2</u>	72.5	<u>54.5</u>	27.9	<u>57.3</u>
DuMA+Kabsch	62.5	<u>83.3</u>	49.5	<u>29.2</u>	56.1
DuMA+PnP	100.0	98.0	92.8	79.6	92.6

930
931 Table 9: Runtime and memory.
932
933
934
935
936

Method	Time (s)↓	# of Parameters↓
2D3D-MATR	0.099	31.05M
Diff-Reg	0.564	373.60M
DuSA-Reg	0.648	35.60M

937
938 Table 10: The number of parameters of each module.
939
940
941
942
943
944
945
946
947

Layer	# of Parameters
2D Encoder	17.59M
3D Encoder	1.49M
Transformer	3.91M
DINO+Linear	11.12M
AP-5D	9.44K

948 effective approach is to indirectly use the geometric features of the point cloud generated through
949 depth estimation, rather than directly using the point cloud itself for matching.
950

951 A.5.6 RUNTIME AND MEMORY

952 We present a comparison of runtime and model size with 2D3D-MATR Li et al. (2023) and Diff-
953 Reg Wu et al. (2024) in Table 9. The runtime is measured on a machine equipped with an Intel
954 Xeon Gold 6226R 2.90GHz CPU and a single Nvidia RTX A5000 GPU, using a batch size of 1. In
955 Table 9, our method shows a slightly longer runtime than Diff-Reg, but requires substantially fewer
956 parameters. This indicates that, while there is a minor increase in runtime, our architecture remains
957 more compact compared to existing approaches.
958

959 Regarding memory usage, our model has fewer parameters compared to Diff-Reg, even though it
960 includes the additional encoder and the introduction of the anchor-pivot 5D encoder. Furthermore,
961 Table 10 shows that our anchor-pivot 5D encoder contains significantly fewer parameters than other
962 modules. This suggests that the anchor-pivot 5D encoder can generate high-quality correlation in-
963 formation with a minimal number of parameters.
964

965 A.5.7 COMPLEXITY ANALYSIS OF THE ANCHOR-PIVOT 5D ENCODER

966 A naïve 5D encoder would require a $K_H \times K_W \times K_N$ kernel to be applied at every $\hat{H} \times \hat{W} \times \hat{N}$ location,
967 incurring $\mathcal{O}(\hat{H} \hat{W} \hat{N} K_H K_W K_N C_{in} C_{out})$ operations, which is computationally infeasible since \hat{N} is
968 also very large. In contrast, our Anchor-Pivot design decomposes this into two branches: a $K_H \times K_W$
969 2D convolution over $\hat{H} \times \hat{W}$ (image anchors) and a K_N 3D operation over \hat{N} (point anchors). The
970 total complexity becomes $\mathcal{O}(\hat{H} \hat{W} K_H K_W C_{in} C_{out} + \hat{N} K_N C_{in} C_{out})$. This significantly reduces the
971 computation while preserving spatial interactions across modalities.
972

972 Table 11: Ablation on Training Data. The best scores are highlighted in **boldfaced**, while the
 973 second-best scores are underlined.

Method	IR(%)		FMR(%)		RR(%)	
	100%	10%	100%	10%	100%	10%
2D3D-MATR	32.4	6.9	90.8	20.7	56.4	5.2
Diff-Reg	<u>37.8</u>	<u>13.3</u>	<u>91.4</u>	<u>63.4</u>	<u>87.0</u>	<u>40.5</u>
DuMA	50.7	30.4	96.0	89.4	92.6	78.6

982 A.5.8 GENERALIZATION TEST

984 To evaluate the generalization ability under limited supervision, we trained DuMA and the baselines
 985 using only 10% of the training data. As shown in Table 11, our method retains strong performance,
 986 while baselines suffer a significant drop. We believe this robustness stems from our architectural
 987 design, which jointly captures 2D and 3D cues early, enabling more effective convergence.

988 A.6 ADDITIONAL FEATURE MATCHING SCORE VISUALIZATION

990 We further provide additional visualizations of the feature matching scores in Figure 7. These vi-
 991 sualizations complement the main paper by offering more examples of how our method differ-
 992 entiates between regions using 2D-3D matching, 3D-3D matching, and the integrated Anchor-Pivot
 993 5D encoder. In particular, we include extra cases where the query point clusters are located in both
 994 ambiguous and distinct regions of the image, demonstrating that our encoder consistently fuses the
 995 complementary strengths of 2D-3D and 3D-3D matching to yield refined and geometrically coherent
 996 correspondences.

998 A.7 ADDITIONAL QUALITATIVE RESULTS

1000 Additional Qualitative Results on RGB-D Scenes V2, 7Scenes, and KITTI-DC are shown in Figure
 1001 8, Figure 9, and Figure 10, respectively. In Figure 8, our method demonstrates more accurate and
 1002 global matching compared to 2D3D-MATR and Diff-Reg. Furthermore, we observe robust matching
 1003 performance even in cases with significant pose differences. Moreover, in Figure 9, we can see
 1004 accurate and consistent matching performance on the 7Scenes dataset, which exhibits a larger pose
 1005 variance. Additionally, in Figure 10, our approach maintains strong performance on the KITTI-DC
 1006 dataset, effectively handling outdoor environments with dynamic elements and large-scale scene
 1007 variations.

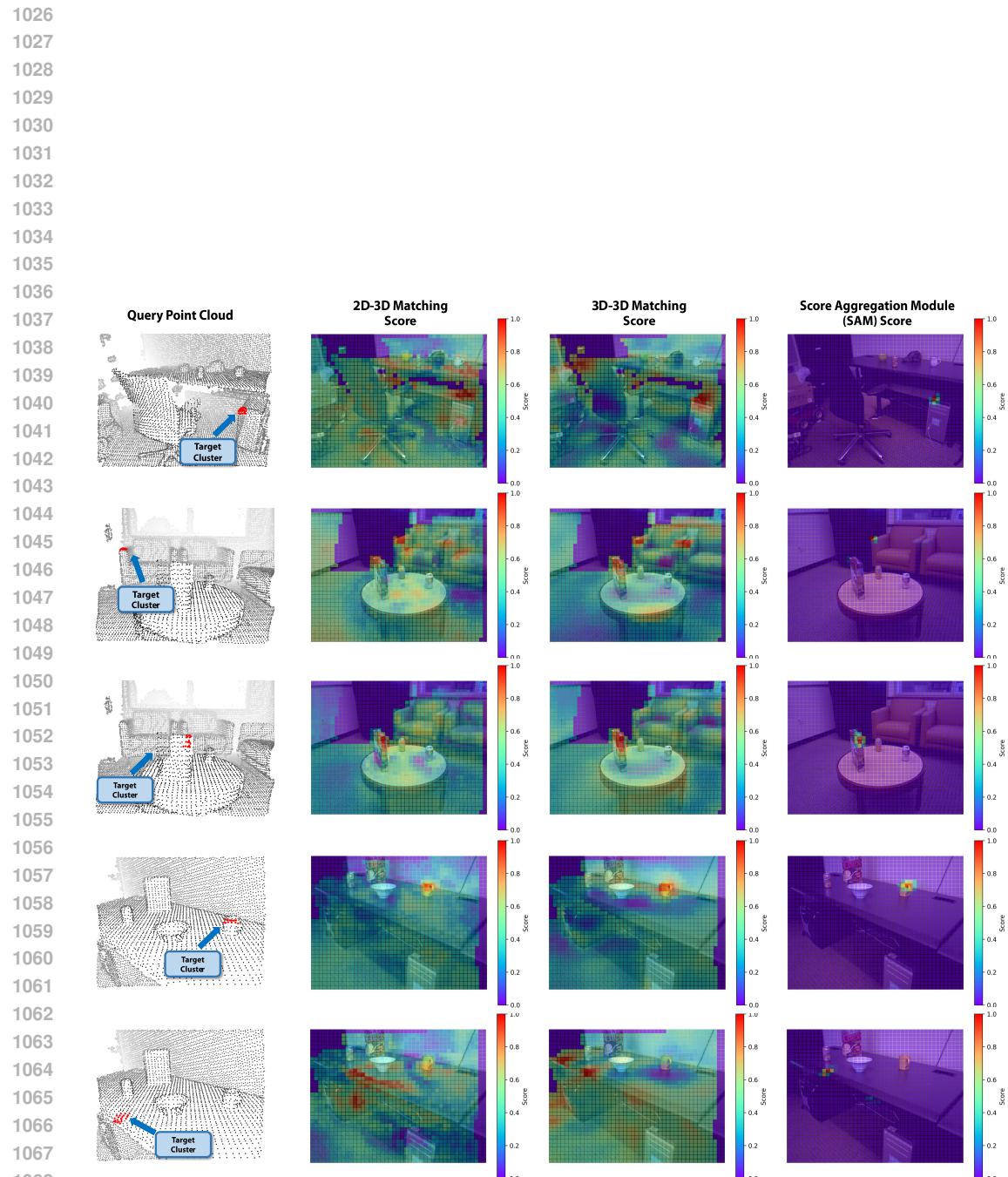
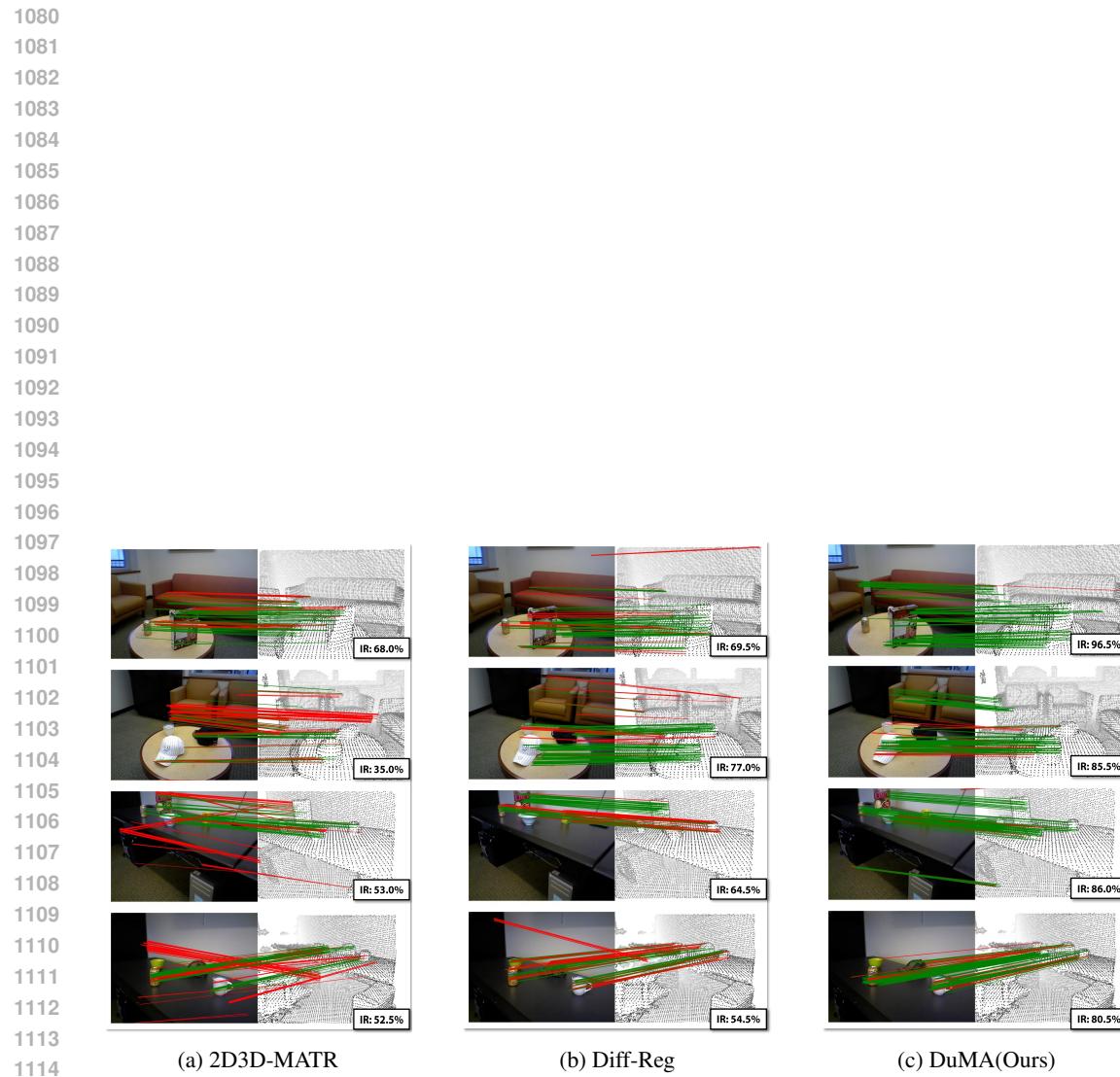


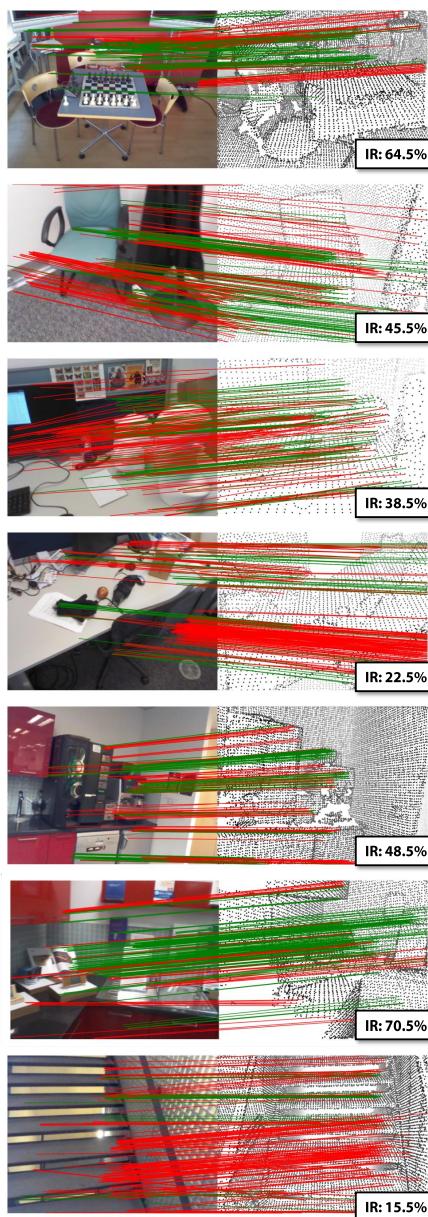
Figure 7: Additional feature matching score visualization



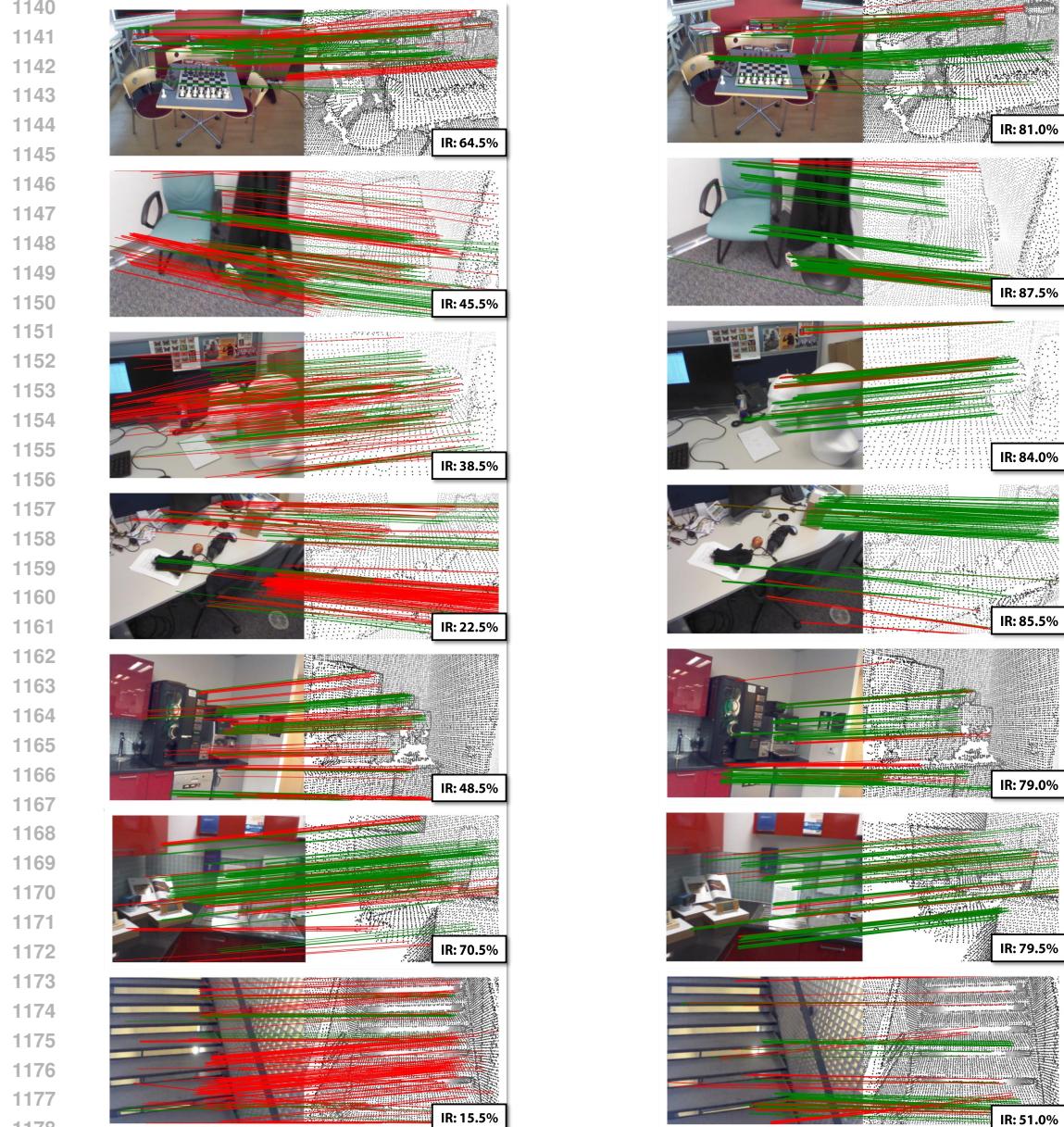
1115 Figure 8: Additional qualitative results on RGB-D V2 dataset. Correct / incorrect matches are
1116 colored with green / red.
1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139



(a) 2D3D-MATR



(b) DuMA(Ours)

1181 Figure 9: Qualitative results on 7Scenes dataset. Correct / incorrect matches are colored with **green**
1182 / **red**.

1183
1184
1185
1186
1187

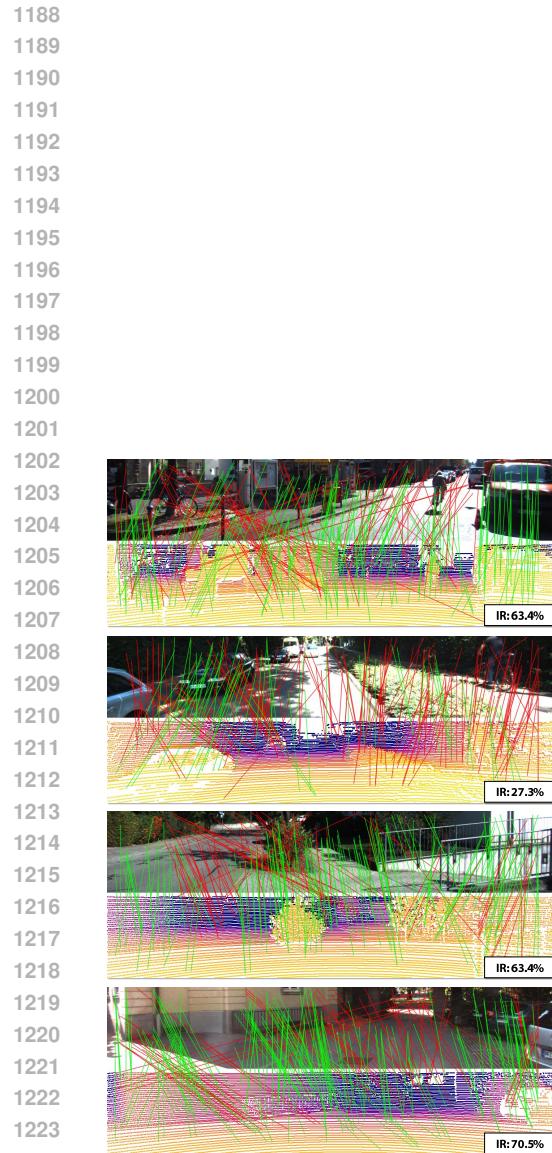
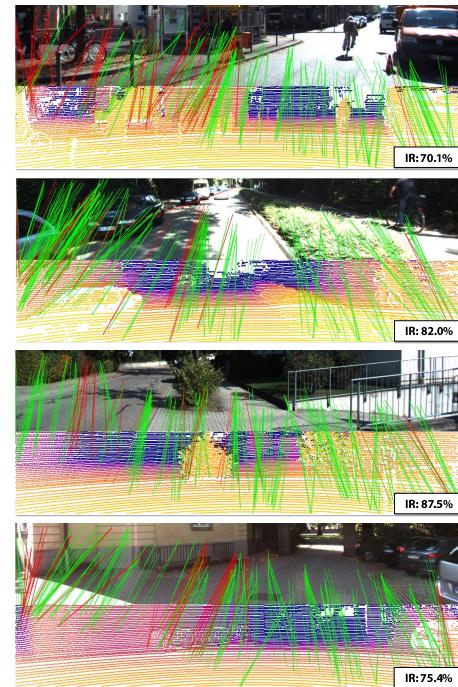


Figure 10: Qualitative results on KITTI-DC dataset. Correct / incorrect matches are colored with green / red.