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Abstract

Quantitative reasoning is a critical skill to an-001
alyze data, yet the assessment of such ability002
remains limited. To address this gap, we in-003
troduce the Quantitative Reasoning with Data004
(QRDATA) benchmark, aiming to evaluate005
Large Language Models’ capability in statisti-006
cal and causal reasoning with real-world data.007
The benchmark1 comprises a carefully con-008
structed dataset of 411 questions accompanied009
by data sheets from textbooks, online learn-010
ing materials, and academic papers. To com-011
pare models’ quantitative reasoning abilities012
on data and text, we enrich the benchmark013
with an auxiliary set of 290 text-only ques-014
tions, namely QRTEXT. We evaluate natu-015
ral language reasoning, program-based reason-016
ing, and agent reasoning methods including017
Chain-of-Thought, Program-of-Thoughts, Re-018
Act, and code interpreter assistants on diverse019
models. The strongest model GPT-4 achieves020
an accuracy of 58%, which has a large room021
for improvement. Among open-source mod-022
els, Deepseek-coder-instruct, a code LLM pre-023
trained on 2T tokens, gets the highest accuracy024
of 37%. Analysis reveals that models encounter025
difficulties in data analysis and causal reason-026
ing, and struggle in using causal knowledge027
and provided data simultaneously.028

1 Introduction029

Data is everywhere in our daily life and work, from030

win-loss charts in sports competitions to insurance031

databases of national health. We rely on our quan-032

titative reasoning skills to process the data, more033

specifically, to extract information from the data,034

draw inferences, and make predictions (Bueno de035

Mesquita and Fowler, 2021).036

There is evidence that current Large Language037

Models (LLMs) can perform fundamental data038

1Our benchmark is available in supplementary material
and will be released to the public.

What is the Average Causal 
Effect (ATE) from t to y?

Statistical Reasoning

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

What is a 95% confidence interval 
for the population mean of y?

ihdp.csv

Causal Reasoning

Reasoning Steps

1. Understand the data
2. Identify the point estimate
3. Verify the conditions
4. Calculate the margin of error 
and construct the interval

1. Understand the data
2. Build the causal model
3. Apply propensity score 
weighting to estimate ATE
4. Run refutation tests

Advanced Quantitative 
Reasoning with Data

Figure 1: Examples of advanced quantitative reasoning
questions and reasoning steps.

analysis like visualization and statistics sum- 039

mary (Cheng et al., 2023; Bai et al., 2023). How- 040

ever, little effort has been made to evaluate the 041

more challenging aspects of quantitative reason- 042

ing. On the other hand, there are papers evalu- 043

ating advanced quantitative reasoning abilities of 044

LLMs (Chen et al., 2023a; Jin et al., 2023a), but 045

they have not investigated whether LLMs can apply 046

these skills to real data. 047

In this paper, we focus on two main areas of 048

advanced quantitative reasoning: statistical reason- 049

ing and causal reasoning, with examples shown in 050

Figure 1. Given a data sheet from sample surveys, 051

statistical reasoning aims to infer the underlying 052

distribution of probability, addressing questions 053

like what is a 95% confidence interval for the pop- 054

ulation mean of y; while causal reasoning aims 055

to understand the causal relationship between vari- 056

ables, addressing questions like what is the average 057

treatment effect2 from t to y. 058

We propose the Quantitative Reasoning with 059

Data (QRDATA) benchmark. It requires models 060

to answer a quantitative reasoning question given 061

data sheets as input. Our benchmark shares a sim- 062

2Average treatment effect is a measure of causal effect,
quantifying the difference in average outcomes between units
assigned to the treatment and units assigned to the control.
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The CSV file ihdp.csv contains data obtained from the Infant Health and Development 
Program (IHDP). The study is designed to evaluate the effect of home visit from 
specialist doctors on the cognitive test scores of premature infants . The confounders 

x (x1-x25) correspond to collected measurements of the children and their mothers …

Data Description Question

What is the Average Treatment Effect (ATE) of the 
dataset? Please round the final answer to the nearest 
hundredth.

Correct Reasoning Steps:

1. Check rows of the dataset to understand its structure

import pandas as pd
data = pd.read_csv('ihdp.csv')
print(data.head())

2. Build a causal model based on the data description

ATE can be estimated using propensity score weighting:

3. Recall related method and apply to this scenario

…
ihdp_estimate = ihdp_model.estimate_effect(
  ihdp_identified_estimand,
  method_name="backdoor.propensity_score_weighting"
)
print('Estimated effect:', ihdp_estimate.value)

from dowhy import CausalModel

common_causes = ['x1', …, 'x25']
ihdp_model = CausalModel(
  data=data, treatment='t', outcome='y', 
  common_causes=common_causes
)

ihdp_refute_random_common_cause = ihdp_model.refute_estimate(
  ihdp_identified_estimand, ihdp_estimate,
  method_name="random_common_cause"
)
print('New effect:', ihdp_refute_random_common_cause.new_effect)

The estimate should not change if we add an independent random 
variable as a common cause to the dataset.

t y x1 x2

1 5.60 -0.53 -0.34 

0 6.88 -1.74 -1.80 

0 3.00 -0.81 -0.20 

… … … …

…

Final Answer: 4.02Estimated effect: 4.02

Sandbox Execution Results:

New effect: 4.02

4. Run refutation test to validate the estimate 

Figure 2: An example question of QRDATA and correct reasoning steps.

ilar form with table question answering (Pasupat063

and Liang, 2015) and data analysis code gener-064

ation (Lai et al., 2023) tasks, but has its unique065

challenges: 1) Our benchmark requires advanced066

quantitative knowledge and skills. Consider the067

example in Figure 2. To answer the question, mod-068

els need to know what are common methods of069

estimating the average treatment effect and how to070

utilize them. To our best knowledge, few existing071

benchmarks touch upon concepts in statistical rea-072

soning with data, and none of them involve causal073

reasoning with data. 2) Our benchmark requires074

multi-turn reasoning. After execution of model075

generated code, models need to read the execution076

results, and write subsequent code or interpret the077

results to produce the final answer. In the example,078

models should first check the data structure before079

safely indexing the variables in step 2. And after080

the refutation test in step 4, models need to com-081

pare the estimation before and after the refutation,082

to decide if the estimated effect is reliable, or if083

another estimation method should be used.084

To obtain high-quality quantitative reasoning085

questions and corresponding data, we construct086

QRDATA from open-source textbooks, online087

learning resources, and academic papers that are088

accompanied by data. This ensures that all the089

questions are reasonable and match well with the090

data. Through careful manual construction, our091

dataset consists of 411 questions along with 194092

data sheets. To analyze the difficulty of data analy-093

sis, we also collect an auxiliary dataset of Quanti-094

tative Reasoning with Text (QRTEXT). QRTEXT095

contains 290 questions from textbooks and aca- 096

demic papers, and the questions can be solved 097

based on text descriptions only. 098

We evaluate a wide range of models and rea- 099

soning approaches on QRDATA. To find what is a 100

good solution to the task, we implement natural lan- 101

guage reasoning with Chain-of-Thought (Wei et al., 102

2022), program-based reasoning with Program- 103

of-Thoughts (Chen et al., 2022), agent reasoning 104

with ReAct (Yao et al., 2022) and the code inter- 105

preter assistants of GPT models. We also com- 106

pare general-purpose LLMs with LLMs finetuned 107

for specific abilities like math, code, and agent, 108

to find out whether these abilities help in tack- 109

ling our benchmark. Experimental results show 110

that the best closed-source LLM GPT-4 (Ope- 111

nAI, 2023) achieves an accuracy of 58% with the 112

code interpreter assistant, and the best open-source 113

LLM Deepseek-coder-instruct (Guo et al., 2024) 114

achieves 37% with Program-of-Thoughts. 115

As there is large room for improvement in model 116

performance, we further dive into what are the 117

primary difficulties. We find that data analysis is 118

challenging for LLMs, especially for smaller open- 119

source LLMs. And all models including GPT-4 and 120

Gemini (Team et al., 2023) struggle with causal 121

reasoning. They acquire causal knowledge from 122

the pretraining corpus, but can hardly integrate the 123

knowledge with the provided data in reasoning. 124

Our main contributions are as follows: 1) We 125

propose QRDATA, the first benchmark for ad- 126

vanced quantitative reasoning with data, to assess 127

models’ abilities of data-based statistical and causal 128
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reasoning. 2) We evaluate various models and rea-129

soning approaches on QRDATA, and provide in-130

sights into the effective approaches to tackle the131

benchmark. 3) We analyze the difficulties of cur-132

rent models in data analysis and causal reasoning.133

2 Benchmark Construction134

In this section, we introduce how the QRDATA135

benchmark is constructed. To ensure the quality136

of our benchmark, we first gather quantitative rea-137

soning teaching and research resources, and then138

annotate questions based on the materials. To com-139

pare the performance of quantitative reasoning on140

data and text, we also introduce an auxiliary dataset141

QRTEXT for analysis.142

Resource Selection. We look for quantitative rea-143

soning resources with the following criteria: 1) The144

resource is related to quantitative reasoning, espe-145

cially statistical reasoning and causal reasoning. 2)146

It contains multiple quantitative reasoning ques-147

tions with corresponding data and answers. 3) It is148

open-source and allows adaptation.149

Eight resources are selected based on these crite-150

ria, including two books: OpenIntro statistics (Diez151

et al., 2012) and Quantitative social science (Imai,152

2018); one online learning resource: Causal infer-153

ence for the brave and true3; and five datasets from154

academic papers: Flow cytometry (Sachs et al.,155

2005), IHDP (Hill, 2011), Jobs (Shalit et al., 2017),156

Neuropathic pain diagnosis (Tu et al., 2019), and157

Arctic sea ice (Huang et al., 2021).158

Question Collection. We collect multiple-choice159

questions and numerical questions from these re-160

sources, and ensure that the gold answer is unique.161

For textbooks and online learning resources, we ex-162

tract the list of data sheets from their websites. If a163

data sheet is used in exercises, we use the exercise164

question and its solution as the question and an-165

swer; if it is used in the main content, we annotate166

questions and answers based on the content.167

For existing causal discovery datasets (Flow cy-168

tometry, Neuropathic pain diagnosis, and Arctic169

sea ice), we collect multiple-choice questions like170

Which cause-and-effect relationship is more likely?171

A. headache causes groin pain B. groin pain causes172

headache C. No causal relationship exists follow-173

ing the style of Kıcıman et al. (2023). For causal174

estimation datasets (IHDP and Jobs), we collect175

3https://matheusfacure.github.io/python-causality-
handbook/landing-page.html

Count

Data Files 195
Avg. Rows per File 15219
Avg. Columns per File 46
Avg. Words of Data Description 73

Questions 411
Multiple Choice / Numerical 248 / 163
Statistical / Causal 142 / 269
Avg. Words of Question 32

Table 1: Statistics of QRDATA.

Observational data
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Average treatment effect
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Figure 3: Key concepts in QRDATA.

numerical questions of estimating average treat- 176

ment effect (ATE), average treatment effect on the 177

treated (ATT), and average treatment effect on the 178

control (ATC) like the example in Figure 2. More 179

details are in Appendix A.1. 180

We also collect data descriptions like the purpose 181

and format of the data sheets from the resources, 182

and provide them along with questions to models. 183

Statistics. We provide the dataset statistics in Ta- 184

ble 1, and the number of questions collected from 185

each source in Appendix Table 6. The questions 186

we collect cover a wide range of concepts, and we 187

illustrate some of them in Figure 3. Most questions 188

in QRDATA are based on a single data sheet, while 189

4% of questions are based on multiple data sheets. 190

To check whether our dataset has already been 191

memorized by models in training, we apply the pre- 192

training data detection method Min-K% Prob (Shi 193

et al., 2023) on GPT models and Llama-2, and con- 194

firm that our dataset is unlikely to appear in their 195

pretraining corpora. 196

QRTEXT. To separate the challenge of quanti- 197

tative reasoning from data analysis and analyze 198

whether models master the quantitative reasoning 199

skills, we create an auxiliary benchmark for com- 200

parison called Quantitative Reasoning with Text. 201

Questions in QRTEXT can be answered without 202

data, with an example shown in Appendix Figure 4. 203

We collect questions from OpenIntro statistics and 204

two text-based causal reasoning datasets CLAD- 205
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DER (Jin et al., 2023a) and CORR2CAUSE (Jin206

et al., 2023b). QRTEXT contains 290 questions,207

100 for statistical reasoning and 190 for causal rea-208

soning. For ease of model comparison, the ratio of209

statistical/causal questions of QRTEXT is similar to210

QRDATA. Details of QRTEXT question collection211

are in Appendix A.2.212

Evaluation Metric. We report the accuracy by213

comparing the final answer generated by models214

with the gold answer. As models may encounter215

measurement error in numerical questions (e.g., dif-216

ferent causal effect estimation methods will yield217

minor differences in results), we consider any result218

within ±3% of the gold answer to be correct.219

3 Methods220

We develop several zero-shot reasoning methods221

as our baselines. By comparing these methods, we222

aim to find a good solution to the task of quantita-223

tive reasoning with data.224

Table Question Answering (Table QA). The task225

of table QA asks models to answer a question based226

on tables. To evaluate if our benchmark can be227

solved by existing table QA methods, we select a228

competitive model TableLlama (Zhang et al., 2023).229

TableLlama is finetuned on Llama-2-7B (Touvron230

et al., 2023) with a table instruction tuning dataset,231

using LongLoRA (Chen et al., 2023b) to extend232

the context length. It exhibits strong generalization233

ability across table QA datasets.234

Chain-of-Thought (CoT). CoT prompting enables235

models to conduct complex natural language rea-236

soning through intermediate reasoning steps. We237

feed the content of data sheets to models and238

prompt models to respond to a quantitative239

question using the provided data ...240

Let’s think step by step. If the data sheet241

is too large, we truncate it to fit the length limit.242

To obtain the final answer from the model output,243

we employ ChatGPT for answer extraction follow-244

ing Chen et al. (2023a).245

Program-of-Thoughts (PoT). PoT prompting asks246

models to generate a Python code program, and247

uses an external computer to execute the code. The248

output of the code is regarded as the answer. In249

contrast to TableLlama and CoT prompting, PoT250

processes the data sheet with code and gets rid of251

the length limit of data. It also enables models to252

call data analysis packages for computation.253

ReAct-style Prompting. ReAct is a prevalent 254

prompting paradigm for agent reasoning. It com- 255

bines reasoning and acting in language models for 256

task solving. To address our task, we restrict the 257

action space to Python code execution, and ask 258

models to generate thoughts and actions. Differ- 259

ent from aforementioned methods that only allow 260

one-turn generation, ReAct supports multi-turn rea- 261

soning. When a piece of code is generated, we 262

execute it and feed the output back to models as 263

an observation. Based on the observation, models 264

will either generate new thoughts and actions, or 265

decide to predict the final answer. 266

Code Interpreter Assistants. GPT models can be 267

used as agents (called assistants), and a code inter- 268

preter tool is built-in, which could execute Python 269

code in a sandbox to interpret the data. Similar to 270

ReAct-style prompting, code interpreter assistants 271

allow multi-turn code generation and execution, 272

and end with a text-formed answer. 273

Details of prompt design and prompt examples 274

are in Appendix A.3. 275

4 Experiments 276

4.1 Models 277

We experiment with the CoT, PoT, and ReAct-style 278

prompting methods on the following models: 279

General-Purpose LLMs. We select Llama-2- 280

chat, Gemini-Pro, and GPT-4 as representatives of 281

general-purpose LLMs. They exhibit strong abil- 282

ities to follow instructions (Touvron et al., 2023; 283

Team et al., 2023; OpenAI, 2023). 284

Code LLMs. CodeLlama-instruct (Roziere et al., 285

2023) is initialized on Llama-2, finetuned on a 286

code-heavy dataset, and instruction tuned on a 287

code-related instruction dataset. Deepseek-coder- 288

instruct (Guo et al., 2024) is pretrained on a project- 289

level code corpus from scratch and instruction 290

tuned to follow instructions. Both of them perform 291

well among open-source code models on several 292

code benchmarks. 293

LLM for Mathematical Reasoning. Wizard- 294

Math (Luo et al., 2023) is finetuned on Llama-2, en- 295

hancing the mathematical reasoning abilities with 296

reinforcement learning. It outperforms many larger 297

models on mathematical reasoning benchmarks. 298

LLM for Agent Reasoning. AgentLM (Zeng et al., 299

2023) is instruction tuned based on Llama-2 to en- 300

hance the agent capabilities. It uses a combination 301
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Model Size Overall Acc. Multiple Choice / Numerical Statistical / Causal

Random 23.0 38.1 / 0.0 15.0 / 27.2
Table Question Answering
TableLlama (Zhang et al., 2023) 7B 9.5 14.9 / 1.2 3.5 / 12.6
Chain of Thought Prompting
Llama-2-chat (Touvron et al., 2023) 7B 22.1 35.1 / 2.5 20.4 / 23.0
AgentLM (Zeng et al., 2023) 7B 24.3 40.0 / 0.0 19.0 / 27.1
WizardMath (Luo et al., 2023) 7B 25.1 40.0 / 2.5 18.3 / 28.6
CodeLlama-instruct (Roziere et al., 2023) 7B 19.2 31.0 / 1.2 14.1 / 21.9
Deepseek-coder-instruct (Guo et al., 2024) 6.7B 18.7 30.2 / 1.2 15.5 / 20.4
Gemini-Pro (Team et al., 2023) - 31.9 46.8 / 9.2 25.4 / 35.3
GPT-4 (OpenAI, 2023) - 36.5 57.3 / 4.9 24.6 / 42.8
Program of Thoughts Prompting
Llama-2-chat 7B 3.7 6.1 / 0.0 7.8 / 1.5
AgentLM 7B 3.2 4.4 / 1.2 8.5 / 0.4
WizardMath 7B 16.8 16.5 / 17.2 31.7 / 8.9
CodeLlama-instruct 7B 17.3 24.2 / 6.7 19.7 / 16.0
Deepseek-coder-instruct 6.7B 37.0 40.7 / 31.3 45.8 / 32.3
Gemini-Pro - 26.8 27.8 / 25.2 39.4 / 20.1
GPT-4 - 49.1 46.0 / 54.0 72.5 / 36.8
ReAct-style Prompting
Llama-2-chat 7B 11.4 18.5 / 0.6 4.2 / 15.2
AgentLM 7B 10.7 16.9 / 1.2 5.6 / 13.4
WizardMath 7B 18.7 21.0 / 15.3 19.7 / 18.2
CodeLlama-instruct 7B 15.8 22.2 / 6.1 16.2 / 15.6
Deepseek-coder-instruct 6.7B 27.3 29.4 / 23.9 38.7 / 21.2
Gemini-Pro - 38.9 47.6 / 25.8 41.5 / 37.5
GPT-4 - 57.4 59.2 / 54.6 69.0 / 51.3
Code Interpreter Assistants
GPT-3.5 Turbo - 41.4 42.3 / 39.9 60.6 / 31.2
GPT-4 - 57.9 56.9 / 59.5 78.9 / 46.8
Human (subset) 76.0 71.9 / 83.4 88.8 / 68.8

Table 2: Performance of models on QRDATA. Numbers are accuracies in percentages (%). The best results are in
bold. For models evaluated with multiple reasoning methods, the model-level best results are underlined.

of instructions from general domains and instruc-302

tions of interaction trajectories.303

For a fair comparison, we use the size of 7B for304

all the open-source models.4 We use the two latest305

GPT models GPT-3.5 Turbo and GPT-45 for code306

interpreter assistants. More implementation details307

are in Appendix A.4.308

As a reference for assessment, we also report the309

random baseline and the human performance. The310

random baseline is calculated by randomly choos-311

ing from the multiple choices, and all the numeri-312

cal questions are counted as incorrect. The human313

performance is evaluated by asking three gradu-314

ate students who have taken quantitative reasoning315

courses to answer a random sample of 50 questions316

from QRDATA. Each question is answered by at317

least two students. The students are allowed to use318

a Python executor, and search for concepts rather319

than specific questions on the Internet.6320

4The size of Deepseek-coder-instruct is 6.7B.
5The specific versions are gpt-3.5-turbo-1106 and

gpt-4-1106-preview.
6The majority of human errors are in causal discovery

questions (71%), because state-of-the-art causal discovery
algorithms cannot fully resolve this task (Vowels et al., 2022).

4.2 Main Results 321

To investigate which reasoning methods and mod- 322

els better solve our task, we summarize the per- 323

formance of different models paired with different 324

reasoning methods in Table 2. GPT-4 with the code 325

interpreter assistant achieves the best performance, 326

and Deepseek-coder-instruct with PoT prompting 327

is the best among open-source models. The best 328

model is 18% worse than human, showing that 329

QRDATA is challenging for LLMs. 330

Natural Language Reasoning. CoT works best 331

for several open-source models like Llama-2-chat 332

and WizardMath, but the results are close to or even 333

worse than random, as data-based quantitative rea- 334

soning requires heavy calculations that are beyond 335

natural language reasoning. The table QA model 336

TableLlama also underperforms in our benchmark. 337

Models can hardly answer numerical questions 338

with CoT, with a maximum accuracy of less than 339

10%. This may be because in many cases, we can- 340

not feed the whole data sheets into the input, further 341

limiting models to perform accurate calculations. 342

Program-based Reasoning. PoT best suits 343
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Deepseek-coder-instruct, but to our surprise, an-344

other code LLM CodeLlama-instruct does not per-345

form well with PoT. The gap in coding abilities can346

also be seen from the execution success rate, which347

is 89% for Deepseek-coder-instruct and 73% for348

CodeLlama-instruct.349

Although the overall performance of several non-350

code LLMs drops with PoT compared to CoT, the351

accuracy of numerical questions improves with the352

help of code execution. This exhibits the potential353

for performance improvement through the hybrid354

of CoT and PoT rationales (Yue et al., 2023).355

Agent Reasoning. Closed-source LLMs like GPT-356

4 and Gemini-Pro perform best with agent reason-357

ing. GPT-4 performance with ReAct-style prompt-358

ing is close to with the code interpreter assistant,359

exhibiting that our ReAct-style prompts success-360

fully activate the model abilities.361

Smaller open-source models can hardly follow362

the complex ReAct-style instructions, which lim-363

its their performance. Although AgentLM is fine-364

tuned for agent reasoning, it cannot generalize365

well to the quantitative reasoning task. On the366

other hand, open-source models except code LLMs367

perform better with ReAct-style prompting than368

PoT, because multi-turn code execution gives them369

chances to fix the generated code.370

LLMs with Enhanced Abilities. We compare371

three models finetuned on Llama-2 for enhanced372

abilities with the general-purpose LLM Llama-373

2-chat. AgentLM and WizardMath only gain374

marginal improvement, and CodeLlama-instruct375

even underperforms Llama-2-chat. This may be376

due to the limited capability of the base model.377

On the other hand, Deepseek-coder-instruct,378

which masters in code generation, outperforms379

all other models with similar sizes by more than380

10%. We further evaluate Deepseek-coder-instruct-381

33B to see if it could approach the performance of382

closed-source LLMs, but it gets an overall accuracy383

of 31.9% with PoT and 27.0% with ReAct-style384

prompting, even lower than the 6.7B model. This385

shows that although coding ability is important in386

solving quantitative questions with data, the perfor-387

mance of code LLMs is still limited compared to388

larger general-purpose LLMs.389

Statistical Reasoning vs. Causal Reasoning. Sta-390

tistical reasoning focuses on identifying patterns391

in data, whereas causal reasoning goes a step fur-392

ther to find causal relationships beyond correlation.393

Model Overall Acc. Statistical / Causal

Random 23.7 20.8 / 25.3
Chain of Thought Prompting
Llama-2-chat 28.6 33.0 / 26.3
AgentLM 26.6 28.0 / 25.8
WizardMath 36.6 46.0 / 31.6
CodeLlama-i 26.2 26.0 / 26.3
Deepseek-coder-i 23.1 18.0 / 25.8
Gemini-Pro 37.9 51.0 / 31.1
GPT-4 52.1 76.0 / 39.5
Program of Thoughts Prompting
Llama-2-chat 21.7 12.0 / 26.8
AgentLM 22.4 16.0 / 25.8
WizardMath 34.1 38.0 / 32.1
CodeLlama-i 27.2 26.0 / 27.9
Deepseek-coder-i 39.0 47.0 / 34.7
Gemini-Pro 43.1 56.0 / 36.3
GPT-4 59.0 86.0 / 44.7
ReAct-style Prompting
Llama-2-chat 3.4 9.0 / 0.5
AgentLM 11.0 5.0 / 14.2
WizardMath 19.7 28.0 / 15.3
CodeLlama-i 4.8 13.0 / 0.5
Deepseek-coder-i 29.0 42.0 / 22.1
Gemini-Pro 35.2 52.0 / 26.3
GPT-4 57.2 86.0 / 42.1
Code Interpreter Assistants
GPT-3.5 Turbo 47.2 65.0 / 37.9
GPT-4 59.7 89.0 / 44.2

Table 3: Performance of models on QRTEXT. Numbers
are accuracies in percentages (%). Best results are in
bold, and model-level best results are underlined. The
suffix -i indicates -instruct.

Model Acc. w/ data Acc. w/o data

Random 35.7 35.7
GPT-3.5 Turbo 35.1 25.3
Gemini-Pro 45.4 48.8
GPT-4 50.7 60.0

Table 4: Performance of models on multiple-choice
causal questions of QRDATA with (w/) and without (w/)
access to the data. Better results are in bold.

For all models evaluated, the gap between model 394

performance and the random baseline is larger for 395

statistical questions than causal questions, show- 396

ing that models obtain better statistical reasoning 397

abilities than causal reasoning abilities. Even the 398

best-performed model GPT-4 only answers 51% of 399

causal questions correctly, demonstrating the large 400

room for improvement in causal reasoning. 401

5 Analysis 402

We go deeper into the primary difficulties models 403

face in addressing the task of quantitative reasoning 404

with data. This may provide insights into how to de- 405

sign methods to better solve our task. We also pro- 406

vide an error analysis of GPT-4 in Appendix A.6. 407
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Question Which cause-and-effect relationship is more likely? Please answer with A, B, or C.
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists

Gold Answer C
GPT-4 Prediction with Data Access
Step 1: # Display the first few records to understand the data structure

Code Interpreter data.head()

Step 2: I will examine the data for the following patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other
way around, it may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not
the other way around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.

Step 3: # Probability of L L1 given R L5

Code Interpreter P_L_L1_given_R_L5 = co_occurrence_count / R_L5_count if R_L5_count else 0

# Probability of R L5 given L L1

P_R_L5_given_L_L1 = co_occurrence_count / L_L1_count if L_L1_count else 0

P_L_L1_given_R_L5, P_R_L5_given_L_L1

Step 4: Based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes ‘R L5
radiculopathy” over the other proposed causal direction. Final answer: B.

GPT-4 Prediction without Data Access
Prediction Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal

levels, it’s not common for one to cause the other according to standard medical understanding. It is
more likely that they occur independently due to separate causes.
It’s likely that if both conditions are present in a patient, they arose independently or due to a systemic
issue affecting the spine broadly, rather than one causing the other. Final answer: C.

Table 5: An example of GPT-4 prediction on QRDATA. GPT-4 correctly predicts the answer without data access,
but predicts wrongly when the data is provided. The outputs are abridged and the full outputs are in Appendix A.5.

5.1 Difficulty of Data Analysis408

We evaluate models7 on our auxiliary benchmark409

QRTEXT, and compare the performance on QR-410

TEXT and QRDATA to quantify the difficulty of411

data analysis. As shown in Table 3, GPT-4 achieves412

the best accuracy of 59.7% on QRTEXT, and413

Deepseek-coder-instruct gets the best accuracy of414

39.0% among open-source LLMs.415

The single-turn reasoning methods, CoT and416

PoT prompting, work best for all models except417

GPT-4 on QRTEXT. For GPT-4, the performance418

gap between the code interpreter assistant and PoT419

is merely 0.7%, compared to 8.8% on QRDATA.420

These demonstrate that single-turn reasoning is al-421

most adequate for quantitative reasoning with text,422

while multi-turn reasoning is more necessary for423

quantitative reasoning with data.424

All models perform better on QRTEXT than QR-425

DATA from 1.8% to 11.5%, and the gap is larger426

for smaller models. If we control the knowledge427

and skills required by restricting questions to the428

same source (OpenIntro statistics), models perform429

6% better on average. These provide evidence that430

most models have difficulty in data analysis.431

7We do not experiment with TableLlama as the questions
do not involve tables.

5.2 Difficulty of Causal Reasoning 432

We observe the performance gap between statisti- 433

cal reasoning and causal reasoning on QRDATA, 434

and the gap remains on QRTEXT. GPT-4 achieves 435

89% accuracy in statistical questions on QRTEXT, 436

but only about half the accuracy in causal ques- 437

tions. This exhibits the unique difficulty of causal 438

reasoning regardless of data analysis. 439

Table 5 provides a case where GPT-4 with the 440

code interpreter assistant mis-predicts a causal 441

question from QRDATA. When asked to predict the 442

causal relation between two variables L L1 radicu- 443

lopathy and R L5 radiculopathy, GPT-4 proposes 444

a wrong plan of calculating the conditional prob- 445

abilities in Step 2. As correlation does not imply 446

causation, although GPT-4 successfully executes 447

the plan, it makes a wrong prediction. 448

Easier Said than Done. The unsatisfactory perfor- 449

mance on causal questions appears to differ from 450

the findings of some previous papers (Willig et al., 451

2022; Kıcıman et al., 2023), which show that LLMs 452

are capable of causal reasoning in tasks like causal 453

discovery without data. To figure out the reason 454

for the inconsistency, we conduct an experiment 455

to evaluate if the provided data interfered with the 456
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models. Specifically, we evaluate the best three457

models on multiple-choice causal questions of QR-458

DATA without giving them the data8, and compare459

their performance with the original setting. We use460

the best reasoning method for each model: ReAct-461

style prompting for Gemini-Pro, and code inter-462

preter assistants for GPT-3.5 Turbo and GPT-4.463

As shown in Table 4, two out of three models464

perform better without data access, revealing that465

it is easier for these LLMs to speculate causal re-466

lations than to conduct causal reasoning with data.467

The strong causal reasoning abilities exhibited by468

models in previous works come from their internal469

knowledge, but models can hardly use their internal470

knowledge to analyze the data provided.471

In the case of Table 5, in the absence of data472

access, GPT-4 correctly predicts that there is473

no causal relationship between the two variables.474

However, when the data is provided, it is misled to475

calculate the conditional probabilities.476

6 Related Work477

6.1 Data-related Benchmarks478

Table Question Answering. Table QA (Pasupat479

and Liang, 2015; Zhong et al., 2017) asks models to480

answer questions about information from given ta-481

bles. It evaluates models’ abilities to parse queries,482

look up information from tables, and integrate the483

retrieved information to reach an answer. Datasets484

like Spider (Yu et al., 2018) and SEDE (Hazoom485

et al., 2021) focus more on the semantic parsing486

part and design complex questions that need com-487

positional generalization over SQL queries. Some488

datasets present the challenges of retrieving infor-489

mation from hierarchical tables (Cheng et al., 2022;490

Zhao et al., 2022) or a fusion of textual and tabular491

data (Chen et al., 2020; Zhu et al., 2021). Datasets492

like FinQA (Chen et al., 2021) and TABMWP (Lu493

et al., 2022b) require numerical reasoning to fig-494

ure out the answer, but they mainly focus on basic495

arithmetic, while our benchmark requires more ad-496

vanced quantitative reasoning skills.497

Furthermore, although some benchmarks require498

multi-hop reasoning, they can be solved in a sin-499

gle turn, whereas our benchmark needs multi-turn500

reasoning between the model and data.501

Code Generation. Code generation tasks require502

models to produce code to meet certain intents. Re-503

8Note that this setting is different with QRTEXT. Without
data access, questions of QRDATA are not self-contained, but
rely on models’ commonsense to predict answers.

cent benchmarks like DS-1000 (Lai et al., 2023) 504

and ExeDS (Huang et al., 2022) explore LLMs’ 505

abilities to generate data science code, like train- 506

ing models using machine learning packages and 507

making visualizations. KnowledgeMATH (Zhao 508

et al., 2023) and BizBench (Koncel-Kedziorski 509

et al., 2023) evaluate if models could generate code 510

for financial reasoning with tables. To our knowl- 511

edge, none of them focus on advanced quantitative 512

reasoning. Only a concurrent dataset DAEval (Hu 513

et al., 2024) involves correlation analysis as a com- 514

ponent of question concepts, and none of them 515

include causal reasoning questions. 516

6.2 Quantitative Reasoning Abilities 517

There is a growing interest in exploring language 518

models’ abilities of quantitative reasoning. Var- 519

ious benchmarks focus on mathematical reason- 520

ing (Hendrycks et al., 2021; Cobbe et al., 2021), 521

and recent works broaden the analysis to the field 522

of science (Lu et al., 2022a; Chen et al., 2023a). 523

Another line of work focuses on the specific as- 524

pect of causal reasoning of LLMs. Bhagavatula 525

et al. (2019); Qin et al. (2019); Liu et al. (2023) ex- 526

plore the ability of commonsense causal reasoning 527

like abductive reasoning and counterfactual reason- 528

ing. Willig et al. (2022); Gao et al. (2023); Kıcıman 529

et al. (2023) analyze the mastery of causal knowl- 530

edge like cause-effect pairs. Jin et al. (2023a,b) 531

evaluate the utilization of causal inference skills. 532

In this work, we extend the research to quanti- 533

tative reasoning with data, which poses new chal- 534

lenges for LLMs. 535

7 Conclusion 536

We propose QRDATA, a benchmark of advanced 537

quantitative reasoning with data, to explore LLMs’ 538

statistical and causal reasoning abilities with real- 539

world data. We carefully construct the bench- 540

mark with questions from teaching and research 541

materials, and compare natural language reason- 542

ing, program-based reasoning, and agent reasoning 543

among a wide range of models. Experimental re- 544

sults reveal that models have difficulty in data anal- 545

ysis and causal reasoning. Even though powerful 546

LLMs like GPT-4 have acquired causal knowledge, 547

they can hardly integrate them with the provided 548

data. By proposing this benchmark, we hope to 549

elicit attention to the data-based quantitative rea- 550

soning ability, and call for more specialized meth- 551

ods to enhance the ability. 552
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Limitations553

Scope of the Benchmark. We collect questions554

related to two primary aspects of advanced quan-555

titative reasoning: statistical reasoning and causal556

reasoning in this benchmark. And our benchmark557

is limited to English questions and data. We look558

forward to future benchmarks on a broader domain559

and other languages.560

Models and Reasoning Methods. The field of561

LLM research is developing quickly. We exper-562

iment with representative models and reasoning563

methods in this paper, but we acknowledge that this564

does not cover all models and frameworks. Meth-565

ods of constructing training data and finetuning566

open-source models like Lumos (Yin et al., 2023)567

can also be explored to enhance the effectiveness568

of models.569

Ethics Statement570

Intellectual Property. We follow the permission571

of licenses during the data collection process. And572

the collected data should not be used commercially.573

Potential Risks. Our evaluation reveals that cur-574

rent LLMs are imperfect in conducting quantitative575

reasoning with data. We suggest readers not trust576

solutions provided by LLMs.577

References578

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,579
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei580
Huang, et al. 2023. Qwen technical report. arXiv581
preprint arXiv:2309.16609.582

Chandra Bhagavatula, Ronan Le Bras, Chaitanya583
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-584
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin585
Choi. 2019. Abductive commonsense reasoning. In586
International Conference on Learning Representa-587
tions.588

Ethan Bueno de Mesquita and Anthony Fowler. 2021.589
Thinking clearly with data: A guide to quantitative590
reasoning and analysis. Princeton University Press.591

Wenhu Chen, Xueguang Ma, Xinyi Wang, and592
William W Cohen. 2022. Program of thoughts593
prompting: Disentangling computation from reason-594
ing for numerical reasoning tasks. arXiv preprint595
arXiv:2211.12588.596

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,597
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony598
Xia. 2023a. TheoremQA: A theorem-driven question599
answering dataset. In Proceedings of the 2023 Con-600
ference on Empirical Methods in Natural Language601

Processing, pages 7889–7901, Singapore. Associa- 602
tion for Computational Linguistics. 603

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, 604
Hong Wang, and William Yang Wang. 2020. Hy- 605
bridQA: A dataset of multi-hop question answering 606
over tabular and textual data. In Findings of the Asso- 607
ciation for Computational Linguistics: EMNLP 2020, 608
pages 1026–1036, Online. Association for Computa- 609
tional Linguistics. 610

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, 611
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon- 612
glora: Efficient fine-tuning of long-context large lan- 613
guage models. arXiv preprint arXiv:2309.12307. 614

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena 615
Shah, Iana Borova, Dylan Langdon, Reema Moussa, 616
Matt Beane, Ting-Hao Huang, Bryan Routledge, and 617
William Yang Wang. 2021. FinQA: A dataset of nu- 618
merical reasoning over financial data. In Proceedings 619
of the 2021 Conference on Empirical Methods in Nat- 620
ural Language Processing, pages 3697–3711, Online 621
and Punta Cana, Dominican Republic. Association 622
for Computational Linguistics. 623

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023. 624
Is gpt-4 a good data analyst? arXiv preprint 625
arXiv:2305.15038. 626

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, 627
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and 628
Dongmei Zhang. 2022. HiTab: A hierarchical table 629
dataset for question answering and natural language 630
generation. In Proceedings of the 60th Annual Meet- 631
ing of the Association for Computational Linguistics 632
(Volume 1: Long Papers), pages 1094–1110, Dublin, 633
Ireland. Association for Computational Linguistics. 634

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 635
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 636
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 637
Nakano, et al. 2021. Training verifiers to solve math 638
word problems. arXiv preprint arXiv:2110.14168. 639

David M Diez, Christopher D Barr, and Mine Cetinkaya- 640
Rundel. 2012. OpenIntro statistics. OpenIntro 641
Boston, MA, USA:. 642

Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu. 2023. 643
Is ChatGPT a good causal reasoner? a comprehensive 644
evaluation. In Findings of the Association for Com- 645
putational Linguistics: EMNLP 2023, pages 11111– 646
11126, Singapore. Association for Computational 647
Linguistics. 648

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 649
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 650
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 651
large language model meets programming–the rise of 652
code intelligence. arXiv preprint arXiv:2401.14196. 653

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. 654
Text-to-SQL in the wild: A naturally-occurring 655
dataset based on stack exchange data. In Proceedings 656
of the 1st Workshop on Natural Language Processing 657

9

https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2023.findings-emnlp.743
https://doi.org/10.18653/v1/2023.findings-emnlp.743
https://doi.org/10.18653/v1/2023.findings-emnlp.743
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9


for Programming (NLP4Prog 2021), pages 77–87,658
Online. Association for Computational Linguistics.659

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul660
Arora, Steven Basart, Eric Tang, Dawn Song, and661
Jacob Steinhardt. 2021. Measuring mathematical662
problem solving with the math dataset. In Thirty-663
fifth Conference on Neural Information Processing664
Systems Datasets and Benchmarks Track (Round 2).665

Jennifer L Hill. 2011. Bayesian nonparametric model-666
ing for causal inference. Journal of Computational667
and Graphical Statistics, 20(1):217–240.668

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin669
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu,670
Yao Cheng, et al. 2024. Infiagent-dabench: Evalu-671
ating agents on data analysis tasks. arXiv preprint672
arXiv:2401.05507.673

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong674
Yan, Haotian Cui, Jeevana Priya Inala, Colin Clement,675
and Nan Duan. 2022. Execution-based evaluation for676
data science code generation models. In Proceedings677
of the Fourth Workshop on Data Science with Human-678
in-the-Loop (Language Advances), pages 28–36, Abu679
Dhabi, United Arab Emirates (Hybrid). Association680
for Computational Linguistics.681

Yiyi Huang, Matthäus Kleindessner, Alexey Munishkin,682
Debvrat Varshney, Pei Guo, and Jianwu Wang. 2021.683
Benchmarking of data-driven causality discovery ap-684
proaches in the interactions of arctic sea ice and at-685
mosphere. Frontiers in big Data, 4:642182.686

Kosuke Imai. 2018. Quantitative social science: an687
introduction. Princeton University Press.688

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele,689
Ojasv Kamal, LYU Zhiheng, Kevin Blin, Fer-690
nando Gonzalez Adauto, Max Kleiman-Weiner,691
Mrinmaya Sachan, et al. 2023a. Cladder: A bench-692
mark to assess causal reasoning capabilities of lan-693
guage models. In Thirty-seventh Conference on Neu-694
ral Information Processing Systems.695

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrin-696
maya Sachan, Rada Mihalcea, Mona Diab, and Bern-697
hard Schölkopf. 2023b. Can large language models698
infer causation from correlation? arXiv preprint699
arXiv:2306.05836.700

Emre Kıcıman, Robert Ness, Amit Sharma, and Chen-701
hao Tan. 2023. Causal reasoning and large language702
models: Opening a new frontier for causality. arXiv703
preprint arXiv:2305.00050.704

Rik Koncel-Kedziorski, Michael Krumdick, Viet Lai,705
Varshini Reddy, Charles Lovering, and Chris Tan-706
ner. 2023. Bizbench: A quantitative reasoning707
benchmark for business and finance. arXiv preprint708
arXiv:2311.06602.709

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,710
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel711
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A712

natural and reliable benchmark for data science code 713
generation. In International Conference on Machine 714
Learning, pages 18319–18345. PMLR. 715

Xiao Liu, Da Yin, Chen Zhang, Yansong Feng, and 716
Dongyan Zhao. 2023. The magic of IF: Investigating 717
causal reasoning abilities in large language models 718
of code. In Findings of the Association for Compu- 719
tational Linguistics: ACL 2023, pages 9009–9022, 720
Toronto, Canada. Association for Computational Lin- 721
guistics. 722

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai- 723
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter 724
Clark, and Ashwin Kalyan. 2022a. Learn to explain: 725
Multimodal reasoning via thought chains for science 726
question answering. Advances in Neural Information 727
Processing Systems, 35:2507–2521. 728

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, 729
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, 730
and Ashwin Kalyan. 2022b. Dynamic prompt learn- 731
ing via policy gradient for semi-structured mathe- 732
matical reasoning. In The Eleventh International 733
Conference on Learning Representations. 734

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 735
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 736
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 737
ardmath: Empowering mathematical reasoning for 738
large language models via reinforced evol-instruct. 739
arXiv preprint arXiv:2308.09583. 740

OpenAI. 2023. Gpt-4 technical report. arXiv preprint 741
arXiv:2303.08774. 742

Panupong Pasupat and Percy Liang. 2015. Composi- 743
tional semantic parsing on semi-structured tables. In 744
Proceedings of the 53rd Annual Meeting of the As- 745
sociation for Computational Linguistics and the 7th 746
International Joint Conference on Natural Language 747
Processing (Volume 1: Long Papers), pages 1470– 748
1480, Beijing, China. Association for Computational 749
Linguistics. 750

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra 751
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019. 752
Counterfactual story reasoning and generation. In 753
Proceedings of the 2019 Conference on Empirical 754
Methods in Natural Language Processing and the 755
9th International Joint Conference on Natural Lan- 756
guage Processing (EMNLP-IJCNLP), pages 5043– 757
5053, Hong Kong, China. Association for Computa- 758
tional Linguistics. 759

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 760
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 761
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 762
Code llama: Open foundation models for code. arXiv 763
preprint arXiv:2308.12950. 764

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A 765
Lauffenburger, and Garry P Nolan. 2005. Causal 766
protein-signaling networks derived from multiparam- 767
eter single-cell data. Science, 308(5721):523–529. 768

10

https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/D19-1509


Uri Shalit, Fredrik D Johansson, and David Sontag.769
2017. Estimating individual treatment effect: gen-770
eralization bounds and algorithms. In International771
conference on machine learning, pages 3076–3085.772
PMLR.773

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo774
Huang, Daogao Liu, Terra Blevins, Danqi Chen, and775
Luke Zettlemoyer. 2023. Detecting pretraining data776
from large language models. In NeurIPS 2023 Work-777
shop on Regulatable ML.778

Gemini Team, Rohan Anil, Sebastian Borgeaud,779
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,780
Radu Soricut, Johan Schalkwyk, Andrew M Dai,781
Anja Hauth, et al. 2023. Gemini: a family of782
highly capable multimodal models. arXiv preprint783
arXiv:2312.11805.784

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-785
bert, Amjad Almahairi, Yasmine Babaei, Nikolay786
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti787
Bhosale, et al. 2023. Llama 2: Open founda-788
tion and fine-tuned chat models. arXiv preprint789
arXiv:2307.09288.790

Ruibo Tu, Kun Zhang, Bo Bertilson, Hedvig Kjellstrom,791
and Cheng Zhang. 2019. Neuropathic pain diagnosis792
simulator for causal discovery algorithm evaluation.793
Advances in Neural Information Processing Systems,794
32.795

Matthew J Vowels, Necati Cihan Camgoz, and Richard796
Bowden. 2022. D’ya like dags? a survey on struc-797
ture learning and causal discovery. ACM Computing798
Surveys, 55(4):1–36.799

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten800
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,801
et al. 2022. Chain-of-thought prompting elicits rea-802
soning in large language models. Advances in Neural803
Information Processing Systems, 35:24824–24837.804
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A Appendix865

A.1 Question Collection of QRDATA866

We provide the number of questions collected from867

different sources in Table 6.868

Causal Discovery. We collect both pairwise869

causal discovery and full graph causal discovery870

questions from the Neuropathic pain diagnosis871

dataset following Kıcıman et al. (2023).872

We sample 50 causal relations like L1 radicu-873

lopathy → IBS from the gold causal graph, and874

generate pairwise causal discovery questions ask-875

ing models to predict the direction of the causal876

relation. The questions are in the form of Which877

cause-and-effect relationship is more likely? A. R878

L1 radiculopathy causes IBS B. IBS causes R L1879

radiculopathy.880

In full graph causal discovery, there are three881

possible relations between two variables A and B:882

A → B, B → A, and no causal relation exists. We883

sample 25 variable pairs that have causal relations884

in the causal graph and 25 variable pairs that do885

not have causal relations, and form 50 questions886

in the form of Which cause-and-effect relationship887

is more likely? A. headache causes groin pain B.888

groin pain causes headache C. No causal relation-889

ship exists.890

For the Flow cytometry and Arctic sea ice891

datasets, we only collect the more challenging full892

graph causal discovery questions. As the causal893

graph of Arctic sea ice contains double-sided edges,894

we ask models to predict from four possible choices895

like Which cause-and-effect relationship is more896

likely? A. Residual_cloud_cover causes Resid-897

ual_longwave B. Residual_longwave causes Resid-898

ual_cloud_cover C. The causal relation is double899

sided between Residual_cloud_cover and Resid-900

ual_longwave D. No causal relationship exists.901

Causal Estimation. We collect numerical ques-902

tions of estimating average treatment effect (ATE),903

average treatment effect on the treated (ATT), and904

average treatment effect on the control (ATC) from905

the IHDP dataset. As all the outcomes and coun-906

terfactual outcomes are simulated using real co-907

variates, we calculate the values of these estimates908

as the gold answers. In the Jobs dataset, all the909

treatments were from randomized experiments, so910

we can calculate the true ATT values. We collect911

questions of estimating ATT from the dataset.912

Source Question

OpenIntro Statistics 112
Quantitative Social Science 35
Causal Inference for the Brave and True 24
Flow Cytometry 50
IHDP 30
Jobs 10
Neuropathic Pain Diagnosis 100
Arctic Sea Ice 50
Overall 411

Table 6: Count of questions from different sources of
QRDATA.

A.2 Question Collection of QRTEXT 913

QRTEXT contains 290 questions in total, 140 mul- 914

tiple choice questions and 150 numerical questions. 915

We collect 100 statistical reasoning questions from 916

OpenIntro statistics, 94 causal reasoning questions 917

from CLADDER, and 96 causal reasoning questions 918

from CORR2CAUSE. Figure 4 exhibits an example 919

question of QRTEXT. 920

The OpenIntro statistics questions are collected 921

from exercises with solutions from the textbook. 922

CORR2CAUSE contains causal discovery questions 923

of determining the causal relationship between the 924

variables given correlational statements. We ran- 925

domly sample CORR2CAUSE questions from the 926

original test set. 927

CLADDER contains causal questions where the 928

conditions are described in natural language. It 929

classifies questions into three rungs: associational 930

(rung 1), interventional (rung 2), and counterfactual 931

(rung 3). We only consider questions of rungs 2 932

and 3 because these are related to causal reasoning. 933

We randomly sample causal estimation questions 934

querying Average Treatment Effect (ATE), Effect 935

of the Treatment on the Treated (ETT), Natural 936

Direct Effect (NDE), and Natural Indirect Effect 937

(NIE), and transform the original yes-or-no ques- 938

tions into numerical questions using the provided 939

metadata. This is to balance the ratio of multiple 940

choice questions and numerical questions, control- 941

ling the random performance to be close to QR- 942

DATA. 943

A.3 Prompt Design 944

Table 8 shows an example prompt for Chain-of- 945

Thought reasoning. In real prompts, we feed all the 946

content of the data sheets until it meets the length 947

limit of 3500 tokens. We shuffle the data to avoid 948

the bias towards values in the front. After Chain-of- 949

Thought reasoning, we use GPT-3.5 Turbo for an- 950
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Imagine a self-contained, hypothetical world with only the following conditions, and 
without any unmentioned factors or causal relationships: Obesity has a direct effect 
on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. 
Diabetes has a direct effect on lifespan. Smoking is unobserved.
For normal weight people, the probability of long lifespan is 66%. For obese people, 
the probability of long lifespan is 56%.

Data Description Question

What is the average treatment effect from obesity to 
lifespan? 
Please answer with a positive number if the effect is 
positive, a negative number otherwise, and round to 
the nearest hundredth.

Correct Reasoning Steps:

1. Build a causal model based on the data description

3. Derive the estimand of average causal effect

ATE = E[Y | do(T = 1)] - E[Y | do(T = 0)]
    = P(Y=1|T=1) - P(Y=1|T=0)

ATE = 0.66 – 0.56 = 0.10

Final Answer: 0.10

4. Solve the estimand 

T

D Y

S

T: Obesity
S: Smoking (unobserved)

No confounding variable for the causal relation from 
Obesity to Lifespan

2. Identify confounding variables

D: Diabetes
Y: Lifespan

Figure 4: An example question of QRTEXT and correct reasoning steps. The question is converted from CLADDER.

Failure Reason Percentage (%)

Data Analysis 34%
Knowledge Recall 44%
Equation Formulation 16%
Calculation 6%

Table 7: Error analysis of GPT-4 with the code inter-
preter assistant on QRDATA.

swer extraction, and the prompt template is shown951

in Table 9.952

Table 10 shows an example prompt for Program-953

of-Thoughts reasoning. We shuffle the data and954

provide the first ten lines in the prompt. An exam-955

ple prompt for ReAct-style reasoning is in Table 11,956

and an example prompt for code interpreter assis-957

tants is in Table 12. When the question is based on958

multiple data sheets, we demonstrate the rows of959

these data sheets respectively in the prompts.960

A.4 Implementation Details961

We conduct model inference with temperature 0962

and maximum new tokens 512. We limit the maxi-963

mum reasoning steps to 10 in ReAct-style prompt-964

ing. Experiments are conducted on NVIDIA A800965

GPUs. It takes five minutes to evaluate a 7B model966

on QRDATA with CoT/PoT prompting on a single967

GPU, and one hour to evaluate a 7B model with968

ReAct-style prompting.969

A.5 Case Study970

Table 13 demonstrates the full output of GPT-4971

on the example case from QRDATA, and Table 14972

demonstrates the full output of GPT-4 without ac-973

cess to the data.974

A.6 Error Analysis 975

To have a quantitative view of model failures, we 976

conduct an error analysis for the best-performed 977

model GPT-4 with the code interpreter assistant 978

on QRDATA. We randomly sample 50 incorrect 979

predicted instances, and annotate their main reason 980

for mis-prediction. As shown in Table 7, 34% of 981

the mis-predictions originate from data analysis. 982

The model may fail to retrieve the correct columns 983

according to the instruction of questions, or misin- 984

terpret the data values. 44% of the errors occur in 985

knowledge recall, like choosing a wrong hypoth- 986

esis test, or using statistical methods to address a 987

causal question. Even if the model recalls the cor- 988

rect knowledge to solve the question, it formulates 989

wrong equations in 16% of the cases. And 6% of 990

errors occur in calculation. This is also the main 991

reason for errors when humans conduct the task, 992

because state-of-the-art causal methods cannot per- 993

fectly reach the correct answer. 994
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Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
rosling_responses:
| | question | response | prob_random_correct |
| 0 | children_in_2100 | correct | 0.333333 |
| 1 | children_in_2100 | incorrect | 0.333333 |
| 2 | children_in_2100 | correct | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_in_2100 | incorrect | 0.333333 |
...
Task:
You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the
provided data. The description and the table are listed above. Please analyze the table to answer the question. Do not write
any code in your answer. Ensure that your final answer is positioned at the very end of your output, adhering to the format
‘Final answer: [answer]’. The final answer should be a number or a short phrase and should be written in a new line.
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
Let’s think step by step.

Table 8: Example prompt for Chain-of-Thought reasoning. In real prompts, we feed all the content of the data
sheets until it meets the length limit.

Extract the final answer from the given solution as a numeric value or a short phrase for the question. If you cannot extract an
answer, return "None".
You should either return "None" or the final answer without any additional words.
Question: {question}
Solution: {answer}
Final Answer:

Table 9: Prompt template for answer extraction after Chain-of-Thought reasoning. {question} is the question from
the benchmark, and {answer} is the answer generated by models.
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You are a data analyst and good at quantitative reasoning. You are required to respond to a quantitative question using the
provided data. The description and the question can be found below. Please analyze the first 10 rows of the table and write
python code to analyze the whole table. You can use any python library. The returned value of the program is supposed to be
the answer. The format of the code should be
```python
def solution():

# import libraries if needed
# load data
# write code to get the answer
# return answer

```
Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
First 10 rows of the data:
rosling_responses:
| | question | response | prob_random_correct |
| 0 | children_in_2100 | correct | 0.333333 |
| 1 | children_in_2100 | incorrect | 0.333333 |
| 2 | children_in_2100 | correct | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_in_2100 | incorrect | 0.333333 |
| 5 | children_in_2100 | incorrect | 0.333333 |
| 6 | children_in_2100 | correct | 0.333333 |
| 7 | children_in_2100 | incorrect | 0.333333 |
| 8 | children_in_2100 | incorrect | 0.333333 |
| 9 | children_in_2100 | incorrect | 0.333333 |
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.
Response:
```python

Table 10: Example prompt for Program-of-Thoughts reasoning.
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Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This data set rosling_responses.csv
contains sample responses for two survey questions posed by Hans Rosling during lectures to a wide array of college-educated
audiences.
You are working with a pandas dataframe in Python. The name of the dataframe is ‘df’.
You should use the tools below to answer the question posed of you:
python_repl_ast: A Python shell. Use this to execute python commands. Input should be a valid python command. When
using this tool, sometimes output is abbreviated - make sure it does not look abbreviated before using it in your answer.

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be python_repl_ast
Action Input: the input to the action, should be the code to execute
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question, just provide the answer WITHOUT any other words

Note that you should import the libraries if needed.
DO NOT create any plotting.
For all outputs in code, THE print() function MUST be called.
If you use Action in this step, stop after generating the Action Input and await the execution outcome from python_repl_ast.
If you output the Final Answer in this step, do not use Action.

Here is an example of using the python_repl_ast:
Action: python_repl_ast
Action Input:
import pandas as pd
print(df.head())

This is the result:
| | question | response | prob_random_correct |
| 0 | children_with_1_or_more_vaccination | correct | 0.333333 |
| 1 | children_with_1_or_more_vaccination | correct | 0.333333 |
| 2 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 3 | children_with_1_or_more_vaccination | incorrect | 0.333333 |
| 4 | children_with_1_or_more_vaccination | incorrect | 0.333333 |

Begin!
Question:
Can we reject the notion that the performance of college-educated adults was different than random guessing in the
children_with_1_or_more_vaccination question with 95% confidence? Please answer with “yes” or “no”.

Table 11: Example prompt for ReAct-style reasoning.
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Assistant Instruction You are a data analyst and good at quantitative reasoning. You are required to respond to a
quantitative question using the provided data. The description and the question can be found below.
Please just start answering and don’t ask me any questions. Put your output in one message. Ensure
that your final answer is positioned at the very end of your output, adhering to the format ’Final
answer: [answer]

User Data Description:
Public health has improved and evolved, but has the public’s knowledge changed with it? This
data set rosling_responses.csv contains sample responses for two survey questions posed by Hans
Rosling during lectures to a wide array of college-educated audiences.
Question:
Can we reject the notion that the performance of college-educated adults was different than random
guessing in the children_with_1_or_more_vaccination question with 95% confidence? Please
answer with “yes” or “no”.

Table 12: Example prompt for the code interpreter assistants.
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Data Description The neuropathic pain diagnosis mainly consists of symptom diagnosis, pattern diagnosis, and patho-
physiological diagnosis. The csv file Neuropathic_11.csv contains neuropathic pain diagnosis records
in the form of tables of which the row represents different patients and the column represents different
diagnostic labels.

Question Which cause-and-effect relationship is more likely?
A. R L5 radiculopathy causes L L1 radiculopathy B. L L1 radiculopathy causes R L5 radiculopathy
C. No causal relationship exists
Please answer with A, B, or C.

Gold Answer C
GPT-4 Prediction with Data Access
Step 1: import pandas as pd

Code Interpreter # Reading the dataset

file_path = ‘/mnt/data/Neuropathic_11.csv’

data = pd.read_csv(file_path)

# Display the first few records to understand the data structure

data.head()

Step 2: Let’s proceed with analyzing the relevant columns to identify if there are any cause-and-effect relation-
ships between the “R L5 radiculopathy” and “L L1 radiculopathy” conditions.
I will start by filtering these two columns from the dataset and then conducting an analysis to identify
the likelihood of either of the radiculopathies causing the other. I will examine the data for the following
patterns:
- If patients with “R L5 radiculopathy” also frequently have “L L1 radiculopathy” and not the other
way around, it may suggest that A is more likely.
- Conversely, if patients with “L L1 radiculopathy” also frequently have “R L5 radiculopathy” and not
the other way around, it may suggest that B is more likely.
- If there is no clear pattern or both conditions occur independently, it may suggest that C is more likely.
To do this analysis, I will compute conditional probabilities:
- P(L L1 | R L5)
- P(R L5 | L L1)
Then I will compare these probabilities to make an inference regarding the most likely cause-and-effect
relationship.

Step 3: # Extract the relevant columns

Code Interpreter R_L5_col = ‘R L5 radiculopathy’

L_L1_col = ‘L L1 radiculopathy’

# Filter the dataset for these two columns

radiculopathy_data = data_corrected[[R_L5_col, L_L1_col]]

# Calculate the occurrence of each condition and their co-occurrence

R_L5_count = radiculopathy_data[R_L5_col].sum()

L_L1_count = radiculopathy_data[L_L1_col].sum()

co_occurrence_count = radiculopathy_data[(radiculopathy_data[R_L5_col] == 1) &
(radiculopathy_data[L_L1_col] == 1)].shape[0]

# Calculate the conditional probabilities

# Probability of L L1 given R L5

P_L_L1_given_R_L5 = co_occurrence_count / R_L5_count if R_L5_count else 0

# Probability of R L5 given L L1

P_R_L5_given_L_L1 = co_occurrence_count / L_L1_count if L_L1_count else 0

P_L_L1_given_R_L5, P_R_L5_given_L_L1

Step 4: The conditional probabilities calculated are as follows:
- P(L L1 | R L5) ≈ 0.0075
- P(R L5 | L L1) ≈ 0.4122
These probabilities suggest that the occurrence of “L L1 radiculopathy” does not significantly increase
when “R L5 radiculopathy” is present, given that P(L L1 | R L5) is quite low. On the other hand, the
occurrence of “R L5 radiculopathy” is notably higher when “L L1 radiculopathy” is present, as P(R L5
| L L1) is much higher.
Therefore, based on these conditional probabilities, it is more likely that “L L1 radiculopathy” causes
‘R L5 radiculopathy” over the other proposed causal direction.
Final answer: B

Table 13: Full outputs of GPT-4 on the example case from QRDATA.
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GPT-4 Prediction without Data Access
Prediction To address which cause-and-effect relationship is more likely between ‘R L5 radiculopathy’ and ‘L L1

radiculopathy’, we would generally look for statistical relationships in the data that may imply causality.
Specifically, we would examine the frequency with which one condition appears before the other. If ‘R L5
radiculopathy’ generally appears before ‘L L1 radiculopathy’, it would lend support to the idea that A is more
likely. Conversely, if ‘L L1 radiculopathy’ appears before ‘R L5 radiculopathy’, we might lean towards B.
However, without access to the actual data, we can only reason based on general medical knowledge and
the understanding of how radiculopathy typically presents. Radiculopathy is a condition resulting from a
compressed nerve in the spine that can cause pain, numbness, or weakness in various parts of the body.
Typically, this condition is localized and not known to cause another radiculopathy on the opposite side and a
different vertebrae level of the body.
Given both ‘R L5’ and ‘L L1’ radiculopathies are on different sides of the body and different spinal levels, it’s
not common for one to cause the other according to standard medical understanding. It is more likely that they
occur independently due to separate causes.
However, unilateral radiculopathy doesn’t generally cause contralateral radiculopathy at a different spinal level.
This is because the nerve root compression that leads to radiculopathy is typically localized, and it would be
unusual for such an issue on one side of the spine to directly cause a similar issue on the opposite side at a
different level. Therefore, it’s likely that if both conditions are present in a patient, they arose independently or
due to a systemic issue affecting the spine broadly, rather than one causing the other.
Therefore, based on a qualitative argument and standard medical understanding, the answer is most likely that
there is no causal relationship between the two conditions, which corresponds to option C.
Final answer: C.

Table 14: Full outputs of GPT-4 on the example case from QRDATA when it does not have access to the data.
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