
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUMA: DUAL MATCHING AGGREGATION

FOR IMAGE-TO-POINT CLOUD REGISTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Aligning 2D images with 3D point clouds remains a challenging problem due to
intrinsic modality differences. In this paper, we introduce Dual-view Matching
Aggregation (DuMA), a novel image-to-point cloud registration framework de-
signed to address this challenge. Our approach incorporates a dual-view matching
strategy that harmonizes 2D-3D and 3D-3D correspondences, leveraging com-
plementary insights from both modalities. We design a score aggregation module
that fuses dual correspondence scores through a detailed analysis of neighborhood
relationships, thereby inducing a robust geometric verification effect and enforc-
ing spatial consistency. To reduce the burden associated with high-dimensional
score aggregation, we additionally propose an innovative Anchor-Pivot 5D en-
coder that decomposes and processes multi-modality scores. Extensive experi-
ments on challenging indoor and outdoor datasets demonstrate that our method
significantly mitigates ambiguity while delivering robustness and effectiveness in
complex scenes. Code and models will be made available: TBD.

1 INTRODUCTION

변경→다른방식들과의비교 흐름 와의차이부각
변경→ 에대해부각될수있도록

으로라도 에삽입
별시간측정

에대한성능을더욱낮게기입 에대해특히

Figure 1: (a) Our proposed DuMA framework integrates both cross-modal (2D–3D) and intra-modal
(3D–3D) matching through a dual-view score aggregation process. By capturing complementary
cues from image and point cloud data, DuMA enhances alignment accuracy and robustness in chal-
lenging scenes. (b) To aggregate high-dimensional multi-modality matching scores, we introduce
an Anchor-Pivot 5D encoder that employs a decomposition technique to significantly reduce the
computational overhead associated with high-dimensional operations.

Image-to-Point Cloud (I2P) registration is crucial in many computer vision applications that require
precise pixel-to-point correspondences, such as Simultaneous Localization and Mapping (SLAM),
Augmented Reality (AR), 3D reconstruction, and visual localization.

Achieving accurate registration between 2D images and 3D point clouds is inherently challenging
due to the distinct nature of these modalities. Traditional 2D–3D matching approaches Wang et al.
(2021); Li et al. (2023); Feng et al. (2019); Pham et al. (2020); Wu et al. (2024) face fundamental
difficulties: while 2D images provide rich visual cues, such as color and texture, 3D point clouds
primarily encode spatial geometry, making direct correspondence non-trivial. This disparity between
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visual and spatial information can lead to ambiguities and inaccuracies, particularly in complex or
cluttered scenes, which ultimately affects registration reliability.

Recent efforts have aimed to bridge the gap between image and point cloud modalities by creating
unified representations for robust correspondence estimation. For example, FreeReg Wang et al.
(2024) fuses RGB and depth features into a shared modality to facilitate correspondence estimation.
However, its fully non-trainable design, coupled with the lack of explicit 2D-3D feature interactions
and joint optimization, limits its adaptability in complex or ambiguous scenes.

In this paper, we introduce DuMA, a novel dual-view matching aggregation registration framework
for image-to-point cloud alignment. Aligning 2D images with 3D point clouds is challenging due
to inherent modality differences, and our approach is designed to address this issue by harmonizing
both 2D–3D and 3D–3D correspondences. Figure 1(a) illustrates why harmonizing the two corre-
spondence types is essential. The 2D–3D matches rely on visual cues, so they excel in texture-rich
regions but generate false matches where colors are similar (e.g., the top of the chair). In contrast,
3D–3D matches depend solely on geometry and therefore capture shape-distinct areas accurately,
yet struggle on repetitive structures lacking distinctive visual information. Thus, DuMA extracts
complementary cues by matching features across both views, thereby enhancing cross-modality
alignment.

To further boost matching reliability, we design a score aggregation module that fuses dual cor-
respondence scores through a detailed analysis of neighborhood relationships, inducing a robust
geometric verification effect and enforcing spatial consistency. Unlike traditional methods that rely
solely on feature similarity, our module leverages spatial relationships and geometric constraints to
filter out ambiguous or incorrect matches. By aligning feature representations with their underly-
ing geometric properties, this approach significantly reduces false correspondences and improves
registration robustness, especially in complex or cluttered environments.

A major challenge in multi-modal registration is the computational burden associated with high-
dimensional score aggregation. As shown in Figure 1(b), considering both 2D and 3D spatial di-
mensions simultaneously can lead to prohibitive complexity, making a naive 5D convolution virtu-
ally impossible in practice. To overcome this, we propose an innovative Anchor-Pivot 5D encoder
that decomposes high-dimensional matching scores into separate 2D and 3D components. This
decomposition not only reduces computational overhead but also preserves robust alignment.

Extensive experiments on indoor and outdoor datasets demonstrate that DuMA significantly miti-
gates ambiguity while achieving state-of-the-art performance in terms of inlier ratio, feature match-
ing recall, and registration recall.

Our key contributions can be summarized as follows:

• We present DuMA, a novel image-to-point cloud registration framework that harmonizes
2D–3D and 3D–3D correspondences for robust multi-modal alignment.

• To enhance matching reliability, we design a score aggregation module that fuses dual
correspondence scores through detailed neighborhood analysis and geometric verification.

• We develop an innovative Anchor-Pivot 5D encoder that decomposes high-dimensional
matching scores into separate 2D and 3D components, reducing computational overhead.

• With the aforementioned contributions, DuMA achieves state-of-the-art performance on
several image-to-point cloud registration benchmarks on both indoor and outdoor datasets.

2 RELATED WORK

2.1 CORRESPONDENCE-BASED REGISTRATION.

Correspondence-based methods estimate feature correspondences and recover the relative transfor-
mation using robust pose estimators. Classical approaches relied on handcrafted features Dalal &
Triggs (2005); Lowe (2004); Bay (2006), while recent works leverage deep learning for improved
matching in both 2D Lee et al. (2021); Cho et al. (2021); Kim et al. (2022); Huang et al. (2022);
Tang et al. (2023); Li et al. (2024) and 3D Yu et al. (2021); Choy et al. (2019); Qin et al. (2023);
Huang et al. (2021); Yu et al. (2023a;b); Chen et al. (2023) registration. However, adapting these
single-modality techniques to image-to-point registration requires modality conversion, which leads
to information loss and degraded performance.
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Figure 2: Overall Architecture of the proposed DuMA. DuMA consists of three main parts: Multi-
Modality Matching Module, Score Aggregation Module, and fine correspondence matching.

2.2 IMAGE-TO-POINT CLOUD REGISTRATION.

Image-to-point cloud registration aims to bridge the modality gap and establish reliable correspon-
dences between images and 3D point clouds. Previous works have addressed this by generating
points from images to enable intra-modality comparisons Shotton et al. (2013); Brachmann & Rother
(2019); Li et al. (2020), or by extracting and matching keypoints across modalities Feng et al. (2019);
Pham et al. (2020); Wang et al. (2021). Recently, methods such as coarse-to-fine matching with
multi-scale patches Li et al. (2023), diffusion model-based progressive refinement Wu et al. (2024);
Mu et al. (2025), and channel-adaptive feature enhancement Cheng et al. (2025) have significantly
improved registration performance. FreeReg Wang et al. (2024) unifies RGB and depth features to
close the modality gap, but lacks explicit modeling of inter-modality feature correlations and ge-
ometric consistency verification, resulting in ambiguities in challenging scenes. To address these
limitations, we propose a novel 5D anchor-pivot encoder that explicitly integrates 2D-3D feature
interactions with joint optimization, thereby enhancing geometric consistency and matching robust-
ness.

3 METHOD

3.1 OVERVIEW

Our proposed method first establishes correspondences at the 2D patch and 3D cluster, then deter-
mines pixel-to-point correspondences within each matched 2D patch–3D cluster pair. To this end,
we propose two modules: the Multi-modality Matching Module (MMM) and the Score Aggregation
Module (SAM). Our Multi-modality Matching Module (MMM) extracts 2D and 3D features from
images and 3D features from point clouds. Subsequently, Our Score Aggregation Module (SAM)
takes matching scores from 2D-3D and 3D-3D matching as input, and aggregates these scores into
a single matching score, while considering neighboring regions’ scores to enhance alignment accu-
racy. The overall architecture is depicted in Figure 2.

3.2 PROBLEM STATEMENT

Given a 2D image I ∈ RH×W×3 and a 3D point cloud P ∈ RN×3, the task of 2D-3D registration
is to determine the transformation T, defined by a rotation R ∈ SO(3) and a translation t ∈ R3. By
establishing correspondences C = {(xi, yi) |xi ∈ R3, yi ∈ R2} between 3D points and 2D pixels,
the transform can be solved by:

min
R,t

∑
(xi,yi)∈C

∥Proj(Rxi + t,K)− yi∥2 , (1)

where K denotes the intrinsic parameters of the camera, and Proj(·, ·) is the function projecting 3D
points onto the 2D image plane. Our focus is on refining the correspondence estimation process,

3
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as the precision of these correspondences plays a pivotal role in the accuracy and stability of the
resulting alignment transformation. The predicted correspondences can be leveraged to estimate the
transformation matrix using PNP-RANSAC Lepetit et al. (2009).

3.3 MULTI-MODALITY MATCHING MODULE (MMM)

The MMM module extracts features from an image I and a point cloud P at both coarse and fine
levels. Specifically, from an image I, MMM extracts both 2D and 3D features at each level, resulting
in four distinct features. From a point cloud P, it extracts only 3D features at both levels, resulting in
two distinct features. In total, MMM outputs six unique features (four for the image and two for the
point cloud). The six features are (1) F̂2D ∈ RĤ×Ŵ×d̂, (2) F2D ∈ RH×W×d, (3) F̂P

3D ∈ RN̂×d̂,
(4) FP

3D ∈ RN×d, (5) F̂I
3D ∈ RĤ×Ŵ×d̂, (6) FI

3D ∈ RH×W×d.

In the above notation, the hatted character (̂·) represents the features at the coarse level, while the
vanilla character denotes the features at the fine level. This module is designed to not only perform
2D-3D and 3D-3D matching but also to jointly learn and integrate their complementary geometric
information.

2D Backbone. Following Wu et al. (2024), let F̂2D ∈ RĤ×Ŵ×d̂ and F2D ∈ RH×W×d represent
the 2D features extracted from the image using 2D backbones such as ResNet He et al. (2016) and
FPN Lin et al. (2017). F̂2D is the feature down-sampled at the patch level (coarse level), whereas
F2D is the feature obtained at the pixel level (fine level). We denote the corresponding coordinate
matrices of F̂2D and F2D as Ĉ ∈ RĤ×Ŵ×2 and C ∈ RH×W×2, respectively. In addition, we use
the pretrained feature F̂I

DINO derived from DINOv2 Oquab et al. (2023), a self-supervised vision
foundation model, to address the scale ambiguity Li et al. (2023) between 2D and 3D patches. In
the hierarchical architecture, the coarse-level features capture the overall structure of the scene to
support broad-scale matching, while the fine-level features provide detailed information for precise
matching at a finer level.

3D Backbone. We utilize a 3D backbone based on KPConv Thomas et al. (2019) to the point cloud
P, producing the cluster-level (coarse level) F̂P

3D ∈ RN̂×d̂ and the point-level (fine level) features
FP

3D ∈ RN×d, with the corresponding coordinates represented by P̂ ∈ RN̂×3 and P ∈ RN×3,
respectively.

Additionally, we lift the 2D image into a 3D by applying the monocular depth estimator Zoe-Depth
Bhat et al. (2023). Specifically, we first generate a depth map DI ∈ RH×W and draw NI sample
points PI = {pI} by

pI ∼ K−1 ·DI ·C. (2)

Then, due to differences in scale between the depth-estimated and original point clouds, these
sampled points are processed with a separate encoder. The resulting features are projected back
onto the image, generating the patch-level feature FI

3D ∈ RĤ×Ŵ×d̂, and the pixel-level feature
FI

3D ∈ RH×W×d., equalizing resolutions for subsequent matching.

2D-3D Attention. To bridge the modality gap between image 2D features and point cloud 3D
features, we follow the standard cross-attention mechanism introduced in previous work Li et al.
(2023). Specifically, the 2D image feature F̂2D and 3D point cloud feature F̂P

3D are iteratively
processed by applying self-attention and cross-attention. Through this process, we obtain cross-
modality features denoted as F̂2D,Attn and F̂P

3D,Attn.

Multi-modality Matching Score Mapping. We compute coarse-level matching scores Ŝ ∈
R(Ĥ×Ŵ )×N̂ for the 2D-3D and 3D-3D matching. For 2D-3D matching, we compute the match-
ing score Ŝ2D-3D between the 2D image feature F̂2D,Attn and the 3D point feature F̂P

3D,Attn by

Ŝ2D-3D = F̂2D,Attn(F̂
P
3D,Attn)

T /
√
d̂. (3)
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In the similar way, for 3D-3D matching, we compute the matching score Ŝ3D-3D between the 3D
image feature F̂I

3D and the 3D point feature F̂P
3D by

Ŝ3D-3D = F̂I
3D(F̂P

3D)T /
√

d̂. (4)

3.4 SCORE AGGREGATION MODULE (SAM)
In this section, we introduce the Score Aggregation Module (SAM), which integrates dual matching
scores Ŝ2D-3D and Ŝ3D-3D obtained from MMM into a single unified matching score Ŝfused. This
module refines the unified scores by leveraging spatial context, incorporating local correspondence
cues from the 2D image while exploiting the inherent spatial relationships of the 3D point cloud.

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

𝜹

𝜹

× 𝐿

Figure 3: The detailed structure of the
anchor-pivot 5D encoder. By splitting
the high-dimensional (5D) computation
into a 2D convolution for the image side
and a point transformer for the point
cloud side, this design not only reduces
the computational burden but also cap-
tures the matching relationships among
neighboring pixels and points. Conse-
quently, the encoder promotes geomet-
ric consistency in the aggregated match-
ing scores.

Anchor-Pivot 5D Encoder. Our anchor-pivot 5D en-
coder takes as input the set of matching score maps
{Ŝ2D-3D, Ŝ3D-3D} ∈ R2×(Ĥ×Ŵ )×N̂ and merges them into
a single fused matching score, Ŝfused ∈ R(Ĥ×Ŵ )×N̂ . To
fully leverage the spatial relationships in both 2D and 3D
modalities, we accomplish this by building 5D correlation
blocks.

However, unlike fixed image coordinates, the spatial co-
ordinates of the 3D point cloud are not static, making it
challenging to use a fixed-form kernel for 5D convolution.
Furthermore, the 5D correlation network demands signif-
icant computational resources due to its high dimensional
complexity, as detailed in the Appendix. To address this
challenge with an effective and feasible solution, we in-
troduce an anchor-pivot 5D encoder, inspired by the struc-
ture of the center-pivot 4D convolution Min et al. (2021).

Our anchor-pivot 5D encoder separates the 2D and 3D
kernels, effectively eliminating ambiguities in connec-
tions between the 2D and 3D dimensions. This struc-
ture enables explicit modeling of the matching relation-
ships among neighboring pixels and points, ensuring that
the aggregated correspondences exhibit strong geometric
consistency. A detailed architecture of this encoder is de-
picted in Figure 3.

Given coarse-level coordinates Ĉ = [ĉ] and P̂ = [p̂],
where ĉ ∈ R2 and p̂ ∈ R3 are the elements of Ĉ and
P̂, respectively, the anchor-pivot 5D encoder block can
be formulated by

AP5D(Ŝ(ĉ, p̂)) = E2D(Ŝ(Ĉ, p̂)) + E3D(Ŝ(ĉ, P̂), P̂),
(5)

where E2D(·) and E3D(·) are the encoder of 2D and 3D,
respectively, and their detailed architectures are described
in the Appendix.

When the score map Sl ∈ Rdl×(Ĥ×Ŵ )×N̂ enters the block, it is reshaped into two separate forms.
One is reshaped to N̂ × dl × Ĥ × Ŵ to serve as input for the 2D encoder, and the other is reshaped
to (Ĥ × Ŵ )× dl × N̂ for the 3D encoder. After separately processing these features, both outputs
are reshaped back to the original map size, and an element-wise sum is applied to generate the score
map Sl+1.

By repeatedly processing matching scores through multiple Anchor-Pivot 5D encoder blocks, we
progressively incorporate broader spatial context from both 2D and 3D modalities, resulting in
an aggregated matching score map Ŝfused with enhanced structural consistency. Then, we adopt
Sinkhorn iterations Cuturi (2013) to compute a soft assignment matrix.
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Coarse and fine correspondence matching. The coarse-to-fine matching procedure involves two
steps. First, we identify coarse correspondences by selecting the top-K matches based on aggregated
multi-modal matching scores. Then, within each coarse correspondence region, we perform fine-
level matching exclusively within the localized coarse region. Specifically, fine-level pixel-to-point
correspondences are estimated by computing cosine similarity between pixel-wise and point-wise
feature descriptors. For the pixel-wise representation, we concatenate F2D and FI

3D, while the
point-wise representation is obtained by duplicating FP

3D. Among these fine-level matches, mutual
top-K correspondences within each coarse region are selected as the final correspondence set.

3.5 TRAINING OBJECTIVE

We utilize two types of loss functions commonly used in matching tasks: circle loss Sun et al.
(2020); Li et al. (2023); Wu et al. (2024); Qin et al. (2022), a type of contrastive loss and focal
loss Wu et al. (2024). In the circle loss, for the coarse level, we apply a scaled circle loss Li et al.
(2023); Qin et al. (2022) to adaptively adjust the loss based on the degree of overlap between the
image and point cloud. To train the similarity of features across various dimensions, 2D-3D circle
loss L2D−3D

coarse , and 3D-3D circle loss L3D−3D
coarse is used. For the fine level, we use the standard circle

loss Li et al. (2023) to achieve precise feature matching. So, Lfine is used to compare the 2D and
3D features of the image with the 3D features of the point cloud. Then, our entire circle loss is
Lcircle = λcoarse(L2D−3D

coarse + L3D−3D
coarse ) + λfineLfine. We also adopt focal loss Wu et al. (2024)

Lfocal for the coarse level by comparing the ground truth of coarse matching relations with our
aggregated matching score. Therefore, Our total loss is computed as a weighted sum of the two
components: Ltotal = λcLcircle + λfLfocal.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Backbone. For the 2D backbone, we use a 4-stage ResNet He et al. (2016) with FPN, where
each stage outputs {128, 128, 256, 512} channels. Following Wu et al. (2024), we crop the input
image resolution to (476, 630) for compatibility with the DINOv2 network. Then, the patch size
at the coarse level is downsampled to (34, 43). For the 3D backbone, we use two 3-stage KPConv
Thomas et al. (2019) with each stage outputting {128, 256, 512} channels. The point clouds are
initially divided into voxels with a size of 2.5 cm, and the voxel size is doubled progressively at each
subsequent stage. Each transformer layer consists of 256 feature channels, utilizes 4 attention heads,
and applies ReLU as the activation function. The DINO features are combined with the coarsest-
level feature from the ResNet and are also utilized as inputs to the transformer for image feature
processing. At the fine level, we utilize the 128-dimensional finest level features from both the
2D encoder and the 3D encoder. By combining these multi-modality features, we perform feature
matching in a 256-dimensional space.

Anchor-Pivot 5D Encoder. Our anchor-pivot 5D encoder consists of a 4-stage 5D correlation
block, with output channels set to {4, 8, 16, 1} for each stage. The E2D(·) operation employs a
ResNet He et al. (2016) structure, while E3D(·) adopts the Point Transformer Zhao et al. (2021)
structure.

Training detail. We use the Adam optimizer with a learning rate of 1 × 10−4, weight decay of
1 × 10−6, and a step learning rate scheduler which decreases the learning rate to 95% every one
steps. The network is trained for 20 epochs with batch size 1. We set λcoarse = 1.0, λfine = 1.0,
λc = 1.0 and λf = 1.0.

Dataset. We evaluate our method on three datasets: RGB-D Scenes V2 Lai et al. (2014), 7-Scenes
Glocker et al. (2013), and KITTI-DC Uhrig et al. (2017). The RGB-D Scenes V2 dataset contains
indoor image-to-point-cloud pairs with at least 30% overlap, split into 1,748 training, 236 validation,
and 497 testing pairs. The 7-Scenes dataset comprises indoor scenes with a minimum 50% over-
lap, resulting in 4,048 training, 1,011 validation, and 2,304 testing pairs. The KITTI-DC dataset
presents outdoor scenarios with sparse LiDAR point clouds, and we created 2,985 training pairs
specifically for short-range outdoor registration evaluation. More detailed information is provided
in the Appendix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on RGB-D Scenes V2 and 7Scenes. The best scores are highlighted in
boldfaced, while the second-best are underlined.

Model RGB-D Scenes V2 7Scenes Mean
Scene-11 Scene-12 Scene-13 Scene-14 Mean Chess Fire Heads Office Pupk Kitc Stairs Mean

Inlier Ratio(%) ↑
FCGF-2D3D 6.8 8.5 11.8 5.4 8.1 34.2 32.8 14.8 26.0 23.3 22.5 6.0 22.8 15.5
P2-Net 9.7 12.8 17.0 9.3 12.2 55.2 46.7 13.0 36.2 32.0 32.8 5.8 31.7 22.0
Predator-2D3D 17.7 19.4 17.2 8.4 15.7 34.7 33.8 16.6 25.9 23.1 22.2 7.5 23.4 20.0
2D3D-MATR 32.8 34.4 39.2 23.3 32.4 72.1 66.0 31.3 60.7 50.2 52.5 18.1 50.1 41.3
FreeReg 36.6 34.5 34.2 18.2 30.9 - - - - - - - - -
Diff-Reg 47.2 48.7 32.9 22.4 37.8 78.2 68.8 49.1 65.6 46.4 54.6 21.2 54.9 46.4
CA-I2P 38.6 40.6 38.9 24.0 35.5 73.6 66.4 34.5 62.4 52.1 52.8 19.1 51.6 43.6
Diff2I2P - - - - 36.9 74.1 68.8 39.2 65.6 52.1 54.2 18.1 53.2 45.1
DuMA(Ours) 58.2 61.4 52.0 31.1 50.7 81.1 70.0 53.6 67.6 51.9 58.5 19.5 57.5 54.1

Feature Matching Recall(%) ↑
FCGF-2D3D 11.0 30.4 51.5 15.5 27.1 99.7 98.2 69.9 97.1 83.0 87.7 16.2 78.8 53.0
P2-Net 48.6 65.7 82.5 41.6 59.6 100.0 99.3 58.9 99.1 87.2 92.2 16.1 79.0 69.3
Predator-2D3D 44.4 41.2 21.6 13.7 30.2 91.3 95.1 76.7 88.6 79.2 80.6 31.1 77.5 53.9
2D3D-MATR 98.6 98.0 88.7 77.9 90.8 100.0 99.6 98.6 100.0 92.4 95.9 58.1 92.1 91.5
FreeReg 91.9 93.4 93.1 49.6 82.0 - - - - - - - - -
Diff-Reg 100.0 100.0 88.7 77.0 91.4 100.0 100.0 98.6 100.0 90.3 98.2 64.9 93.1 92.3
CA-I2P 100.0 100.0 91.8 82.7 93.6 100.0 100.0 98.6 100.0 92.0 95.5 60.8 92.4 93.0
Diff2I2P - - - - 77.1 100.0 100.0 100.0 100.0 93.4 96.2 55.4 92.2 84.7
DuMA(Ours) 100.0 100.0 100.0 84.1 96.0 100.0 100.0 100.0 100.0 90.3 99.9 58.1 93.8 94.9

Registration Recall(%) ↑
FCGF-2D3D 26.4 41.2 37.1 16.8 30.4 89.5 79.7 19.2 85.9 69.4 79.0 6.8 61.4 45.9
P2-Net 40.3 40.2 41.2 31.9 38.4 96.9 86.5 20.5 91.7 75.3 82.0 4.1 65.7 52.1
Predator-2D3D 44.4 41.2 21.6 13.7 30.2 69.6 60.7 17.8 62.9 56.2 62.6 9.5 48.5 39.4
2D3D-MATR 63.9 53.9 58.8 49.1 56.4 96.9 90.7 52.1 95.5 80.9 86.1 28.4 75.8 66.1
FreeReg 74.2 72.5 54.5 27.9 57.3 - - - - - - - - -
Diff-Reg 98.6 99.0 86.6 63.7 87.0 97.9 86.5 84.9 97.3 76.7 91.9 21.6 79.6 83.3
CA-I2P 68.1 73.5 63.9 47.8 63.3 99.0 90.7 68.5 96.2 83.0 88.1 31.1 79.5 71.4
Diff2I2P - - - - 60.5 99.0 95.6 74.0 98.9 86.8 90.2 36.5 83.0 71.8
DuMA(Ours) 100.0 98.0 92.8 79.6 92.6 98.6 92.3 89.0 98.4 78.8 93.4 31.1 83.1 87.9

Evaluation Metrics. We use three evaluation metrics to assess the accuracy of image-to-point
cloud registration across both indoor and outdoor datasets. (1) Inlier Ratio (IR) measures the
ratio of pixel-to-point matches with a 3D distance below a specified threshold among all candidate
matches. We set this threshold to 5 cm for indoor datasets (e.g., RGB-D Scenes V2, 7Scenes)
and 3 m for outdoor datasets (e.g., KITTI-DC). (2) Feature Matching Recall (FMR) evaluates
the ratio of I2P pairs with an inlier ratio that surpasses a specified threshold (e.g., 10%), indicating
the proportion of pairs with sufficiently accurate correspondences. (3) Registration Recall (RR)
measures the percentage of correctly aligned I2P pairs. We define alignment as RMSE below 10 cm
for indoor datasets (e.g., RGB-D Scenes V2, 7Scenes) and translation error under 3 m for KITTI-
DC.

4.2 EVALUATIONS ON RGB-D SCENES V2

Comparisions to the state-of-the-arts. We provide the evaluation results on RGB-D Scenes V2
in Table 1. The results demonstrate that our proposed method, DuMA, achieves the best perfor-
mance across all three metrics. DuMA achieves a mean score of 50.7% for the Inlier Ratio (IR),
which is 12.9% higher than Diff-Reg at 37.8%. Notably, DuMA demonstrates strong performances
in Scene-13 and Scene-14, particularly challenging scenarios requiring detailed feature matching.
This indicates DuMA’s capability in accurately identifying and maintaining correspondences under
demanding conditions. In Feature Matching Recall (FMR), DuMA achieves the top score across all
scenes, with an impressive average of 96.0%. This high recall rate demonstrates DuMA’s effective-
ness to find reliable matches across diverse and complex environments. Furthermore, for Registra-
tion Recall (RR), DuMA secures a top score of 92.6%, the highest among all tested models, showing
its ability to identify precise correspondences required for accurate alignment across varying depth
ranges. Notably, DuMA shows remarkable performance improvements in challenging scenes such
as Scene-14, highlighting its robust capacity for multi-modal alignment, which is a crucial factor
in registration tasks. These impressive results can be attributed to our approach, which explicitly
models inter-modal feature relationships through a dedicated score aggregation network. Unlike
FreeReg, which processes multi-modal features in parallel without interaction, our method fuses 2D
and 3D features to enhance spatial correspondence, resulting in improved alignment accuracy and
robustness across diverse scene conditions.
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(d) DuMA(Ours)

Figure 4: Qualitative results on RGB-D V2 dataset. Correct / incorrect matches are colored with
green / red.

Qualitative results. In Figure 4, we compare our approach with the two latest methods and also
with the average of our model’s dual matching scores. DuMA consistently maintains high matching
accuracy even in complex scenes, particularly in environments where objects and backgrounds are
intricately intertwined. In contrast, the other two methods exhibit more incorrect matches in com-
plex scenes compared to DuMA. 2D3D-MATR frequently produces incorrect matches, reducing its
accuracy in complex scenes. While Diff-Reg achieves relatively high accuracy, its diffusion-based
approach to refining the matching matrix often leads to a concentration on specific points. This
limitation makes the model overlook broader context, reducing performance in complex scenes.

When using the simple average of our model’s dual matching scores, matching tends to occur only
in specific areas where both 2D and 3D features are distinctly prominent. Therefore, by merging
the two matching scores while incorporating surrounding spatial context, our approach yields more
precise correspondences that exhibit enhanced geometric consistency.

4.3 EVALUATIONS ON 7SCENES

Comparisions to the state-of-the-arts. The evaluation of 7Scenes is shown in Table 1. Over-
all, DuMA outperforms all compared methods and achieves the best overall results. Additionally,
while performance varies across scenes, DuMA consistently achieves strong results by effectively
integrating both 2D–3D and 3D–3D matching cues, demonstrating robustness in both complex and
sparse feature scenarios.

4.4 EVALUATIONS ON KITTI-DC

Comparisions to the state-of-the-arts. DuMA outperforms existing methods and is shown to be
effective in outdoor environments, with a notable improvement in registration recall as shown in
Table 2. This highlights the robustness of our method in handling sparse LiDAR data, enabling
more reliable feature matching and registration in challenging outdoor scenarios.

4.5 ABLATION STUDIES

In this ablation study on the RGB-D Scenes V2 dataset, we provide a qualitative assessment of
the geometric consistency achieved through feature matching score visualization. We also analyze
the impact of the fusion weight between 2D and 3D features, demonstrating how different weighting
strategies affect the balance between geometric and appearance cues. In the Appendix, we further re-
port ablation studies on (i) the effectiveness of the Multi-Modality Matching and Score Aggregation
modules, (ii) the impact of the number of sampling points, (iii) the effect of backbone quality and
depth estimation, (iv) different 3D–3D transformation estimation methods, (v) runtime and memory,
(vi) the complexity analysis of the anchor–pivot 5D encoder, and (vii) generalization tests.

8
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Table 2: Evaluation results on KITTI-DC.
The best scores are highlighted in boldfaced,
while the second-best are underlined.

Model IR(%) FMR(%) RR(%)

2D3D-MATR 59.1 99.7 75.4
FreeReg 58.3 99.7 70.5
Diff2I2P 62.9 99.7 82.2
DuMA(Ours) 65.8 100.0 85.9

Table 3: Ablation on fusion weight between 2D and
3D features. The best scores are highlighted in bold-
faced, while the second-best scores are underlined.

α 0.0 0.2 0.4 0.5 0.6 0.8 1.0

IR(%) 45.9 50.1 50.7 50.7 50.7 47.7 37.4
FMR(%) 96.0 96.0 96.0 96.0 96.0 96.0 88.7
RR(%) 91.5 92.0 92.6 92.6 92.6 90.9 79.2

Feature Matching Score Visualization. We visualize the matching scores to assess how
our anchor-pivot 5D encoder enhances geometric consistency in the final matching results.

Figure 5: Feature matching score visualization.

To this end, a point cluster from
the point cloud is selected as the
query, and we visualize the cor-
responding matching scores in
the image, reflecting the con-
tributions from 2D-3D match-
ing, 3D-3D matching, and our
anchor-pivot 5D encoder. As
shown in Figure 5, when the
query cluster is located in ar-
eas of the image that are dif-
ficult to distinguish from the
background, using only 2D-3D
matching results in a wide distri-
bution of high matching scores
across regions with similar colors and features. Conversely, relying solely on 3D-3D matching ex-
ploits geometric cues (e.g., edges), concentrating high scores on edge-related areas. Notably, our
Anchor-Pivot 5D encoder combines these two perspectives while also considering surrounding spa-
tial information, thereby enhancing geometric consistency in the final score distribution. By merging
the complementary information from 2D images and 3D point clouds, the encoder produces match-
ing regions that are both precise and context-aware, yielding robust correspondences even in visually
or geometrically challenging scenarios.

Impact of Feature Fusion Weight To analyze the contribution of each modality, we conducted
a weighted feature fusion experiment in the final block of the Anchor-Pivot 5D encoder, where the
fused feature is computed as f (L)=α·f (L)

2D +(1−α)·f (L)
3D . As shown in Table 3, the model performs

best when the 2D and 3D features are balanced. When over-relying on one modality (especially 2D)
led to a decrease in overall performance. This confirms that jointly leveraging both modalities is
crucial for achieving robust registration.

5 CONCLUSION

In this paper, we presented DuMA, a novel learnable framework for image-to-point cloud registra-
tion that utilizes the complementary strengths of simultaneous 2D-3D and 3D-3D matching. By
integrating geometric verification into our score aggregation module, DuMA effectively filters out
ambiguous correspondences and preserves structural consistency across modalities. Moreover, our
innovative Anchor-Pivot 5D encoder decomposes high-dimensional matching scores into distinct
2D and 3D components, enabling feasible aggregation with reduced computational overhead. Ex-
perimental results show that DuMA significantly improves alignment accuracy and robustness, es-
pecially in complex environments. Our method still has limitations, as it is sensitive to the quality
of depth estimation and struggles in extreme scenarios such as textureless regions where both visual
and geometric cues are insufficient. Future work could incorporate depth uncertainty modeling or
refinement to further improve robustness, and addressing textureless cases may require integrating
additional modalities or stronger priors to resolve the inherent ambiguity.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Quang-Hieu Pham, Mikaela Angelina Uy, Binh-Son Hua, Duc Thanh Nguyen, Gemma Roig, and
Sai-Kit Yeung. Lcd: Learned cross-domain descriptors for 2d-3d matching. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 11856–11864, 2020.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu. Geometric trans-
former for fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11143–11152, 2022.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, Slobodan Ilic, Dewen Hu, and Kai
Xu. Geotransformer: Fast and robust point cloud registration with geometric transformer. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(8):9806–9821, 2023.

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d images. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2930–2937,
2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen
Wei. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 6398–6407, 2020.

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. Advances in Neural Information Processing Systems, 36:
1363–1389, 2023.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and Andreas Geiger.
Sparsity invariant cnns. In 2017 international conference on 3D Vision (3DV), pp. 11–20. IEEE,
2017.

Bing Wang, Changhao Chen, Zhaopeng Cui, Jie Qin, Chris Xiaoxuan Lu, Zhengdi Yu, Peijun Zhao,
Zhen Dong, Fan Zhu, Niki Trigoni, et al. P2-net: Joint description and detection of local features
for pixel and point matching. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16004–16013, 2021.

Haiping Wang, Yuan Liu, Bing Wang, Yujing Sun, Zhen Dong, Wenping Wang, and Bisheng Yang.
Freereg: Image-to-point cloud registration leveraging pretrained diffusion models and monocular
depth estimators. In ICLR, 2024.

Qianliang Wu, Haobo Jiang, Lei Luo, Jun Li, Yaqing Ding, Jin Xie, and Jian Yang. Diff-reg: Diffu-
sion model in doubly stochastic matrix space for registration problem. In European Conference
on Computer Vision, pp. 160–178. Springer, 2024.

Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slobodan Ilic. Cofinet: Reliable coarse-to-fine
correspondences for robust pointcloud registration. Advances in Neural Information Processing
Systems, 34:23872–23884, 2021.

Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, and Slobodan Ilic.
Rotation-invariant transformer for point cloud matching. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp. 5384–5393, 2023a.

Junle Yu, Luwei Ren, Yu Zhang, Wenhui Zhou, Lili Lin, and Guojun Dai. Peal: Prior-embedded ex-
plicit attention learning for low-overlap point cloud registration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17702–17711, 2023b.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

𝜹

𝜹

(a)

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)(𝒅𝒊𝒏→ 𝒅𝒐𝒖𝒕)

𝜹

𝜹

(b)

Figure 6: More architectural details of Anchor-Pivot 5D Encoder: (a) Point transformer block Zhao
et al. (2021). Grouping: K Nearest Neighbor. δ: Position Encoding. (b) Resnet block He et al.
(2016). BN: Batch Normalization Ioffe (2015).

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Backbone. For the 2D backbone, we use a 4-stage ResNet He et al. (2016) with FPN, where
each stage outputs {128, 128, 256, 512} channels. Following Wu et al. (2024), we crop the input
image resolution to (476, 630) to ensure compatibility with the DINOv2 network. Subsequently,
the patch size at the coarse level is reduced to (34, 45). Additionally, the coarsest-level feature
from the ResNet is combined with the DINO features, which are then passed through a progressive
upsampling process to generate pixel-level features. For the 3D backbone, we use two 3-stage
KPConv Thomas et al. (2019) with each stage outputting {128, 256, 512} channels. The point clouds
are initially divided into voxels with a size of 2.5 cm, and the voxel size is doubled progressively at
each subsequent stage. For the 3D backbone input from the image, the number of sampling points
NI through the depth map is set to 30,000.

Anchor-Pivot 5D Encoder. Our anchor-pivot 5D encoder comprises a 4-stage 5D correlation
block, where the output channels for each stage are set to {4, 8, 16, 1}. The E3D(·) use the Point
Transformer Zhao et al. (2021) structure, while E2D(·) adopts a ResNet He et al. (2016) structure.
We choose ResNet for its proven effectiveness in structured, grid-based image feature extraction,
and Point Transformer for its inherent ability to handle irregular, unordered point cloud data through
self-attention mechanisms. This encoder combination naturally suits the distinct characteristics of
each modality, facilitating effective geometric verification at the coarse matching stage. Our de-
tailed architecture of the anchor-pivot 5D encoder is illustrated in Figure 6. Given the matching
score map Sl ∈ Rdl×(Ĥ×Ŵ )×N̂ , it is transformed into two distinct shapes within the block. The
first shape is N̂ × dl × Ĥ × Ŵ , which is fed into the 2D encoder, while the second is reshaped to
(Ĥ×Ŵ )×dl×N̂ for input to the 3D encoder. Then, within each encoder, batch-wise computations
are performed on the reshaped score maps. In the 3D encoder, we perform attention based on the K
nearest neighbor (K-NN) search, considering the information from surrounding points to generate
features. In this process, we set K=3 to capture local dependencies. Finally, we obtains the output
score map Sl+1 ∈ Rdl+1×(Ĥ×Ŵ )×N̂ .
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A.2 LOSS FUNCTION

Circle Loss. We apply three types of circle loss at both the coarse and fine levels: 2D-3D patch
matching loss at the coarse level L2D−3D

coarse , 3D-3D patch matching loss at the coarse level L3D−3D
coarse ,

and pixel-to-point matching loss at the fine level Lfine.

For a given target descriptor di, the descriptors of its positive and negative pairs are denoted by DP
i

and DN
i , respectively. The general form of the circle loss for di is defined as:

Lcircle =
1

N

N∑
i=1

1

γ
log

1 + ∑
dj∈DP

i

eβ
j
p(d

j
i−∆p) ·

∑
dk∈DN

i

eβ
k
n(∆n−dk

i )

 (6)

where dji represents the ℓ2-norm feature distance between the anchor descriptor di and its positive
pair dj , and dki is similarly defined but for the negative pairs. The individual weights for positive
pairs, βj

p = γλp(d
j
i − ∆p), and for negative pairs, βk

n = γλn(∆n − dki ) , where λp and λn are
scaling factors for positive and negative pairs, respectively. The terms ∆p and ∆n are margins that
control the influence of positive and negative samples.

Following Li et al. (2023), positive and negative samples are identified based on the overlapping
ratio. At the coarse level, if the patch overlapping ratio between 2D and 3D patches is at least
30%, it is regarded as positive, while a ratio below 20% is regarded as negative. Additionally, λp is
defined as the overlapping ratio, while λn is set to 1. At the fine level, a pixel-point pair is regarded
as positive if the 3D distance is within 3.75 cm and the 2D distance is within 8 pixels. Conversely,
it is identified as negative if the 3D distance exceeds 10 cm or the 2D distance exceeds 12 pixels. At
this level, both λp and λn are set to 1. Furthermore, the margins are defined as ∆p = 0.1 and ∆n =
1.4.

Focal Loss. For the matching score map Ŝfused ∈ R(Ĥ×Ŵ )×N̂ obtained after score aggregation at
the coarse level, we use the focal loss Wu et al. (2024) Lfocal.

Specifically, we define focal loss as

Lfocal,p = −α
∑
i∈P

(1− Ŝfused(i))
γ · log(Ŝfused(i)) (7)

Lfocal,n = −α
∑
i∈N

(Ŝfused(i))
γ · log(1− Ŝfused(i)) (8)

Lfocal = wpos ·
Lfocal,p

|P|
+ wneg ·

Lfocal,n

|N |
(9)

where P represents the set of positive locations in the ground truth, while N denotes the set of
negative locations. Here, γ is a focusing parameter, with the weights for positive and negative
samples represented by wpos and wneg, respectively. Specifically, α and γ are set to 0.25 and 2.0,
while both wpos and wneg are set to 1.

A.3 DETAILED DATASETS

RGB-D Scenes V2. RGB-D Scenes V2 Lai et al. (2014) consists of 11,427 RGB-D frames cap-
tured across 14 indoor scenes. We use the training data preprocessed by Li et al. (2023), where
image-to-point-cloud pairs are generated by creating point cloud fragments from every 25 consecu-
tive depth frames and sampling an RGB image at the same interval. Only image-point-cloud pairs
with an overlap ratio of at least 30% are retained. The dataset is divided into training, validation, and
testing sets based on scene numbers: scenes 1-8 for training, scenes 9-10 for validation, and scenes
11-14 for testing, resulting in 1,748 training pairs, 236 validation pairs, and 497 testing pairs.

7-Scenes. 7-Scenes Glocker et al. (2013) consists of 46 RGB-D sequences captured across 7 in-
door scenes. We adopt the training data prepared in Li et al. (2023), Image-to-point-cloud pairs
are generated by creating point cloud fragments and sampling RGB images at regular intervals, re-
taining only those pairs with an overlap ratio of at least 50%. The dataset is divided into training,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

validation, and testing sets based on the official sequence split, resulting in 4,048 training pairs,
1,011 validation pairs, and 2,304 testing pairs.

KITTI-DC. The KITTI-DC dataset Uhrig et al. (2017) consists of 342 image-to-point cloud (I2P)
pairs captured across four outdoor driving scenes. Unlike the RGB-D Scenes V2 and 7Scenes
datasets, which primarily contain indoor environments with dense point clouds, KITTI-DC presents
a more challenging setting with sparse point clouds obtained from a 64-line LiDAR scan. We use the
dataset as processed in Wang et al. (2024), where the distance between each I2P pair is less than 10
meters, making it suitable for evaluating short-range outdoor registration performance. For training,
we generated a total of 2,985 training pairs from seven distinct scenes.

A.4 DETAILED METRICS

Given a 3D point cloud P ∈ RN×3 and a 2D image I ∈ RH×W×3, DuMA estimates correspon-
dences C = {(xi, yi) |xi ∈ R3, yi ∈ R2} between 3D points and 2D pixels. Following Li et al.
(2023), we evaluate the estimated correspondences based on three metrics.

Inlier Ratio (IR). IR represents the ratio of inliers to all putative pixel-point correspondences
(xi, yi) ∈ C. A correspondence is considered an inlier if its 3D Euclidean distance is below the
threshold τ1 = 5 cm under the ground-truth transformation T∗:

IR =
1

|C|
∑

(xi,yi)∈C

1(
∥∥T∗(xi)−K−1(yi)

∥∥
2
< τ1), (10)

where 1() is the indicator function, and K−1 is the function that converts a pixel into a 3D point
based on its depth value.

Feature Matching Recall (FMR). FMR measures the fraction of image-point cloud pairs whose
IR exceeds the threshold τ2 = 0.1:

FMR =
1

N

N∑
i=1

1(IRi > τ2), (11)

where N is the number of all point-image pairs in the test dataset.

Registration Recall (RR). Registration Recall (RR) measures the fraction of correctly aligned
image-point cloud pairs based on the putative correspondences. A pair is considered correctly
aligned if the Root Mean Square Error (RMSE) between the point clouds after applying the ground-
truth transformation and the predicted transformation T is below the threshold τ3 = 0.1m:

RMSE =

√
1

|P|
∑
pi∈P

∥T(pi)−T∗(pi)∥22, (12)

RR =
1

M

M∑
i=1

1(RMSEi < τ3). (13)

A.5 ADDITIONAL ABLATION STUDIES AND ANALYSIS

A.5.1 EFFECTIVENESS OF MULTI-MODALITY MATCHING MODULE (MMM) AND SCORE
AGGREGATION MODULE (SAM).

The experimental results in Table 4 demonstrate that the integration of our anchor-pivot 5D encoder
with the combined matching strategy yields the highest overall performance. Interestingly, when an
anchor-pivot 5D encoder is applied to a single modality, the IR decreases slightly. This is because
the encoder introduces a more rigorous geometric verification process that filters out some potential
correspondences, although the remaining matches are more reliable, leading to an increase in RR
and overall alignment performance.
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Table 4: Ablation on effectiveness of MMM and SAM. The best scores are highlighted in boldfaced,
while the second-best are underlined.

Method IR(%) FMR(%) RR(%)
2D-3D 46.3 94.2 89.3
2D-3D + AP5D 42.2 95.0 90.3
3D-3D 36.2 94.0 84.5
3D-3D + AP5D 32.6 92.3 86.1

2D-3D / 3D-3D 49.5 94.3 89.0
2D-3D / 3D-3D + AP5D 50.7 96.0 92.6

Table 5: Ablation on effectiveness of architectural designs in SAM. The best scores are highlighted
in boldfaced, while the second-best are underlined.

Method IR(%) FMR(%) RR(%)
Average 49.5 94.3 89.0
MLP 50.5 95.7 90.8
Only 2d Encoder 49.2 95.7 89.2
Only 3d Encoder 48.8 94.6 90.4
Late Fusion 48.1 96.1 89.6
Shared Attention 49.6 94.8 89.8

AP5D 50.7 96.0 92.6

A.5.2 EFFECTIVENESS OF ARCHITECTURAL DESIGNS IN SCORE AGGREGATION MODULE
(SAM).

We conduct an ablation study to evaluate various fusion strategies for aggregating the dual matching
scores, as summarized in Table 5. Using a simple averaging baseline, we observe moderate perfor-
mance across all metrics. Replacing this with a learnable MLP-based fusion improves both the inlier
ratio (IR) and registration recall (RR), suggesting that non-linear integration of dual cues provides
better correspondence estimation.

To further investigate fusion strategies, we implement four additional baselines. ’Only 2D Encoder’
and ’Only 3D Encoder’ use a single modality by removing the other branch from the pipeline. These
models show inferior performance, highlighting the importance of multi-modal interaction for accu-
rate matching. The ’Late Fusion’ strategy employs independent 2D and 3D encoders and combines
matching scores only at the final stage, without intermediate interaction. Although it achieves the
highest feature matching recall (FMR), it performs worse in IR and RR due to the lack of joint
spatial reasoning during encoding. The ’Shared Attention’ method adopts a cross-modal attention
mechanism inspired by Hertz et al. (2024), where both modalities attend to a common latent repre-
sentation. While this design enables early interaction between views, it does not explicitly model
spatial alignment between modalities, resulting in slightly lower overall performance compared to
our method.

Our proposed AP-5D encoder achieves the best performance across all metrics, demonstrating its
ability to effectively leverage both geometric and visual cues through spatially decomposed and
harmonized aggregation. Notably, it yields the highest registration recall (92.6%), validating its
strength in preserving reliable correspondences across complex scene structures.

A.5.3 IMPACT OF NUMBER OF SAMPLING POINTS

We explore the impact of the number of sampling points NI projected from the depth map in the im-
age. The results are reported in Table 6. The result shows that IR tends to decrease as the number of
sampling points increases, and the performance of Registration Recall (RR) no longer improves be-
yond a certain number of sampling points. The highest performance for RR occurs at 30k sampling
points, which indicates that this is the optimal number of sampling points. These results suggest
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Table 6: Ablation on different number of sampling points. The best scores are highlighted in bold-
faced, while the second-best scores are underlined.

# IR(%) FMR(%) RR(%)
10K 53.6 96.3 91.6
20K 51.8 95.7 91.1
30K 50.7 96.0 92.6
40K 52.3 96.1 90.0
50K 48.3 96.1 89.9
60K 46.7 95.2 86.7
70K 44.3 94.6 85.3
80K 48.9 94.9 90.3

Table 7: Ablation on (a)Backbone quality, (b)Depth estimation. The best scores are highlighted in
boldfaced, while the second-best scores are underlined.

Method IR(%) FMR(%) RR(%)

(a) Pretrained Backbone 53.1 96.8 92.6

(b) GT Depth 60.9 97.2 94.4

DuMA 50.7 96.0 92.6

that when too many points are sampled, the overlap between points increases, making it difficult
to extract the appropriate geometric features. Therefore, for optimal matching performance, it is
more effective to use an appropriate number of sampling points rather than excessively increasing
the number of points.

A.5.4 IMPACT OF BACKBONE QUALITY AND DEPTH ESTIMATION

To evaluate the impact of backbone representations, we conducted experiments using pretrained
2D (ImageNet) and 3D (FCGF on 3DMatch) encoders. As shown in Table 7-(a), while feature
matching quality improves slightly, the final registration accuracy remains largely unchanged. This
indicates that the robustness of our method primarily arises from the proposed dual-view aggregation
framework rather than the pretrained features.

In addition, we performed oracle experiments using ground-truth depth to analyze the influence of
depth estimation quality. As shown in Table 7-(b), performance improves under accurate depth,
confirming that better depth predictions lead to more reliable correspondences. While our current
focus is on the matching framework itself, We leave the incorporation of depth uncertainty modeling
or refinement to future work to further improve robustness.

A.5.5 3D-3D TRANSFORMATION ESTIMATION METHOD

Using Zoe-Depth Bhat et al. (2023), we generate a depth map DI from the image, enabling the
mapping of pixel-to-point correspondences into 3D point correspondences. By leveraging these 3D
point-to-point matches, we compute the SE(3) relative pose using the Kabsch algorithm Kabsch
(1976). Leveraging the Kabsch algorithm, the transform can be solved given the estimated corre-
spondences C = {(xi, yi) |xi ∈ R3, yi ∈ R2} between 3D points and 2D pixels, as defined by:

min
R,t

∑
(xi,yi)∈C

∥∥xi −RProj−1(yi, d
I
yi
,K) + t

∥∥2 , (14)

where Proj−1(yi,D
I ,K) lifts the 2d image pixel to 3d point using the depth dIyi

and the intrinsic
matrix K. The results are presented in Table 8. We observe that the performance of the transfor-
mation estimated using the Kabsch algorithm is inferior to that of PnP. This result arises due to the
scale discrepancy between the depth map predicted by Zoe-Depth and the actual depth values, which
prevents the generation of points at identical locations. In other words, it demonstrates that a more
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Table 8: Ablation on different transformation estimation methods. The best scores are highlighted
in boldfaced, while the second-best are underlined.

Method Scene-11 Scene-12 Scene-13 Scene-14 Mean

Mean depth (m) 1.74 1.66 1.18 1.39 1.49

Registration Recall(%) ↑
FreeReg +Kabsch 38.7 51.6 30.7 15.5 34.1
FreeReg +PnP 74.2 72.5 54.5 27.9 57.3
DuMA+Kabsch 62.5 83.3 49.5 29.2 56.1
DuMA+PnP 100.0 98.0 92.8 79.6 92.6

Table 9: Runtime and memory.

Method Time (s)↓ # of Parameters↓
2D3D-MATR 0.099 31.05M
Diff-Reg 0.564 373.60M
DuSA-Reg 0.648 35.60M

Table 10: The number of parameters of each module.

Layer # of Parameters

2D Encoder 17.59M
3D Encoder 1.49M
Transformer 3.91M
DINO+Linear 11.12M
AP-5D 9.44K

effective approach is to indirectly use the geometric features of the point cloud generated through
depth estimation, rather than directly using the point cloud itself for matching.

A.5.6 RUNTIME AND MEMORY

We present a comparison of runtime and model size with 2D3D-MATR Li et al. (2023) and Diff-
Reg Wu et al. (2024) in Table 9. The runtime is measured on a machine equipped with an Intel
Xeon Gold 6226R 2.90GHz CPU and a single Nvidia RTX A5000 GPU, using a batch size of 1. In
Table 9, our method shows a slightly longer runtime than Diff-Reg, but requires substantially fewer
parameters. This indicates that, while there is a minor increase in runtime, our architecture remains
more compact compared to existing approaches.

Regarding memory usage, our model has fewer parameters compared to Diff-Reg, even though it
includes the additional encoder and the introduction of the anchor-pivot 5D encoder. Furthermore,
Table 10 shows that our anchor-pivot 5D encoder contains significantly fewer parameters than other
modules. This suggests that the anchor-pivot 5D encoder can generate high-quality correlation in-
formation with a minimal number of parameters.

A.5.7 COMPLEXITY ANALYSIS OF THE ANCHOR–PIVOT 5D ENCODER

A naı̈ve 5D encoder would require a KH×KW×KN kernel to be applied at every Ĥ×Ŵ×N̂ location,
incurring O

(
ĤŴ N̂KHKWKNCinCout

)
operations, which is computationally infeasible sinceN̂ is

also very large. In contrast, our Anchor–Pivot design decomposes this into two branches: a KH×KW

2D convolution over Ĥ×Ŵ (image anchors) and a KN 3D operation over N̂ (point anchors). The
total complexity becomes O

(
ĤŴKHKWCinCout+N̂KNCinCout

)
. This significantly reduces the

computation while preserving spatial interactions across modalities.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Ablation on Training Data. The best scores are highlighted in boldfaced, while the
second-best scores are underlined.

Method IR(%) FMR(%) RR(%)

100% 10% 100% 10% 100% 10%

2D3D-MATR 32.4 6.9 90.8 20.7 56.4 5.2
Diff-Reg 37.8 13.3 91.4 63.4 87.0 40.5
DuMA 50.7 30.4 96.0 89.4 92.6 78.6

A.5.8 GENERALIZATION TEST

To evaluate the generalization ability under limited supervision, we trained DuMA and the baselines
using only 10% of the training data. As shown in Table 11, our method retains strong performance,
while baselines suffer a significant drop. We believe this robustness stems from our architectural
design, which jointly captures 2D and 3D cues early, enabling more effective convergence.

A.6 ADDITIONAL FEATURE MATCHING SCORE VISUALIZATION

We further provide additional visualizations of the feature matching scores in Figure 7. These vi-
sualizations complement the main paper by offering more examples of how our method differen-
tiates between regions using 2D-3D matching, 3D-3D matching, and the integrated Anchor-Pivot
5D encoder. In particular, we include extra cases where the query point clusters are located in both
ambiguous and distinct regions of the image, demonstrating that our encoder consistently fuses the
complementary strengths of 2D-3D and 3D-3D matching to yield refined and geometrically coherent
correspondences.

A.7 ADDITIONAL QUALITATIVE RESULTS

Additional Qualitative Results on RGB-D Scenes V2, 7Scenes, and KITTI-DC are shown in Figure
8, Figure 9, and Figure 10, respectively. In Figure 8, our method demonstrates more accurate and
global matching compared to 2D3D-MATR and Diff-Reg. Furthermore, we observe robust matching
performance even in cases with significant pose differences. Moreover, in Figure 9, we can see
accurate and consistent matching performance on the 7Scenes dataset, which exhibits a larger pose
variance. Additionally, in Figure 10, our approach maintains strong performance on the KITTI-DC
dataset, effectively handling outdoor environments with dynamic elements and large-scale scene
variations.
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Figure 7: Additional feature matching score visualization
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Figure 8: Additional qualitative results on RGB-D V2 dataset. Correct / incorrect matches are
colored with green / red.
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Figure 9: Qualitative results on 7Scenes dataset. Correct / incorrect matches are colored with green
/ red.
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Figure 10: Qualitative results on KITTI-DC dataset. Correct / incorrect matches are colored with
green / red.
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