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ABSTRACT

Multivariate time series anomaly detection (MTAD) approaches predominantly
use performance enhancements that are not practical. E.g., a) point adjustment
(PA) technique is employed which uses ground truth to forcefully convert false
negatives to true positives and unrealistically inflates precision, and b) significant
data leakage is incurred when anomaly score threshold is determined using the
test data and test labels. This paper first presents real-world performance of exist-
ing MTAD techniques without PA and threshold learning (TL) on test data which
shows anomalies in real-world benchmarks result in significant distribution shift
between normal and anomalous data; and with PA and TL, even untrained deter-
ministic methods can perform on par or even beat baseline techniques. Next it
introduces six synthetic benchmarks based on real-world systems, where anoma-
lous data and normal data have statistically almost same distributions. It then
presents, sparse model identification enhanced anomaly detection (SPIE-AD), a
novel model recovery and conformance based zero-shot MTAD approach that out-
performs state-of-art MTAD on three real-world benchmarks without using PA
and TL on test data. Extensive peformance results show that SPIE-AD outper-
forms SOTA MTAD techniques on both standard and novel benchmarks.

1 INTRODUCTION

Time series anomaly detection is essential for a safe and effective operation of unmanned aerial
vehicles (UAV), autonomous cars (AC), and autonomous drug delivery (ADD) systems due to a
complex amalgamation of interacting perception, decision making and actuations. Such complex-
ity makes testing for “all possible” operational scenarios practically infeasible. Test cases ignored
during pre-deployment evaluation but that occur during deployment, called ”unknown unknowns”
(U2), are a major cause of accidents (Maity et al., 2023). U2 detection is a special case of zero-shot
anomaly (ZSA) detection, when anomaly data is unavailable during model training. We present
SPIE-AD, SParse model Identification Enhanced Anomaly Detection which continually mines un-
derlying sparse physical dynamics and checks its conformance with the original lab tested system.

U2s can potentially occur due to: a) hardware changes/failures, which may not be monitored, e.g.
mechanical failure in an aircraft resulting in an elevator getting stuck (F8Stuck) or moving slow
(F8Slow), b) unwanted software executions: which may not immediately affect the input/output
behaviour in anomalous ways, e.g. a change in the gravity parameter of a quadcoptor’s altitude con-
trol software (UAVSimG), and c) untested usage scenarios manifested as external inputs to the
system, which may not have a deviant measurement distribution parameter, e.g. an electromagnetic
attack on a sensor decreasing its fidelity (UAVEMA) or a phantom meal, where an user of a insulin de-
livery ADD announces a meal without ingesting any to trick it for a high insulin dose. As such, U2s
may not result in an out-of-distribution (OOD) input or output, rather in an OOD inter-relationship
among measured variables, necessciating a multi-variate time series analysis for the U2 detection.

Multi-variate time series anomaly detection (MTAD) is of recent research interest with a plethora of
techniques ranging from statistical regression methods e.g ARIMA (Schmidt et al., 2018), Kalman
filter (Huang et al., 2023), principal component analysis based techniques (Shyu et al., 2003), meth-
ods that use autoencoders (Borghesi et al., 2019), long short term memory (LSTM) based deep
learning (DL) techniques, transformers (Tuli et al., 2022) and most recently large language models
(LLMs) (Alnegheimish et al., 2024). The general technique (Figure 1 Panel A) has three steps: a)
training: that creates a high dimensional latent space representation of the normal operation us-
ing data that may or may not have anolmalies but do not have anomaly labels, b) validation, that
uses data with anomalies but without anomaly labels to learn a anomaly score threshold such that
two fairly separated clusters are found in the validation set using the peaks over threshold method
guided by the extreme value theory (Siffer et al., 2017), and c) evaluation, where anomaly score
of successive overlapping / non-overlapping windows of test data are computed and compared with
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Figure 1: Panel A: SOTA MTAD pipeline with the identified issues highlighted by dashed arrows
and boxes. Panel B: SPIE-AD’s approach for solving zero-shot MTAD problem.

the threshold to determine anomalous data. There are three major problems with the state-of-the-art
MTAD approach results in unrealistic performance on benchmark datasets:

SPIE-AD evaluation 
on benchmarks 
SMD, SMAP,  MSL 
[Xu et al.  ICLR’ 22]

Average F1 scores (F1) and precision (P) across three benchmark datasets 
for MTAD (Exhaustive metrics in Results Section)
Validation with data leak Validation without data leak
With point 
adjustment

Without point 
adjustment

With point 
adjustment

Without point 
adjustment

AT [ICLR’22] F1:90 ±2,P:98 ±3 F1:25 ±13,P:9±6 F1:0±0,P:0±0 F1:0 ±0,P:0±0
GNAF [ICLR’22] F1:74±4,P:75 ± 8 F1:33 ±9,P:38±8 F1:1.5 ± 2, P: 3 ± 2 F1:0.1±0,P:0.1±0
AnomalySimpleton F1:92±𝟒, P:91±6 F1:4±1,P:23±10 F1:0±0, P:0±0 F1:0±0,P: 0±0
SPIE-AD + SINDY* Not applicable Not applicable F1: 78±𝟏𝟐, P: 83±𝟕 F1:77±𝟗,𝐏:81±𝟔
SPIE-AD + LTCNN* Not applicable Not applicable F1:84±𝟏𝟏,P:85±𝟗 F1: 82±4,P: 85±𝟗

Snippet of Results (AT – Anomaly Transformer, GNAF – Graph Augmented Normalizing Flows)

Figure 2: Snippet of SPIE-AD performance for zero-shot
MTAD against recent MTAD works on benchmark datasets.

a) A1: Use of data leakage to
learn anomaly score threshold -
In state-of-the-art (SOTA) MTAD
techniques the validation set is same
as the test data (refer to line 196 to
200 in the data loader.py
code in https://
github.com/thuml/
Anomaly-Transformer).
This leads to potential data leakage
and overfitting of the model. It is
standard machine learning practice
to keep validation set separate from test data. By definition, no validation dataset with anomalies
are available for U2 or ZSA detection.

Technical difficulty in ZSA detection violating A1: To the best of our knowledge, there is only one
solution for zero-shot MTAD (Audibert et al., 2020). However, as identified by (Kim et al., 2022),
it has poor realistic performance. Solutions for univariate zero-shot anomaly detection including
techniques with LLMs (Alnegheimish et al., 2024) are available which as admitted by the authors are
very difficult to adapt to MTAD. The technical challenge is to detect anomalies with no knowledge
about anomalous data distribution, which preempts any discriminative feature learning methods.

b) A2: Unrealistic evaluation method- According to (Kim et al., 2022; Wu & Keogh, 2023),
the reported results in nearly all state-of-the-art MTAD techniques have point adjustment (PA) (Su
et al., 2019). This technique assumes that anomalies occur in contiguous segments, and if the MTAD
method detects one point in this segment as anomalous, then every point in that segment should be
considered as anomalous even if the MTAD method marks them as normal. The PA method inflates
the precision by a significant amount Wu & Keogh (2023) in nearly all MTAD methods as seen
in Figure 2), which shows the implementation of two most recent MTAD technique on benchmark
datasets (SMAP, SMD, MSL discussed in more detail in Evaluation section) with code available
from (Liu et al., 2024). These results are also supported by (Kim et al., 2022), which proposed an
alternate evaluation criteria PA%K, where PA is only employed if the original technique identifies
K% of time points in an anomaly segment as anomaly. K = 0 indicates application of PA in its
original form, while K = 100 indicates no PA.

Technical difficulty in ZSA detection violating A2: As highlighted in (Kim et al., 2022), in many
real-world datasets, anomaly injection and manual labelling may result in several anomaly data-
points to have similar distribution as normal data. So, if a MTAD method focuses only on latent
features of data, its at inherent disadvantage in detecting anomalies.
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c) A3: Sensor data distribution shift due to anomaly: U2 is a special case of anomaly, where there
may not be a difference in the distribution parameters of the sensor outputs. Consider the example
U2 scenario of wrongful Maneuvering characteristics augmentation system (MCAS) trigger in the
fateful flight of Lion Air (Curran et al., 2024). MCAS was designed to mask the flight characteristics
changes that would have occurred on newer Boeing Max 8 aircrafts (Herkert et al., 2020). This
implies that if MCAS is wrongfully triggered then by design it attempts to make the distribution
parameters of the flight characteristics similar to a normal flight. Figure 3 shows the data distribution
of all sensors for anomalies and normal data in benchmark MTAD datasets in Panel A and for U2
and normal scenarios in Panel B. The Kolmogorov-Smirnov (KS) hypothesis test (KS, 2008) is used
to compute the normalized maximum difference in cumulative distribution function (CDF) between
normal and anomalous/U2 data (H = 1 implies the two distributions are statistically different with
(1−P ) probability. Higher value of the CDF difference implies more deviant distribution). It’s seen
while in benchmark datasets anomalous and normal data have significantly different distributions,
in our U2 datasets, distribution differences between U2 and normal data are insignificant.
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Figure 3: Panel A: Normal versus anomalous data distribu-
tion difference in benchmark datasets for evaluating MTAD
methods, Panel B: U2 datasets have negligible distribution
difference with normal. Panel C: significant distribution dif-
ference in parameters of U2 versus normal data in the under-
lying sparse model space.

Technical difficulty in ZSA detec-
tion violating A3: A3’s violation im-
plies the raw sensor data may not
have latent information to discrimi-
nate between normal and U2 classes.
So, any data-driven feature based
method e.g. existing MTAD meth-
ods may not be useful. While the
sensor data distributions may not be
discriminative, there maybe a change
in functional relationship among the
sensors. Panel C shows the un-
derlying nonlinear dynamical model
mined from U2 and normal data us-
ing SINDY-MPC (Kaiser et al., 2018)
has significantly different distribution
parameters. ZSA detection could uti-
lize modeling and monitoring of vari-
ations in such inter-relationships.

Main Technical Contribution: We
present SPIE-AD, that detects U2 by
solving the general problem of zero-
shot MTAD while violating the as-
sumptions A1, A2 and A3 of SOTA
MTAD methods. The backbone of
SPIE-AD are the two fundamental
theoretical contributions of this pa-
per: a) robust sparse non-linear dy-
namical model recovery from real-
world multi-variate data using neural
architectures with automated differ-
entiation (AD) and b) statistical con-
formance based model robustness
interval extraction (CRIE) method
that can identify statistically relevant
difference in recovered models. Uti-
lizing these, SPIE-AD implements
the following ZSA detection pipeline
(Pane B in Figure 1): a) training
phase: where SPIE-AD mines sev-
eral models from training data snip-
pets and determines a model robust-
ness metric using difference between two models quantified with standard distance measures, b)
validation phase: it uses part of the training data in the CRIE algorithm to determine a robustness
interval, and c) evaluation phase: it continually mines models from test data, computes robustness
and compares with robustness interval to determine anomalies.

Benchmark Contribution: We introduce six synthetic benchmarks derived from commonly occur-
ring U2 scenarios in three different types of real-world systems including quadcoptor, F8 cruiser,

3
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and automated insulin delivery (AID). The hallmark of these benchmarks is that there is statistically
insignificant distribution shift between the anomalous and normal data in each time series.

Evaluation Contribution: We first show that if we use point adjustment (K = 0) and allow for
data leakage to obtain the optimal threshold for anomaly score, then it is possible to develop an
untrained simpleton machine (AnomalySimpleton in Figure 2) that can beat state of art MTAD
techniques. While this was also argued in (Kim et al., 2022), we propose a deterministic algorithm
that gives consistent performance across the benchmark datasets used in baseline MTAD techniques.
We evaluate recently proposed MTAD techniques along with SPIE-AD under realistic scenarios
where the precision is not augmented with PA (i.e. K = 100) and anomaly signatures in the form of
validation set is not available for threshold learning. All code and datasets available in supplement.

2 METHODOLOGY AND THEORETICAL FOUNDATIONS

Problem Definition: We consider n sensors each with time series Xi for sensor i forming a vector
X(t) over time where t ∈ 0 . . . N/µ, where µ is the sampling frequency. The dataset consists of
three sets: a) training set Xtrain, where no anomaly labels are available, b) Xtest, where there
is a mix of anomalous and normal data and a corresponding label set y(t), where y(t) = 1 if the
time point t in the test data is anomalous or y(t) = 0 if normal. The zero-shot anomaly detection
problem is to use Xtrain to learn a machine that can provide ỹ(t) which is an accurately estimate
of y(t) for the test set Xtest without using any part of the test set Xtest during model training.

Method: The main hypothesis of SPIE-AD is that input / output time-series data from autonomous
systems must satisfy physical/chemical/mechanical/physiological properties of the real world sys-
tem. Such properties are typically expressed using sparse non-linear dynamical systems:

Ẋ(t) = f(X(t), ω, t), (1)

where X(t) is the multivariate timeseries of dimension n × 1, n is the total number of variables,
available at N number of time steps at sampling frequency µ, ω is the set of p model coefficients
that defines the sparse model. An n-dimensional model with M th order non-linearity can utilize(M+n

n

) non-linear terms. A sparse model only includes a few non-linear terms p << (M+n
n

).
2.1 ROBUST SPARSE DYNAMICAL MODEL RECOVERY
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Figure 4: Robust model recovery technique where
SINDY-MPC is used to initialize the model coef-
ficients and the sparsity is used to configure the
dense layer of the learning network. The LTC-NN
architecture then refines the model coefficients by
optimizing model recovery error under measure-
ment noise and preventing model divergence.

GivenN time sequenced measurement ofX(t),
sparse model recovery (SMR) aims to recover
the coefficient ω such that the reconstructed
measurements Y (t) by solving the ordinary dif-
ferential equation (ODE) in Equation 1 satisfies
an error threshold ϵ, i.e.,

N∑
t=1

||Y (t) − X(t)||2 < ϵ.

SMR is a well-researched problem with solu-
tions ranging from L2 minimization techniques
with sparse regression (SINDY-MPC) (Kaiser
et al., 2018) to physics informed neural net-
works (PINN) (Chen et al., 2021). It is gener-
ally acknowledged that SOTA MR techniques
suffer significant performance degradation on
data from real world systems (O’Brien et al.,
2023). This implies that with low sampling fre-
quency and high noise (low signal to noise ra-
tio), the model coefficients ωi and ωj derived from two consecutive segments [i, i+k], and [j, j+k]
of X(t), with window size k has significant variance. This is problematic for SPIE-AD since it will
be difficult to distinguish between noise and real U2 scenarios and will hamper the false positives.
SPIE-AD needs model recovery that is robust to measurement noise under low sampling rates.

To address robustness, SPIE-AD integrates SINDY-MPC with neural networks with automated dif-
ferentiation, specifically liquid time constant neural networks (LTC-NN) as shown in Figure 4.
Given a segment with k samples, the SINDY-MPC technique is used to first recover a sparse model
coefficient estimate ω(0). The same data segment is passed through a fully connected network of V
LTC-NN cells. This is done in batches of SB . The output of the LTC-NN nodes are then fed to a
dense linear layer with (M+n

n

) nodes with RELU activation function. The sparsity of ω(0), i.e. which
elements of (M+n

n

) is ”0” is used to dropout nodes of the dense layer and the value of the elements of
ω(0) is used to constrain the dense layer outputs. A simple threshold based technique is used where
the output of the ith dense layer node can only range between [(1− ψ)ωi, (1 + ψ)ωi], ψ is a hyper-
parameter. The weighted dense layer output is the refined estimate ωest of the model coefficients

4
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and is fed to an ODE45 solver (Shampine et al., 2003) that reconstructs the signal Y . The loss is
the mean square error between X and Y summed over dimensions and time steps. Here, we show
the direct effect of using this robust model recovery method on ZSA detection. In supplementary
document Table S1, we specifically evaluate the robustness of the models recovered by LTC-NN
approach on standard SMR benchmarks in (Kaheman et al., 2020; Kaiser et al., 2018).

2.2 CONFORMAL INFERENCE FOR MODEL DEVIATION

Conformal inference (Krichen & Tripakis, 2004) is used to identify whether a new model generated
from a window [i, i + k] from validation data ωv is in the distribution of the set of models learned
during training Ω measured using a robustness metric ρ in Equation 2.

ρ(ω
v
,Ω) = (

|Ω|∑
i=1

Ω
T
i ω

v
)/|Ω|, (2)

where |Ω| is the number of elements in the set Ω and ΩT
i denotes transpose of an element in Ω.

Let us consider that the training data has W windows of size k each,
X1(1 . . . k), X2(1 . . . k), . . . XW (1 . . . k). Also lets assume that each window is i.i.d in Rn × Rk

drawn from a distribution DX . The SMR mechanism L is used to derive coefficients ωi ∈ Rp from
each Xi such that reconstruction error is less than ϵ. We use the same L(., .) to derive ωv

m+1 for
Xm+1, Ym+1 in validation data with no assumption on the DXY , hence no anomaly is required in
validation set. Given the robustness function ρ(., .) in Equation 2, conformal inference creates a
prediction band C ⊂ R2 based on (X1, Y1), (X2, Y2), . . . (Xm, Ym) for a given α ∈ {0, 1}, also
called the miscoverage level, such that

P (ρ(ω
v
m+1) ∈ C) ≥ 1 − α, (3)

Split conformal prediction (Tibshirani et al., 2019) was proposed to construct prediction intervals
that satisfy properties such as Eqn. 3. The prediction process can be encoded in Algorithm 1 CRIE,
which takes the i.i.d training data (X1, Y1) . . . (Xm, Ym), miscoverage level α and the SMR method
L to provide the prediction interval. The basic method is to divide the training set into two mutually
exclusive subsets IT for training and IV for validation. The SMR method L is used to derive ωi
for the segments (Xi, Yi) ∈ IT and form the set Ω. For each ωi ∈ Ω, ρ(ωi,Ω/ωi

) is computed,
where Ω/ωi

denotes the set Ω with ωi removed. Let σ = avgi(ρ(ωi,Ω/ωi
)) be the mean value of

the robustness metric in the training set.
Algorithm 1 CRIE({Xi}Ni=1,α,ρ(., .),L)
1: input Data {Xi}N

i=1, miscoverage level α, robustness function ρ,
SMR function L

2: output Confidence range d
3: Split {1, . . . , N} into two equal sized subsets IT and IV .
4: ωi = L((Xi) : i ∈ IT )

5: ωv
j = L((Xj) : j ∈ IV )

6: Average robustness σ = avg(ρ(ωi,Ω/ωi
))

7: For each ωv
j compute residual Rj = ρ(ωv

j ,Ω) − σ

8: return d = the kth smallest value in {Rj : j ∈ IV }, where
k = ⌈(|IV |/2 + 1)(1 − α)⌉

From the validation set, ωv
j is derived for

(Xj , Yj) ∈ IV . The residual ρ(ωv
j ,Ω) − σ

is derived for every element in IV , the resid-
ual is arranged in ascending order. The al-
gorithm then finds the residual at the position
⌈(|IV |/2 + 1)(1 − α)⌉. This residual is used
as the prediction range d. Theorem 2.1 in Lei
et al. (2018) proves that the prediction interval
at a new point (Xm+1, Ym+1) is given by L and
satisfies the Theorem 1.

Theorem 1 If Ω is a set of coefficients s.t. L(Xi, ωi) and Xi satisfy error margin ϵ, then for a new
ωv
m+1, (Xm+1, Ym+1) and a d from Algorithm 1, P (ρ(ωv

m+1,Ω) ∈ [σ − d, σ + d]) ≥ 1− α.

2.3 ZSA DETECTION ALGORITHM

Utilizing Theorem 1 and the CRIE algorithm, we derived a robustness range depending on the
robustness metric that encodes the normal behavior of the autonomous system if training data is
U2 free. Our ZSA detection mechanism in Algorithm 2 simply takes windows of test data, uses
the SMR technique to learn the model coefficients ωi, computes the robustness using Equation 2,
computes residual, and compares with the range given in Theorem 1.

2.4 WHY THIS WORKS?

How SPIE-AD addresses A1? The robust model learning mechanism captures variable inter-
relationships rather than individual sensor data characteristics. The CRIE algorithm then learns
a tight range within which the robustness evaluation of the inter-relationship should fall for normal
operation. Thus any deviation of inter-relationship beyond this range can be categorized as U2.
Hence, SPIE-AD does not need a validation set with anomalies.
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Algorithm 2 ZSADetect({Xi}Wi=1,ρ(., .),L,σ,d,Ω)
1: input Test data {Xi}W

i=1 with U2, robustness function ρ, SMR function
L, mean robustness σ, interval d from CRIE algorithm, and Ω set of all
coefficients recoverd from training set.

2: output U2 label
3: ωi = L((Xi) : i ∈ 1 . . .W )

4: Compute residual Ri = ρ(ωi,Ω) − σ

5: if Ri ∈ [σ − d, σ + d] then
6: mark all samples in the window Xi as 0 (not U2)
7: else
8: mark all samples in the window Xi as 1 (U2)
9: end if
10: return U2 labels

How SPIE-AD addresses A2? Un-
like SOTA MTAD, SPIE-AD extracts low
dimensional representation of the data
which essentially reduces entropy, making
it easier to model normal scenarios. U2
scenario lead to exaggerated model devi-
ation since the inter-relationship between
variables become inconsistent. Hence, as
seen in Table 3, SPIE-AD can achieve bet-
ter overall precision without PA.

How SPIE-AD addresses A3? By learn-
ing an underlying model, SPIE-AD can exploit significant distribution differences in model space of
U2 scenarios (Figure 3).

2.5 COMPUTATIONAL COMPLEXITY

There are two model recovery cores of SPIE-AD: SINDY-MPC and LTC-NN. SINDY-MPC uses the
sequential threshold ridge regression (STRidge) (Kaiser et al., 2018) strategy. The computational
complexity of Ridge regression in the worst case is O(Nn2), where N is the number of samples and
n is the dimension of the multivariate signal if the number of regularization parameters is less than
N (Wang & Pilanci, 2023), which is the case in the example of anomaly detection. The sequential
threshold runs Ridge regression multiple times until a desired reconstruction accuracy is obtained.
If we fix a maximum Q number of times that the sequential threshold can run then the overall
computational complexity of SINDY-MPC is O(QNn2).

For the LTC-NN architecture, the computation complexity of forward pass is O(V +V (|Θ|+ q))+
O(|X|N), where N is the number of samples in the data, V , q, Θ, X are as in Figure 4. Complexity
of backward pass is O(V PLTCN +V (|Θ|+q)PdenseN), where PLTC is the number of parameters
in the LTC cell, and Pdense is the number of parameters in each neuron of the dense layer. SINDY-
MPC on a single CPU thread was 11.3 (± 2.1) times faster than the neural architecture on GPU. The
overall computational complexity is O((N/W )QNn2) for SPIE-ADS and O((N/W )V PLTCN +
V (|Θ|+ q)PdenseN) , where W is the window size of CRIE.

Table 1: Related works in MTAD. Italicized text are the baselines.
Works MTAD Zero shot Violates A1 Violates A2 Violates A3

Pure statistical approaches
Extended Kalman Filter (Huang et al., 2023) No Yes Yes Yes No
Principle Component Analysis (Shyu et al., 2003) Yes No No No No

Time series analysis methods
Time frequency anomaly detection (Zhang et al., 2022) Yes No No No No
Frequency Interpolation Time Series (Xu et al., 2024) Yes No No No No

Statistical Machine Learning approaches
K nearest neighbor (Wang et al., 2020) Yes No No No No
Isolation Forest (Liu et al., 2008) Yes No No No No
Light weight online anomaly detection (Pevný, 2016) Yes No No No No

Deep learning models
OmniANomaly (Su et al., 2019) Yes No No No No
Anomaly transformers (Xu et al., 2022) Yes No No No No
Graph attention networks (Zhou et al., 2020) Yes No No No No
LSTM (Hundman et al., 2018) Yes No No No No
Graph augmented normalized flows (Zhao et al., 2022) Yes No No No No
One size fits all (Zhou et al., 2023) Yes No No No No

Zero shot MTAD approaches
Usupervised anomaly detection (Audibert et al., 2020) Yes Yes Yes No No
CLIP zero shot image recognition (Pratt et al., 2023) No Yes Yes Yes No
LLM Anomaly detection (Alnegheimish et al., 2024) No Yes Yes Yes No
SPIE-AD Yes Yes Yes Yes Yes

3 RELATED WORK

Development of anomaly detection techniques (Table 1) has a rich history starting from univariate
anomaly detection in time series with initial works employing Kalman Filter (Huang et al., 2023)
and principle component analysis (PCA) (Shyu et al., 2003). While Extended Kalman Filter based
techniques have been proposed for mode identification with multi-variate data (de Bézenac et al.,
2020), they have not been used for MTAD. On the other hand, PCA has been used for MTAD but not
zero shot. The next generation MTAD techniques used statistical learning methods such as K near-
est neighbors (Wang et al., 2020) or Isolation Forest (iForest) (Liu et al., 2008) mechanisms or light
weight online anomaly detector (LODA) (Pevný, 2016). Such techniques are not tested for zero shot
MTAD and also had poorer overall performance on real world data (Liu et al., 2024). Recent works
have also utilized time series analysis methods such as time frequency domain approaches (Zhang
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Table 2: Benchmark datasets.
Dataset Dim Total samples (Train/Test) U2 / Anomaly % Real world / Synthetic
UAV electromagnetic attack (UAV EMA) 3 240K/242K 29.75% Synthetic
UAV simulated g change (UAV SimG) 3 240K / 274 K 11.7% Synthetic
F8 cruiser stuck elevator (F8Stuck) 4 877K/237K 9.2% Synthetic
F8 cruiser slow elevator (F8Slow) 4 877K / 843 K 1.4% Synthetic
AID phantom meal (AIDPhantom) 4 260K/240K 12% Synthetic
AID cartridge error (AIDCartridge) 4 260K / 302 K 11.5% Synthetic
Server Machine Dataset (SMD) 38 708K / 708K 4.16% Real world
Soil Moisture Active Passive Satellite (SMAP) 25 135 K / 427 K 13.13% Real World
Mars Science Lab Rover (MSL) 55 58 K / 73 K 10.7% Real World
UCR anomaly detection dataset 1 5302K / 13846K 0.4% 250 Real World

et al., 2022) or frequency interpolation methods (Xu et al., 2024) to perform MTAD. The current
generation of MTAD techniques uses DL and include use of LSTM (Hundman et al., 2018), varia-
tional autoencoders (OmniAnomaly) (Su et al., 2019), anomaly transformers (AT) (Xu et al., 2022),
graph augmented normalized flows (GNAF) (Zhao et al., 2022), and Graph Attention Networks
(GAT) (Zhou et al., 2020) or even language model based one size fits all (OFA) approach (Zhou
et al., 2023). These MTAD techniques however use the workflow described in Figure 1 and do not
achieve zero shot MTAD. While zero shot anomaly detection has been explored in the image domain
using large vision models such as CLIP (Pratt et al., 2023) such methods are not directly applica-
ble to zero shot MTAD. We are aware of two works, i) unsupervised anomaly detection (USAD)
that performs zero shot MTAD (Audibert et al., 2020) using autoencoders, and ii) and one that uses
large language models (LLMs) to perform zero shot anomaly detection in univariate timeseries (Al-
negheimish et al., 2024). The USAD technique still reports anomaly detection accuracy with point
adjustment and relies on difference in sensor data distribution between normal and anomalous class
hence still does not violate A2 and A3.

4 EVALUATION

We perform three types of evaluation: a) effects of using test set as validation set (A1) and PA (A2)
on anomaly detection performance. We show that an untrained statistical method can beat SOTA
learning based systems with A1 and A2.

b) performance comparison of SPIE-AD and SOTA baselines under violation of A1 and A2 on U2
benchmarks that have no distribution shift between anomaly and normal data (violates A3).

c) performance comparison of SPIE-AD and SOTA baselines on real world univariate and multivari-
ate datasets. We use the large univariate UCR dataset to perform a statistically robust evaluation of
sensitivity of SPIE-AD on window size W .

AnomalySimpleton: We propose an untrained deterministic thresholding algorithm that exploits
PA and test data distribution i.e. data leakage to provide anomaly detection performance on par with
state-of-the-art learning techniques. In this method, a specific windowW of data is selected from the
train data. Statistical properties of the train data windowW such as mean ψtrain, standard deviation
σtrain, and skewness κtrain is computed. For each test data window of lengthW , the same statistics
are computed. If the deviation of the test statistics is more than P% of the train statistics, then the
test data window is classified as anomalous else it is not anomalous. The window W and the test
statistics P is used to obtain two maximally separated clusters in the test data. This is done through
brute force search over several W and P options. For each benchmark real world data this window
and threshold seach is performed from scratch.

4.1 BENCHMARKS

We used 9 datasets to evaluate SPIE-AD, out of which 6 are synthetic U2 dataset while 3 are real
world anomaly datasets. U2 datasets are synthetic due to the rarity of real world U2 data and the
associated confidentiality hurdles. While the synthetics datasets highlights the efficacy of SPIE-AD
in ZSA detection while violating A1, A2, and A3, the real world anomaly datasets show the general
applicability of SPIE-AD as a zero shot MTAD technique.

F8 Cruiser: This is an aircraft pitch control system using a model predictive control for trajectory
tracking. The U2 scenario is a hardware failure where the elevator gets jammed and maintains a
constant position despite the controller providing it varying inputs (F8Stuck). Another U2 scenario
is the elevator responds slower than usual with low maximum angular velocity (F8Slow).

UAV Altitude control: This is a quadcoptor, whose altitude is controlled by four proportional inte-
grative and derivative (PID) controllers. These controllers provide balanced thrusts in each propeller
so that the UAV maintains a given height. The first U2 is a software attack that changes the gravity
parameter g in the controller software (UAV SimG). The second U2 scenario is an electromagnetic
attack on the UAV gyroscope sensor (UAV EMA).
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Automated insulin delivery system: This is an hybrid close loop autonomous system that decides on
insulin delivery for an individual with Type 1 Diabetes. It works autonomously for the most part,
but requires human intervention with extra insulin delivery to manage meal intake. One of the ways
to trick the system to deliver a high dosage of insulin is to announce to the system that a large meal
has been ingested without actually consuming the meal. This is called phantom meal and is the first
U2 scenario in this domain (AIDPhantom). In the second scenario, the human participants poorly
installs the insulin cartridge resulting in insulin occlusion or blockage. The block causes insulin
build up since the AID system cannot monitor the cartridge error and finally it gives way and injects
an overdose of insulin AIDCartridge.

Our U2 benchmarks cover the three categories of U2 scenarios discussed in the Introduction section.
The F8Stuck, F8Slow, and AIDCartridge are caused by hardware failure, the UAV SimG and
UAV EMA are software failures, and the AIDPhantom is an example of U2 arising from human
interaction with autonomous systems.

In all the U2 examples, U2 scenarios are generated by selecting random times at which the U2 event
is activated, with the duration of U2 activation also sampled from a random distribution.

Real world datasets: We use two types of real world databases: a) standard datasets available in (Su
et al., 2019) and summarized in Table 2, and b) UCR database, a large set of 250 real world anomaly
datasets available in (Wu & Keogh, 2022). Detailed dataset description is in supplement.

Baseline Techniques: We compare SPIE-AD with several deep learning based techniques that
follow the well established pipeline for anomaly detection as introduced in (Su et al., 2019). In
addition, we also compare our technique to the only other zero shot MTAD approach available in
recent literature. All baseline techniques are highlighted in italics in Table 1.

4.2 IMPLEMENTATION

SPIE-AD implementation: We implemented two variations of SPIE-AD: a) SPIE-ADS, where
the model recovery part is solely SINDY-MPC, and b) SPIE-ADL, where the model recovery part
is SINDY-MPC augmented with the LTC-NN neural architecture with AD. For the SINDY-MPC
implementation we used the code from (Kaiser et al., 2018). For the LTC-NN neural architecture,
we updated the base code available in (Hasani, 2024). The CRIE and ZSA detection algorithms
were developed in house using Matlab 2022b. All code is available in supplementary document.

Hyper-parameter optimization: As highlighted in Figure 1, there is a hyper-parameter optimization
step in SPIE-AD during the training process. The hyper-parameters include: a) miscoverage level
α that determines the robustness interval width d, b) the polynomial order of SMR technique, c)
the sparsity level of the model, and the window size k. These parameters were determined only
using the training data with the objective to include atleast r > 80% points of the training dataset
within the robustness interval while minimizing d. The hyper-parameter optimization approach was
brute-force and performed for each application, but remained same for different U2s.

Baseline Implementation: We used the MTAD tools and pipeline established in (Liu et al., 2024)
for baseline implementations. In all baseline implementations except USAD, we observed that re-
moving labels from validation set reduced the precision and recall to near zero. Indicating that a
pure zero-shot MTAD implementation with baselines is not possible without significantly altering
the methods. Hence, in our comparison all baselines were non zero-shot MTAD except for USAD
and SPIE-AD. For all implemented techniques we show two cases with and without PA.

Evaluation metrics: We use standard metrics: Precision (Pr), Recall (Re), and F1 score (Liu et al.,
2024). For the univariate real-world UCR database, the event-based AD accuracy is used as in
Timeseriesbench (Si et al., 2024). If the detected anomaly sample is in ± 100 samples of the anomaly
start point, accuracy is 1, else 0. Plus we show execution times of all methods for real world datasets.

5 RESULTS

We first show the inefficacy of the evaluation strategy used in state of the art MTAD techniques.
We then evaluate the performance of SPIE-AD and compare with baseline on U2 benchmarks. We
then compare SPIE-AD performance on real datasets. Here we also perform two ablation studies:
a) removing point adjustment, and b) removing acess to validation datasets with anomalies.

5.1 ANOMALYSIMPLETON PERFORMANCE AND LESSONS LEARNED

Table 4 shows AnomalySimpleton could utilize PA and data leakage to beat GANF (Zhao et al.,
2022) and USAD (Audibert et al., 2020) baselines on all real benchmark datasets and was on par with
Anomaly Transformers (Xu et al., 2022). However, when PA was eliminated, its F1 score drastically
dropped. Moreover, if data leakage was disabled, then its F1 score became 0. This shows a worse
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Table 3: Comparison of SPIE-AD against baseline techniques for U2 benchmark examples. SPIE-
ADS uses SINDY-MPC for SMR, while SPIE-ADL uses the LTC-NN architecture for SMR. +

denotes with point adjustment (PA) and absence of + is without PA.
Approach F8Stuck F8Slow UAV SimG UAV EMA AIDPhantom AIDCartridge

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1
OmniAnomaly+ 91.2 72.7 80.9 88.4 71.1 78.8 92 77.1 83.9 90 67.3 77.0 94 76.1 84.1 97 59.7 74
OmniAnomaly 41 26.8 32.4 65 28.1 39.2 32 19.7 24.4 29 16.8 21.3 19.1 16.5 17.7 65 31.9 43
AT+ 100 78.6 88 100 58.7 74.1 100 59.2 74.2 90 56.1 69.1 91 56.3 69.7 100 59.2 74
AT 85.5 75.8 80.3 34.2 32.8 33.5 35 33.5 34.2 33.9 32.4 33 34 32 33 34.3 33.8 34
iForest+ 100 78.6 88 100 47.5 64.4 100 50.8 67.6 88.5 46.2 60.7 98.6 45.9 62.6 91.2 42.1 57.6
iForest 14 33 19.6 9.8 8.2 8.9 10.6 8.5 9.4 8.6 7.6 8.1 9.5 8.1 8.7 9.5 7.9 8.6
LODA+ 100 72.6 84 100 20.7 34.3 96.9 18.5 31 88.5 14.9 25.5 95.8 16.8 28.6 99.2 17.2 29.4
LODA 88 70 78 60.7 13.7 22.4 50.7 11 18 35 8.6 13.8 35.8 9.4 14.9 36.4 9.7 15.3
LSTM+ 100 88 93 100 47.8 64.7 91.8 20.2 33.2 100 21.2 35 99.9 20.3 33.8 96 18.6 31
LSTM 77 85 80 61 35.8 45.2 59.4 13.2 21.6 60.8 14.2 23 58.6 12.6 20.7 54.7 12.1 19.9
USAD+ 100 72.1 83.8 100 23 37.4 92.6 21.8 35.3 90.3 21.6 34.9 94.6 25.2 39.8 97.1 28.6 44
USAD 81 67.7 74 55.3 14.2 22.6 51.2 12.3 19.8 49.2 12.1 19.4 52.6 12.1 19.7 58 8.8 15.2
GANF+ 100 86 92.5 100 58 73 100 92.2 96 100 97 98.5 96.7 61.5 75 92.8 56.1 70
GANF 61 79 68.8 3.2 4.3 3.7 51.4 85 64.3 0.9 24.7 1.8 3.2 4.5 3.8 2.1 2.7 2.4
GAT+ 100 85.2 92 100 47.2 64.1 99.2 48.3 65 86.4 44.6 58.8 92.8 48.1 63.4 99 49 65.6
GAT 71.4 80.5 75.7 58.9 34.5 43.5 59.2 32.3 41.8 50.4 28 36 54.5 28.9 37.8 57.2 30.3 39.7
OFA+ 82.1 87.5 84.7 65.9 43.2 52.2 66.2 72.3 69.1 70.4 68 69.2 74.5 77.1 75.8 81.3 87.4 84.2
OFA 21.4 4.5 7.4 21.9 9.7 13.4 37.5 22.1 27.2 20.3 8.5 12 31.3 18.3 23.1 21.7 10.1 13.8
FITS+ 91.4 70.5 79.6 81.3 74.2 77.6 81.9 82.3 82.1 80.1 76 78 74.3 88.1 80.6 97.2 70.1 81.5
FITS 21.4 8.6 12.3 48.1 14.3 22.05 17.3 21.9 19.3 80.4 2.4 4.7 24.5 18.4 21.0 14.7 40.1 21.5
TFAD+ 82.1 77.4 79.7 78.2 84.3 81.1 91.9 82.3 86.8 80.4 88 84.0 71.5 78.9 75.0 87.2 80.3 83.6
TFAD 11.2 30.4 16.4 9.8 21.7 13.5 29.5 12.4 17.5 21.9 8.7 12.4 14.7 31.8 19.9 17.7 21.4 19.4
SPIE-ADS+ 87.3 100 93.2 54.8 100 71 82 100 90.1 91.1 100 95.4 94 98.1 96 95.3 93 94.1
SPIE-ADS 86.7 94.5 90.4 51 85 66 82 99.9 90.1 91.1 100 95.4 91 96 93.4 92 85 88.4
SPIE-ADL+ 88.9 100 94 55.1 100 73 91 100 95.3 93.2 100 96.5 94.1 99 96 95 94 94.1
SPIE-ADL 88.7 95.1 92 58 93 70 89 99.9 94.2 93.2 100 96.5 92.1 99 95.4 91 92 91.5

case machine with very poor realistic performance can result in a very good anomaly detection
method through the usage of point adjustment and threshold learning using test data. Through this
misadventure, we have learned the following lessons:

Lesson 1: anomaly detection works should show results for both with / without PA or use metrics
such as PA%K as proposed in (Kim et al., 2022).

Lesson 2: anomaly detection works should explicitly address data leakage issue by either obtaining
validation data from train set or ensuring that validation set and test set are mutually exclusive.

5.2 ZSA DETECTION PERFORMANCE EVALUATION

Table 3 shows that SPIE-ADS outperforms SOTA on the F1 score for the case without PA - implying
it has better precision and recall and does not need PA. Methods such as anomaly transformers (AT)
do outperform SPIE-AD in F1 metric with PA - implying SPIE-AD does miss some legitimate
events as evidenced by the slightly higher recall. Interestingly, among the DL methods, AT has the
highest difference between F1 scores with and without PA. However, AT has the highest F1 score
for F8Slow. This entails that while anomaly trasnformer is good at detecting U2, albeit very late.
Further, SPIE-AD also outperforms the only other zero-shot MTAD methods USAD. USAD also has
a significant difference in metrics with/without PA (A2). SPIE-AD requires no such assumptions.

Another inference is that for nearly all cases SPIE-ADL consistently outperforms SPIE-ADS,
showing the robustness improvement property of the LTC-NN approach in Figure 4. However, the
difference is much lower and given that LTC-NN architecture is much more complex than SINDY-
MPC, one may wonder why it’s necessary. A point is that all these benchmarks are synthetic; hence
are much less noisy reducing its need. However, the need for LTC-NN is illustrated in real data.

5.3 REAL WORLD ANOMALY DETECTION PERFORMANCE

Multi-variate: Table 4 shows the performance of SPIE-AD on real datasets and compares it to
recent DL based MTADs and unsupervised methods. In real data, SPIE-AD outperforms SOTA on
F1 score without PA. As expected on real data, we see the largest benefit of using the LTC-NN.

Univariate: Maximum event-wise AD accuracy of SPIE-ADS was 75.6% on UCR (n = 250)
database. Compared to the leaderboard in Lee et al. (2024), SPIE-ADS beats the SOTA by 4.8%.

Ablation Studies: For each real dataset we created three configurations: with point adjustment and
validation set (PA + V), without PA (¬ PA), and without validation set i.e. zero shot (¬ V). It is
observed that as expected the F1 score of SOTA DL techniques reduce drastically without PA. The
USAD has lesser effect, while the SPIE-AD methods have the least effect of PA. Moreover, removal
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Table 4: Comparison of SPIE-AD with latest baseline techniques on real world datasets satisfying
A3 and ablation studies. Only F1 score is shown. Time denotes the execution time in minutes.
AnomalySimpleton and SPIE-ADS were executed in Intel Core i7 10th Gen CPU. All others in
NVIDIA RTX 6000 Ada engine with CUDA 12.5. All other metrics in supplement Table S2.

Method SMD SMAP MSL
A2 ¬ A2 ¬ A1 Time A2 ¬ A2 ¬ A1 Time A2 ¬ A2 ¬ A1 Time

AT 90.7 38.8 0 372 91.2 22.3 0 183 88.6 13.1 0 175
GANF 78.6 41.2 3.4 361 71.9 32.8 1.1 179 73 24 0 165
USAD 43.1 21.2 21.2 218 62 26 26 121 41 18 18 103
OFA 72.9 2.5 1.9 318 86.9 9.4 5.1 171 82.7 22.3 4.4 159
FITS 99.9 32.7 11.2 281 70.74 13.4 2.2 164 78.12 15.3 4.3 141
TFAD 89.3 21.7 4.1 211 96.3 35.4 7.7 135 96.4 40.1 8.8 122
AnomalySimpleton 96.2 2.0 0 21 90.5 4 0 7 89.5 4.8 0 6
SPIE-ADS 74 73 73 172 68 65 65 153 83 83 83 132
SPIE-ADL 86 86 86 323 79 73 73 208 83 83 83 178

of validation set reduces the F1 score to near zero for anomaly transformer and GNAF approaches
showing that cannot be trivially extended for zero-shot MTAD. On the other hand, both USAD and
SPIE-AD have higher F1 score for zero-shot MTAD, with SPIE-AD outperforming USAD.

Window sizes averaged 
over 250 datasets

Figure 5: Event wise anomaly
detection accuracy of SPIE-
ADS with varying window
size. Results averaged over
250 UCR datasets.

Sensitivity to window size: We use the UCR database to evalu-
ate sensitivity to window size for our approach as it has the largest
number of real world datasets (n = 250) to ensure statistically sta-
ble results. The window size is varied as a percentage of the total
dataset size for each database. Figure 5 shows that large window
sizes reduces the accuracy of detecting an anomalous event since
the event size maybe a small fraction of the window size. When the
window size is too small, SINDY-MPC core fails to extract accu-
rate models of the underlying governing dynamics - decreasing its
accuracy. Hence, there is a optimal window size for each dataset.

6 CONCLUSIONS AND DISCUSSION

In this paper, we introduced SPIE-AD a methodology for identi-
fying ’unknown-unknown’ (U2) errors in AI-enabled autonomous
systems. U2 can arise due to unpredictable human interactions and
complex real-world usage scenarios, potentially leading to critical safety incidents through unsafe
shifts in the distribution of the inter-relationships among the variables in operational data. SPIE-AD
performs zero shot anomaly detection and hence does not require signature of the U2 scenario or
detection. Validation across diverse contexts such as zero-day vulnerabilities in unmanned aerial
vehicles, hardware failures in autonomous insulin delivery systems, and design deficiencies in air-
craft pitch control systems such as Maneuvering Characteristics Augmentation Systems (MCAS),
demonstrates our framework’s efficacy in preempting unsafe data distribution shifts due to unknown-
unknowns. This methodology not only advances unknown-unknown error detection in AAS but also
sets a new benchmark for integrating physics-guided models and machine learning to ensure sys-
tem safety. Mining the underlying model of a dynamical system has several applications including
detection of stealth cheating scenarios in AI systems much like the Volkswagon emission cheating
case, or also biometric liveness detection.

We have not only shown efficacy of SPIE-AD on U2 datasets but also demonstrated its generality
in detecting any anomalous scenarios through the usage of standard real world datasets. We will
make our dataset public through the MTAD tools and techniques github page (Liu et al., 2024) for
the general research community to develop novel ZSA detection schemes.

Limitations: SPIE-AD faces challenges in determining point anomalies that last very few samples.
In the SMD SMAP and MSL datasets, anomalies that last < 5 samples are missed consistently.
Moreover, as seen in Figure 5 SPIE-ADS performance is sensitive to the window size chosen for the
CRIE algorithm. Hence, an important future work is to formally evaluate the sensitivity of SPIE-AD
to window length.

Ethical Considerations: One of the components of SPIE-AD is recovering underlying model. One
of the applications of SPIE-AD is digital twins. An unethical usage is impersonation. Thus, careful
ethical evaluation is required when integrating such systems in medical practice. Another issue is
that SPIE-AD is only a ZSA detection mechanism. In its current form it cannot be used to explain
the reasons behind the U2 occurrence. Such black box models can become problematic if false
positives lead to usage of critical intervention. Hence proper safeguards should be placed to vet the
U2 decisions from SPIE-AD.
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A APPENDIX

A.1 LTC-NN MODEL RECOVERY ROBUSTNESS RESULTS

Table S1 5 shows the performance of LTC-NN architecture described in Figure 4 of the main paper
on model recovery for different benchmark examples available in (Kaiser et al., 2018).

For each evaluation experiment, we use two metrics:

Root mean square error in model coefficients (RMSEΘ) and Root mean square error in sig-
nal (RMSEY ). Given the estimated model coefficients Θest and measured variables Yest for any
technique we computed them as:

RMSEΘ =
√

1
p

∑
j=1...p (Θj

est − Θj)2, (4)

RMSEY = 1
n

∑
l=1...n

√
1
k ×

∑
j=1...k (Y l

est(j) − Y l(j))2. (5)

Table 5: S1: Comparison of LTC-NN architecture with baseline SINDY-MPC only and other RNN
architectures on standard benchmarks. LTC-NN-MR represents model recovery with LTC-NN ar-
chitecture shown in Figure 4. The LTC-NN can be replaced by CT-RNN or NODE. Value in () is
standard deviation

Example RMSE SINDY-MPC LTC-NN-MR CT-RNN-MR NODE-MR
Lotka RMSEΘ 0.059 (0.02) 0.048 (0.015) 0.054 (0.03) 0.064 (0.02)
Volterra RMSEY 0.03 (0.02) 0.03 (0.018) 0.05 (0.02) 0.088 (0.03)
Chaotic RMSEΘ 0.014 (0.008) 0.015 (0.006) 0.022 (0.009) 0.044 (0.012)
Lorenz RMSEY 1.7 (0.6) 1.68 (0.4) 3.66 (1.1) 8.1 (3.6)
F8 RMSEΘ 7.9 (3.2) 6.8 (2.9) 10.5 (4.8) 19.9 (7.4)
Crusader RMSEY 3.2 (2.1) 1.57 (1.4) 3.46 (2.6) 7.22 (5.7)
Pathogenics RMSEΘ 0.5 (0.2) 0.39 (0.23) 0.43 (0.3) 0.42 (0.3)
attack RMSEY 27.8 (9.1) 28.3 (6.2) 28.8 (7.7) 29.5 (9.6)

A.2 DESCRIPTION OF REAL WORLD DATASETS

We used three real datasets:

Server Machine Database: The Server Machine Dataset (SMD) is a newly curated dataset that
spans a period of five weeks, collected from a major Internet company known for its extensive
server infrastructure (Su et al., 2019). This dataset, which includes detailed logs and metrics related
to server machine performance, has been made publicly available on GitHub to support research in
anomaly detection and related fields.

The SMD dataset comprises a wide range of features, including CPU utilization, memory usage,
disk I/O, and network traffic, collected at regular intervals. For practical analysis, we have divided
the dataset into two equal-sized subsets: the first subset, which covers the initial period of the data
collection, is used as the training set. The second subset, covering the remaining period, is desig-
nated as the testing set.

In the testing subset, domain experts have meticulously identified and labeled anomalies, along with
their specific dimensions, based on a thorough examination of incident reports and historical data.
These labels provide valuable insights for evaluating anomaly detection algorithms and enhancing
their accuracy.

Soil Moisture Active Passive Satellite: The Soil Moisture Active Passive (SMAP) satellite (Liu
et al., 2024) is a NASA mission designed to measure and monitor soil moisture levels across the
globe. SMAP employs a combination of active radar and passive radiometer technologies to pro-
vide high-resolution measurements of soil moisture, which are crucial for understanding water cy-
cles, weather patterns, and climate change. The satellite records key performance indicators (KPIs)
related to its operational status and performance metrics, including data on the satellite’s health,
instrument functionality, and environmental conditions. These KPIs are essential for ensuring the
proper functioning of the spacecraft and for diagnosing and addressing any issues that may arise
during its mission.

Mars Science Laboratory Rover (MSL): The Mars Science Laboratory (MSL) rover (Liu et al.,
2024), commonly known as Curiosity, is a NASA rover mission designed to explore the surface of
Mars. Equipped with a suite of scientific instruments, the MSL rover conducts a variety of experi-
ments to study Mars’ geology, climate, and potential for past habitability. The rover records KPIs
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Table 6: S2: Comparison of SPIE-AD with latest baseline techniques on real world datasets and
ablation studies. The datasets all satisfy A3.

Method SMD
A2 ¬ A2 ¬ A1

Pr Re F1 Pr Re F1 Pr Re F1
AT 83 100 90.7 29 58.6 38.8 0 0 0
GANF 39.5 93 78.6 28 78 41.2 30.6 1.8 3.4
USAD 28 94 43.1 12.2 80 21.2 12.2 80 21.2
AnomalySimpleton 98.2 94.4 96.2 35.1 1.0 2.0 0 0 0
SPIE-ADS 64 87.7 74 63 86.7 73 63 86.7 73
SPIE-ADL 84 88 86 83 89 86 83 89 86
Method SMAP

A2 ¬ A2 ¬ A1
AT 83.8 100 91.2 12.7 90 22.3 0 0 0
GANF 57.5 96 71.9 19.9 93 32.8 0.6 7 1.1
USAD 45 100 62 15.1 94 26 15.1 94 26
AnomalySimpleton 86.4 95.1 90.5 13.6 2.4 4 0 0 0
SPIE-ADS 55 89 68 52 87 65 52 87 65
SPIE-ADL 69.8 91 79 65.7 82.1 73 65.7 82.1 73
Method MSL

A2 ¬ A2 ¬ A1
AT 79.5 100 88.6 8.7 27 13.1 0 0 0
GANF 64 85 73 16 48 24 0 0 0
USAD 44.5 38 41 14.5 23.8 18 14.5 23.8 18
AnomalySimpleton 89.6 89.4 89.5 20.9 2.7 4.8 0 0 0
SPIE-ADS 80.2 86 83 80.2 86 83 80.2 86 83
SPIE-ADL 80.3 85.8 83 80.3 85.8 83 80.3 85.8 83

related to its operational performance, such as power consumption, temperature readings, and com-
munication status. These performance metrics are critical for monitoring the health and functionality
of the rover, managing its systems, and troubleshooting any technical challenges that arise during
its exploration of the Martian surface. The data collected helps scientists and engineers ensure the
rover’s effective operation and mission success.

A.3 EXTENDED TABLE FOR REAL WORLD DATASET

Table S2 6 shows the extended results for Table 4 in the main paper with precision and recall values.

A.4 SPIE-AD HYPER-PARAMETER OPTIMIZATION

Given a threshold of r%, the hyper parameters of the SPIE-AD method extracts the hyper-paramters
of the SPIE-AD method so that atleast r% data from the training set falls within the robustness
interval [ρ1, ρ2], while minimizing (ρ2−ρ1). The algorithm currently is a brute force search through
all possible hyper-parameter combination to find the best hyper-paramters that matched the above-
mentioned conditions.

A.5 DATA AND CODE AVAILABILITY

The data and code for model recovery using SINDY-MPC are available in https://
anonymous.4open.science/r/U2Recognition-5502/

To use LTC-NN a manual transfer of model coefficient is required and the pipeline is not en-
tirely automated. Hence, the models available in https://anonymous.4open.science/
r/LTC-NN-MR-4420/ has to be run first and the saved model coefficients needs to be transferred
to the U2Recognition github and then run the files described in the U2Recognition github.

The AnomalySimpleton also known as SMDTrash is available in https://anonymous.
4open.science/r/AnomalyAbsurd-5CED/

15

https://anonymous.4open.science/r/U2Recognition-5502/
https://anonymous.4open.science/r/U2Recognition-5502/
https://anonymous.4open.science/r/LTC-NN-MR-4420/
https://anonymous.4open.science/r/LTC-NN-MR-4420/
https://anonymous.4open.science/r/AnomalyAbsurd-5CED/
https://anonymous.4open.science/r/AnomalyAbsurd-5CED/

	Introduction
	Methodology and Theoretical Foundations
	Robust sparse dynamical model recovery
	Conformal inference for model deviation
	ZSA detection algorithm
	Why this works?
	Computational complexity

	Related Work
	Evaluation
	Benchmarks
	Implementation

	Results
	AnomalySimpleton Performance and lessons learned
	ZSA detection performance evaluation
	Real world anomaly detection performance

	Conclusions and discussion
	Appendix
	LTC-NN model recovery robustness results
	Description of real world datasets
	Extended table for real world dataset
	SPIE-AD hyper-parameter optimization
	Data and Code Availability


